
Improve Learning from Crowds via Generative Augmentation
Zhendong Chu, Hongning Wang

Department of Computer Science
University of Virginia

Charlottesville, VA 22903, USA
{zc9uy,hw5x}@virginia.edu

ABSTRACT
Crowdsourcing provides an efficient label collection schema for
supervised machine learning. However, to control annotation cost,
each instance in the crowdsourced data is typically annotated by
a small number of annotators. This creates a sparsity issue and
limits the quality of machine learning models trained on such data.
In this paper, we study how to handle sparsity in crowdsourced
data using data augmentation. Specifically, we propose to directly
learn a classifier by augmenting the raw sparse annotations. We
implement two principles of high-quality augmentation using Gen-
erative Adversarial Networks: 1) the generated annotations should
follow the distribution of authentic ones, which is measured by a
discriminator; 2) the generated annotations should have high mu-
tual information with the ground-truth labels, which is measured
by an auxiliary network. Extensive experiments and comparisons
against an array of state-of-the-art learning from crowds methods
on three real-world datasets proved the effectiveness of our data
augmentation framework. It shows the potential of our algorithm
for low-budget crowdsourcing in general.

CCS CONCEPTS
• Information systems→Crowdsourcing; •Computingmethod-
ologies → Adversarial learning.

KEYWORDS
Crowdsourcing, generative adversarial nets, label noise

ACM Reference Format:
Zhendong Chu, Hongning Wang. 2021. Improve Learning from Crowds
via Generative Augmentation. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3447548.3467409

1 INTRODUCTION
Modern machine learning systems are data hungry, especially for
labeled data, which unfortunately is expensive to acquire at scale.
Crowdsourcing provides a label collection schema that is both
cost- and time-efficient [4]. It spurs the growing research efforts in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467409

directly learning a classifier with only crowdsourced annotations,
aka the learning from crowds problem.

In practice, to minimize annotation cost, the instances in crowd-
sourced data are typically labeled by a small number of annotators;
and each annotator will only be assigned to a few instances. This in-
troduces serious sparsity in crowdsourced data. We looked into two
widely-used public crowdsourced datasets for multi-class classifica-
tion, one for image labeling (referred to as LabelMe [25, 27]) and
one for music genre classification (referred to as Music [26]). On the
LabelMe dataset, each instance is only labeled by 2.5 annotators on
average (out of 59 annotators), while 88% annotators provide less
than 100 annotations (out of 1,000 instances). On the Music dataset,
each instance is labeled by 4.2 annotators on average (out of 44 an-
notators), while 87.5% annotators provide less than 100 annotations
(out of 700 instances). Such severe sparsity hinders the utility of
crowdsourced labels. On the instance side, annotations provided
by non-experts are noisy, which are expected to be improved by
redundant annotations. But subject to the budget constraint, re-
dundancy is also to be minimized. This conflict directly limits the
quality of crowdsourced labels. On the annotator side, most exist-
ing crowdsourcing algorithms model annotator-specific confusions,
which are used for label aggregation [9], task assignment [10, 21]
and annotator education [29]. But due to the limited observations
per annotator, such modeling can hardly be inaccurate, and thus
various approximations (e.g., strong independence assumptions [9])
have to be devised.

A straightforward solution to address annotation sparsity is to
recruit more annotators or increase their assignments, at the cost
of an increasing budget. This however is against the goal of crowd-
sourcing, i.e., to collect labeled data at a low cost. We approach the
problem from a different perspective: we perform data augmen-
tation using generative models to fill in the missing annotations.
Instead of collecting more real annotations, we generate annota-
tions by modeling the annotation distribution on instances and
annotators. Given our end goal is to obtain an accurate classifier,
the key is to figure out what annotations best help the classifier’s
training. We propose two important criteria. First, the generated an-
notations should follow the distribution of authentic ones, such that
they will be consistent with the label confusion patterns observed in
the original annotations. Second, the generated annotations should
well align with the ground-truth labels, e.g., with high mutual infor-
mation [13, 38], so that they will be informative about ground-truth
labels to the classifier.

We realize our criteria for annotation augmentation in crowd-
sourced data using Generative Adversarial Networks (GAN) [11].
The end product of our solution is a classifier, which predicts the
label of a given instance. We set a discriminative model to judge

https://doi.org/10.1145/3447548.3467409
https://doi.org/10.1145/3447548.3467409

whether an annotation is authentic or generated. Meanwhile, a gen-
erative model aims to generate annotations following the distribu-
tion of authentic annotations under the guidance of the discrimina-
tive model. On a given instance, the generator takes the classifier’s
output and the annotator and instance features as input to gener-
ate the corresponding annotation. To ensure the informativeness
of generated annotations, we maximize the mutual information
between the classifier’s predicted label and the generated annota-
tion on each instance [7]. A two-step training strategy is proposed
to avoid model collapse. We name our framework as CrowdInG -
learning with Crowdsourced data through InformativeGenerative
augmentation. Extensive experiments on three real-world datasets
demonstrated the feasibility of data augmentation for the problem
of learning from crowds. Our solution outperformed a set of state-
of-the-art crowdsourcing algorithms; and its advantage becomes
especially evident with extremely sparse annotations. It provides a
new opportunity for low-budget crowdsourcing in general.

2 RELATED WORKS
Our work studies the learning from crowds problem. Raykar et al.
[24] employed an EM algorithm to jointly estimate the expertise of
different annotators and a logistic regression classifier on crowd-
sourced data. They followed the well-known Dawid and Skene (DS)
model [9] to model the observed annotations. Albarqouni et al. [1]
extended this solution by replacing the logistic classifier with a
deep neural network classifier. Rodrigues and Pereira [25] further
extended the solution by replacing the confusion matrix in the DS
model with a neural network to model annotators’ expertise, and
trained the model in an end-to-end manner. Guan et al. [12] used a
neural classifier to model each annotator, and aggregated the pre-
dictions from the classifiers by a weighted majority vote. Cao et al.
[5] proposed an information-theoretical deep learning solution to
handle the correlated mistakes across annotators. However, all the
mentioned solutions only use the observed annotations, such that
their practical performance is limited by the sparsity of annotations.

Another research line focuses onmodeling the annotators.White-
hill et al. [37] proposed a probabilistic model which considers both
annotator accuracy and instance difficulty. Rodrigues et al. [26]
modeled the annotation process by a Gaussian process. Imamura
et al. [14] and Venanzi et al. [33] extended the DS model by shar-
ing the confusion matrices among similar annotators to improve
annotator modeling with limited observations. Confusions of anno-
tators with few annotations are hard to be modeled accurately, and
Kamar et al. [17] proposed to address the issue with a shared global
confusion matrix. Chu et al. [8] also set a global confusion matrix,
which is used to capture the common confusions beyond individual
ones. However, the success of the aforementioned models relies
on the assumed structures among annotators or annotations. Such
strong assumptions are needed, because the sparsity in the anno-
tations does not support more complicated models. But they also
restrict the modeling of crowdsourced data, e.g., introducing bias
in the learnt model. We lift such restrictions by directly generating
annotations, such that our modeling of crowdsourced data even
does not make any class- or annotator-dependent assumptions.

Benefiting from their powerful modeling capabilities, deep gen-
erative models have been popularly used for data augmentation

purposes. Most efforts have been spent on problems in a continuous
space, such as image and video generations. Semi-supervised GAN
[2, 22, 30] augments training data by generating new instances
from labeled ones. Chae et al. [6] employed GAN to address the
data sparsity in content recommendation, with their proposed real-
value, vector-wise recommendation model training. Recently, GAN
has also been adopted in data augmentation for discrete problems.
Wang et al. [36] designed a two-step solution to perform GAN train-
ing for collaborative filtering. Wang et al. [34] unified generative
and discriminative graph neural networks in a GAN framework to
enhance the graph representation learning. Irissappane et al. [15]
reduced the needed labeled data to fine-tune the BERT-like text
classification models via GAN-generated examples.

3 METHODOLOGY
In this section, we begin our discussion with the background tech-
niques of our augmentation framework, including GAN and In-
foGAN. Then we present our CrowdInG solution and discuss its
detailed design of each component. Finally, we describe our two-
step training strategy for the proposed framework.

3.1 Background
3.1.1 Generative Adversarial Networks. Goodfellow et al. [11] in-
troduced the GAN framework for training deep generative models
as a minimax game, whose goal is to learn a generative distribu-
tion 𝑃𝐺 (𝑥) that aligns with the real data distribution 𝑃true (𝑥). The
generative distribution is imposed by a generative model 𝐺 , which
transforms a noise variable 𝜺 ∼ 𝑃𝑛𝑜𝑖𝑠𝑒 (𝜺) into a sample 𝐺 (𝜺). A
discriminative model 𝐷 is set to distinguish between the authen-
tic and generated samples. The generator 𝐺 is trained by playing
against the discriminator 𝐷 . Formally, 𝐺 and 𝐷 play the following
two-player minimax game with value function 𝑉 (𝐺, 𝐷):

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) =E𝑥∼𝑃true [𝜙
(
𝐷 (𝑥)

)
] + E𝜺∼𝑃noise [𝜙

(
1 − 𝐷 (𝐺 (𝜺))

)
],

where 𝜙 is a function of choice and log(·) is typically the choice.
The optimal parameters of the generator and the discriminator can
be learned by alternately maximizing and minimizing the value
function 𝑉 (𝐺,𝐷). In this paper, we adopt this idea to model the
annotation distribution: a generator is used to generate annotations
on specific instances and annotators; and a discriminator is set to
distinguish the authentic annotations from the generated ones.

3.1.2 Information Maximizing Generative Adversarial Networks.
Chen et al. [7] extended GAN with an information-theoretic loss to
learn disentangled representations for improved data generation.
Aside from the value function 𝑉 (𝐺, 𝐷), InfoGAN also maximizes
the mutual information between a small subset of latent variables
(referred to as latent code 𝑧) and the generated data. The generator
takes both random noise 𝜺 and latent code 𝑧 as input, where the
latent code is expected to capture the salient structure in the data
distribution. The minimax game then turns into an information-
regularized form,

min
𝐺

max
𝐷

𝑉𝐼 (𝐺, 𝐷) = 𝑉 (𝐺,𝐷) − 𝜆𝐼 (𝑧;𝐺 (𝜺, 𝑧)),

where 𝐼 (𝑥 ;𝑦) is the mutual information between random variables
𝑥 and 𝑦, and 𝜆 is the regularization coefficient.

Classifier C

Input

Discriminator D

Output

2 3* 3*

1 2*

1* 1

x1

x3

x2

real

fake

LCA
Decoder

Label Corr.
Graph

Annotation
selection

x

Sampling

Anno.

< , , >
< , , >

< , , >

x1

x1

……
x2

Generator G

x

ε

g

LI LG

R

Generated anno.

f h

Aux. Net
Q

x

e

e

e3e2e1

e1

e2

e3C(z|x)

Generative module

Discriminative module
PθG(yn)

Figure 1: Overview of CrowdInG framework. We first sample annotations from annotation distributions provided by the gen-
erator. The discriminator and the auxiliary network are trained on the selected annotations. Then, the classifier is first fixed
and the generator is updated according to L𝐺 and L𝐼 . The generator is fixed and the classifier is updated according to L𝐺 .

3.2 The CrowdInG framework
Let S = {𝒙𝑛,𝒚𝑛}𝑁𝑛=1 denote a set of 𝑁 instances labeled by 𝑅

annotators out of |C| possible classes. We define 𝒙𝑛 ∈ R𝑑 as the
feature vector of the 𝑛-th instance and 𝑦𝑟𝑛 ∈ C as its annotation
provide by the 𝑟 -th annotator. 𝒚𝑛 is thus the annotation vector
(with missing values) from 𝑅 annotators for the𝑛-th instance. When
available, the feature vector of the 𝑟 -th annotator is denoted as 𝒆𝑟 ;
otherwise, we use a one-hot vector to represent an annotator. Each
instance is associated with an unobserved ground-truth label 𝑧 ∈ C.
The goal of learning from crowds is to obtain a classifier 𝐶 (𝑧 |𝒙)
that is directly estimated from S.

The framework of CrowdInG is depicted in Figure 1. It consists
of two main components: 1) a generative module, including a clas-
sifier and a generator; and 2) a discriminative module, including a
discriminator and an auxiliary network. In the generative module,
the classifier first takes an instance 𝒙𝑛 as input and outputs its
predicted label distribution 𝑃𝜃𝐶 (𝑧𝑛 |𝒙𝑛). For simplicity, we collec-
tively denote classifier’s output for an instance 𝒙𝑛 as 𝒛̂𝑛 . And then
the generator takes the instance 𝒙𝑛 , annotator 𝒆𝑟 , the classifier’s
output 𝒛̂𝑛 , together with a random noise vector 𝜺, to generate the
corresponding annotation distribution 𝑃𝜃𝐺 (𝑦𝑟𝑛 |𝒙𝑛, 𝒆𝑟 , 𝒛̂𝑛, 𝜺). The
discriminative module is designed based on our criteria of high-
quality annotations to evaluate the generations. On one hand, the
discriminative module uses a discriminator to differentiate whether
the annotation triplet (𝒙𝑛, 𝒆𝑟 , 𝑦𝑟𝑛) is authentic or generated. On the
other hand, the discriminative module penalizes the generation
based on the mutual information between the generated anno-
tation and classifier’s output measured by an auxiliary network.
Following the idea of InfoGAN, we treat the classifier’s output 𝒛̂
as the latent code in our annotation generation. And the auxiliary
network measures the mutual information between 𝒛̂ and 𝑦. The
two modules play a minimax game in CrowdInG. A better classifier

is expected as the discriminative module faces more difficulties in
recognizing the generated annotations during training.

3.2.1 Generative module. The output of the generative module
is an annotation distribution for a given annotator-instance pair
(𝒙𝑛, 𝒆𝑟). Sampling is applied to obtain the final annotations. As
shown in Figure 1, this is a two-step procedure. First, the classifier
𝐶 (𝑧𝑛 |𝒙𝑛 ;𝜃𝐶) predicts the label of a given instance 𝒙𝑛 by

𝑃𝜃𝐶 (𝑧𝑛 = 𝑐 |𝒙𝑛) ∝ exp[𝑓 (𝒙𝑛, 𝑧𝑛 = 𝑐)],
where 𝑓 (·) is a learnable scoring function chosen according to
the specific classification tasks. Then the generator 𝐺 takes the
classifier’s output 𝒛̂ as input to predict the underlying annotation
distribution for the given annotator-instance pair. Moving beyond
the classical class-dependent annotation confusion assumption [9,
25], we impose a much more relaxed generative process about the
annotations. We consider the confusions can be caused by instance
difficulty, or annotator expertise, or true labels of the instances
(e.g., different annotation difficulty in different label categories), or
even some random noise. To realize the idea, we provide the feature
vector 𝒙𝑛 of the instance, the annotator 𝒆𝑟 and the classifier’s output
𝒛̂𝑛 to the generator as input, and the corresponding annotation
distribution is modeled as,

𝑃𝜃𝐺 (𝑦𝑟𝑛 = 𝑐 |𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛) ∝ exp[𝑔(𝑦𝑟𝑛 = 𝑐, 𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛)], (1)

where 𝜺 ∼ N(0, 1) is a random noise vector, 𝑔(·) is a learnable
scoring function implemented via a neural network. The generated
annotations are sampled from the resulting distribution 𝑃𝜃𝐺 . To
simplify our notations, we use 𝐺 (𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛) to represent the pre-
dicted annotation distribution; and when no ambiguity is invoked,
we denote 𝐺 (𝑦𝑟𝑛) as its 𝑐-th entry when 𝑦𝑟𝑛 = 𝑐 . Thanks to our data
augmentation framework, we can afford a more flexible modeling
of the annotation noise, e.g., dropping the hard independence as-
sumptions made in previous works [9, 25]. This in turn helps us
boost the quality of generated annotations.

3.2.2 Discriminative module. We realize our principles of high-
quality annotations in the discriminative module. First, the discrim-
inator𝐷 aims to differentiate whether an annotation𝑦𝑟𝑛 is authentic
from annotator 𝒆𝑟 to instance 𝒙𝑛 , i.e., 𝐷 (𝑦𝑟𝑛 |𝒙𝑛, 𝒆𝑟 ;𝜃𝐷) predicts the
probability of annotation 𝑦𝑟𝑛 being authentic. In a crowdsourcing
task, an annotator might confuse a ground-truth label with several
classes, such that all of the confused classes could be independently
authentic. For example, if an annotator always confuses “birds” with
“airplanes” in low resolution images, his/her annotations might be
random between these two categories. And thus both types of an-
notations should be considered as valid, as there is no way to tell
which annotation is “correct” only based on the observations of
his/her annotations. As a result, we realize the discriminator as a
multi-label classifier, which takes an annotation triplet (𝒙𝑛, 𝒆𝑟 , 𝑦𝑟𝑛)
as input and calculates the discriminative score by a bilinear model,

𝐷 (𝑦𝑟𝑛 = 𝑐 |𝒙𝑛, 𝒆𝑟 ;𝜃𝐷) = 𝜎 (𝒖⊤𝑟 𝑴𝑐𝒗𝑛), (2)

𝒖𝑟 =𝑾𝑢𝒆𝑟 + 𝑏𝑢 , 𝒗𝑛 =𝑾 𝑣𝒙𝑛 + 𝑏𝑣,
where 𝜎 (·) is the sigmoid function, 𝑴𝑐 is the weight matrix for
class 𝑐 , (𝑾 𝑣, 𝑏𝑣) and (𝑾𝑢 , 𝑏𝑢) are weight matrices and bias terms
for annotator and instance embedding layers. For simplicity, we
denote 𝐷 (𝑦𝑟𝑛) as the discriminator’s output on annotation 𝑦𝑟𝑛 .

However, Eq (2) does not consider the correlation among dif-
ferent classes in the annotations, as it still evaluates each possible
label independently. The situation becomes even worse with sparse
observations in individual annotators. For example, when an an-
notator confuses “bird” with “airplanes”, the discriminator might
decide the label of “bird” is more authentic for this annotator, sim-
ply because this category appears more often in the annotator’s
observed annotations. To capture such “equally plausible” annota-
tions, we equip the discriminator with additional label correlation
information [20]. Specifically, we use a graph convolution network
(GCN) [18] to model label correlation. Two labels are more likely
to be correlated if they are provided to the same instance (by dif-
ferent annotators) in the authentic annotations. We calculate the
frequency of label co-occurrence in the observed annotations to
construct the adjacency matrix 𝑨. Then we extend the weight ma-
trix 𝑴𝑐 in Eq (2) by 𝑴̂𝑐 = 𝑫̂

− 1
2 𝑨̂𝑫̂

− 1
2𝑴𝑐𝑾 , with 𝑨̂ = 𝑨 + 𝑰 where

𝑰 is the identity matrix, 𝐷̂ is the diagonal node degree matrix of
𝑨̂. We name this component as the label correlation aggregation
(LCA) decoder. We also enforce sparsity on the discriminator by
applying L2 norm to its outputs.

To realize our second criterion, an auxiliary network𝑄 is used to
measure the mutual information between the classifier’s prediction
𝒛̂𝑛 and the generated annotation 𝑦𝑟𝑛 on instance 𝒙𝑛 . To simplify our
notations in the subsequent discussions, we denote 𝐺 (𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛)
as𝐺 (𝜺, 𝒛̂) to represent the annotation distribution predicted on pair
(𝒙𝑛, 𝒆𝑟). As our generator design is very flexible to model complex
confusions, it however becomes useless for classifier training if the
learnt confusions are independent from the classifier’s outputs. For
example, if the generator learnt to generate a particular annotation
only by the annotator’s features (e.g., the most frequently observed
label in this annotator), such a generation contributes no informa-
tion to classifier training. We propose to penalize such generations
by maximizing the mutual information between classifier’s output
and the generated annotations for an instance, i.e., 𝐼 (𝒛̂;𝐺 (𝜺, 𝒛̂)).

In practice, mutual information is generally difficult to opti-
mize, because it requires the knowledge of posterior 𝑃 (𝑧 |𝑦). We
follow the design in [7] to maximize the variational lower bound
of 𝐼 (𝒛̂;𝐺 (𝜺, 𝒛̂)) by utilizing an auxiliary distribution 𝑃𝑄 to approxi-
mate 𝑃 (𝑧 |𝑦):

LI (𝐺,𝑄) = E𝑧∼𝑃 (𝒛̂),𝑦∼𝐺 (𝜺,𝒛̂) [log 𝑃𝑄 (𝑧 |𝑦)] + 𝐻 (𝑧) (3)
≤ 𝐼 (𝒛̂;𝐺 (𝜺, 𝒛̂)).

We refer to L𝐼 as the information loss, which can be viewed as
an information-theoretical regularization to the original minimax
game. The auxiliary distribution 𝑃𝑄 (𝑧 |𝑦) is parameterized by the
auxiliary network 𝑄 . In our implementation, we devise a two-step
training strategy for the entire pipeline (details in Section 3.3.3),
where we fix the classifier when updating the generator. As a result,
𝐻 (𝑧) becomes a constant when updating the generator by Eq (3).
Since the posterior 𝑃 (𝑧 |𝑦) can be different when the annotations are
given by different annotators on different instances, we also provide
the instance and annotator features to the auxiliary network,

𝑃𝜃𝑄 (𝑧𝑛 = 𝑐 |𝒙𝑛, 𝒆𝑟 , 𝑦𝑟𝑛) ∝ exp[ℎ(𝑧𝑛 = 𝑐, 𝒙𝑛, 𝒆𝑟 , 𝑦
𝑟
𝑛)],

where ℎ(·) is a learnable scoring function. To reduce model com-
plexity, we reuse the annotator and instance encoding layers from
the discriminator here. The class-related weight matrix 𝑴̂𝑐 is flatten
and transformed to a low-dimension embedding 𝒎𝑐 by an embed-
ding layer for each annotation type 𝑦𝑟𝑛 = 𝑐 .

Putting the generative and discriminative modules together, we
formalize the value function of our minimax game for learning
from crowds in CrowdInG as,

min
𝐶,𝐺,𝑄

max
𝐷

𝑉CrowdInG (𝐶,𝐺, 𝐷,𝑄) = 𝑉 (𝐶,𝐺, 𝐷) − 𝜆L𝐼 (𝐺,𝑄) (4)

𝑉 (𝐶,𝐺, 𝐷) = E𝑦∼𝑃true [log
(
𝐷 (𝑦)

)
] + E𝜺∼𝑃noise,𝑦∼𝑃𝐺 (𝜺,𝒛̂) [log

(
1 − 𝐷 (𝑦)

)
],

where 𝜆 is a hyper-parameter to control the regularization. The
value function is maximized by updating the discriminator to im-
prove its ability in differentiating the authentic annotations from
the generated ones, and minimized by updating the classifier, gen-
erator and the auxiliary network to generate more high-quality
annotations.

3.3 Model optimization
In this section, we introduce the training strategy for CrowdInG,
which cannot be simply performed via vanilla end-to-end train-
ing. First, the number of unobserved annotator-instance pairs is
much larger than the observed ones. Blindly using all the gener-
ated annotations overwhelms the training of our discriminative
module, and simply leads to trivial solutions (e.g., classifying all
annotations as generated). As our solution, we present an entropy-
based annotation selection strategy to select informative annota-
tions for discriminative module update. Second, due to the required
sampling procedure when generating the annotations, there are
non-differentiable steps in our generative module. We resort to an
effective counterfactual risk minimization (CRM) method to ad-
dress the difficulty. Finally, the classifier and the generator in the
generative module might change dramatically to fit the complex
training signals, which can easily cause model collapse. We propose
a two-step training strategy to prevent it in practice.

3.3.1 Entropy-based annotation selection. We borrow the idea from
active learning [28]: the discriminator should learn to distinguish the
most difficult annotations. A generated annotation is more difficult
for the discriminator if the generator is more confident about it.
Formally, the selection strategy is designed as,

𝑃 (𝑦𝑟𝑛) ∝
1

𝐻 (𝐺 (𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛))
,

where 𝐻 (𝐺 (𝒙𝑛, 𝒆𝑟 , 𝜺, 𝒛̂𝑛)) is the entropy of the annotation distri-
bution. To reduce training bias caused by annotation sparsity in
individual annotators, we sample the same number of generated an-
notations as the authentic ones in each annotator. As a by-product,
our instance selection also greatly reduces the size of training data
for the discriminative module. It makes discriminator training a lot
more efficient. To fully utilize the power of discriminative module,
we use all generated annotations for the generator updating.

3.3.2 Gradient-based optimization. The gradient for the discrimi-
nator and the auxiliary network is easy to compute by calculating
the derivative on trainable parameters. However, due to the re-
quired sampling steps for generating specific annotations, there are
non-differentiable steps in the generative module. Previous works
[34, 36] use Gumbel-softmax trick or policy gradient to handle the
non-differentiable functions. However, once the generator is up-
dated, we need to re-sample the annotations and evaluate them
again using the discriminative module, which is time-consuming.
To accelerate our model training, we perform batch learning from
logged bandit feedback [16, 31]. In each epoch, we treat the gen-
erative module from the last epoch as the logging policy 𝐺0, and
sample annotations from it. Because the discriminator only eval-
uates the sampled annotations from the (last) generative module,
rather than the entire distribution of annotations predicted by the
module, training signals received on the generative module side
are in the form of logged bandit feedback.

When updating the generator, the training signals are from both
the discriminator L𝐺 = log

(
1 − 𝐷 (𝑦)

)
and the information loss

−𝜆L𝐼 . We collectively denote them as loss 𝛿 = L𝐺 − 𝜆L𝐼 . In each
epoch, we update the generator 𝐺𝜃𝐺 as follows,

𝜃𝐺 = argmin
𝜃𝐺

1
𝑁𝑅

𝑁∑
𝑛=1

𝑅∑
𝑟=1

(
𝛿 (𝑦𝑟𝑛) − 𝜇

)
𝐺𝜃𝐺 (𝑦𝑟𝑛)

𝐺0 (𝑦𝑟𝑛)
, (5)

where 𝜇 is a Lagrange multiplier introduced to avoid overfitting
to the logging policy [16]. The optimization of Eq (5) can be easily
solved by gradient descent. When updating the classifier, we only
use the discriminator’s signals. Intuitively, even though annotations
should contain the information about the true labels, the inverse is
not necessary. The classifier is updated in a similar fashion,

𝜃𝐶 = argmin
𝜃𝐶

1
𝑁𝑅

𝑁∑
𝑛=1

𝑅∑
𝑟=1

(
L𝐺 (𝑦𝑟𝑛) − 𝜇

)
𝐺𝜃𝐶 (𝑦𝑟𝑛)

𝐺0 (𝑦𝑟𝑛)
. (6)

We follow the suggestions in [16] to search the best 𝜇 in practice.

3.3.3 Two-step update for the generative module. The generative
process is controlled by the generator and the classifier. However,
the coupling between the two components introduces difficulties in
the estimation of them. For example, one component might overfit
a particular pattern in the discriminative signal, and cause model
collapse in the entire pipeline. In our empirical studies reported in

(a) (b)

Figure 2: Performance of two-step strategy. (a) Mean accu-
racy of accumulated instances with ascending order of en-
tropy on three real-world datasets. (b) Comparison between
one-step and two-step strategy on LabelMe dataset.

Figure 2(b), we observed test accuracy fluctuated a lot when we
simply used gradients calculated by Eq (5) and (6) to update these
two components together. Details of our experiment setup can be
found in Section 4.

Based on this finding, we adopt a two-step strategy to update the
generator and the classifier alternatively. First, we found that the
principle behind our annotation selection also applied to our classi-
fier: the entropy of the classifier’s output strongly correlates with
its accuracy. According to Figure 2(a), the classifier obtains higher
accuracy on instances with lower prediction entropy. Therefore,
we decided to use the instances with low classification entropy to
update the generator by Eq (5), as there the classifier’s predictions
are more likely to be accurate. Then, we use the updated generator
on the rest of instances to update the classifier by Eq (6), where the
classifier still has a high uncertainty to handle them.

A threshold 𝑡 is pre-selected to separate the instances; and we
will discuss its influence on model training in Section 4.5. Besides,
to make the entire training process stable, we pre-train the classifier
with the observed annotations using neural crowdsourcing algo-
rithm proposed in [25], which is included as one of our baselines.
With the initialized classifier, we also pre-train the generator and
discriminator to provide good initialization of these components.

4 EXPERIMENTS
In this section, we evaluate our proposed solution framework on
three real-world datasets. The annotations were originally collected
from Amazon Mechanical Turk (AMT) by the dataset creators. We
compared with a rich set of state-of-the-art crowdsourcing algo-
rithms that estimate the classifiers only with observed annotations.
We are particularly interested in investigating how much human
labor can be saved by our data augmentation solution? We gradually
removed an increasing number of annotations and compared with
baselines. The result suggests significant annotation cost can be
reduced with our generated annotations, while still maintaining
the quality of the learnt classifier. Besides, since our model is the
first effort to augment crowdsourced data for classifier training,
we compared with models trained with annotations from other
generative models for crowdsourced data. Finally, we performed
extensive ablation analysis about our proposed model components
and hyper-parameters to better understand the model’s behavior.

(a) Results on LabelMe dataset.

(b) Results on Music dataset.

(c) Results on CIFAR-10H dataset.

Figure 3: Results on three real-world datasets. Full CrowdInG training is applied after the dashed line.

4.1 Datasets & Implementation details
We employed three real-world datasets for evaluations. LabelMe
[25, 27] is an image classification dataset, which consists of 2,688
images from 8 classes, e.g., inside city, street, forest, etc. 1,000 of
them are labeled by 59 AMT annotators and the rest are used for
validation and testing. Each image is labeled by 2.5 annotators on
average. To enrich the training set, standard data augmentation
techniques are applied on the training set, including horizontal flips,
rescaling and shearing, following the setting in [25]. We created
10,000 images for training eventually. Music [26] is a music genre
classification dataset, which consists of 1,000 samples of songs with
30 seconds in length from 10 classes, e.g., classical, country, jazz,
etc. 700 of them are labeled by 44 AMT annotators and the rest are
left for testing. Each sample is labeled by 4.2 annotators on average.
Figure 4 shows several important statistics of these two datasets.
Specifically, we report the annotation accuracy and the number of
annotations among the annotators. Both statistics vary consider-
ably across annotators in these two datasets, which cause serious
difficulties in classical crowdsourcing algorithms.CIFAR-10H [23]
is another image classification dataset, which consists of 10,000 im-
ages from 10 classes, e.g., airplane, bird, cat, etc., collected from the
CIFAR-10 image dataset [19]. There were 2,571 annotators recruited
and each annotator was asked to label 200 images. However, such
large-scale annotations are typically expensive and rare in practice.

To make this dataset closer to a realistic and challenging setting,
we only selected a subset of low-quality annotators. The modified
dataset has 8,687 images annotated by 103 AMT annotators. Each
annotator still has 200 annotations with an average accuracy of
78.2%; and each image has 2.37 annotations on average. The original
10,000 images validation set of CIFAR-10 is used as our testing set.

(a) LabelMe (b) Music

Figure 4: Boxplots for the number of annotations and the
accuracy of the AMT annotators for two real-world crowd-
sourcing datasets.

To make the comparisons fair, all evaluated methods used the
same classifier design (in both CrowdInG and baselines). On the
LabelMe dataset, we adopted the same setting as in [25]: we ap-
plied a pre-trained VGG-16 network followed by a fully connected

Figure 5: Test accuracy with various proportion of removed annotations.

(FC) layer with 128 units and ReLU activations, and a softmax
output layer, using 50% dropout. On the Music dataset, we also
used a 128 units FC layer and softmax output layer. Batch normal-
ization was performed in each layer. We disabled LCA on Music
since there is no meaningful label correlation patterns. On the
CIFAR-10H dataset, we used a VGG-16 network for the classi-
fier. We used Adam optimizer with learning rates searched from
{3.0 × 10−4, 2.0 × 10−4, 1.0 × 10−4, 1.0 × 10−5} for both generative
and discriminative modules. Scoring functions 𝑔(·) and ℎ(·) are
implemented by two-layer neural networks with 64 and 128 hidden
units. In each epoch, we update the generative and discriminative
modules for 5 times. With pre-training, we execute the training
procedures for CrowdInG in the last 40 epochs. All experiments are
repeated 5 times with different random seeds, and mean accuracy
and standard derivation are reported.

Table 1: Test accuracy of different augmentation methods.

LabelMe Music CIFAR-10H
Doctor Net 82.12±0.43 75.41±0.42 67.23±0.54
DL-CL+Self 85.24±0.51 82.56±0.49 64.94±0.84
DL-CL+GCN 82.74±0.34 81.42±0.74 65.02±0.61
DL-CL+GAN 85.16±0.26 83.17±0.48 65.34±0.32
DL-CL+InG 85.42±0.57 83.38±0.59 66.17±0.35
CrowdInG 87.03±0.55 83.73±0.62 68.85±0.47

4.2 Classification performance
4.2.1 Baselines. We compared with a rich set of state-of-the-art
baselines, which we briefly introduce here.DL-MV: annotations are
first aggregated bymajority vote, and then it trains a classifier based
on the aggregated labels. DL-CL [25]: a set of designated layers
that capture annotators’ confusions (the so-called Crowd Layer)
are connected to the classifier, aiming to transform the predicted
classifier’s outputs to annotation distributions. Anno-Reg [32]:
trace regularization on confusion matrices is applied to improve
the confusion estimation.Max-MIG [5]: a neural classifier and a
label aggregation network are jointly trained using an information-
theoretical loss function, correlated confusions among annotators
are captured. AggNet [1]: an EM-based deep model considering
annotator sensitivity and specificity.

4.2.2 Results & analysis. The classification accuracy of the learnt
classifiers from different models on the three datasets are reported
in Figure 3. Two things we should highlight: 1) as all models are

learnt from crowdsourced data, the ground-truth labels on instances
are unrevealed to them in training. Therefore, a classifier’s accuracy
on training set is still a meaningful performance metric. 2) Crowd-
InG starts with the same classifier as obtained in DL-CL (as we
used DL-CL to pre-train our classifier). On all datasets, we observe
that even though DL-CL did not outperform the other baselines,
after the training in CrowdInG starts, the classifier’s performance
got significantly improved. This proves the utility of our generated
annotations for classifier training. Besides, we also looked into the
accuracy in individual classes and found by generating more anno-
tations, CrowdInG’s performance on those easily confused classes
got more improvement than the baselines. For example, for the
class of open country on LabelMe, the original annotation accuracy
was only 51.5%. DL-CL achieved 49.6% (i.e., the starting point of
CrowdInG), and it was improved to 58.9% after CrowdInG training.
Compared with models that are designed for complex confusions,
such as Max-MIG and AggNet, CrowdInG still outperformed them
with a large margin. This indicates our generator has a stronger
advantage in capturing complex confusions.

4.3 Utility of augmented annotations
4.3.1 Experiment setup. We study the utility of augmented anno-
tations from CrowdInG. On each dataset, we gradually removed an
increasing number of observed annotations to investigate how dif-
ferent models’ performance changes. We ensure that each instance
has at least one annotation, such that we will only remove annota-
tions rather than instances for classifier training.We compared with
two representative baselines: 1) DL-MV, a typical majority-vote-
based method, and 2) DL-CL, a typical DS-model-based method, to
study their sensitivity on the sparsity of annotations.

4.3.2 Results & analysis. We present the results in Figure 5. All
models suffered from extreme sparsity when we removed a large
portion of annotations (e.g., 60%), but CrowdInG still enjoyed a
consistent improvement against all baselines. DL-MV performed
the worst, because with less redundant annotations, the quality of
its aggregated labels deteriorated seriously. When we looked into
the detailed model update trace of CrowdInG, we found that the
performance gain became larger after CrowdInG training. Again,
because we used the classifier obtained from DL-CL as our starting
point for CrowdInG, low-quality annotations were generated at
the beginning of CrowdInG update. However, CrowdInG quickly
improved once its discriminative module started to penalize those
low-quality annotations. The results strongly support that a great

deal of human labor can be saved. On LabelMe and CIFAR-10H,
CrowdInG performed closely to the baselines’ best performance
even with 60% less annotations. Even on the most difficult dataset
Music, about 10% annotations can be saved by CrowdInG to achieve
similar performance as DL-CL.

4.4 Comparison with other augmentations
4.4.1 Baselines. As no existing method explicitly performs data
augmentation for crowdsourced data, we consider several alter-
native data augmentation methods using various self-training or
generative modeling techniques. Arguably, any generative model
for crowdsourced data can be used for this purpose.

In particular, we chose the following baselines. Doctor Net [12]:
each annotator is modeled by an individual neural network. When
testing, annotations are predicted by annotator networks and then
aggregated by weighted majority vote. DL-CL+Self: we complete
the missing annotations using a pre-trained DL-CL model, and then
train another DL-CL model based on the completed annotations.
DL-CL+GCN: we construct an annotator-instance bipartite graph
based on the observed annotations, and fill in the missing links
using a Graph Convolution Network (GCN) [3, 18]. Then we train
a DL-CL model using the expanded annotations. DL-CL+GAN: we
follow the same design in [35], which unifies generative and dis-
criminative models into a GAN framework. We use DL-CL as the
generative model. DL-CL+InG: we directly train a DL-CL model on
the expanded dataset provided by CrowdInG.

4.4.2 Results & analysis. We present the test accuracy on all three
datasets in Table 1. Doctor Net trains individual classifiers for each
annotator, so that on datasets where annotations from each annota-
tor are sufficient, such as CIFAR-10H, this model obtained satisfac-
tory performance with the generated annotations. But on the other
datasets where annotations are sparse in each annotator, its perfor-
mance dropped a lot. In DL-CL type methods, the performance is
generally improved. However, due to the simple class-dependent
confusion assumption, such models’ capacity to capture complex
confusions is limited. As a result, even though GCN could cap-
ture more complex annotator-instance interactions, DL-CL still
failed to benefit from it in DL-CL+GCN. The added discriminator
in DL-CL+GAN improved the performance; however, DL-CL still
could not fully utilize the complex discriminative signals and failed
to further improve the performance. DL-CL+InG performed better
than the other baselines by directly using the annotations generated
by CrowdInG, which suggests the annotations generated under our
criteria are generically helpful for other crowdsouring algorithms.

Table 2: Test accuracy of different variants of CrowdInG

LabelMe Music CIFAR-10H
CrowdG 85.89±0.47 83.14±0.28 66.15±0.34

CrowdInGU 83.12±0.39 81.28±0.51 67.12±0.59
CrowdInGI 84.34±0.72 82.24±0.47 66.90±0.31
CrowdInGR 86.17±0.44 82.74±0.58 67.88±0.62
CrowdInG 87.03±0.55 83.73±0.62 68.85±0.47

4.5 Ablation study
4.5.1 Analysis of different components in CrowdInG. To show the
contributions of different components in CrowdInG, we varied the
setting of our solution. We already showed the one-step training
variant in Figure 2, which suffered from serious model collapsing.
To investigate the other components, we created the following vari-
ants. CrowdG: the information loss defined in Eq (3) is removed.
CrowdInGU: the generator only considers classifier’s outputs, an-
notator features and random noise, but not the instance features.
CrowdInGI: the generator only considers classifier’s outputs, in-
stance features and random noise, but not the annotator features.
CrowdInGR: the annotation selection is kept, but instead we ran-
domly select an equal number of generated annotations as the
authentic ones for discriminator update.

We reported the test accuracy on three datasets in Table 2.
By maximizing the mutual information, CrowdInG outperformed
CrowdG with a considerable margin. We further investigated the
generated annotations and found the annotations generated by
CrowdG were more random, which could not be easily linked to the
classifier’s output. CrowdInGU performed poorly when the number
of annotations per annotator was limited, such as on LabelMe and
Music datasets, but worked better when annotations per annota-
tor are adequate, such as on CIFAR-10H. This again proves more
annotations are needed to better model annotators’ confusions.
CrowdInGI performed better because by taking instance features,
the generator can model more complicated confusions with respect
to instance features. CrowdInGR bypassed the data imbalance issue;
but without focusing on difficult annotations, it still cannot fully
unleash the potential of generated annotations.

Figure 6: Performance under different hyper-parameter set-
tings on LabelMe dataset.

4.5.2 Hyper-parameter analysis. We studied the sensitivity of hyper-
parameters 𝜆 and 𝑡 in CrowdInG. Specifically, 𝜆 controls the degree
of the information regularization in Eq (4), we varied it from 0.1 to
1. 𝑡 controls the grouping of instances used for classifier update;
and we varied it from 0.2 to 0.8. Due to space limit, we only report
the results on LabelMe, similar observations were also obtained on
the other two datasets.

The model’s performance under different hyper-parameter set-
tings is illustrated in Figure 6. We can clearly observe that the
performance is boosted when appropriate hyper-parameters are
chosen. Small 𝜆 poses weak information regularization to the gen-
erator, and thus the generated annotations are less informative
for classifier training. Large 𝜆 slightly hurts the performance be-
cause strong regularization weakens the ability of the generator

to capture complex confusions related to instance and annotator
features. We can observe similar trend on 𝑡 . To avoid model collapse,
a moderate 𝑡 is needed to restrict the classifier training, but a large
𝑡 will hurt the performance more. Because with a large 𝑡 , very few
instances will be selected for classifier training, so that the classifier
can hardly be updated.

5 CONCLUSIONS & FUTURE WORKS
Data sparsity poses a serious challenge to current learning from
crowds solutions. We present a data augmentation solution using
generative adversarial networks to handle the issue. We proposed
two important principles in generating high-quality annotations: 1)
the generated annotations should follow the distribution of authen-
tic ones; and 2) the generated annotations should have high mutual
information with the ground-truth labels. We implemented these
principles in our discriminative model design. Extensive experiment
results demonstrated the effectiveness of our data augmentation
solution in improving the performance of the classifier learned from
crowds, and it sheds light on our solution’s potential in low-budget
crowdsourcing in general.

Our exploration also opens up a series interesting future direc-
tions. As our generative module captures annotator- and instance-
specific confusions, it can be used for annotator education [29], e.g.,
inform individual annotators about their potential confusions. Our
solution can also be used for interactive labeling with annotators
[39], e.g., only acquire annotations on which our generative module
currently has a low confidence. Also, the instance-level confusion
modeling can better support fine-grained task assignment [10], e.g.,
gather senior annotators for specific tasks.

ACKNOWLEDGEMENT
This work was partially supported by the National Science Foun-
dation under award NSF IIS-1718216 and NSF IIS-1553568, and the
Department of Energy under the award DoE-EE0008227.

REFERENCES
[1] Shadi Albarqouni, Christoph Baur, Felix Achilles, Vasileios Belagiannis, Stefanie

Demirci, and Nassir Navab. 2016. Aggnet: deep learning from crowds for mitosis
detection in breast cancer histology images. IEEE transactions on medical imaging
35, 5 (2016), 1313–1321.

[2] Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmenta-
tion generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017).

[3] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[4] Thierry Buecheler, Jan Henrik Sieg, Rudolf Marcel Füchslin, and Rolf Pfeifer.
2010. Crowdsourcing, open innovation and collective intelligence in the scientific
method: a research agenda and operational framework. In The 12th International
Conference on the Synthesis and Simulation of Living Systems, Odense, Denmark,
19-23 August 2010. MIT Press, 679–686.

[5] Peng Cao, Yilun Xu, Yuqing Kong, and Yizhou Wang. 2019. Max-MIG: an
Information Theoretic Approach for Joint Learning from Crowds. In ICLR.
https://openreview.net/forum?id=BJg9DoR9t7

[6] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. Cfgan:
A generic collaborative filtering framework based on generative adversarial
networks. In Proceedings of the 27th ACM CIKM. 137–146.

[7] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. arXiv preprint arXiv:1606.03657 (2016).

[8] Zhendong Chu, Jing Ma, and Hongning Wang. 2020. Learning from Crowds by
Modeling Common Confusions. arXiv preprint arXiv:2012.13052 (2020).

[9] Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20–28.

[10] Jia Deng, Jonathan Krause, and Li Fei-Fei. 2013. Fine-grained crowdsourcing for
fine-grained recognition. In CVPR. 580–587.

[11] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
networks. arXiv preprint arXiv:1406.2661 (2014).

[12] Melody Guan, Varun Gulshan, Andrew Dai, and Geoffrey Hinton. 2018. Who
said what: Modeling individual labelers improves classification. In AAAI, Vol. 32.

[13] Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, and Aram Galstyan. 2020. Im-
proving generalization by controlling label-noise information in neural network
weights. In International Conference on Machine Learning. PMLR, 4071–4081.

[14] Hideaki Imamura, Issei Sato, and Masashi Sugiyama. 2018. Analysis of minimax
error rate for crowdsourcing and its application to worker clustering model. In
International Conference on Machine Learning. PMLR, 2147–2156.

[15] Athirai A Irissappane, Hanfei Yu, Yankun Shen, Anubha Agrawal, and Gray
Stanton. 2020. Leveraging GPT-2 for Classifying Spam Reviews with Limited
Labeled Data via Adversarial Training. arXiv preprint arXiv:2012.13400 (2020).

[16] Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. 2018. Deep
learning with logged bandit feedback. In ICLR.

[17] Ece Kamar, Ashish Kapoor, and Eric Horvitz. 2015. Identifying and accounting
for task-dependent bias in crowdsourcing. In Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing, Vol. 3.

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[20] Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. 2019. Neural message passing
for multi-label classification. In ECML-PKDD. Springer, 138–163.

[21] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J Franklin. 2016. Crowd-
sourced data management: A survey. IEEE TKDE 28, 9 (2016), 2296–2319.

[22] Augustus Odena. 2016. Semi-supervised learning with generative adversarial
networks. arXiv preprint arXiv:1606.01583 (2016).

[23] Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Rus-
sakovsky. 2019. Human uncertainty makes classification more robust. In Proceed-
ings of the IEEE International Conference on Computer Vision. 9617–9626.

[24] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles
Florin, Luca Bogoni, and Linda Moy. 2010. Learning from crowds. Journal of
Machine Learning Research 11, 4 (2010).

[25] Filipe Rodrigues and Francisco Pereira. 2018. Deep learning from crowds. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[26] Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2014. Gaussian pro-
cess classification and active learning with multiple annotators. In International
conference on machine learning. PMLR, 433–441.

[27] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
2008. LabelMe: a database and web-based tool for image annotation. International
journal of computer vision 77, 1-3 (2008), 157–173.

[28] Burr Settles. 2009. Active learning literature survey. (2009).
[29] Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, and Andreas Krause.

2014. Near-optimally teaching the crowd to classify. In ICML. PMLR, 154–162.
[30] Jost Tobias Springenberg. 2015. Unsupervised and semi-supervised learning

with categorical generative adversarial networks. arXiv preprint arXiv:1511.06390
(2015).

[31] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged
bandit feedback through counterfactual riskminimization. The Journal of Machine
Learning Research 16, 1 (2015), 1731–1755.

[32] Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C Alexander,
and Nathan Silberman. 2019. Learning from noisy labels by regularized estimation
of annotator confusion. In CVPR. 11244–11253.

[33] Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shok-
ouhi. 2014. Community-based bayesian aggregation models for crowdsourcing.
In Proceedings of the 23rd international conference on World wide web. 155–164.

[34] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. Graphgan: Graph representation learning
with generative adversarial nets. In AAAI, Vol. 32.

[35] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,
Peng Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying genera-
tive and discriminative information retrieval models. In Proceedings of the 40th
International ACM SIGIR conference. 515–524.

[36] QinyongWang, Hongzhi Yin, HaoWang, Quoc Viet Hung Nguyen, Zi Huang, and
Lizhen Cui. 2019. Enhancing collaborative filtering with generative augmentation.
In Proceedings of the 25th ACM SIGKDD conference. 548–556.

[37] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo.
2009. Whose vote should count more: Optimal integration of labels from labelers
of unknown expertise. NeurIPS 22 (2009), 2035–2043.

[38] Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. 2019. L_DMI: A Novel
Information-theoretic Loss Function for Training Deep Nets Robust to Label
Noise.. In NeurIPS. 6222–6233.

[39] Yan Yan, Romer Rosales, Glenn Fung, and Jennifer G Dy. 2011. Active learning
from crowds. In International Conference on Machine Learning.

https://openreview.net/forum?id=BJg9DoR9t7

	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Background
	3.2 The CrowdInG framework
	3.3 Model optimization

	4 Experiments
	4.1 Datasets & Implementation details
	4.2 Classification performance
	4.3 Utility of augmented annotations
	4.4 Comparison with other augmentations
	4.5 Ablation study

	5 Conclusions & Future works
	References

