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ABSTRACT: Organic photovoltaic (OPV) materials have been examined , »
extensively over the past two decades for solar cell applications because of the ‘ . rf \,\f}éy
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especially polymer-based electron donors, that demonstrate notable power
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conversion efficiencies (PCEs), is nontrivial and time-intensive exercise given the
extensive set of possible chemistries. Recent progress in machine learning accelerated
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materials discovery has facilitated to address this challenge, with molecular line : 5....5’.’2'1;225‘!:‘?‘M§
representations, such as Simplified Molecular-Input Line-Entry Systems (SMILES), I omsetare
gaining popularity as molecular fingerprints describing the donor chemical structures. : Transfer Learningl
Here, we employ a transfer learning based recurrent neural (LSTM) model, which 1% @ "= = == = = I
harnesses the SMILES molecular fingerprints as an input to generate novel designer ‘

chemistries for OPV devices. The generative model, perfected on a small focused

OPV data set, predicts new polymer repeat units with potentially high PCE. Calculations of the similarity coefficient between the
known and the generated polymers corroborate the accuracy of the model predictability as a function of the underlying chemical
specificity. The data-enabled framework is sufficiently generic for use in accelerated machine learned materials discovery for various
chemistries and applications, mining the hitherto available experimental and computational data.

B INTRODUCTION experiments, as well as to selection of specific materials based
on the availability of molecular interaction functions and
parameters. The emergence of machine learning (ML)
methods for material science® holds promise to potentially
overcome the above computational challenges and accelerate
materials design.

ML has previously been employed for data-enabled materials
discovery for organic electronic and photovoltaics.”™** ML
techniques are typically classified into (i) supervised and (ii)
unsupervised learning approaches. For instance, supervised ML
has been applied for the use of random forest (RF) classifier to
predict candidate polymers with enhanced PCE based on the
molecular information embedded in their unique finger-
prints.*® In other reports, regression techniques, such as the
ensemble-based regression,”’ RF and extremely randomized
trees’” were implemented to predict molecular orbital energies
from the corresponding molecular fingerprints. Jorgensen et
al.’” demonstrated a deep generative scheme to predict
molecular properties via context free grammar variational
auto encoders (VAE). Recent advances in natural language
processing (NLP)**~* and machine translation® demon-

Organic solar cells (OSC) are lightweight, flexible, and
inexpensive than the inorganic silicon photovoltaic devices.' ™
Nevertheless, the limited power conversion efficiency (PCE) of
bulk heterojunctions (BHJ) OSCs compared to silicon-based
solar cells has posed a mammoth challenge toward their large-
scale commercialization."™"? Although recent efforts have
enabled a maximum cell efficiency of ~18%,"' "> commercial
OSC devices seldom achieve a PCE beyond 10% and the
upscaling of OSCs from lab prototypes to fabricated devices is
substantially constrained by the inherent instability of the
employed materials.'®

Semiconducting conjugated polymers are the predominantly
preferred donor materials for OSC devices due to their
exceptional optoelectronic properties emerging from the
mobile z-electrons.'” Together with fullerene-based acceptor
materials the conjugated polymers have benchmarked the
potential ability of OSCs."”'®"” Conventionally, design and
synthesis of conjugated polymer materials with desired
optoelectronic properties have been guided by recursive
experimental synthesis, characterization, and optimization of

the device performance. To complement such experimental
efforts that consider an experiential choice of materials, Received:  October S, 2020
computer simulations based on first-principles, classical Published: January 7, 2021
molecular dynamics (MD), coarse-grained MD, and other

computational frameworks have been leveraged.”"'%?°7%*
However, these modeling techniques are restricted to length

and time scales that are much displaced from the physical
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Figure 1. Flowchart depicting the LSTM model and the transfer learning predictive scheme. The red dashed line (right) represents the pretrained
LSTM combined with the new LSTM layer augmented to fine-tune the model. Initially the RNN model with 2 layers of LSTMs (left) is trained on
a large data set of organic molecules to learn the chemical grammar from SMILES notations. Once the model converges on the large data set,
transfer learning approach is implemented by augmenting a new LSTM layer 3 over the pretrained network. The final LSTM model is trained on a
small focused data set to generate new polymer repeat units for OPV applications.

strated the remarkable success of recurrent neural network
(RNN) in a gamut of applications from socioeconomic
challenges to materials design problems.**™*

Long short-term memory (LSTM) cells*® are the most
attractive candidates to successfully achieve sequence to
sequence predictions and time series analysis and are
extensively employed to predict properties of proteins* and
solubility of druglike compounds.”® Predictive models using
connectivity rules for molecular structures, such as Simplified
Molecular-input Line-entry System (SMILES), International
Chemical Identified (InChI), and Molecular Access System
(MACCS), are progressively becoming popular in chemical
and bioinformatics. Prior literature demonstrated the ability of
RNNs to generate canonical SMILES strings spanning a wide
spectrum of chemical space.”"*” Transfer learning, on the
other hand, has enabled the flow of information from an
already learned task to a relatively unexplored activity’>***
and hence can be successfully employed to predict results from
a limited training data set, such as those that exist for OSC
materials.

Inspired by the transfer learned de novo drug design,”’ here,
we construct a transfer learning predictive scheme based on
LSTM deep neural network (DNN) to generate SMILES of
polymers as candidate materials for OSC devices. Initially, the
LSTM model is established to generate new SMILES from a
large data set of known small organic molecules (~1 million).
Subsequently, the pretrained network is further perfected on a
relatively smaller size data set (~1400 conjugated polymers) to
generate new polymer repeat units that are structurally similar
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to typical OPV donor materials. The generated molecules are
further validated by predicting electrical properties, such as
PCE, fill factor (FF), molecular orbital, and bandgap energies
of the associated donor molecules based on the extracted
molecular descriptors. The choice of descriptors is visualized
using a principal component analysis (PCA) and RF regression
is implemented to design a supervised learning model that
predicts properties of new molecules from the unique
molecular descriptors embedded in the generated SMILES.

B DATA-ENABLED AND COMPUTATIONAL
TECHNIQUES

Data Sets. The LSTM model is trained with ~1 million
SMILES strings of small organic molecules extracted from
GDB17 chemical database,’* which contains small organic
druglike molecules of up to 17 atoms consisting of C, N, O, S,
and halogens (F, Cl, Br, etc.). Initially the entire data set is
prechecked for any duplicate entries followed by random
shuffling of all the molecules. The SMILES strings extracted
from the data set are used to train an LSTM model to learn the
grammar of the chemical language. Finally, a smaller data set
consisting of ~1400 monomer repeat units of OPV donor
materials is gathered (Supporting Information) from the
Harvard Organic Photovoltaic (HOPV1S) data set>> and
experiments’® to fine-tune the pretrained LSTM model to
generate candidate polymers. While the molecular orbital
energies and the bandgap energies are obtained using first-
principle calculations,” the electrical properties such as the

https://dx.doi.org/10.1021/acs.jcim.0c01157
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power conversion efficiency (PCE) and fill factor (FF) are
gathered from several experimental efforts.

LSTM Model. RNN processes a series of information
embedded in a string, such as S = §,5,S;...S,, by operating on
one input, S, at a time. During each training cycle, the
sequential inputs through a series of gates (forget gate, input
gate, and output gate in LSTM) are transported together with
the hidden state vectors (%) from previous RNN units, and the
output vectors (Y;) are returned when the corresponding flag is
turned on. The hidden state, h;, is the core component of any
RNN model as it passes information related to what RNN has
seen previously during the training. Here, we implement a class
of RNN, that is, LSTMs, as they are able to supervise the flow
of information within the RNN network and control which of
the hidden states should be passed through the successive cells.
In addition, presence of forget gates enable LSTMs to retain
relevant information while assimilating the correlations and
underlying context from long sequence of data. This setup
enables LSTMs to predict the context of very long sequence of
words or sentences without any problems during the back-
propagation process. Figure 1 presents the RNN architecture
implemented in this work.

The initial training on the large database is accomplished
through two LSTM layers followed by dropout regularization
to avoid any risk of overfitting. The size of the LSTM hidden
layer (i.e,, LSTM units) and the rate of dropout are considered
as the hyperparameters in our model. We employ Sequential
Model-Based Global Optimization (SMBO) algorithm using
Tree-Structured Parzen Estimator (TPE)®° implemented
through Hyperopt package’’ to ensure the best model
performance (Figure 2A). The TPE-based algorithm executed

0.85 A 0.82 0.75 B 90 §
=
» 075 =
172} =]
2 =2
- -o- Training loss |50 @
0.65 -= Validation loss £
&
0.55 X

L . g g 0.45 10

i 30 60_ 9% 120 120 4 o
Iteration Epoch

Figure 2. Hypermeter optimization and performance analysis of
LSTM model. (A) Hyperparameter optimization of the LSTM model
using SMBO algorithm. The overall loss (categorical cross-entropy)
for each set of hyperparameter is obtained during each iteration and a
global minimum is attained after ~100 iterations. The 2 layers of
LSTM with 256 units and dropout rate of 0.5 are obtained as the
global solution. (B) Training, validation loss, and percentage of valid
molecules as a function of epochs for Cp = 2.5. The training and
validation losses converge after 25 epochs. However, the percentage
of valid molecules sampled during the training is converged after ~50
epochs of production run.

with the validation loss as an objective function attains the
global minimum with 256 units for the LSTM units and a
dropout regularization rate of 0.5. After the first round of
training on the large data set, we fine-tune the LSTM
framework using the transfer learning approach to further train
the model on the smaller OPV data set. To realize the transfer
learning, we augment the pretrained LSTM architecture with
an extra LSTM layer consisting of 256 units and a dropout rate
of 0.5 while preserving the pretrained weights for the preceding
layers, as shown in Figure 1. For both the LSTM models, we
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consider one-hot encoded representation of the SMILES
strings as input S and target vector Y. The RNN model is thus
trained based on maximum likelihood estimation while the
categorical cross-entropy is considered as the loss function.
The output vector Y; from the LSTM model is a probability
distribution of all the possible tokens with an aim to attain the
maximum probability assigned to the correct token.

SMILES Encoding and Sampling. To train the LSTM
model, we initially pad every string to the longest (N) SMILES
in the data set. Each padded input string is then prefixed with a
token ‘1" and suffixed with a token ‘E’ to discern the beginning
and ending of an input string respectively. Subsequently, the
padded and appended input strings are encoded to one-hot
vectors of size N X M, where M denotes the size of the
vocabulary of all the tokens. Given an input token the RNN
model predicts the next token in the sequence, which is then
compared to the target one-hot encoded vector (Y;) to obtain
the average loss. Once the training is completed for the trained
RNN model to generate new and unique SMILES, a sampling
method is implemented inspired by the sampling of druglike
molecules by Gupta et al.>' To start the generation of new
molecules, we feed the RNN model with the start token ‘!" and
sample the next possible token from its probability
distribution. The process of predicting next token is continued
until either a desired length of string is achieved or the end
token ‘E’ is predicted. Each time the predicted character is
concatenated to the preceding string and fed back to the input.
Supplementary to the softmax function, an additional diversity
coefficient Cp is introduced to modify the extent of the
exploration. While higher Cp results in great structural
diversity, through an extended exploration a low value of Cp
leads to identical yet reliable predictions. Table 1 lists the
percentage of valid molecules predicted based on nearly 50 000
generated SMILES trained on the large data set.

Table 1. Percentage of Valid Molecules Generated from
LSTM Model Trained on the GDB17 Database and Their
Tanimoto Similarity Coefficient (T¢)“

Cp =05
98.90

Cp=15
94.60

Cp =25

valid molecules 78.10
(%)

similarity (T¢) 0.5336 + 0.007 0.4644 + 0.006 0.4153 + 0.005

“Although higher value of Cp, produces diverse and unique molecules,
depicted by the reduction in T¢ for high Cp, a low value of the
coeflicient results in reliable predictions.

Information Retrieval and Featurization. SMILES are
one-dimensional representation of a 3-dimensional molecular
structure using simple line-entry notations. SMILES strings are
useful to represent molecules with their unique fingerprint
embedded in a line notation. With a simple set of vocabulary
and grammar rules, it is a true language that can be digested
using a sequential deep learning algorithm. As SMILES string
contains almost every information related to molecular
structure and arrangements of atoms in a molecule,
physiochemical properties can be extracted from a SMILES
string. We use RDkit open source cheminformatics library™® to
extract descriptors such as molecular weight, average molecular
density, partial charges, number of radical electrons, number of
aromatic and aliphatic rings etc. We extract ~20 descriptors
and perform principal component analysis (PCA) on the
training, test, and generated molecule data sets to compare the

https://dx.doi.org/10.1021/acs.jcim.0c01157
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extent of similarity between the predicted and actual set of
molecules. To compute the electronic properties of a typical
organic solar cell (OSC), such as power conversion efficiency
(PCE), fill factor (FF), bandgap energy, and highest molecular
orbital energy, we train a regression-based supervised learning
model using random forest regressor, where all the extracted
physiochemical descriptors are considered as features.

B RESULTS AND DISCUSSION

We train the LSTM model on GDB17 data set with 1% of the
data set (~10000 data points) assigned for validation and
testing. With the initially large data set, ~78% valid molecules
with Cp = 2.5,~94% valid molecules with Cp, = 1.5, and ~98%
with Cp = 0.5 are generated as presented in Table 1. Figure 2B
presents the validation and training losses during 50 epochs of
production run. The number of valid molecules and the
performance metrics converge suitably after 40 epochs. PCA
analysis of the generated and actual SMILES are compared
(Figure 3A) to validate that the generated molecules share the
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Figure 3. Information retrieval and feature interpretation from
physiochemical descriptors. (A) A 2-dimensional principal compo-
nent analysis (PCA) for known and generated molecules. Both actual
and generated molecules reveal great similarity in the chemical space
depicted by the PCA. (B) Distribution of the molecular weights (size
of molecule) of the predicted structures. The median and overall
distribution of the sampled molecules agree with the known data set.
(C) PCA analysis of the sampled molecules from the transfer learned
model. Similar to the previous LSTM model, the upgraded model
successfully predicts new molecules spanning the same chemical
space. (D) Molecular weight distribution of the predicted structures.
Although the median is observed to shift to the left for the generated
molecules, the overall distribution matches with the known data set.

same chemical space of the actual molecules from the training
data set. Furthermore, in Figure 3B, the distribution of
molecular weights of the generated and actual SMILES are
contrasted to corroborate the similarity in the overall size of
the organic molecules. We find the overall distribution and
median of the molecular weights to be similar for both the data
sets. Although deep learning approaches, such as CNN-
RNN,*® and attention-based encoder-decoder™ models have
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been previously employed to chemical text prediction, the
LSTM model in this work is simpler to implement as a
generative model with most of the one-dimensional chemical
text data. We further quantify the accuracy of the predicted
molecules by calculating the chemical similarity of known
organic molecules against the generated ones.

Comparison of the molecular fingerprints in the form of
SMILE strings are obtained from Tanimoto coefficient (0 <
Tc< 1).°” While the completely identical SMILES, according
to Tanimoto similarity, attain T = 1, the dissimilarity between
two molecules is represented by T ~ 0. The average
Tanimoto similarity ~0.534 + 0.006 for the generated sample
data set with Cp = 0.5 confirms the predictability of the trained
model as a function of the underlying chemical composition.
As expected, increasing the diversity coefficient results in a
reduction of the overall similarity between the molecular
structures of the generated and the known organic species
(Table 1). Figure 4 presents the chemical structure of a
randomly nominated known molecule from GDB17 data set
and its closest and furthest neighbors based on the T
calculation. While the given molecular structure in Figure 4A
resembles the chemical specificity of the generated molecule in
Figure 4B because of the presence of the amino (R-NH,)
functional group, Figure 4C presents extreme divergence from
the known molecule with respect to the functional group as
well as the number of rings.

Once the training accuracy of the LSTM model for large
data set is proven, we perfect the model using the transfer
learning approach as shown in Figure 1. We continue the
production run on the small focused data set of ~1400
conjugated polymer repeat units (monomers) for 25 epochs to
train the new weights of LSTM layer 3 (Figure 1), while
LSTM layers 1 and 2 are constrained to keep the pretrained
weights. Once the overall loss function converges, further
modification of all the three LSTM layers are performed for
another 25 epochs with a very low learning rate (~107°) to
avoid any possible overfitting. A set of 1000 molecules are
generated from the fine-tuned LSTM model with ~90% valid
SMILES for Cp = 1.5. The reduction in the fraction of valid
molecules is attributed to the long size of the SMILES strings
of OPV materials. On the other hand, we observe <25% of the
valid molecules if the transfer learned fine-tuning approach is
not adopted. Next, we analyze the predictive accuracy of the
underlying chemical specificity from the focused data set.
Figure 3C evaluates the PCA results of the generated candidate
polymer molecules against the OPV polymers from the known
data set, revealing overlap between the chemical spaces from
the physiochemical descriptors. Figure 3D further affirms the
performance of the transfer learning from a comparative
scrutiny of the distribution of molecular weights, similar to
Figure 3B. In general, conjugated polymers used in OPV
applications have similar order of magnitude (~10* g/mol) for
the molecular weight of the monomer units. Although the
median and distribution of the total molecular size is observed
to shift toward lower value than that of known molecules, the
overall overlap of densely populated region between molecular
weight of 600 and 1000 g/mol. reveal the ability of the fine-
tuned model to predict the molecular size of polymer repeat
units. Additionally, we compare quantitatively the chemical
similarity of our updated model using the Tanimoto
coefficient, as described above. The average T¢ ~ 04225 +
0.010 corroborates the accuracy of the transfer learning
approach presented here. We further verify the potential use

https://dx.doi.org/10.1021/acs.jcim.0c01157
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A known (GDB17)

B highest similarity

C highest dissimilarity

Figure 4. Comparison of generated molecules with known samples from GDB17 data set. (A) The chemical structure of a known organic molecule.
As the data set is shuffled before the training and each molecule is provided with the same weight, a randomly nominated molecule is used to
compare the closest and furthest neighbors from the generated data set. (B) A generated molecule with the highest similarity with the known
molecule (T ~ 0.82). (C) A generated molecule with the highest dissimilarity form the known molecule (T ~ 0.06).

of the generated polymers for OPV applications by training a
supervised regression model to predict electronic properties of
these polymers. We consider a data set consisting of the
optoelectronic properties of the OSCs based on polymer—
fullerene constituent materials as a testbed. Figure SA—D
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Figure S. Predictability of random forest regressor for different
properties of OPV devices. Comparison of the predicted against the
actual properties for organic donor polymers from the known OPV
data set. (A) Actual PCE values compared with the predicted PCEs.
(B) Predicted FF relative to the actual FF. (C) Comparison between
HOMO energies of the actual molecules and the corresponding
predictions. (D) The predicted bandgap energy contrasted against the
actual bandgaps. All these results indicate excellent predictive
capability of the regression model.

illustrates the model training accuracy of the electrical
properties such as PCE, FF, bandgap energy and HOMO
energy levels of donor polymers from RF regressor model
trained on 1400 OPV molecules. The physiochemical
descriptors extracted from SMILES are standardized with
zero mean and unit variance and accounted as the feature
vector for the regression model. The OPV data set is divided
into ~85% as training and ~15% as test data. Additionally, the
RF model is optimized for the hyperparameters employing a
random search approach with S-fold cross validation. We
consider mean squared error (MSE) as the performance metric
to analyze the predictive capability. With the OPV data set, the
MSE for the regression model is calculated as 1.007 (PCE),
11.200 (FF), 0.00001 (HOMO), and 0.00003 (bandgap), and
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the R? score is about 0.80 (PCE), 0.76 (FF), 0.88 (HOMO),
and 0.88 (bandgap).

The R* score obtained from the fit suggests that the RF
based regression provides an effective predictive model for the
properties of the new polymer materials. On the basis of the
trained regression model, we plot the response surface of the
electrical properties such as the PCE and FF, as illustrated in
Figure 6A and B. We note the predicted properties for the

PCE

PC2

PC1

Figure 6. Performance evaluation of generated polymer repeat units.
(A) The response surface plot for PCE along the two major PCA
components from the extracted physiochemical descriptors. 100 new
molecules (red diamonds) are chosen from different regions of the
overall surface. At least 20% of the molecules are found to be in the
high PCE region asserting their potential as OPV materials. (B) The
response surface plot for FF along the major PCA components.
Similar to the PCE, generated molecules are found in the hotspots
with high FF.

generated OPV molecules on the response surface. Figure 6A
shows that at least 20% of the valid molecules predict PCE >
10% and can be considered as potential candidate OPV donor
materials. As PCE is correlated with FF, the predictions for
these properties show similar trend. However, from Figure 6A
and B, different regions of interest emerge which could be used
to screen new polymer materials from different regions of the
chemical space.

Figure 7 illustrates the chemical structure of the generated
monomers as a function of the similarity coeflicient. Figure 7A
presents the known monomer unit with the highest PCE
obtained from the OPV training data set. On the basis of the
Tanimoto similarity analysis from the extracted physiochemical
features, we note that the electrical properties rely significantly
on the underlying chemical structure of the monomer units.
For instance, from a visual comparison of the structures in
Figure 7A—C, we find that the presence of thiophene rings
contributes to high PCE and FF. This observation strongly
agrees with the experimental literature demonstrating the
remarkable improvement of device performance in the
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A known monomer (OPV dataset)

B highest similarity (PCE > 10%)

C intermediate similarity (FF > 75%)

D highest dissimilarity

Figure 7. Comparison between transfer learned donor polymers and best performing donor from OPV data set. (A) The chemical structure of the
known monomer unit from the OPV data set demonstrating highest PCE (~10.7%). (B) A generated monomer with highest similarity (T¢ ~
0.73). The molecular structure predicts ~10.9% power conversion efficiency from the RF-based regression model. (C) A generated monomer with
highest FF (~79%). A moderate similarity (T ~ 0.50) with Figure 7A reveals correlation between PCE and FF with respect to the underlying
chemical specificity of the donor material. (D) A generated monomer with the strongest dissimilarity (T ~ 0.05). The absence of thiophene rings
in the repeat unit evince the poor performance because of the low PCE and FF.

presence of thiophene rings in bulk heterojunction (BHJ)
active layers.*”®!

B CONCLUSION

In summary, we employ LSTM model to learn the grammar
and vocabulary of one of the popular chemical languages
known as the SMILES notation. As deep learning models are
data intensive and typically a data set of more than 100 000
data points is necessary for the model to be robust, application
of these approaches in materials design problems such as
accelerated materials discovery is challenging. Inspired by the
transfer learning in de novo drug design, we implement the
approach to perfect a pretrained LSTM model trained on a
small focused data set of OPV donor materials. Our results
suggest that transfer learning enables ~90% valid molecule
generation spanning the chemical space in contrast to the
<25% valid molecule generation in absence of the pretrained
network. An average Tanimoto similarity ~0.4225 + 0.010
corroborates the potential of the predictive scheme to
incorporate chemical information embedded in the underlying
SMILES notation. Physio-chemical features extracted from the
molecular fingerprint accurately predicts the performance
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metrics of OPV devices from the known database. The
response surface plot on reduced principal component
dimensions reveals the existence of generated molecules in
the region of interest, promising a potential enhancement in
PCE of OPV devices.

B METHODS

All the LSTM models are implemented using TensorFlow
GPU 2.1.0°” and Keras 1.1.0°® in Python 3.7.7. We leverage
the power of GPU computing on a Dell precision tower with
2.2 GHz Intel Xeon ES processors and Nvidia GeForce GTX
1080 GPU. Validation of SMILES string and extraction of
physiochemical descriptors are performed using RDkit
chemical library®® implemented in Python. PCA and random
forest regressions to predict optoelectronic properties from the
physiochemical features are employed using Scikit-learn
libraries.”*
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GDB large data set (1 million small organic molecules),
GDB small data set (50000 validation/test organic
molecule data set), and focused data set for OPV
transfer learning (includes experimental data of meas-
ured PCE, FF, short circuit current, open circuit voltage,
molecular weight, polydispersity index and calculated
molecular orbital energy, and bandgap energy) (ZIP)
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