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ABSTRACT: The 2017 flash drought arrived without early warning and devastated the U.S. north-
ern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent
Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the
United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental
health. These effects motivated a multiagency collaboration among academic, tribal, state, and
federal partners to evaluate drought early warning systems, coordination efforts, communication,
and management practices with the goal of improving resilience and response to future droughts.
This essay provides an overview on the causes, predictability, and historical context of the drought,
the impacts of the drought, opportunities for drought early warning, and an inventory of lessons
learned. Key lessons learned include the following: 1) building partnerships during nondrought
periods helps ensure that proper relationships are in place for a coordinated and effective drought
response; 2) drought information providers must improve their understanding of the annual deci-
sion cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors;
and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given
that seasonal forecasts lack skill over the northern Great Plains.
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familiar saying among agricultural producers of the U.S. northern Great Plains region

comprising Montana, North Dakota, and South Dakota (Fig. 1) and the adjacent

Canadian Prairies is, “We’re always in a drought. It just depends on how bad it is in a
given year.” The year 2017 was a bad year. The 2017 northern Great Plains flash drought began
in the spring, evolved rapidly through the summer (Fig. 1), and became the most destructive
drought in decades (Fortin 2017; Puckett 2018). The drought led to reduced agricultural
production, wildfires, infrastructure damage, and financial, physical, and emotional hardship
to those affected. Agricultural losses related to the drought exceeded $2.6 billion in the United
States alone (NCEI 2017). Note that these impact estimates do not include the secondary and
tertiary costs that filter through the economy.

As arecently emphasized type of drought defined by its rapid onset (e.g., Otkin et al. 2018;
Pendergrass et al. 2020), the 2017 northern Great Plains flash drought, and the devastation
it caused, motivated us to examine the behavior and predictability of drought in the region
and to evaluate how drought-related coordination, communication, and management may
be improved for future events. The National Integrated Drought Information System (NIDIS)
assembled a multi-institutional team of academic, tribal, state, and federal partners to 1)
probe the causes, predictability, and historical context of the drought (Hoell et al. 2019a);
2) describe the impacts of the drought; 3) identify opportunities for drought early warning;
and 4) develop an inventory of lessons drawn (Jencso et al. 2019). This essay describes the
key findings of these reports.

Chronology, historical context, and predictability
Daily soil moisture, precipitation, and maximum temperature from Glasgow in northeast-
ern Montana illustrate the rapid onset of drought and its persistence during the spring and
summer of 2017 (Fig. 1; see also Hoell et al. 2019a). Given the wetness of the land surface
state during early May, the sudden onset and continued severity of the drought was even more
remarkable. In early May, soil moisture at Glasgow ranked in the 80th percentile. In the ab-
sence of any meaningful precipitation, soil moisture declined to the 15th percentile by early
June. Limited precipitation during May and June, on average the wettest time of year, was a
principal driver of drought onset while above-normal daytime temperatures contributed to
the rapid land surface drying (Figs. 1 and 2).

Low soil moisture continued during June and July. Persistent high pressure disrupted the
normal weather patterns and deflected storms away from the region, preventing above-average
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Fig. 1. (top to bottom) Time series of daily soil moisture, precipitation, and maximum temperature at
Glasgow, Montana, and the monthly North American Drought Monitor. The time series are adapted
from Hoell et al. (2019a). The U.S. northern Great Plains states of Montana, North Dakota, and South
Dakota are outlined in blue in the bottom row. Soil moisture percentiles are based on a simulation of the
Variable Infiltration Capacity land surface model forced by the observed meteorology obtained from the
University of California, Los Angeles (UCLA), Surface Water Monitor (Wood 2008; www.hydro.ucla.edu/
SurfaceWaterGroup/forecast/monitor/index.shtml). Precipitation and maximum temperature are based
on the Global Historical Climate Network Daily (Menne et al. 2012). The black line in the daily precipita-
tion and temperature time series shows the 1950-2016 average and the bars show the deviation from
the daily average.

precipitation on all but two days during June and July. Meanwhile, above-normal daytime
temperatures prevailed (Fig. 1).

Drought conditions were not confined to Glasgow as extreme and exceptional drought
spread across Montana, the Dakotas, and the Canadian Prairies during late spring and sum-
mer 2017. According to the North American Drought Monitor (Fig. 1; Svoboda et al. 2002;
Lawrimore et al. 2002), the region was free of drought in early May 2017, with an isolated
area of abnormal dryness straddling the border of the Dakotas, a remnant from the prior year.
Abnormal dryness spread across eastern Montana, the Dakotas, and the southern Canadian
Prairies during May, with the first signs of drought appearing along the border of central
North Dakota and South Dakota. During June 2017, drought intensified and expanded with
vigor (Otkin et al. 2018; Hoell et al. 2019b; Wang et al. 2019; L. G. Chen et al. 2019). Extreme
drought overspread northeastern Montana and southwestern North Dakota amid severe
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drought elsewhere across the re- (a) Three-Week Soil Moisture Change (b) Rapid Soil Moisture Declines in May-july
gion. Drought continued to
intensify throughout the region
during July.

A more complete understand-
ing of the severity of the 2017
northern Great Plains flash
drought requires a comparison
to historical conditions in the 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

. Soil Moisture Percentile Change from 18 May 2017 Percent of Rapid Soil Moisture Declines

region. Notably, the speed of

land surface drying, an up-to- (c) May-July 2017 Precipitation (d) May-July 2017 Max. Temperature
80th-percentile soil moisture {
decline for the 3-week period
beginning on 18 May 2017,
was among the quickest such
standardized decreases since
at least 1916 (Fig. 2a). Rapid
soil moisture declines over
the U.S. northern Great Plains -1.2-0.8-0.4-02-01 0.1 02 0.4 08 1.2 -3.0-2.0-15-1.0-05 05 1.0 15 2.0 3.0

have a diStil’lCt Seasonality, as Precipitation Anomaly (mm/day) Temperature Anomaly (° C)
approximately 50%-80% of Fig. 2. (@) The 3-week soil moisture percentile decline from 18 May 2017
(shaded) and percentile rank of the decline (contours). (b) Percentage of
. . top 3-week soil moisture percentile declines occurring in May-July for
soil moisture decreases occur o o
; A 1916-2017. (c) May-July 2017 precipitation anomaly (shaded; mm day")
in May-July (Fig. 2b). The sea- and percentile rank (contours). (d) May-July 2017 maximum temperature
sonality of flash soil moisture anomaly (°C) and percentile rank (contours). The thick and thin contours
declines aligns with the critical ~ in (a), (c), and (d) indicate the top percentile and quintile, respectively.
growing-season rains (Fig. 1), Soil moisture is based on the UCLA Surface Water Monitor. Precipitation
and temperature are based on nClimGrid/CLIMGRID (Vose et al. 2014).
Precipitation and temperature ranks are adapted from Hoell et al. (2019a).

the top percentile of 3-week

the failure of which leads to
rapid land surface drying.

During May-July 2017, pre-
cipitation and daily maximum
temperatures ranked among the driest and hottest, respectively, over portions of the U.S.
northern Great Plains dating back to at least 1895 (Figs. 2c,d). Areas in eastern Montana that
endured historically intense dryness included Fort Belknap, Fort Peck, and Glasgow. Over
much of the western Dakotas, precipitation and temperature also ranked in the dry and hot
quintiles, respectively, dating back to the late nineteenth century.

Though quick to materialize and briefly intense, the 2017 drought did not exceed many
noteworthy droughts in terms of longevity and spatial extent over Montana, North Dakota,
and South Dakota (Fig. 3). The drought is hardly noticeable on a time series showing percent
of the three-state region covered by simulated soil moisture percentiles. At the pinnacle of
the 2017 drought, in July, soil moisture across 65% of the region was in the lower 20th per-
centile, with much smaller areas falling into the lower 10th and 5th percentiles. By contrast,
during the Dust Bowl in the 1930s, most of the U.S. northern Great Plains experienced soil
moisture in the lower 20th percentile for many consecutive years. Drought activity based on
soil moisture has been relatively quiescent since the late 1980s, the last of the region’s pro-
tracted droughts. Aside from the short droughts at the turn of the millennium, in 2006, 2012,
and 2017, the U.S. northern Great Plains has been largely free of widespread and extended
periods of low soil moisture percentiles.

Was early warning of the 2017 northern Great Plains drought possible? The answer is no,
given the favorable land surface conditions at the beginning of May (Fig. 1) and inaccurate
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precipitation forecasts for May—
July made the preceding April
(Fig. 4 as well as Fig. S1 in the
online supplemental material;
https://doi.org/10.1175/BAMS-
D-19-0272.2). These forecasts
were based on the most widely
used and sophisticated multi-
model initialized prediction sys-
tems available at the time of the
drought: the North American
Multimodel Ensemble (NMME;
Kirtman et al. 2014), the World
Meteorological Organization
(WMO) Lead Centre for Long-

Montana, North Dakota, and South Dakota Soil Moisture Coverage
100%

80%

60%

40% | l

1940 1950 1960 1970 1980

Area Coverage

20% - i ‘

0% -

1910 1920 1930 1990 2000 2010 2020

I E——
0-2 2-5 5-10 10-20 20-30

Soil Moisture Percentile

Fig. 3. Percentage of North Dakota, South Dakota, and Montana covered
by soil moisture percentiles based on the UCLA Surface Water Monitor.
This figure is adapted from Hoell et al. (2019a).

Range Forecast Multi-Model Ensemble, and the Copernicus Climate Change Service multi-
model ensemble. In April 2017, all three forecast ensembles failed to indicate that below-
average precipitation during May—July 2017 was a likely outcome, though they did indicate
an elevated likelihood of above-average temperatures (Fig. 4 and Fig. S1).

Given the lack of early warning of the 2017 drought, we now ask whether the evolution of
the event could have been tracked in sequences of shorter lead NMME forecasts. The answer to
this question is also no, as 1-month lead forecasts of June and July 2017 did not indicate that
below-average precipitation was a favored outcome in the U.S. northern Great Plains (Fig. 4).

The forecast for June 2017 made
the preceding month was par-
ticularly poor, as NMME forecast
above-average precipitation and
near-average temperatures over
almost the entire region despite
this month being among the
driest and warmest on record.
Despite the continued develop-
ment, forecasts of July 2017 at
1-month lead also did not indi-
cate that widespread drought was
a favored outcome in the region.

Impacts

Impacts of the 2017 flash
drought on the U.S. northern
Great Plains and the Canadian
Prairies were varied and costly.
Here, we outline drought im-
pacts on agriculture, human
health, fire, ecosystems, water
quality, tourism, and infrastruc-
ture (Jencso et al. 2019). We
recognize that the impacts of a
disaster broadly include both
market-based and nonmarket
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Fig. 4. NMME-forecast (left) precipitation anomaly (mm day") and (right)
2-m temperature anomaly (°C) for (top) May-July 2017 made the preced-
ing April, (middle) June 2017 made the preceding May, and (bottom)
July 2017 made the preceding June. Forecasts were accessed from the
NOAA Climate Prediction Center (at ftp:/ftp.cpc.ncep.noaa.gow/NMME/
realtime_anom/ENSMEAN/).
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effects (National Research Council 1999). The temporal and spatial complexity of drought
events makes it one of the most difficult natural hazards on which to fully assess impacts,
as these effects filter through the economy, communities, and the environment long after the
immediate event (Pulwarty and Verdin 2013).

Agriculture. In April 2017, half of summer pasture was rated as good to excellent in Montana
and the Dakotas, but the rapid deterioration of conditions in May and June led to a host of
costly impacts on agriculture and livestock production (USDA 2017a). This led to poor grazing
conditions, which prompted cattle producers to begin selling cow—calf pairs by June 2017.
This response appeared in sharp contrast to the more typical practice of selling calves and
a small number of old or less-productive cows in the fall. The severity of conditions, as esti-
mated by the U.S. Drought Monitor, triggered payments through the USDA’s Livestock Forage
Disaster Program for native or improved pasturelands, which exceeded $206 million in 2017
for Montana, North Dakota, and South Dakota combined (USDA 2017b,c).

Perhaps most striking, the resulting losses of winter and spring wheat, oats, and forages
such as alfalfa and pasture grass exceeded $2.6 billion (NCEI 2017). The full cost of these
losses is not reflected in this figure because the maximum allowable claims for crop insur-
ance were exceeded in some areas.

Mental health. Farmers and ranchers face higher levels of several risk factors known to affect
mental health, such as stress, financial or legal pressures, previous physical injuries, and
other forms of trauma (Reed and Claunch 2020; Edwards et al. 2015). Farmers often work long
hours, under isolated conditions, exposed to circumstances beyond their control like volatile
global markets, declining output prices, rising input costs, labor shortages, and weather and
climate extremes (Simes 2019; Stephenson 2018; Jones-Bitton 2018).

Drought can worsen the mental health of farmers, who are already vulnerable to
chronic stress, depression, and risk of suicide (Jones-Bitton 2018; Edwards et al. 2015).
In Australia, a survey of 8,000 people found that drought has a larger negative mental
health impact on farmers and farm workers than on their rural nonfarming counterparts
(Edwards et al. 2015). In Canada, a study of over 1,100 farmers showed that nearly half
the participants felt highly stressed, ineffective, overextended, or emotionally exhausted
(Jones-Bitton et al. 2020). In the aftermath of the 2017 drought, calls to the Saskatchewan
Farm Stress Helpline rose from 320 (before the drought) to 757 (after the drought in 2018)
(Bernacki 2019).

To combat the growing stress on mental health due to the 2017 drought, South Dakota State
University Extension developed a Farm Stress website! and provided informational leaflets
on mental health to help farmers recognize symptoms of stress and depression. North Dakota
State University Extension updated their Farm and Ranch Stress web-
site? and hosted behavioral health trainings, such as, “Life Beyond
Breaking Event: Farm Stress and Economic Summit.” Montana State 2 www.ag ndsu.eduffarmranchstress
University Extension also gave metal health presentations at various i 3 hips/mfbf.org/Article/Montana-Agriculture-
farm organizations’ annual conferences.’ Listen-Learn-Lead-119281

! https://extension.sdstate.edu/tags/farm-stress

Fire and smoke. Fires are larger, longer, and more intense during drought. Even during brief
droughts like 2017, short-term precipitation deficits and above-normal summertime tempera-
tures dry fine fuels that encourage fire ignition and expansion. Record-breaking wildfires
broke out in 2017, as 1.4 million acres burned in Montana, the largest area burned since at
least 1910 (Puckett 2018). In South Dakota, the third largest wildland fire in history began
on 11 December 2017. This fire, the Legion Lake Fire, burned 54,000 acres in the Black Hills,
near Custer State Park and Wind Cave National Park (Gabbert 2018).
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Smoke from wildfires in the western United States and Canada also led to poor air quality,
especially in the mountain valleys of Montana and southern Alberta where air inversions cre-
ated pools of dense smoke. In August 2017, there was not a single day in which all monitoring
stations in Montana reported good air quality. Tribal members on Indian reservations across
the region also reported health impacts because of excessive smoke from wildland fires from
late July through early October 2017. Poor air quality also affected cattle and other livestock,
causing stress and weight loss.

Ecosystems and cultural resources. The 2017 drought impacted wildlife health and popula-
tions by degrading their habitats. In South Dakota, much of the pheasant habitat and cover
was cut and used for hay, which made them more susceptible to predation. As a result, pheas-
ant population density was 45% below the previous year and 65% below the 10-yr average.
Brood sizes were also 18% lower than the 10-yr average (Runia 2017).

On tribal lands, reduced wildlife populations impacted both subsistence hunting and
tribal-guided hunting opportunities. Tribal land managers were also concerned that increased
competition from nonnative and invasive plant species during the drought detrimentally
affected culturally significant plants. In western Montana, wet conditions in the fall of 2016
and above-normal snowpack in the winter of 2017 benefited the production of berries and
medicinal plants. However, the dry and hot conditions in the central and eastern parts of
the state greatly diminished yields. Above-normal temperatures in the late summer and fall
resulted in a longer-than-normal growing season and affected some tribal cultural activities
by delaying the harvest of berries and medicinal plants.

Water quality and supply. Low precipitation in 2017 reduced freshwater inflows to surface
water bodies and elevated the relative concentrations of salts, minerals, bacteria, algae, and
total dissolved solids. The high temperatures and low humidity also promoted toxic cyano-
bacteria algal blooms in stagnant ponds. Livestock suffered from reduced water quality and
were exposed to higher risks of sulfate, nitrate, salt, and bacteria poisoning. As one example,
on 7 July more than 200 cows and calves were found dead in a pasture in southwestern
Saskatchewan due to salt poisoning, heat stress, and dehydration (Pasiuk 2017).

Given the brevity of the 2017 drought, storage in the Missouri River reservoirs generally
remained stable and the impacts of the drought on irrigation and domestic water supply only
appeared locally. Some rural and tribal communities enacted restrictions on lawn watering,
vehicle washing, and other activities to reduce domestic consumption and demand in some
areas of the Dakotas and Montana, namely, at the Rosebud and Fort Belknap Indian Reserva-
tions. Water shortage advisories and outdoor water bans were also issued in Southern Alberta
and Saskatchewan.

Tourism. The tourism industry was impacted in Montana and the Dakotas. During the 2017
drought, Montana lost roughly 800,000 visitors and $240 million in visitor spending, leading
to a 6.8% loss in expected annual spending (Sage and Nickerson 2017). Studies by the Univer-
sity of Montana Institute for Tourism and Recreation Research found that 7% of nonresident
visitors in July, August, and September shortened their stay in Montana due to smoke or fires,
and 10% were not able to participate in their desired activities. In South Dakota, fewer pheas-
ants led to reduced tourism and lost revenue during the fall hunting season.

Infrastructure. Low precipitation in 2017 led to depleted groundwater in Regina and
Winnipeg, Canada, which resulted in the contraction and shifting of clay-rich soils. Shifting
soils in Regina damaged the wiring to power meters, which cost $15 million to repair
(Giesbrecht 2018), and broke 125 water mains, up from just 28 breaks in the preceding
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year. In Regina and Winnipeg, shifting soils also damaged the foundations of dozens
of homes (Baxter 2017). These limited examples illustrate that the idea of drought af-
fecting infrastructure is relatively new in the research literature and needs to be further
quantified.

Monitoring and response

Due to the rapid development of drought in 2017 (Fig. 1), and uncertain precipitation forecasts
leading up to its onset (Fig. 4), drought detection relied on the monitoring of local atmo-
spheric, hydrologic, and terrestrial conditions. Simply put, local, state, and national drought
monitoring infrastructures and partnerships prevented significant delays in the detection of
the 2017 drought. Authorities in Montana, North Dakota, South Dakota, and the Canadian
provinces all monitored (Table 1) and responded to the drought (Table 2) differently, but they
shared common practices, which included the use of drought indices and indicators, national
drought monitors, drought impact reports, and expert interpretation. The states and Canadian
provinces mobilized their drought task forces and enacted their drought management plans,
and governors in the United States issued executive orders on drought-related emergency and
disaster declarations based on monitoring and response activities.

Though ongoing, drought monitoring oftentimes cannot paint a complete picture of the
current drought situation, let alone what may lie in store for the future. The high variability
of local weather and climate conditions across the northern Great Plains makes it difficult
to distinguish the signals that are meaningful to drought development from those that are
not. Furthermore, a complete assessment of the conditions related to drought requires the
simultaneous consideration of many atmospheric, hydrologic, vegetative, and human fac-
tors, all of which are challenging to monitor consistently, accurately, and broadly. A variety
of indicators, or metrics designed to gauge specific drought behaviors, shown in Table 3,
are used to evaluate drought conditions. Precipitation, snow cover, evapotranspiration,

Table 1. Summary of state- and province-specific monitoring and assessment activities during the 2017 flash
drought.

State/province Agency Monitoring and assessment activities

A technical subcommittee consisting of local, state, tribal, federal, and private partners
performed weekly assessments of drought based on the U.S. Drought Monitor, tools
developed by federal science agencies, and on-the-ground updates from individuals.
Assessments were published regularly on the Drought Management website, public
monthly meetings were held, and key drought information was disseminated via local
media.

Governor's Drought
Montana and Water Supply
Advisory Committee

Drought assessment was led each week by the state climatologist, including a team of
weather, water, agriculture, fire, and natural resource experts. The Drought Task Force
activation followed the state’s drought plan and the Drought Incident Annex.

The Drought Task Force met weekly or biweekly and discussed weather and climate
conditions, drought impacts, and drought-related activities.

South Dakota Drought

South Dakota Task Force

A technical group consisting of extension offices in each county, the Department of
Agriculture, and the state climatologist office performed weekly assessments of
drought based on current drought conditions, historical perspectives, and range and
pasture conditions. These assessments were published on the North Dakota State
website. The Department of Emergency Services also hosted periodic meetings on
drought and wildfire.

North Dakota
North Dakota Department of
Emergency Services

Drought assessment was based on the Canadian Drought Monitor. The Canadian Drought
Monitor is created from observed and satellite-derived conditions, drought indicators
and forecasts, and feedback from regional and local authorities. The drought assessment
is published on the website Drought Watch along with supporting information that
includes interactive mapping tools and agricultural statistics. Additionally, agricultur-
ally specific assessments are performed biweekly by representatives from across the
country.

Canadian National Agroclimate
provinces Information Service
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Table 2. Summary of state- and province-specific response activities during the 2017 flash drought.

Executive

State/province orders

Response activities

Agriculture: The Montana Department of Agriculture established a hay hotline, conducted hay
lotteries, and helped producers secure federal assistance. The Montana Stockgrowers
Association coordinated cash donations. Several federal programs aided (e.g., USDA's Livestock
Forage Disaster Assistance Program, Emergency Haying and Grazing Program, Emergency
Assistance for Livestock Program, Emergency Conservation Program, and Emergency Watershed

Montana 3 Protection Program).

Wildfire: The Montana Department of Natural Resources and Conservation Forestry
Division, in close consultation with federal, tribal, and local partners, coordinated fire
suppression activities on all state- and privately owned lands.

Air quality: The Montana Department of Air Quality maintained a website called Today's Air,
which provided smoke updates and offered guidance on how to minimize exposure to smoke.

Agriculture: South Dakota State University Extension held many listening sessions in partnership
with USDA's Farm Service Agency and Natural Resources Conservation Service. One outcome
was the development of a Farm Stress website to link affected producers with mental health

South Dakota 2 resources.

Wildfire: South Dakota has worked with partners to incorporate more drought indicators into fire
risk products to be better prepared for wildfire during future droughts.

Agriculture: The North Dakota Department of Agriculture provided drought information for crop
and livestock producers on its drought resources website. The Department of Agriculture also
opened a hay hotline and conducted a hay lottery. The Emergency Hay Transportation Assistance
Program provided $1.5 million in aid to 500 selected applicants. The USDA Farm Services Agency
in North Dakota provided mental health resources for farmers and ranchers feeling stress related

North Dakota 9 to drought.

Wildfire: The State Fire Marshal provided fire management planning and outreach. The North
Dakota National Guard, Department of Game and Fish, and Department of Parks and Recreation
maintained readiness to provide fire response assistance to local and tribal authorities. The North
Dakota Forest Service supported local and federal response efforts.

Livestock: The Federal Livestock Tax Deferral allowed farmers to defer a portion of sale proceeds
to the following year in rural Alberta and Saskatchewan.

Surface water: Outdoor water bans were issued in Alberta and Saskatchewan.
Canadian

! — Wildfire: Fire bans began in July 2017. The Alberta government allocated $133 million for wildfire
provinces

relief. The Department of National Defense made compensation available for a wildfire that
started on a military base in Alberta. The Saskatchewan Stock Growers Association launched
a wildfire relief fund for affected producers and the Saskatchewan government matched up to
$100,000 cash donations to this fund.

potential evapotranspiration, vegetation health, soil moisture, groundwater, and streamflow
are just a few key variables considered in drought monitoring and assessment. Despite the
development of numerous drought indicators, no single drought index applies to conditions
across the entire region and across all seasons. Moreover, it is unclear which indicators,
or combination of indicators, are best suited for drought monitoring and decision-making
(Purdy et al. 2019).

The coordination of local, state, tribal, and federal government monitoring and response
presented unique challenges. Ensuring that farmers and ranchers were aware of, could
access, and then meet the requirements of federal assistance programs challenged both
producers and service providers. Because of gaps in observation networks, character-
izing drought remains an ongoing problem. In many respects, the 2017 drought created
an opportunity to strengthen both partnerships and modes of communication with and
between those affected. This drought also provided evidence of the need to continue
federal, regional, and state efforts to maintain and build out observation networks. One
such effort is the National Soil Moisture Network that is being developed by NOAA, USDA,
and other partners.
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Table 3. Common indicators used for drought assessment in the northern Great Plains.

Indicators Description

The SPI quantifies observed precipitation data as a standardized departure from the
climatological mean. It shows the number of standard deviations by which the observed
anomaly deviates from the climatological mean. This flexibility allows the SPI to be useful in
various time scales from short-term meteorological to long-term hydrological applications.

Standardized precipitation index (SPI)

The PDSI is based on actual rainfall, temperature, and soil information compared with their
climatological averages. Therefore, PDSI values can be computed back to the beginning of
the historical record. However, the PDSI values are not useful for detecting fast-emerging
droughts because the index contains an inherent lag and it resets itself annually. The PDSI is
produced on a monthly time scale, and was used exclusively in the United States before the
U.S. Drought Monitor.

Palmer drought severity index (PDSI)

The main input value is the original PDSI with an added algorithm to consider longer-term
Palmer hydrological drought index (PHDI) dryness than the period that PDSI considers. It is useful for detecting water storage, stream-
flow, and groundwater shortages for water resources management.

The EDDI values indicate atmospheric evaporative demand anomalies across a time scale
of interest relative to their climatological averages. The index is produced experimentally to
indicate the spatial extent and severity of the drought. It usually responds to fast-emerging
droughts.

Evaporative demand drought index (EDDI)

The DSCl is an experimental index that converts drought levels from the U.S. Drought
Monitor map to a single composite value that considers duration and magnitude of the
drought for an area. These weekly values can be accumulated throughout a drought period
for a given location for comparison with other drought periods (Akyuz 2017).

Drought severity and coverage index (DSCI)

Observed and modeled soil moisture data can be used to detect agricultural drought,
meteorological drought, ecological drought, and flash drought. It indicates how much

Soil moisture data moisture the soil contains compared to the moisture capacity of the soil. If anomalies are
used, the magnitude of the soil moisture deficit indicates the longevity and intensity of the
ongoing drought and potential impact on plant development.

The CMI is calculated based on the Palmer drought severity index. It reflects whether quickly
changing soil moisture conditions can supply the water that the crops need for development.
However, its use may be limited to a period when plants have developed roots that are long
enough to contact water from deeper layers of the soil. These data are produced weekly.

Crop moisture index (CMI)

The VegDRI was developed to monitor drought-induced vegetation stress using a
Vegetation drought response index (VegDRI)  combination of remote sensing, climate-based indicators, and other biophysical information
and land-use data.

The Drought Impact Reporter, which began in 2005, is an online database of drought
impacts sorted by location, drought type, drought impact category, and time. It is also a
digital database where media and other reports are archived. As a citizen science effort, the
public can submit local drought impacts.

Drought Impact Reporter (DIR)

The USGS provides streamflow data and compares them with long-term average streamflow
values. It displays actual streamflow and their comparison with the long-term average. The
values are based on conditions measured at USGS gauging stations. The data are useful for
detecting hydrological drought.

Streamflow data

Lessons learned, needs, and gaps

The effectiveness of federal, state, tribal, and local responses to drought in 2017 and beyond is
contingent upon thorough monitoring, skillful forecasts, effective communication, proactive
planning, and the response to lessons learned through applied research, as outlined by the
five pillars of a drought early warning system (Fig. 5). Based on experiences during the 2017
flash drought over the U.S. northern Great Plains and Canadian Prairies, needs and gaps for
each of these five pillars are as follows (Jencso et al. 2019).

Observations and monitoring. As the 2017 flash drought emerged, it became apparent
that many areas in the U.S. northern Great Plains and Canadian Prairies are poorly or in-
frequently measured for in situ weather and climate information. This gap in information
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led to challenges in making county-level or local
assessments of drought conditions. A more system-
atic network of automated observation sites could
provide high-quality information on temperature,
wind, rainfall, and soil conditions in sparsely popu-
lated areas that currently lack adequate monitoring
infrastructure. Investments must be made in sustain-
ing existing monitoring networks, including state-

Communication
and Outreach

Interdisciplinary
Research and
Applications

Planning and
Preparedness

Drought
Early
Warning
System

(DEWS)

level weather station networks, or mesonets, Remote
Automated Weather Station (RAWS) networks, the
NOAA Cooperative Observer Program (COOP), U.S.
Geological Survey (USGS) stream gauge and ground-
water monitoring, and the USDA Natural Resources
Conservation Service (NRCS) snow survey and soil
moisture monitoring. Efforts are currently underway
to create new soil moisture monitoring stations and
to establish best practices and consistent protocols.

Several state drought task forces highlighted the
need for a more detailed evaluation of which drought indicators are best for monitoring rapid
onset drought (Table 3). These more detailed evaluations must consider location, time of
year, and sector of concern. There is also a need to investigate whether integrated indicators,
or indicators that consider more than one phenomenon, are most reliable. To help address
these needs, the University of Montana and the Montana State Climate Office are leading an
effort to study the applicability and value of drought indicators, including those in Table 3,
in quantifying drought variability in the Upper Missouri River basin.

Drought impact reporting within states has relied on university extension staff as local
reporters of agricultural drought impacts and nationally through media reports collected
by the National Drought Mitigation Center’s Drought Impact Reporter. There is a growing
interest, however, in drought impacts to other economic sectors like tourism, recreation, and
infrastructure, in addition to impacts on ecosystems. National and state entities are work-
ing to address the absence of a standardized approach to the evaluation of drought impacts
across sectors. The absence of such an approach increases the risk of ad hoc or anecdotal
observations that are less representative of conditions at the landscape or watershed scale.
States are working with academic partners to standardize protocols for the observation and
reporting of drought impacts at the local, regional, and state levels, to explore ways to link
state and national databases of impact reports and strengthen and expand impact monitoring
and analysis to inform decision-making.

In combination with expanded in situ observation networks, remotely sensed data can
also enhance our drought detection abilities. There are numerous satellite-derived drought
indices available that provide detailed information about vegetation greenness, solar-induced
fluorescence, evapotranspiration, soil moisture, and other drought-relevant measures with
high spatial resolution. But these satellite-derived products, on their own, might not provide
comprehensive or directly comprehendible measures of socioeconomically relevant outcomes.
Furthermore, while remotely sensed datasets have been evaluated at global and large regional
extents, their performance within specific smaller regions and landscapes has not been
widely tested. An example consequence of satellite-derived data’s potential shortcomings
is a vegetation index insurance product offered to agricultural producers by the USDA Risk
Management Agency for pasture, range, and forage, which relied solely on normalized dif-
ference vegetation index (NDVI) as a measure of the impacts of drought on forage production
(USDA 2015). This NDVI-based insurance product (known as VI-PRF) was replaced in 2016

Observations
and Monitoring

Predictions and
Forecasting

Fig. 5. Schematic of the five pillars that make up a
drought early warning system based on the NIDIS
Implementation Plan Update of 2016 (National
Integrated Drought Information System 2016).
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with a rainfall index product (known as RI-PRF) because many agricultural producers were
frustrated that NDVI did not correlate well with forage measures they considered most relevant
to their operations (USDA 2015). This is because vegetation greenness, as measured by NDVI,
does not directly predict forage growth (Ceccato et al. 2008). It must be combined, instead,
with local information about precipitation, soil moisture, evapotranspiration, soil type, and
plant community composition (M. Chen et al. 2019). This example illustrates the importance
of leveraging the strengths and weaknesses of satellite-derived and in situ data to effectively
monitor drought and its effects on many important socioeconomic and ecological outcomes.

Predictions and forecasting. The 2017 flash drought was not anticipated by operational
forecasts,” because below-normal precipitation in May—July was an unlikely outcome in ini-
tialized prediction systems (Fig. 4). Temperature and precipitation forecasts are most accurate
up to lead times of 1 month and 2 weeks, respectively (Lavers et al. 2009; Yuan et al. 2011).
However, in terms of drought, Yuan and Wood (2013) state that, “This raises the question of
whether seasonal forecasting of global drought onset is essentially a stochastic forecasting
problem.” Though improvements in drought forecasts have been reported,® recent flash
droughts that led to billions of dollars in losses over the Great
Plains like 2012 (e.g., Hoerling et al. 2014) and 2017 were not
predicted. We encourage the forecasting and model develop- “ https://origin.cpc.ncep.noaa.gov/products/expert_
ment communities to continue the upward trajectory of drought assessment/SDO/sdo_archive/2017/05/seasonal
prediction skill. Continued improvements in drought forecasts drought.png; https://origin.cpc.ncep.noaa.gov/
may provide local and state managers in the U.S. northern Great (07/seasonal drouah
. . . . _drought.png

Plains the early warning that is necessary to implement proac- > www.cpc.ncep.noaa.gov/products/expert_assessment/
tive drought response strategies. sdo_verification/raw-persist.png

products/expert_assessment/SDO/sdo_archive/2017

Communication and outreach. Communication is an essential component of effective drought
planning, preparedness, and response activities. During the 2017 drought, state drought
task forces, agriculture extension professionals, state climatologists, and local USDA Service
Center staff played key roles in communicating across the state drought task forces and with
the public. The Missouri River basin Drought Early Warning System (see sidebar) helped to
facilitate better communication by building stronger links between relevant federal, state,
and tribal partners. However, there remains a need to better understand and capitalize on
these pathways of communication in preparing for and responding to drought. The growth
and development of new modes and methods of communication, along with the growth of
new digital platforms, provides opportunities for improvement in this arena.

Planning and preparedness. Proactive drought and hazard mitigation plans, in addition to the
exchange of timely and accurate drought information, are essential to the process of drought
preparedness and response. The state drought plans worked as designed in 2017, but in most
cases, these plans are intended to provide an emergency response rather than proactive policy
direction. They are not as effective in getting services out to the public before conditions reach
peak drought severity. It is difficult to plan for drought during a drought, and while short-
term response plans provide support during the event, states and municipalities can benefit
from longer-term planning that includes identification and implementation of mitigation and
adaptation strategies. Effective early warning depends on multisectoral and interdisciplinary
collaboration among all concerned actors at each stage in the warming process, especially if
the intent is to improve response to impending events, managing through even intensifica-
tion, and to provide guidance for longer-term resilience (Pulwarty and Verdin 2013). Many
states have recognized the need to plan holistically across sectors and apply an ecosystem-
based approach, which allows for consideration of building soil and plant health into
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water management strategies. The
importance of proactive drought
planning and preparedness will
only increase as the likelihood of
drought in some regions increases
in the future (Hoell et al. 2019b;
Wehneretal. 2017; Yuanetal. 2019).

Another facet of planning
includes a better understand-
ing of the triggers used for
decision making by individuals on
the ground, as well as establish-
ing triggers in state drought plans.
During the genesis of the 2017
flash drought, agricultural pro-
ducers recognized and responded
to the developing drought before
it was suggested by most drought
indicators (Table 3). For example,
since stock ponds did not fill in
May because of the sparse pre-
cipitation, ranchers sold cattle and
adjusted grazing plans to accom-
modate forage shortfalls. These
actions can provide a form of “early
warning” of an ensuing drought, or
other weather stressors, for those
who provide drought informa-
tion and related assistance. This
example provides an opportunity
to retrospectively examine sector-
specific indicators and indices that
can help improve early warning in
the future.

Research and applications.
Although our understanding of
droughts, and the ways in which
we can prepare for and respond to

Acting to meet gaps and needs
identified through the 2017 drought

The U.S. northern Great Plains is part of the Missouri River basin
Drought Early Warning System (DEWS), one of nine regional DEWS that
are part of the National Oceanic and Atmospheric Administration’s
interagency NIDIS. NIDIS was authorized by Congress in 2006 (Public Law
109-430) and reauthorized in 2014 (Public Law 113-86) and 2018 (Public
Law 115-423) with a mandate to coordinate and integrate drought re-
search. Each of the nine DEWS builds on existing federal, tribal, state, and
local partnerships and is based on five key components (Fig. 5), which are
adapted to regional drought-related impacts and information needs.

The lessons learned, needs, and gaps identified through experiences
in the 2017 flash drought are being used to inform many initiatives in the
Missouri River basin DEWS region. A National Soil Moisture Monitoring
Network and Strategy is under development with a pilot in the northern
Great Plains led by the U.S. Army Corps of Engineers. The states in that
region have used the experience to improve their processes to monitor
and respond to drought and consider updating their drought-related plans.
The University of Montana is leading research to better understand which
drought indicators are best suited temporally, seasonally, and spatially, and
for which sectors, to improve drought monitoring. The experience of the
2017 drought and its impacts informed the development of a NIDIS Tribal
Engagement Strategy for the Missouri River basin and Midwest DEWS.

The recently released Missouri River basin DEWS Regional Implemen-
tation Plan, which will guide investment in the region for the next 3-5
years, will continue to address the needs of the region, focusing on four
priorities:

1) Characterize drought indicators and indices for the Missouri River basin
DEWS to validate use temporally and spatially considering their uncer-
tainties, appropriateness, and limitations for application to multiple
sectors in the region.

2) Understand drought impacts and relate these to indicators to improve
drought early warning, better quantify drought impacts across sectors
and communities, and inform communication that resonates with target
audiences.

3) Identify and communicate proactive steps that can be taken to build
drought resilience before drought and inform response during drought
to empower those coping with drought impacts to effect change.

4) Enhance collaboration and coordination across national, tribal, state, and
local partners and across regions to strengthen drought early warning,
preparedness, and resilience across the Missouri River basin.

droughts, has improved over time, the 2017 flash drought underscored many questions that
remain unanswered. Can soil moisture observations better characterize and provide early
warning for flash droughts? What indicators are best suited to identify flash droughts? What
is the potential predictability of flash drought, and can it ever be realized in current and
future forecast systems? What are the dominant physical mechanisms of flash drought? The
complexities of estimating drought impact beyond immediate agricultural losses remains
challenging (e.g., Smith 2020), even more so than for other hazards such as floods and storms.
How do we provide better estimates of drought impacts, given the cascading nature of risks
across economic sectors? These questions are being addressed through various research and

grant programs.
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Concluding remarks

A pressing question remains following the 2017 flash drought, given changes in drought
characteristics and risk in the northern Great Plains (Wehner et al. 2017; Hoell et al. 2019b).
Is the region prepared for future droughts since the frequency and intensity of future droughts
may fall outside the context of our historical experience? The challenges are large and involve
uncertainties (e.g., predictions, forecasts, human behavior, institutional coordination), tempo-
ral and spatial scales of impacts, trade-offs between different interests, and scarce resources
and capacity, but the 2017 drought provided an opportunity to identify a path forward to a
more resilient future for the region.
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