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Scalable Adaptive Batch
Sampling in Simulation-Based
Design With Heteroscedastic
Noise
In this study, we propose a scalable batch sampling scheme for optimization of simulation
models with spatially varying noise. The proposed scheme has two primary advantages: (i)
reduced simulation cost by recommending batches of samples at carefully selected spatial
locations and (ii) improved scalability by actively considering replicating at previously
observed sampling locations. Replication improves the scalability of the proposed sampling
scheme as the computational cost of adaptive sampling schemes grow cubicly with the
number of unique sampling locations. Our main consideration for the allocation of compu-
tational resources is the minimization of the uncertainty in the optimal design. We analyt-
ically derive the relationship between the “exploration versus replication decision” and the
posterior variance of the spatial random process used to approximate the simulation
model’s mean response. Leveraging this reformulation in a novel objective-driven adaptive
sampling scheme, we show that we can identify batches of samples that minimize the pre-
diction uncertainty only in the regions of the design space expected to contain the global
optimum. Finally, the proposed sampling scheme adopts a modified preposterior analysis
that uses a zeroth-order interpolation of the spatially varying simulation noise to identify
sampling batches. Through the optimization of three numerical test functions and one engi-
neering problem, we demonstrate (i) the efficacy and of the proposed sampling scheme to
deal with a wide array of stochastic functions, (ii) the superior performance of the proposed
method on all test functions compared to existing methods, (iii) the empirical validity of
using a zeroth-order approximation for the allocation of sampling batches, and (iv) its
applicability to molecular dynamics simulations by optimizing the performance of an
organic photovoltaic cell as a function of its processing settings.
[DOI: 10.1115/1.4049134]
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1 Introduction
Sampling of computer simulations is a well-studied subject in the

field of simulation-based design with applications in engineering
[1], biological [2], and social sciences [3]. These research efforts
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have driven the optimization of increasingly sophisticated designs
and provided insight into complex social and physical phenomena.
Available sampling methods are tailored for deterministic simula-
tion models and are either unable or inefficient at optimizing sto-
chastic simulations. What is more, the use of stochastic
simulation models is becoming more commonplace in many scien-
tific fields. We are specifically motivated by molecular dynamics
(MD) simulations in the context of engineering design as MD simu-
lations are known for having dramatically changing signal-to-noise
ratios across sampling locations. An example of using MD simula-
tions for the performance prediction and design of an organic pho-
tovoltaic cell (OPVC) is presented in Fig. 1. The left section of this
figure shows the initial experimental design for two design variables
that correspond to a set of nine unique combinations of design vari-
ables that are used as inputs to the MD simulation (central left
figure). Running these simulations provides a training data set to
which a surrogate model can be trained as illustrated in the
central right image. The surrogate model provides insight into the
response surface and helps decide what sample(s) to simulate
next. This cycle is repeated until a convergence criterion has been
met and an OPVC with globally optimal properties is successfully
identified. The challenge in this effort is learning the spatially
varying noise of MD simulations, as represented by the vertical
purple bars in the central right image. In this study, we propose
an optimization scheme for objective-driven adaptive sampling of
costly stochastic functions with spatially varying noise.
When simulation models are computationally expensive, training

a response surface model to a data set obtained from an experimen-
tal design provides the designer with a prediction of the response at
unobserved input locations. For a general introduction into surro-
gate modeling and the validation of their fidelity, we refer the
reader to Ref. [4]. A notable type of surrogate model are Gaussian
processes (GPs), which have seen prolific use among many scienti-
fic communities [5]. One advantage of GP models over other types
of surrogate models is that they provide a predictive distribution of
the response at unobserved sampling locations. GP models enable a
designer to improve the predictive capabilities of their surrogate
model by running additional computer experiments in regions
where the uncertainty is largest. Such efforts are known as adaptive
sampling for global surrogate modeling [6]. Alternatively, we are
interested in the allocation of simulation resources to only minimize
the prediction uncertainty at and around sampling locations
expected to contain the global optimum. This type of effort is
known as adaptive sampling for global optimization and involves
a delicate balance between exploring regions of the design space
with large uncertainty versus exploiting regions with a good
mean response [7,8]. The use of surrogate models has been
extended to the optimization of multifidelity simulations [9,10],
nonmyopic sampling [11–13], optimization of nonstationary func-
tions [14], and robust design [15].
Despite the abundance of work on objective-driven adaptive

batch sampling, the optimization of stochastic simulation models
is still an elusive task. A simple version of the problem is the case

where the noise intrinsic to the simulation model is constant over
the design space. In other words, the noise is homoscedastic. Con-
ventional adaptive sampling schemes are inefficient at optimizing
stochastic functions because the existence of prediction uncertainty
at observed spatial locations results in sampling decisions that
greatly favor exploitation. In Ref. [16], a weighted acquisition func-
tion is proposed that overcomes this limitation for simulations
models with homoscedastic noise. However, when the intrinsic
noise varies over the design space (i.e., the noise is heteroscedastic),
the problem becomes more complex. In the case of MD simulations,
the intrinsic noise comes from random initial conditions (i.e., the
momentum and coordinates of each particle) that can be only simu-
lated for a finite length and time scale. GP-based surrogate models
have been extended to approximate stochastic functions, some
popular examples of which are the variational heteroscedastic
Gaussian process (VHGP) [17], practical Kriging (PK) [18,19],
and stochastic Kriging (SK) [20]. The VHGP model has been
extended for application in global optimization in Ref. [21], but
quickly becomes intractable as the computational cost increases
cubicly with the number of samples. However, SK and PK do no
share this limitation as they allow sampling locations to be repli-
cated (i.e., resample at previously observed sampling locations).
Replicating samples provides insight into the pure variance of the
simulation at a single sampling location. However, PK has many
parameters that are challenging to tune during the training
process. For this reason, SK provides a promising surrogate for
the optimization of stochastic simulations. Preliminary efforts in
this direction have been proposed in Refs. [22–24]. However, the
ratio of exploration to replication must be defined before initiating
these sampling schemes. This is a decision that greatly influences
the efficiency and the stability of the sampling process as the
optimal ratio of exploration to replication depends on the magnitude
and variability of the intrinsic modeling uncertainty and will on most
cases be unknown to the designer a priori.
A desirable property for any sampling scheme is the recommen-

dation of sampling batches as this facilitates parallel evaluation of
the costly simulation model to mitigate the computational cost.
Examples of batch-based adaptive sampling schemes for global sur-
rogate modeling and optimization are given in Refs. [25–27].
Batch-based sampling for optimization is a more nuanced challenge
compared to global surrogate modeling as it requires the observa-
tions of the costly objective function at yet to be sampled spatial
locations. The desire for batch sampling is particularly prevalent
in the MD community, where it has become a common practice
to use supercomputers to run many simulations in parallel. Regard-
less of the application, batch sampling is a desirable feature in opti-
mizing stochastic functions as an increased number of evaluations
are required to distinguish the mean response from the intrinsic
noise [22,28].
In this article, we propose a tractable, objective-driven adaptive

batch sampling scheme for the optimization of stochastic simulation
models with heteroscedastic noise. The main challenge of this study
centers around the decision of whether to explore a new sampling

Fig. 1 Example of an MD simulation (with spatially varying noise) for the efficiency prediction and optimi-
zation of an OPVC (Color version online.)
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location or replicate at a previously observed sampling location, a
decision that is to be made under the consideration that we want
to minimize the predictive variance only in the region of the
design space expected to contain the global minimum. The contri-
bution of this study centers around a new sampling scheme that
includes the active consideration of deciding when and where to
replicate and when and where to explore. We show that by using
the Sherman–Morrison–Woodbury formula, we can reformulate
the surrogate models’ posterior predictive variance to separate the
individual contribution of intrinsic modeling uncertainty and the
interpolation uncertainty to the surrogate model’s posterior predic-
tive variance. Subsequently, the algorithm decides whether to repli-
cate (reduce intrinsic uncertainty) or explore (reduce interpolation
uncertainty) by choosing the candidate that minimizes the posterior
variance at the region expected to contain the global optimum.
Finally, to benefit from parallel computing capabilities, we
propose a preposterior analysis that facilitates the allocation of
batches of samples that is compatible with the SK and PK surrogate
models. The performance of the proposed sampling scheme is dem-
onstrated on three test functions and one engineering problem that
involves the optimization of an OPVC (as presented in Fig. 1).
Through the three test functions we (i) demonstrate the proposed
sampling scheme’s comparatively strong convergence properties,
(ii) demonstrate its ability to scale to higher dimensional problems,
and (iii) empirically prove its structural validity. The results exem-
plify that the developed sampling scheme provides a reliable and
efficient approach for the optimization of stochastic functions
with high-dimensional inputs and/or complex intrinsic noise
functions.

2 Background
In this section, we first provide an introduction into surrogate

modeling for stochastic functions and elucidate the importance of
replication when optimizing high-dimensional or noisy functions.
Next, we provide an introduction of two existing adaptive sampling
schemes for optimization of stochastic functions and their
limitations.

2.1 Surrogate Modeling of Simulations With Intrinsic
Noise. Given a data set of noisy responses Y= {y1, …, yN}

T

observed at a set of d-dimensional sampling locations X= {x1,
…, xN}

T, we want to train a surrogate on the scalar-valued function
f : ℝd→ℝ. Under the assumption that the observed responses at a
set of inputs are jointly normally distributed, we can place a GP
prior on the unknown function f so that it can be characterized by
a mean trend and a covariance or kernel function k : ℝd×ℝd→ℝ.
Normalizing the observed responses to have zero mean centers
the surrogate modeling effort around the covariance/kernel structure
(e.g., power exponential or Matérn [5]). In this study, we consider
the common case of a stationary kernel k(x, x′)= σ2 c(x− x′|ω),
where σ2 is known as the prior variance and ω are the roughness
parameters that characterize the correlation function c(·).
By using a GP, we can model the observations as a function of

their spatial location yi= f (xi)+ ɛi, where εi ∼ N 0, r(xi)( ) are nor-
mally independently distributed and accounts for the intrinsic
model uncertainty. If the intrinsic uncertainty in the observations
is constant (i.e., r(x)= γ), then we are dealing with a model that
has homoscedastic noise; however, it is often found that the
noise varies as a function of the design variables, in which case
we are dealing with a model that exhibits heteroscedastic noise.
In both scenarios, we can model the observed training data set
as follows:

Y ∼ N N 0, KN + ΣN( ) (1)

where KN is an N×N covariance matrix with the (i, j)th element
being k(xi, xj) and the intrinsic simulation uncertainty is captured
by ΣN= diag(r(x1), …, r(xN)).

Conditioning the GP prior on a set of observations provides the
posterior predictive distribution at an unobserved sampling location
as Y(x)|Y ∼ N μN (x), σ

2
N(x)

( )
, where

μN (x) = kTN (x) KN + ΣN( )−1Y (2)

σ2N (x) = k(x, x) + r(x) − kTN(x) KN + ΣN( )−1kN (x) (3)

and kN(x)= {k(x, x1), …, k(x, xN)}
T. Prediction of the posterior

response requires the identification of the hyperparameters ω that
characterize the kernel function. By rewriting the covariance struc-
ture of our GP predictor as KN+ΣN= σ2(CN+ΔN), we obtain the
maximum likelihood estimation of the hyperparameters as follows:

ω̂ = argmax
ω∈Ω

−N log σ̂2 − log CN + ΔN| |( )
(4)

where Ω⊂ℝd is the admissible space of the hyperparameters and
we use the well-known closed-form expression to identify σ̂2 =
N−1YT (CN + ΔN)−1Y for the MLE of σ2 [25,29]. Note that both
terms on the right side of Eq. (4) depend on the roughness param-
eters ω through the correlation function.
One function evaluation during the optimization of Eq. (4)

requires the inversion and determinant computation of CN+ΔN

that come at a cubic computational expense O(N3). This is admis-
sible for most deterministic (i.e., r(x)= 0) or homoscedastic cases
(i.e., r(x)= γ) [30]; however, in the heteroscedastic case, it is rea-
sonable to expect that more simulation model evaluations are nec-
essary. We address this issue by allowing replication at
previously observed sampling locations. Consider that we have n
unique sampling locations �xi (i = 1, . . . , n), where at the ith sam-
pling location, we have observed ai replicates y(j)i , (j = 1, . . . ai),
(i.e.,

∑n
i=1 ai = N). If we define �Y = �y1, . . . , �yn

{ }T
to be the sam-

pling average over replicates (i.e., �yi =
1
ai

∑ai
j=1

y(j)i ), then the posterior

mean and variance are obtained as follows:

μn(x) = kTn (x) Kn + A−1Σn

( )−1 �Y (5)

σ2n(x) = k(x, x) + r(x) − kTn (x) Kn + A−1Σn

( )−1
kn(x) (6)

whereKn = k(�xi, �xj)
[ ]

1≤i,j≤n, A= diag(a1,…, an), and the computa-

tional complexity has been reduced to O(n3).
The formulation given in Eqs. (5) and (6) is known as SK and

holds two challenges. The first challenge is that Σn requires the
designer to know the intrinsic noise at each sampled location
r(�xi) (i = 1, . . . , n); however, in many practical cases, a designer
has no access to this information. As an alternative, Ref. [20] pro-
poses an estimate for Σ̂n = diag r̂(�x1), . . . , r̂(�xn)( ) by taking

r̂(�xi) =
1

ai − 1

∑ai
j=1

y(j)i − �yi
( )2

(7)

Using the sampling variance of Eq. (7) results in an unbiased
approximation of μn(x) when ai≫ 1 (it is recommended to have
ai≥ 10). The second limitation in the formulation of the posterior
predictive variance σ2n is that the designer requires to know the
intrinsic noise over the entire design space r(x). One approach to
address this issue is to omit r(x) in Eq. (5) and be satisfied with a
“denoised” predictive variance as σ̃2n(x) = σ2n(x) − r(x) [18]. In
fact, in our case, this is more meaningful than including it, as we
want to quantify the uncertainty in the underlying response
surface, as opposed to the noisy response observations. An alterna-
tive approach is to place a separate GP prior on r(x) as proposed in
Ref. [20], and for which the joint likelihood of both surrogates and a
set of latent parameters associated with the intrinsic noise has been
derived in Ref. [18] (i.e., the PK surrogate mentioned in Sec. 1). In
this study, we will be using the SK model as it is easier to train;
however, it should be noted that the proposed sampling scheme
will also work with the PK model.
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2.2 Objective-Driven Adaptive Sampling for Deterministic
and Stochastic Simulations. Throughout the literature, a great
number of acquisition functions have been proposed for objective-
driven sampling of deterministic functions (i.e., functions with ΣN=
0). Some popular acquisition functions include statistical lower
bound [31], probability of improvement [7], expected improvement
(EI) [32], knowledge gradient [24], and entropy search [33]. Despite
the attention that objective-driven adaptive sampling schemes have
received, none of them outperforms the others on all optimization
problems. Also, many of these functions have unique properties
that make them suitable for specific types of problems, but the
designer will frequently not have the necessary information to
make this assessment a priori.
Objective-driven sampling balances the need for reducing the

posterior predictive variance by exploring new sampling locations,
versus exploitation of samples near the predicted global optimum.
The EI for the minimization of an objective function is defined as
follows:

EI(x) = (ymin − μ(x)
( )

Φ u( ) + S2(x)ϕ u( ) (8)

where ymin is the current best function observation, Φ(·) is the stan-
dard normal cumulative distribution function, ϕ(·) is the standard
normal probability density function, μ(·) is the posterior mean pre-
diction of a deterministic GP model, S(·) is the posterior variance of
a deterministic GP model, and u= (ymin− μ(x))/σ2(x). A new
sample xnew is selected by maximizing the EI of the objective func-
tion, i.e.,

xnew = argmax
x∈χ

EI(x) (9)

where χ∈ℝd is the admissible design space. The EI function pre-
sents a versatile acquisition function that has good convergence
properties for a broad range of problems [31,34]; however, its appli-
cation to simulation models with intrinsic noise has been hindered
by its inability to replicate at previously observed sampling
locations.
Example of sampling schemes that have been proposed for the

optimization of simulation models with heteroscedastic noise
include minimum quantile (MQ) [23], correlated knowledge gradi-
ent (CKG) [35], expected quantile improvement (EQI) [36], and
two-stage sequential optimization (TSSO) [22,37]. The MQ
scheme is relatively straightforward in that it selects the point
with the minimum Kriging quantile defined as follows:

q(x) = μn(x) +Φ−1(θ)σn(x) (10)

where θ∈ (0, 0.5]. The advantage of MQ over the CKG and EQI is
that it does not require information on the intrinsic modeling uncer-
tainty r(x). Moreover, the scheme allocates a fixed number of repli-
cates B to each identified additional sample, a number that must be
set by the designer and is referred to as the batch size. Theoretically
the acquisition function in MQ is never zero and thus allow

replication at previously observed sampling locations; however,
this is unlikely to happen in practice as we have a real-valued
search space.
One drawback of the MQ scheme is that has a fixed number of

replicates at each sampling location, a limitation that is overcome
by the TSSO scheme [22]. The TSSO scheme adopts a search
and replication step during each micro-trial (i.e., one cycle of train-
ing the surrogate model, optimizing the acquisition function, and
simulating new design(s)). During the search step, nrep <B repli-
cates are allocated to a new sampling location found through a mod-
ified EI acquisition function given as follows:

EIε(x) = (�ymin − μn(x)
( )

Φ �u( ) + S2n(x)ϕ �u( ) (11)

where �ymin is the lowest predicted mean response at any of the pre-
viously observed sampling locations, S2n(x) = k(x, x) −
kTn (x)K

−1
n kn(x) is the deterministic posterior variance (i.e., A−1=

diag(0,…, 0) and r(x)= 0 in Eq. (6)), and �u =
�ymin − μn(x)

S2(x)
. The

intuition behind using Sn(x) as the posterior variance is that explor-
ing a new sampling location will provide no information on the
intrinsic noise of the objective function and should therefore not
be considered when deciding where to explore. Finally, during
the replication step, the remaining B− nrep samples are allocated
to the previously simulated sampling locations according to an
optimal computing budget allocation heuristic. This approach
ensures that more replications are allocated at and around the
global optimum, but TSSO still has a fixed ratio of exploration to
replication, and therefore, its performance greatly depends on the
parameters selected by the designer (the parameters here are B
and nrep).

3 Proposed Scheme: When to Replicate and When
to Explore
In this section, we introduce the proposed adaptive sampling

scheme that actively decides where and when to explore a new sam-
pling location and where and when to replicate at a previously
observed sampling location.

3.1 A New Scheme for the Optimization of Functions With
Heteroscedastic Noise. To initialize the sampling scheme as
depicted by step 0 in Fig. 2, the designer has to provide a set of
space-filling samples X0 uniformly dispersed over the design
space (e.g., through a Latin hypercube design [38] or a Sobol
sequence [39]). This implies that the designer has to determine
the total number of unique sampling locations and the number of
replications. A typical number of initial sampling locations for the
purpose of adaptive sampling is in between 2d to 5d [6], and the
minimum number of recommended replications is β≥ 10 as sug-
gested in Ref. [20]. A designer can choose to add a higher

Fig. 2 Proposed sequential adaptive batch sampling scheme for the optimization of simu-
lation models with heteroscedastic noise
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number of replicates when dealing with a simulation model that has
a high magnitude of intrinsic noise although this is not necessary as
shown in Sec. 4.1.2. In addition to the initial experimental design,
the designer has to indicate the desired batch size B, and this
informs how many samples the proposed sampling scheme will
recommend during each micro-trial. A micro-trial is defined as
going through steps 1–4 in Fig. 2.
In step 1 of Fig. 2, we train the SK model to provide a predictive

distribution of the response f (x) at unobserved spatial locations.
Subsequently, in step 2, we determine if a stopping criterion is
met, and if so, use the predicted optimal mean response from the
current surrogate model as the optimal design. The common stop-
ping criteria are as follows: (i) the designer has exhausted all simu-
lation resources or (ii) the “denoised” posterior variance σ̃2n(x) at the
predicted optimal design is below a specific threshold η. Note that
steps 0–2 are common in most adaptive sampling schemes.
The contribution of the proposed sampling scheme lies in the deci-

sion between replication versus exploration to identify batches of
samples that minimize the uncertainty in the optimal design. A sche-
matic representation of the proposed sampling scheme to make this
decision has been visualized in the bottom half of Fig. 2. More spe-
cifically, step 3 consists of a cycle of steps that are repeated B times
where during each cycle one new sample is identified. Starting with
step 3a, we identify a candidate sampling location x(j)exp, (j =
1, . . . , B) for exploration by maximizing the modified EI function
as presented in Eq. (11) [22]. It should be noted that the proposed
sampling scheme is not limited to this specific choice of acquisition
function as any of the existing acquisition functions for simulation
models with heteroscedastic noise can be used (e.g., MQ [23],
SKO [16], CKG [24], and EQI [36]). Note that step 3a only provides
a candidate sample for exploration x(j)exp that will not necessarily be
simulated. Rather, we first need to find the best candidate sample
for replication (step 3b) before deciding which one of the two to
simulate using the costly simulation model (step 3c).
The location of the candidate sample for replication �x(j)i∗ , (j =

1, . . . , B) is found in step 3b by choosing the sample location
among all previously observed sampling locations �xi, (i =
1, . . . , n) that provides the most “information” on the response y(·)
at x(j)exp. The purpose of replicating at previously observed sam-
pling locations is to reduce the sampling scheme’s computational
cost from O(N3) to O(n3) (see Sec. 2.1). In previous study [40],
we proposed a heuristic that approximates the contribution of
each previously observed sampling location to the posterior var-
iance of the predictive distribution Ŷ(x(j)exp)|Y. However, in this
work, we use the Sherman–Morrison–Woodbury formula to refor-
mulate the posterior predictive variance into its individual constit-
uents associated with the interpolation uncertainty and the
intrinsic modeling uncertainty. The assumption behind this
approach is that we expect to learn the most about the simulation
response at x(j)exp by choosing to replicate at the sampling location
that minimizes the posterior predictive variance at that spatial
location.
With the candidate samples for replication �x(j)i∗ and exploration

x(j)exp available, we use step 3c to decide which of the two should
be added to the batch of samples in step 3d. Adopting a similar con-
sideration as for step 3b, we want to select the sample from the set
x(j)exp, �x

(j)
i∗

{ }
that minimizes the posterior variance at x(j)exp.

Going through step 3a to step 3d will only add one additional
sample to the batch of samples Xnew, but prior to evaluating the
costly simulation model (step 4), we would like a batch containing
B samples. The batch size is determined by a designer based on the
available computational resource. In the context of parallel comput-
ing, the size often depends on the number of available parallel
processors. The algorithm will go through a preposterior analysis
in step 3f so that it can return to step 3a so that it can identify
the next sample. This process is repeated until a sampling batch
Xnew = x(1)new, . . . , x

(B)
new

{ }
containing B samples has been identified.

Subsequently, the sampling scheme will advance to step 4, where
the new batch of samples Xnew will be evaluated by the costly

simulation model before returning to step 1. This overarching
process is repeated until a stopping criterion has been met, and
we have successfully identified the optimal design.
Crucial to the performance of the proposed sampling scheme is

the reformulation of the posterior variance (step 3a–3c) and the pre-
posterior analysis (step 3f) for which further details are provided in
Secs. 3.2 and 3.3, respectively.

3.2 Reformulation of the Posterior Predictive Variance.
The objective behind the decision to replicate or explore (step 3a–
3c in Fig. 2) is the minimization of the posterior variance at the loca-
tion that is likely to contain the global optimum (i.e., x(j)exp). This
raises the question: “What source of uncertainty has the largest con-
tribution to the variance of the posterior predictive distribution
Y(x(j)exp)|Y?”
Taking a closer look at the formulation of the posterior variance

given in Eq. (6), we observe that the contribution of the interpola-
tion uncertainty is captured by the covariance matrix Kn and the
intrinsic modeling uncertainties are captured by the diagonal ele-
ments of A−1Σn. Note that the intrinsic modeling uncertainty
comes from not knowing the population mean at the observed
spatial locations. Subsequently, we are interested in quantifying
the contribution of the interpolation uncertainty and intrinsic mod-
eling uncertainty to the posterior prediction variance σ2n(x).
Introducing an n-dimensional column vector of zeros 0n,i

with its ith element equal to one and a matrix A−1
i =

diag 0, . . . , 0, a−1i+1, a
−1
i+2, . . . , a

−1
n

( )
(i.e., the matrix A−1 with its

first i diagonal elements set equal to 0). By setting i= 1, we can
then rewrite the matrix inversion (Kn−A−1Σn)

−1 inside the poste-
rior prediction variance as follows:

(Kn − A−1Σn)
−1 = Kn + A−1

1 Σn + 0n,1
r̂ �x1( )
a1

( )
0Tn,1

( )−1

(12)

We then find that a rank-1 correction 0n,1
r̂ �x1( )
a1

( )
0Tn,1 is applied to

the matrix Λ1 =Kn + A−1
1 Σn. Consequently, we can adopt the

Sherman–Morrison–Woodbury formula [41] to rewrite the right-
hand side of Eq. (12) as follows:

(Kn − A−1Σn)
−1 = Λ−1

1 − Λ−1
1 0n,1

r̂ �x1( )
a1

+ 0Tn,1Λ
−1
1 0n,1

( )
0Tn,1Λ

−1
1

= Λ−1
1 − λ1(a1) (13)

where we have taken λ1(a1)=Λ−1
1 0n,1

r̂ �x1( )
a1

+0Tn,1Λ
−1
1 0n,1

( )
0Tn,1Λ

−1
1 .

Note that the first element on the right-hand side of Eq. (13) is once
again a matrix inversion that is analogous to Eq. (12) and can be
reformulated to have a rank-1 correction. Subsequently, we can
again rewrite this matrix inversion using the Sherman–Morrison–
Woodbury formula. In fact, by realizing that Λ−1

i−1 = Λ−1
i − λi, we

can repeat this recursive procedure n times to find

(Kn − A−1Σn)
−1 =K−1

n −
∑n
i=1

λi(ai) (14)

where we have recovered K−1
n because A−1

n is an n× n dimensional

vector of zeros so that Λ−1
n = Kn + A−1

n Σn

( )−1
=K−1

n .
By substitution of Eq. (14) into Eq. (6), we obtain the following

formulation of the posterior variance

σ2n(x) = k(x, x) + r(x) − kTn (x)K
−1
n kn(x) +

∑n
i=1

kTn (x)λi(ai)kn(x)

(15)

Observation of the right-hand side of Eq. (15) reveals that we can
capture the contribution of the interpolation uncertainty to the pos-
terior variance as k(x, x) − kTn (x)K

−1
n kn(x). Note that this is the
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exact same expression for the posterior variance of a GP trained on
the data set obtained from a deterministic simulation model. In addi-
tion, the contribution of the intrinsic modeling uncertainty that
enters the SK surrogate by not knowing the population mean at
the ith unique sampling location is captured by kTn (x)λi(ai)kn(x).
Finally, the intrinsic modeling uncertainty r(x) in Eq. (15) has a
fixed and typically unknown contribution to the posterior variance,
but as will be shown in the following paragraph, we do not need this
information to identify what sample(s) to simulate next.
Concerning the identification of the best candidate sample for

replication (step 3b), from the formulation of Eq. (15), we note
that the contribution of not knowing the population mean at the
ith sampling location is given by kTn (x)λi(ai)kn(x), where λi(ai)
depends on the sampled data through the number of replicates ai
at xi. When deciding to replicate a design, its number of replicates
will increase by one, in which case we can approximate the reduc-
tion in the posterior variance si(·) at the sampling location for explo-
ration x(j)exp by replicating at the ith sampling location as follows:

si(x(j)exp) = kTn (x
(j)
exp) λi(ai) − λi(ai + 1)( )kn(x(j)exp) (16)

Observe that in Eq. (16), we approximate the difference in the pos-
terior variance by subtracting the hypothetical future value from its
current value. We can then (with slight abuse of notation) find the
optimal sample for replication by maximizing Eq. (16) with
respect to all unique observed sampling locations �xi (i =
1, . . . , n) to find the candidate sample for replication x(j)i∗ .
In step 3c, a decision has to be made whether to replicate x(j)i∗ or

explore x(j)exp. This decision is made based on which alternative min-
imizes the posterior variance. The candidate sample for replication
is identified by its predicted reduction in the posterior variance
si∗ (x(j)exp) at x(j)exp, whereas the reduction in the posterior variance
when deciding the explore is given as as follows:

Sn(x(j)exp) = k(x(j)exp, x
(j)
exp) − kTn (x

(j)
exp)K

−1
n kn(x(j)exp) (17)

Subsequently, we then decide whether to explore a new sampling
location or replicate at an existing one according to the following
equation:

x(j)new =
x(j)exp if Sn(x(j)exp) > si∗ (x(j)exp)

�x(j)i∗ otherwise

{
(18)

The intuition behind Eq. (18) is that Sn(x(j)exp) considers the interpo-
lation uncertainty that will be reduced to zero once a sample is
observed at the new spatial location x(j)exp, while replicating at �x(j)i∗
sample can only reduce the intrinsic modeling uncertainty that
enters the surrogate model through the sample mean at each
unique sampling location.
For visualization purposes, consider that we want to optimize a

one-dimensional simulation model with heteroscedastic noise as
shown in Fig. 3(a). Next, assume that we start with an initial
batch of samples containing three unique sampling locations {0.2,

0.5, 0.8}, each with ten replicates as shown by the green dots in
Fig. 3(b). Given that a candidate sample for exploration has been
found at x(1)exp = 0.05 as presented by the left most red dot in
Fig. 3(b), it would make sense that the corresponding candidate
for replication is the nearest sample �x(1)i∗ = 0.2. The sampling loca-
tions for exploration and replication are also presented in
Fig. 3(c) by the two vertical dashed lines, the approximation of
the interpolation uncertainty has been plotted by the solid black
line Sn(x), and the approximation of the reduction in the posterior
variance for replicating at the three sampling locations has been
plotted by the colored lines (i.e., the long dashed green line s1(x)
captures the intrinsic uncertainty that enters the surrogate model
through sampling location x= 0.2, the long-short dashed red line
s2(x) is for x= 0.5, and the short dashed blue line s3(x) is for x=
0.8). From this figure, we observe that the uncertainty at the candi-
date sample for exploration is mostly driven by the interpolation
uncertainty (i.e., Sn(0.05) > si(0.05), for i = 1, 2, 3), and thus,
the proposed scheme will decide to explore the new sampling loca-
tion. However, if for example the candidate for exploration was
found at x= 0.45, we observe that s2(0.45) > Sn(0.45) > s1(0.45) >
s3(0.45), in which case the proposed sampling scheme would
choose to replicate at �x2 = 0.5.

3.3 Preposterior Analysis Through a Zeroth-Order
Interpolation of the Intrinsic Noise. In this section, we present
the proposed preposterior analysis used for the allocation of sam-
pling batches (step 3f in Fig. 2). The preposterior analysis allows
the sampling scheme to return to step 3a without having to run
the costly simulation model and without getting a new maximum
likelihood approximate of the hyperparameters (Eq. (4)). For the
deterministic case, the initial GP model Y(x)|Y is used to identify
a new sampling location xnew [42,43]. Assuming that μ(xnew) is
an accurate approximation of the response at that location, we can
temporarily add {xnew, μ(xnew)} to the training data set. The
updated training data set is then used to condition the posterior pre-
dictive distribution of Eq. (6), allowing the designer to identify the
next sampling location.
Using the preposterior analysis for an SK surrogate model not

only deviates from the deterministic GP model in that the posterior
prediction not only depends on x(j)new, μn(x

(j)
new)

{ }
but also requires

the intrinsic noise of the simulation model r(x(j)new) and the number
of replicates at x(j)new. This is relatively straightforward when the
algorithm decides to replicate the ith(i= 1, …, n) sampling location
as we can incrementally increase the number of replicates ai by one.
For example, assume that the original data set on which we trained
our model and conditioned the posterior predictive distribution is
given as follows:

D(j) =

�x1
..
.

�xn

⎡
⎢⎣

⎤
⎥⎦,

�y1

..

.

�yn

⎡
⎢⎣

⎤
⎥⎦,

r̂(y1)

..

.

r̂(yn)

⎡
⎢⎣

⎤
⎥⎦,

a1

..

.

an

⎡
⎢⎣

⎤
⎥⎦

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (19)

Fig. 3 Visualization of a one-dimensional test function with heteroscedastic noise, its approximation through SK,
and the analysis of the posterior variance to decide whether to replicate or explore: (a) example of a one-dimensional
test functionwith heteroscedastic noise, (b) approximation of a one-dimensional test functionwith three unique sam-
pling locations with ten replicates each, and (c) analysis of the posterior prediction variance and its constituents
(Color version online.)
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In the case that the algorithm decides to replicate at the ith sampling
location, then the data on which we condition the posterior response
can be approximated as follows:

D(j+1) =

�x1
..
.

�xi−1
�xi
�xi+1
..
.

�xn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�y1

..

.

�yi−1
�yi
�yi+1

..

.

�yn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

r̂(y1)

..

.

r̂(yi−1)
r̂(yi)
r̂(yi+1)

..

.

r̂(yn)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a1

..

.

ai−1
ai + 1
ai+1

..

.

an

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

The resulting training data set of Eq. (20) is equivalent to the sce-
nario where the response of simulating the new replicate is equiva-
lent to the sample mean response at the ith sampling location �yi.
When exploring a new sampling location the designer needs an

approximation of the intrinsic modeling uncertainty r(x(j)exp). One
approximation is to train an individual GP model to the sampling
variances r̂(xi) that have more than ai > β samples. However, as
we are expecting that in the final experimental design sufficient
sampling locations and replications will be allocated around the
global optimum of the design space, we propose to use a
zeroth-order interpolation. This implies that the ith sampling loca-
tions where ai< β will be assigned the sampling variance
r̂ngb(�x(j)exp) of its highest correlated neighbor that does have sufficient
replicates. The resulting data set to which we condition the posterior
predictive response is then given as follows:

D(j+1) =

�x1
..
.

�xn
�x(j)exp

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

�y1

..

.

�yn
μn(�x

(j)
exp)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

r̂(y1)

..

.

r̂(yn)
r̂ngb(�x(j)exp)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

a1

..

.

an
1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(21)

The advantage of using a zeroth-order interpolation over GP inter-
polation for the approximation of the intrinsic noise is twofold:
(i) the algorithm is less likely to run into numerical issues when
multiple samples in proximity of each other have different sampling
variances and (ii) the zeroth-order interpolation of the intrinsic noise
is less likely to waste resources, whereas GP interpolation of the
intrinsic noise can result in poor sampling decisions resulting
from greatly underestimating or overestimating the intrinsic uncer-
tainty at unobserved spatial locations (this will be further explained
in Sec. 4.1.2).

4 Results and Observations
In this section, we present the results of the proposed sampling

scheme when applied to the optimization of three test functions
with different input dimensionalities and degrees of intrinsic
model uncertainty. In addition, the proposed scheme is applied to
a real engineering problem that involves the optimization of an
OPVC as a function of its processing settings.

4.1 Two-Dimensional Test Functions. To highlight the
strength of the proposed sampling scheme, we apply it to two two-
dimensional test functions that exhibit various types of intrinsic het-
eroscedastic noise. Moreover, the results are compared to the per-
formance of the MQ and TSSO schemes as introduced in Sec. 2.2
and to our previously introduced scheme that adopts a heuristic to
approximate si(·) [25].

4.1.1 Problem Formulation and Implementation. We consider
the six-hump Camel function and the rescaled Branin function as
presented in Table 1 [44]. The six-hump Camel function has a rela-
tively rough response surface with six local minimum spread
throughout the design space. Subsequently, it will be interesting
to observe at what rate the proposed sampling scheme can identify
the global minimum from the local minima. The rescaled Branin
function is a relatively smooth function with three local minima.
It will be interesting to observe how the proposed sampling
scheme will utilize its computational resources to distinguish
between each local minima.
In this work, we consider four different noise scenarios that are

analogous to the study presented in Ref. [45]. More specifically,
we assume that the variance of the noise varies linearly with
respect to the response of the function as follows:

ε(x1, x2) ∼ N 0, a E f x1, x2( )( )
+ b

( )( )
(22)

To determine the parameters a and b, we consider that the magni-
tude of the intrinsic noise can take on one of two levels: (i) light
noise where the standard deviation of the noise varies between
15% and 60% of the range of the response (i.e.,
r(x) ∈ 0.15

���
Rf

√
, 0.6

���
Rf

√( )
) and (ii) heavy noise where the standard

deviation of the noise varies between 150% and 600% of the range
of the response (i.e., r(x) ∈ 1.5

���
Rf

√
, 6

���
Rf

√( )
). In addition, we con-

sider two levels for the functional form of the intrinsic simulation
noise: (i) best-case noise where the intrinsic uncertainty is smallest
at the global optimum of the function (i.e., min (r(x)) at argminf (x))
and (ii) worst-case noise where the intrinsic uncertainty is largest at
the global optimum (i.e., max (r(x)) at argminf (x)). This means that
we have two test functions, each with four test cases, for which the
total number of micro-trials Nt, batch size B, and the parameters a, b
are presented in Table 2. Note that the two noise parameters are
associated with the formulation of the test functions and do not
need to be defined by a designer.
We optimize the eight cases summarized in Table 2 using the pro-

posed adaptive sampling scheme, our previously published
heuristics-based sampling scheme [25], the MQ scheme (Eq. (10)
in Sec. 2.2) and the TSSO scheme (Eq. (11) in Sec. 2.2). We then
create an initial experimental design X0 through a Latin hypercube
containing nine unique sampling locations with 50 replicates each.
We have chosen a relatively large number of initial replicates so that
our results can be compared with those presented in Ref. [45]. This
process is repeated 20 times, each time starting from a different
initial design. Each repetition will be referred to as a macro-trial.
Finally, in terms of parameter selection, for the MQ scheme,

Table 1 Two-dimensional test functions for comparing the proposed sampling scheme to existing sampling schemes

Six-hump Camel Rescaled Branin

d= 2 d= 2

f (x1, x2) = 4x21 − 2.1x41 +
x61
3
+ x1x2 − 4x22 + 4x42 + ε(x1, x2) f (x1, x2) =

1
51.95

15x2 −
5.1(15x1 − 5)2

4π2
+
5(15x1 − 5)

π
− 6

( )2

+
1

51.95
10 −

10
8π

( )
cos(15x1 − 5) − 44.81

[ ]
+ ε(x1, x2)

−2≤ x1≤ 2,−1≤ x2≤ 1 0≤ x1≤ 1, 0≤ x2≤ 1

Range: Rf= 7.3 Range: Rf= 6
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we have chosen θ= 0.25 and set the number of replicates per sam-
pling location equal to the batch size, while in the TSSO scheme, we
set the number of replicates per new sampling location rrep= 10.
The performance of each competing alternative is measured

through a set of three criteria that are equivalent to the criteria pre-
sented in Ref. [45]:

(1) The GAP is the difference between the true global optimum
f (x*) and the response at the predicted global optimum
f (x̂∗m,s) (m = 1, . . . , 20, s = 1, . . . , Nt), where x̂∗m,s is the
predicted globally optimal design for the sth micro-trial of
the mth macro-trial.

(2) The NVX is the fraction of macro-trials where the sampling
scheme explores a new sampling location that is within (1 −
X )100% of the range f(x) to the globally optimal response.

(3) The NRX is the fraction of macro-trials where the returned
solution is within (1 − X )100% of the range f (x) to the
globally optimal response. Note that this implies that
NRX ≤ NVX .

In this work, we have chosen X = 0.975, and this means that
NVX and NRX only count designs that differ from the global
optimal design f (x*) no more than 2.5% of the range of f (x).

4.1.2 Empirical Validation of the Proposed Sampling Scheme.
The results for the six-hump Camel function and the rescaled
Branin function have been plotted in Figs. 4 and 5, respectively.
First, when looking at the GAP for the six-hump Camel function,
we find that the proposed sampling scheme as depicted by the
continuous blue lines in Figs. 4(a)–4(d ) is highly competitive
to the alternative sampling schemes in terms of the GAP crite-
rion, particularly for the low-noise problems. What is more, we
find that our previous heuristic scheme as depicted by the
dashed red lines performs relatively well in the low best-case
noise scenario, but quickly degrades in performance when the
noise becomes larger. Under closer observation, we found that
in the high-noise scenario the heuristics-based scheme underesti-
mates the intrinsic noise when many samples are in proximity of
one another. Therefore, the heuristics-based scheme places more
emphasis on exploring new sampling locations and is unlikely
to successfully identify the global optimum as it has no accurate
representation of the intrinsic uncertainty. In terms of the MQ
(dotted gray line) and TSSO scheme (dashed dotted green line),
we find that the TSSO algorithm is more likely to explore
regions in the design space compared to MQ scheme. Conse-
quently, the MQ scheme converges quicker to the global

Table 2 Summary of the intrinsic noise of eight test problems, number of macro-trials, and
selected batch size for each the test functions presented in Table 1

Noise magnitude

Light noise Heavy noise
r(x) ∈ 0.15

���
Rf

√
, 0.6

���
Rf

√( )
r(x) ∈ 1.5

���
Rf

√
, 6

���
Rf

√( )
Best-case noise Six-hump Camel Nt= 20 B= 50 Nt= 40 B= 50

min (r(x)) at argmin f (x) a= 0.45 b= 3.46 a= 4.5 b= 3.46

Rescaled Branin Nt= 20 B= 50 Nt= 40 B= 50
a= 0.45 b= 3.05 a= 4.5 b= 3.05

Worst-case noise Six-hump Camel Nt= 20 B= 50 Nt= 40 B= 50
max (r(x)) at argmin f (x) a=−0.45 b=−8.704 a=−4.5 b=−8.704

Rescaled Branin Nt= 20 B= 50 Nt= 40 B= 50
a=−0.45 b=−6.95 a=−4.5 b=−6.95

Fig. 4 Comparison of the proposed sampling scheme to the TSSO, MQ, and previously published heuristics based
schemes on the six-hump Camel function: (a) low best-case noise average GAP for the six-hump Camel function,
(b) low worst-case noise average GAP for the six-hump Camel function, (c) high best-case noise average GAP for
the six-hump Camel function, (d) high worst-case noise average GAP for the six-hump Camel function, and (e) frac-
tions of times a micro-trial explored the global minimum (Nv) and times it converged to the global optimum (Nr)
(Color version online.)
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optimum when starting from a good initial design but was occa-
sionally unable to identify the global optimum when starting from
a poor initial design.
From the results depicted in Figs. 4(a)–4(d ), we observe that the

proposed sampling scheme has the best performance in terms of the
GAP criterion in nearly all cases, except from the high worst-case
noise scenario where it is on par with the MQ scheme. However,
when looking at the NVX and NRX of the sampling schemes on
each of the four optimization problems as shown in Fig. 4(e), we
find that the proposed sampling scheme outperforms all three com-
peting schemes in terms of the fraction of times it was able to return
the global optimum and the number of times it explored the region
containing the global optimum. Moreover, we observe that the pro-
posed scheme is comparatively better for the noisier functions. In
fact, in the high worst noise and high best noise scenario, the
NRX of the proposed sampling scheme trumps the NVX of all
other schemes.
When the four sampling schemes under consideration are used

for the optimization of the rescaled Branin function as presented
in Fig. 5, we find that all schemes perform relatively well. This is
because the rescaled Branin function is relatively smooth, and the
region of the design space that is within 2.5% of the range of the
global optimum is relatively large. For this reason, the results in
Figs. 5(a)–5(d ) have been plotted on a logarithmic scale. We
observe similar results here as we did for the six-hump Camel func-
tion where the proposed scheme shows very strong performance for
both the low-noise scenarios and is highly competitive with the MQ
scheme for the worst-case high-noise scenario. However, in terms
of the NRX and NVX , the performance of the proposed scheme is
more distinct from the competing schemes when the intrinsic
noise increases and maximizes at the minimum of the objective
function. The results confirm that the active decision when to repli-
cate and when to explore based on which alternative minimizes the
posterior predictive variance is a potent and valuable consideration
when optimizing stochastic functions. This observation is bolstered
by realizing that any acquisition function can be used to identify the
candidate samples for exploration.

4.1.3 Empirical Validation of the Zeroth-Order Interpolation
Assumption. One key construct of the proposed sampling
scheme is the zeroth-order interpolation to approximate the
posterior variance used in the preposterior analysis. There are two
alternatives to this approach: (i) the designer adopts an additional

GP model to approximate the posterior variance or (ii) the
designer assumes to know the actual function of the intrinsic
simulation noise. In this section, we will perform the same simula-
tions as presented in Tables 1 and 2 using the proposed sampling
scheme with the zeroth-order interpolation, GP interpolation,
and the actual function for the intrinsic noise. For the GP inter-
polation of the intrinsic noise, we trained a surrogate to the
natural log of the sample variance for all unique sampling locations
that have ten or more replicates β> 10. Taking the natural logarithm
ensures that we never predict a negative variance for the intrinsic
noise as this could potentially lead to an ill-conditioned covariance
matrix.
The GAP for all eight test scenarios has been plotted in Fig. 6,

where the continuous blue lines correspond to the zeroth-order
interpolation, the dashed black lines corresponds to the GP
model interpolation, and the dotted black lines correspond to actu-
ally knowing the intrinsic noise. We observe that knowing the
intrinsic noise and using the zeroth-order interpolation have very
comparable performance in all eight scenarios. Moreover, the
GP model interpolation performs similarly well in the low-noise
cases, while in the high-noise cases, its performance quickly
degrades. It is found that using a GP model sometimes greatly
underestimates the intrinsic noise, in which case many of the
new samples will be allocated for exploration. The use of more
samples for exploration has two negative consequences: (i) the
computational cost increases significantly as the size of the covari-
ance matrix balloons and (ii) because insufficient replicates are
allocated to new sampling location we can no longer have an accu-
rate prediction of the response surface and its noise. This phenom-
enon may happen during every micro-trial and is more likely to
occur in later micro-trials. Consequently, we observe that initially
the average GAP of all 20 micro-trials decreases, but as we go
through more trials, the gap increases.
The presented observations provide three valuable insights. First,

the use of GP interpolation for the intrinsic noise can have a detri-
mental effect to the performance of the algorithm. Second, the use
of the zeroth-order interpolation is robust regardless of the func-
tional form of the simulation model’s intrinsic noise. Third, the per-
formance of the zeroth-order interpolation is comparable to the case
is which we know the intrinsic noise. Consequently, we postulate
that we can adopt the zeroth-order interpolation in the preposterior
analysis with negligible negative consequences to the performance
of the proposed sampling scheme.

Fig. 5 Comparison of the proposed sampling scheme to the TSSO, MQ, and previously published heuristics based
schemes to the rescaled Branin function: (a) low best-case noise average GAP for the rescaled Branin function,
(b) low worst-case noise average GAP for the rescaled Branin function, (c) high best-case noise average GAP for
the rescaled Branin function, (d) high worst-case noise average GAP for the rescaled Branin function, and (e) frac-
tions of times a micro-trial explored the global minimum (Nv) and times it converged to the global optimum (Nx)

Journal of Mechanical Design MARCH 2021, Vol. 143 / 031709-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/3/031709/6603783/m
d_143_3_031709.pdf by U

niversity O
f Alabam

a H
untsville user on 04 January 2021



4.2 Six-Dimensional Test Function. In this section, we
demonstrate the proposed sampling scheme’s ability to be scaled
to higher dimensional problems. We consider the six-dimensional
Hartmann function presented in Ref. [46] and given as follows:

y(x) = 5 −
∑4
i=1

αi exp −
∑6
j=1

Qij(xj − Pij)
2

( )
+ ε(x) (23)

ε(x) ∼ N 0, 0.1y(x)
( )

, x ∈ [0, 1]6 (24)

where α= {1, 1.2, 3, 3.2} and

Q =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

P =

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

We initiate the optimization with an experimental design containing
20 unique sampling locations each replicated 20 times and obtained
through a Latin hypercube design. We then go through 20 micro-
trials, during each of which a batch containing 50 samples is iden-
tified (i.e., B= 50). Moreover, this process is repeated for ten
macro-trials, and the GAP for the proposed sampling scheme is pre-
sented by the continuous blue line in Fig. 7. This figure shows that
the proposed sampling scheme quickly narrows in the region con-
taining the global optimum of the simulation model. Once the
optimal region has been identified, samples are added to reduce
the variance of the posterior distribution at this location.
However, because it is a relatively high-dimensional problem,
many replications need to be added to a multitude of sampling loca-
tions to accurately identify the global optimum of the function.
Despite this apparent limitation, with a reasonable number of
samples, the proposed adaptive sampling scheme can reliably and
prudently find a design that is close to the global optimum.

In addition to the proposed sampling scheme, we also imple-
mented the MQ and TSSO schemes using the same settings as in
the previous section (i.e., nrep= 10 and θ= 0.25) to optimize the six-
dimensional Hartmann function. The average GAP of each micro-
trial for the MQ scheme is presented by the dashed gray line, and
the result of the TSSO scheme is presented by the dashed green
line. We observe that the proposed sampling scheme provides a
competent alternative to the existing schemes as it rapidly identifies
the region containing the global optimum, while the other schemes
take longer as they only explore one new sampling location during
each micro-trial. In addition, it could be argued that we selected
poor values for the parameters B, nrep, or θ. However, this is an addi-
tional advantage that the proposed method holds of the existing
methods as it does not require the designer to have knowledge of
the underlying function and its intrinsic noise.

4.3 Optimization of an OPVC. To highlight the applicability
of the proposed adaptive sampling scheme, we applied it to the opti-
mization of an OPVC considering its performance is a function of
two processing settings [47,48]. The preferred choice of architec-
ture for an OPVC is bulk heterojunction [49] and the “best seller”
donor/acceptor combination is phenyl-C61-butyric-acid-methyl
ester (PCBM) interspersed with poly(3-hexylthiophene-2,5-diyl)
(P3HT). The efficiency of a solar cell is measured by the incident
photon-to-converted-electron (IPCE) ratio and broadly depends
on four physical phenomena: (i) light absorption, (ii) exciton crea-
tion, (iii) charge separation, and (iv) charge diffusion and collection.
These four physical processes directly influence the OPVC’s micro-
structure and in turn are influenced by the processing conditions.
The thin film OPVCs are manufactured through a process known

as spin coating, which involves depositing a small amount of
coating material on a rotating substrate. The centrifugal forces
spread the coating evenly over the substrate, and rotation is contin-
ued until the desired film thickness has been achieved. Not only are
these experiments expensive but also the thickness of the samples is
hard to control. As an alternative, coarse-grained molecular
dynamic (CGMD) simulations were carried out to replace the phys-
ical experiments. Although there are other important processing
conditions, only the two predominant ones were considered: ratio
of PCBM:P3HT and annealing temperature. In previous work

Fig. 6 Comparison of the zeroth-order interpolation assumption for the approximation of the heteroscedastic
noise with the interpolation of the intrinsic noise through an additional GP, and knowing the noise: (a) low best-
case noise GAP for the six-hump Camel function, (b) low worst-case noise GAP for the six-hump Camel function,
(c) high best-case noise GAP for the six-hump Camel function, (d) high worst-case noise GAP for the six-hump
Camel function, (e) low best-case noise GAP for the rescaled Branin function, (f) low worst-case noise GAP for
the rescaled Branin function, (g) high best-case noise GAP for the rescaled Branin function, and (h) high worst-
case noise GAP for the rescaled Branin function (Color version online.)
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[50], we presented a processing-structure-performance simulation
incorporating the four aforementioned physical phenomena to
predict the IPCE value for any digital OPVC microstructure. The
same simulation, with slight modifications, is employed in this
work to evaluate the IPCE value for all the data points. A single
simulation of the processing-structure-performance linkage requires
about 36–38 h, it is therefore desirable that computational resources
are spend prudently.
We observe that the IPCE predicted from the CGMD model

exhibits heteroscedastic noise (see purple bars in Fig. 1) that are a
result from the random initial conditions and the limitation that
we can only evaluate a finite number of molecules at a finite time
scale. We start the optimization scheme with an optimal Latin
hypercube design containing nine unique sampling locations, 25
replications at each sampling location, and set the batch size
equal to B= 20. Next, we run the 225 CGMD simulations of the
initial set of samples and train an SK model on the obtained data.
The mean prediction of the surrogate model has been presented in
Fig. 8(a), where the red circular dots indicate the observed sampling
locations, the gray diamonds are the recommended next sampling
locations, and the numbers next to each sampling location indicates
its number of replicates. Over the first micro-trial, we find that the
majority of the recommended samples are used to explore the pre-
dicted promising regions at x= {0.25, 165} and x= {0.45, 55}.
After evaluating the first batch of 20 samples as recommended by

the proposed sampling scheme, we observe that the updated
response surface as presented in Fig. 8(b) predicts the global
optimum to be around x= {0.3, 160}. Consequently, half of the
samples of the new batch are placed in this region, while the
other half is used to explore the remainder of the design space.
From allocating the samples for exploration, a more promising
region is found around x= {0.25, 100} as shown in Fig. 8(c).
However, after exploring this new region with the next batch of
samples (shown in Fig. 8(d )), we find that this was an overly opti-
mistic prediction and now observe that the global optimum is pre-
dicted to be x*= {0.2704, 113.7}. Consequently, an additional
batch of samples is warranted because the spatial location of the
global optimum has shifted significantly and the posterior predictive
distribution has a relative large standard deviation (0.025). The new
sampling batch adds function evaluations in the regions with a good
mean response and we now predict the globally optimal mean
response to be ŷ(x∗) =N (0.3299, 0.0067) and is located at x*=
{0.2769, 110.89} as shown by the yellow star in Fig. 8(e). At this
micro-trial, the spatial location of the global optimum did not
change much with respect to the previous micro-trial, and the uncer-
tainty in the posterior prediction is satisfactorily low. Consequently,

we stop the sampling scheme and have confidence that we identified
a design that is sufficiently close to the global optimum.
The optimal volume fraction of PCBM according to the litera-

ture is around 0.4 [51], but the samples in physical experiments
are thicker (generally more than a 100 nm) compared to our simu-
lations (20 nm). Since the simulation thickness is comparable or
smaller than the mean free path of the excitons and charges, it
is expected that the most prominent physical phenomenon, from
the four mentioned earlier, is the exciton creation, which is
directly associated with the material’s absorption coefficient.
PCBM has a lower absorption coefficient than P3HT in the
solar spectrum range [52], and thus, more P3HT in the material
results in higher IPCE. This leads to a general trend of high per-
formance for designs with lower PCBM fraction. Nevertheless,
even with these thinner microstructures, a prominent feature is
observed at x≈ 0.45 PCBM fraction and T≈ 100 °C (Fig. 8(e)).
The capture of this feature is intriguing as it substantiates that
the nanostructures have significant influences on the other physical
phenomena such as the charge separation, the charge diffusion,
and collection.

5 Discussion on the Proposed Scheme and Its Results
Following the validation square [53], we address the theoretical

validity of the proposed sampling scheme by discussing its imple-
mentation details, its sampling characteristics, and limitations.

(1) The proposed sampling scheme has additional computational
cost compared to the existing MQ and TSSO scheme. More
specifically, for the allocation of each individual sample, the
proposed sampling scheme must identify the best candidate
sample for exploration. This step requires the inversion of
the n× n covariance matrix needed to approximate the EI
in Eq. (11). Moreover, the identification of the best candidate
for replication requires the inversion of an n× nmatrix a total
of n times, as given by the recursive formulation of Eq. (13)
used to obtain λi(·), (i= 1, …, n). Ordering the previously
observed sampling locations from highest correlation to
lowest with respect to x(j)exp, we can prioritize the evaluation
of Eq. (16) for the most promising samples. This enables
the algorithm to reduce the necessary number of matrix
inversions to typically be no more than p≤ 5. Consequently,
as the computational cost of inverting an n× n matrix is
O(n3), we find that the computational cost per allocation of
a batch containing B samples can be approximated as
O((1 + p)Bn3). In contrast, the MQ and TSSO schemes
only require one matrix inversion to allocate B samples,
and thus, they have an approximated computational cost
per allocated Batch as O(n3). The proposed sampling
scheme has a computational complexity that is roughly
(1 + p)B more costly than conventional sampling schemes,
and this increase in computational cost needs to be consid-
ered by a designer when selecting what optimization
scheme to use. However, to put this in context, for the
results presented in Sec. 4.1, the average time necessary to
identify a new sampling location was approximately 2.1 s,
an execution time that is negligible when juxtaposed to the
simulation time of a single MD simulation (hours to days).
We therefore believe that the proposed sampling scheme
has great practical utility in many optimization problems
involving stochastic objective functions.

(2) The number of costly simulation model evaluations allocated
by the proposed sampling scheme depends implicitly on the
selected batch size. Choosing a batch size that is smaller than
the total number of simulations that can be run in parallel
(npar) has the disadvantage that computational resources are
left idle. It would therefore be better to choose a batch size
that is at least as large as npar. However, choosing a much
larger batch size is not recommended as the proposed batch

Fig. 7 Convergence history of the proposed adaptive sampling
scheme for the optimization of the six-dimensional Hartmann
function, adding 50 samples per micro-trial. The lines represent
the mean of the GAP for each micro-trial, and the boundaries
of their shaded region represent their best- and worst-case per-
formance. (Color version online.)
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sampling scheme only uses the information of simulated
samples. More specifically, in Eq. (18), for B> 1, the jth,
( j = 1, …, B) sample of a batch is allocated without
knowing the simulation response of j− 1 samples. Therefore,
it is reasonable to expect that batch sampling schemes require
more total number of simulations to identify the global
optimum of a function in comparison to one sample at a
time schemes. Nevertheless, by selecting a batch size B∈
(npar, 3npar), a designer greatly reduces computational cost,
while the proposed sampling scheme still makes good sam-
pling decisions as the number of observed samples will be
much larger than the batch size (i.e., N≫B).

(3) Many of the existing sampling schemes proposed in the liter-
ature emphasize the choice of the acquisition function.
However, the contribution of the presented work is the intro-
duction of a sampling scheme that actively decides where
and when to replicate and where and when to explore. The
proposed work uses the acquisition function proposed in
Ref. [22] as it neglects the contribution of the intrinsic uncer-
tainty, thus focusing samples for exploration on minimizing
the interpolation uncertainty. However, if designers wish for
the sampling scheme to exploit more near currently promis-
ing design alternatives, then they could choose to exchange
the modified EI acquisition function given in Eq. (11) used
in step 3a of Fig. 2 with the MQ acquisition function given
in Eq. (10) and select a θ that has the desired properties.

(4) Although the proposed sequential sampling scheme adds
samples in a prudent manner, it still places a stringent
demand on computational resources. This is because learning
the true mean response of the samples around the global

optimum requires many replications. In fact, the uncertainty
introduced into the surrogate model by not knowing the pop-
ulation mean at a single unique sampling location will only
reduce to zero once it has been sampled an infinite number
of times. However, we have shown that a reasonably accurate
approximation of the global optimum can be obtained by suf-
ficiently replicating samples near the global optimum. The
number of required replications depends on the variability
and the magnitude of a simulation model’s intrinsic noise;
nevertheless, the proposed scheme has shown that in many
cases, 20–100 replications at carefully selected sampling
locations suffices.

6 Concluding Remarks
We proposed an objective-driven batch sampling scheme for the

optimization of simulation models with intrinsic heteroscedastic
noise. The use of costly simulations models that exhibit such
“noisy” behavior is increasingly more commonplace in many engi-
neering and scientific domains. The advantage of the proposed
sampling scheme is twofold, (i) the computational cost of
running simulation models is reduced by the recommendation of
sampling batches (i.e., simulations can be run in parallel) and
(ii) it can be scaled to higher dimensional and noisier simulation
models than available schemes by reducing the size of the covari-
ance matrix through replicating at previously simulated sampling
locations. The functionality behind the proposed scheme comes
from the reformulation of the posterior predictive variance to ana-
lytically derive the individual contribution of the interpolation
uncertainty and the intrinsic modeling uncertainty through the

Fig. 8 Visualization of the initial experimental design and four subsequent micro-trials for the optimization of an
OPVc as predicted from two processing conditions through a CGMD simulation. Numbers next to each sample
indicates its number of replications. Overlapping samples indicate that the sampling scheme recommends replica-
tion at sampling locations that have been simulated in a previous micro-trial. (a) Micro-trial 1: recommended
samples exploring 18 new sampling locations, (b) micro-trial 2: recommended samples exploring ten new sam-
pling locations, (c) micro-trial 3: recommended samples exploring four new sampling locations, (d) micro-trial
4: recommended samples exploring eight new sampling locations, and (e) final surrogate model after observing
305 simulations. (Color version online.)
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Sherman–Morrison–Woodbury formula. In addition, we introduce
a preposterior analysis for the allocation of sampling batches that
uses a zeroth-order interpolation for the intrinsic noise and is com-
patible with stochastic Kriging and practical Kriging surrogate
models. Consequently, the proposed sampling scheme recom-
mends batches of samples that minimize the variance of the pos-
terior distribution only at and around the spatial locations
expected to contain the globally optimal mean.
To illustrate its performance and sampling characteristics, we

have applied the proposed adaptive sampling scheme to three test
functions and one engineering design problem. This exercise dem-
onstrated the scheme’s ability to deal with relatively high-
dimensional problems, various forms of intrinsic model uncertainty,
and its superior performance with respect to existing schemes.
Moreover, the usefulness of the proposed scheme is validated by
demonstrating its effectiveness in identifying the optimal process-
ing settings of an organic photovoltaic cell by optimizing a coarse-
grained molecular dynamic (MD) simulation.
The presented investigation into the functionality of the proposed

scheme shows promising results and opens the door for multiple
future research directions. One avenue of future work includes the
extension of the proposed scheme to integrate the decision at
what length and time scale to run a new MD simulation. This
would provide great insight into the intrinsic uncertainty that man-
ifests in MD simulations, and other fields of science that use sto-
chastic simulation models where the intrinsic uncertainty is
negatively related to its controllable computational cost. A second
avenue of future work includes the investigation into the influence
of selected batch size to the efficiency of the sampling scheme. Such
a study would not just benefit the optimization of simulation models
with spatially varying noise, but all batch sampling schemes. In
addition, the proposed sampling scheme can be extended to
robust design optimization by integrating the acquisition function
presented in Ref. [15]. This extension would provide designers
with a tool to adaptively find an optimal design that is robust
with respect to parametric, interpolation, and intrinsic uncertainty.
In conclusion, the proposed sampling scheme provides a flexible
and efficacious framework for the optimization of simulation
models with heteroscedastic noise.
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Nomenclature
Symbols

n = total number of unique sampling locations
B = desired size of the sampling batches

N = total number of samples
Y = an N-dimensional vector of noisy simulation responses

{y1, …, yN}
T

�Y = an n-dimensional vector of sample means of observed
noisy simulations {�y1, . . . , �yn}

T at n unique sampling
locations

r̂ngb(�x) = the sampling variance of the highest correlated unique
sampling location to �x that has more than β−1 replicates

nrep = minimum number of replicates allocated to a new
sampling location in the two-stage sequential
optimization scheme

ymin = current best observed response
�ymin = current best observed sample mean of the response
An = an n× n diagonal matrix where the diagonal elements

are the number of replicates ai (i= 1, …, n at each
sampling location (i.e., A= diag(a1, …, an))

Kn = covariance matrix of a Gaussian process that facilitates
replication

KN = covariance matrix of a Gaussian process that does not
facilitate replication

Rf = a function’s range over design space χ
Xn = an n-dimensional tuple of d-dimensional unique

sampling locations {�x1, . . . , �xn}T

XN = an N-dimensional tuple of d-dimensional sampling
locations {x1, …, xN}

T

Xnew = new batch of samples {x(1)new, . . . , x
(B)
new}, containing B

new sampling locations
X0 = initial batch of samples

NVX = fraction of macro-trials where the sampling
scheme explores a new sampling location that is within
(1 − X )100% of the range f(x) to the globally optimal
response

NRX = fraction of macro-trials where the returned solution is
within (1 − X )100% of the range f (x) to the globally
optimal response

D( j) = preposterior data set used for conditioning the
posterior predictive distribution

si(x(j)exp) = predicted reduction in the posterior variance at x(j)exp
when replicating the ith sample

x̂∗m,s = predicted globally optimal design for the sth
micro-trial of the mth macro-trial

�x(j)i∗ = candidate sample for replication

x(j)exp = candidate sample for exploration

x(j)new = the jth sample added to the new sampling batch
A−1

i = an n× n diagonal matrix
diag 0, . . . , 0, a−1i+1, a

−1
i+2, . . . , a

−1
n

( )
, i.e., the matrixA−1

with its first i diagonal elements equal to 0)
c(·, ·) = correlation function
f (·) = mean function of the costly simulation model

k(·, ·) = covariance function
r(·) = variance of the intrinsic model uncertainty
q(·) = minimum Kriging quantile
r̂(�xi) = sampling variance at the ith unique sampling location

Cn+Δn = correlation matrix of a Gaussian process that facilitates
replication

CN+ΔN = correlation matrix of a Gaussian process that does not
facilitate replication

EI(·) = expected improvement for a deterministic function
EIɛ(·) = expected improvement for a stochastic function

N N(·, ·) = Gaussian process that does not facilitate replication
N n(·, ·) = Gaussian process that facilitates replication

Sn(x(j)exp) = predicted reduction in the posterior variance when
exploring x(j)exp

0n,i = an n-dimensional vector of zeros, with its ith element
equal to 1

N (·, ·) = normal distribution
O(·) = big O notation for computational complexity
X = tuning parameter used in NVX and NRX
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β = minimum number of replications considered sufficient
to use a sampling locations sampling variance

θ = tuning parameter of the minimum Kriging quantile
λi = the ith n× n rank-1 matrix used for reformulation of a

stochastic Kriging surrogate model’s covariance
matrix

Λi = the ith n× n matrix used as an intermediate matrix for
reformulating a stochastic Kriging surrogate model’s
covariance matrix

μ(·) = posterior mean prediction of a Gaussian process
trained to a noiseless data set

μn(·) = posterior mean prediction of a Gaussian process that
facilitates replication

μN(·) = posterior mean prediction of a Gaussian process that
does not facilitate replication

σ2(·) = posterior predictive variance of a Gaussian process
trained to a noiseless data set

σ2n(·) = posterior predictive variance of a Gaussian process
that facilitates replication

σ̃2n(·) = denoised posterior predictive variance of a Gaussian
process that facilitates replication

σ2N (·) = posterior predictive variance of a Gaussian process
that does not facilitate replication

Σn = an n× n Diagonal matrix of i.i.d. Gaussian process
modeling noise that facilitates replication

Σn = an n× n Diagonal matrix of i.i.d. Gaussian process
noise approximated through the sampling variance of
the observed responses at each unique sampling
location

ΣN = an N ×N Diagonal matrix of i.i.d. Gaussian process
modeling noise that does not facilitate replication

ϕ(·) = standard normal probability density function
Φ(⋅) = standard normal cumulative distribution function

χ = d−dimensional space of afdmissible designs
ω, σ2 = Gaussian process model hyperparameters
ω̂, σ̂2 = approximated Gaussian process model

hyperparameters
Ω = d-dimensional admissible real design space for the

Gaussian process hyperparameters
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