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Research that meaningfully integrates constraint-based
modeling with machine learning is at its infancy but holds much
promise. Here, we consider where machine learning has been
implemented within the constraint-based modeling
reconstruction framework and highlight the need to develop
approaches that can identify meaningful features from large-
scale data and connect them to biological mechanisms to
establish causality to connect genotype to phenotype. We
motivate the construction of iterative integrative schemes
where machine learning can fine-tune the input constraints in a
constraint-based model or contrarily, constraint-based model
simulation results are analyzed by machine learning and
reconciled with experimental data. This can iteratively refine a
constraint-based model until there is consistency between
experimental data, machine learning results, and constraint-
based model simulations.
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Introduction

With the development and improvements in DNA
sequencing technology, the high-level goal of biological
research has shifted towards understanding the genotype-
phenotype relationship. Whole-genome sequencing
enabled this pursuit, but it was quickly realized that
genomic data on their own are not sufficient to extrapolate
or predict function largely due to the multiple, intercon-
nected layers of biological functional units. Subsequent
advancements in methods and technology sought to fill
the information gap between genotype and the functional
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phenotype by enabling systemic measurement of mRNA
(using RNASeq), proteins (using mass spectrometry
(MS), PCR etc.), metabolites (using gas chromatography
(GQ), liquid chromatography (I.C), or capillary electro-
phoresis (CE) coupled with subsequent MS), pathways
fluxes (using Nuclear magnetic resonance (NMR), gas
chromatography-mass spectrometry (GC-MS)), and
interactions between signal transduction, regulatory
and metabolic network modules. Computational
approaches have also been applied for integrating and
analyzing large-scale biological data to gain better insight
into biological function. However, there remains a need
to develop approaches that can identify meaningful fea-
tures/patterns in large-scale data and connect them to
biological mechanisms to establish causality, bridging the
gap between genotype and phenotype.

Two computational methods that have shown promise in
addressing current large-scale biological analyses research
are constraint-based modeling and machine learning. Both
are generalized approaches that can be implemented for
any biological system and can scale the levels of single cells,
organisms, or multi-organism consortia. Constraint-based
models were developed shortly after the first microbial
genomes were sequenced as a method of directly utilizing
genomic information to predict integrated metabolic func-
tion; thus, it has the potential to connect genotype to
phenotype through gene-protein-reaction mechanisms.
Machine learning (ML), on the other hand, encompass
the algorithms or statistical models that can identify pat-
terns and make hypotheses or inferences based on learning
from the observed datasets. ML, has grown and evolved as
the scale of information has increased and has been used to
identify significant features from large datasets while con-
sidering the presence of noise and interconnectedness of
components. Given that both approaches can likely be
implemented to study the same biological system and data
and that the methods and results are largely complemen-
tary, a potentially fruitful computational approach to
studying biological systems would be to combine con-
straint-based modeling and machine learning.

In this review, we provide a brief overview of the various
elements that comprise the constraint-based modeling
reconstruction pipeline highlighting instances where
machine learning has successfully been used in conjunction
with constraint-based modeling. Finally, we will comment
on areas where opportunities for growth by developing or
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86 Analytical biotechnology

implementing a combined constraint-based modeling and
machine learning approach.

Constraint-based modeling pipeline

Numerous review papers discuss various aspects of con-
straint-based modeling [1-4] and its applications. The
typical constraint-based model building pipeline for
model reconstruction and analysis will be used as the
underlying framework for discussing work using machine
learning approaches (Figure 1) and for proposing areas for
potential future work. An overview of studies relevant to
this integration of approaches is shown in Table 1.

Annotation

With the ability to rapidly generate genomic data, the
starting point for constructing constraint-based models is
most often a DNA sequence file (FASTA file). One of the
critical components of constraint-based models is the
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Overview of the constraint-based modeling pipeline highlighting areas
where machine learning has been applied using the oval shapes. It
additionally depicts four categories of data sources and seven broad
steps in the CBM modeling pipeline.

annotation of genes that constitute the core model con-
tents. Currently there are multiple methods that can be
used for gene annotation, such as, Rapid Annotations
using Subsystems Technology (RAST) [5], Prokka [6],
and a variety of other annotation approaches [7] such as
Autograph [8] or GEM system [9] that generate gene-
protein-reaction (GPR) associations using orthology.
Despite the abundance of options for generating annota-
tion and biochemical information using different tools,
they can result in different gene annotations [10] which
will have a direct effect on the stoichiometric matrix of
constraint-based models and subsequent model-based
predictions.

To improve the annotation process, a machine learning
based multiclass classification method applying seven dif-
ferent machine learning algorithms using three reaction
fingerprints was developed to predict enzymatic reactions
[11°]. The training data consisted of 1055 hydrolysis and
2510 redox reactions from KEGG and further validated on
213 hydrolysis and 512 redox reactions from Rhea database.
Neural network and logistic regression-based models deliv-
ered the best performance and achieved around 0.9 F1
score for main class, subclass and superclass classification.
Here F1scoreisa measure of test accuracy, and is expressed
as the harmonic mean of precision and recall. Continued,
systematic use of machine learning to improve gene anno-
tations could potentially significantly impact and improve
the metabolic content of constraint-based models as errors
in gene annotation can directly lead to failure modes [12].

Gap filling

After an initial metabolic reconstruction is built from the
genomic and biochemical information, it is necessary to
analyze the metabolic network and potentially fill meta-
bolic gaps [7] (e.g. missing pathways where experimental
evidence indicates the organism has that functionality).
As with genome annotation, a variety of gap-filling
approaches have been developed [13,14].

Several machine learning methods including logistic
regression, decision trees, naive Bayes have been used
to identify missing reactions and enzymes in a model [15].
"T'his work used a collection of 123 pathway features from
5610 pathway instances for learning. These machine
learning methods provide similar performance compared
to other pathway prediction algorithms. These ML meth-
ods also allow greater explainability (i.e. feature values are
causally related to model predictions, although they may
additionally require expert level verification) and exten-
sibility (e.g. adaptable to larger datasets or even other data
sources) by providing the probability for each predicted
pathway and ability to improve the predictions using
sophisticated input features. The association rule mining
method also performed efficiently when automating func-
tional prediction of proteins [16]. By training on Uni-
ProtKB/Swiss-Prot entries, the rule mining method
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Table 1

Machine learning and constraint-based modeling Rana et al. 87

Overview of machine learning algorithms applied/applicable to metabolic network model

CBM pipeline Reference Machine learning method Objective
component
Annotation and [15] Logistic regression, decision trees, naive Bayes Pathway prediction
protein function [16] Rule based Function prediction of protein
prediction [17] Deep learning Pathway completion and functional discovery
of genes
[11°] Neural network, logistic regression, decision Describe the type of reactions
tree (DT), KNN, naive Bayes, random forest,
and SVM
Substrate constraints [18] Logistic regression, random forest, scalable Predict feed substrate
tree boosting system, neural network, KNN,
and SVM
Metabolome section [24] SVM Identifying metabolites from mass
spectroscopy data
[25°] Random forest and ensemble prediction Metabolite identification
[26] Multiple linear regression Predict metabolome from enzyme expression
proteome data
Fluxomics [27] SVM, KNN, decision tree Accelerated the flux quantification
Interactomics [46] Automate metabolic model refinement using
gene Interaction data
Kinetics [47°] Different regression algorithms including Protein turnover number
random forest and deep neural network
[38] Decision tree (CART algorithm) Reduce the range of kinetic parameters
[39] Supervised Learning of Metabolic Dynamics Automate the prediction of the model dynamics
Multi-omic data [29] Kernel based Full fusion of multiview data
integration [30] Minimizing the disagreement between the Full fusion of multiview data
kernel matrix with imposing constraints
[32] Penalized matrix tri-factorization Intermediate fusion of multiview data
gene essentiality [48] SVM Identify the essential genes
[49] SVM Identify the essential genes
Drug effects/ [50] SVM Predict the side effects of a drug
targeting [51] Bayesian model Drug prediction
other [52] Supervised machine learning Optimize the production of specialty chemicals

achieved very high accuracy (F-measure = 0.982) while
predicting the pathway. One deep-learning-based model,
Stacked Denoising Autoencoder Multi-Label Learning
(SdaMLL), was also used for pathway completion and
functional discovery of genes [17]. This multi-label clas-
sification model achieved a moderate 0.577 coverage
precision after training on the feature matrix derived from
the term frequency of genes from 18 930 articles from
biomedical literature and gene annotation from the
KEGG database.

One facet of constraint-based models that bridges the
gap-filling step to running model-based simulations is the
need to specify input constraints. For example, flux
balance analysis would typically require input constraints
associated with numerical uptake rates of incoming nutri-
ents (i.e. carbon source, oxygen, etc.). This is also impor-
tant for the gap-filling stage of model building as it may be
difficult to know what inputs enter a cell for systems such
as unculturable organisms, symbiotic organisms, or micro-
bial communities, thus affecting the way a model is gap-
filled. One approach that has used machine learning to
address the issue of inputs focused on analyzing microbial
communities that can be utilized for microbial fuel cells
[18]. Six machine learning algorithms were trained on four

different input variables from 69 samples to predict feed
substrate from genomics dataset. The four input features
were built using family taxonomic level and phylum level
features, as well as dimensionally reduced features using
Principal Coordinate Analysis and Non-metric Multidi-
mensional Scaling of the dataset. The model based on a
neural network algorithm provided the highest accuracy
of 93 £ 6%. Reapplication of this or similar approaches
may help guide the decision-making process in gap-filling
and input constraints for complex or poorly characterized
systems. However, to ensure its use for practical biosen-
sing applications, significantly more samples and input
features need to be considered in model training and
performance evaluation.

Data integration

After the gap-filling step, the contents of the stoichiomet-
ric matrix (S) are specified making it possible to run
analyses such as flux balance analysis (FBA). Improve-
ments to the predictive ability of constraint-based models
have largely utilized high-throughput experimental data
(i.e. omics data) integration. Successful approaches have
included use of transcriptomics or proteomics with
mixed-integer linear programming (MILP) [19], integra-
tion of protecome allocation theory [20], simulated
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annealing [21], and parsimonious FBA (pFBA) [22]. A
brief review on the integration of transcriptomics with
CBM is provided in [23].

Utilization of machine learning approaches for analysis of
high-throughput data is potentially fruitful and has been
conducted for several data types. Metabolomic data can
have problems with metabolite identification and classi-
fication as well as predicting common hidden features
between metabolites. A machine learning approach
named FlngerID learns the metabolite fingerprint for
identifying metabolites from mass spectroscopy data
using a kernel-based approach [24]. Next, it outputs a
ranked list of candidate metabolites matched with molec-
ular databases. Metabolite identification is a laborious and
time-intensive step, and machine learning methods can
shorten this time-frame and improve the accuracy of
metabolites identification. Another knowledge-based
machine learning tool for metabolite identification called
BioTransformer [25°] consists of two components, a met-
abolic prediction tool (BMPT) and a metabolite identifi-
cation tool (BMIT). BMPT uses a machine learning
model based on random forest and ensemble prediction
for prediction of substrate sensitivity and filtering for
BMIT resulting in high precision and recall values. An
application-driven analysis of metabolomic data and
machine learning used multple linear regression
(MLR) to predict the metabolome from kinase knockout
enzyme expression protecome data [26] where multifacto-
rial relationships between enzyme expression and metab-
olite concentration were found.

Constraint-based models are often used to predict meta-
bolic fluxes, so fluxomic data can be the most direct
experimental data to use with CBMs. Machine learning
on fluxomics data discovered the hidden relationships
between genetic factors and reaction fluxes and acceler-
ated the flux quantification of the model [27]. This study
modeled flux prediction as a regression problem using five
categorical features and sixteen continuous features; next,
they applied various machine learning algorithms such as
Support vector machine (SVM), K-Nearest Neighbors
(KNN) and Decision tree on fluxomic data to formulate
a quadratic optimization problem for flux correction.
Recently, data-driven methods (e.g. data augmentation
and ensemble learning that alleviates the challenges of
sparse, non-standardized, and incomplete data sets) were
also integrated with genome scale metabolic models to
provide influential features and bioprocessing variables
using multiple correspondence and principal component
analysis for assessment of microbial bio-production in
terms of fermentation yield, titer and rate [28].

Multi-omic data integration

In addition to the application of machine learning to
single data types, analysis of heterogeneous data (e.g.
transcriptomics and omics) in different conditions can

reduce the effects of noise and highlight significant
features. Multiview or multimodal learning algorithms
have become increasingly useful for multi-source data
integration. Multiview machine learning algorithms
reconstruct a comprehensive view of data by fusing
different sources of data. Data fusion from multiple
sources is not straightforward, due to the different inher-
ent biases and noise of data sources, and often carry
complementarity information. Wang ez a/. solved this
problem by constructing a network of samples from
different data sources individually and then efficiently
fusing them using a nonlinear combination method [29].
This type of data fusion is known as kernel based data
fusion or full fusion, where the similarity measure
between samples is first mapped to a proper nonlinear
kernel similarity function and the similarity kernel matrix
is next iteratively fused to achieve a single comprehen-
sive view of the data. Another similar fusion algorithm is
MCGS (multiview Consensus graph clustering) where
the consensus graph is constructed by minimizing the
disagreement between the kernel matrices by imposing
constraints on the rank of the Laplacian matrix [30].
Though these methods were not directly applied to
metabolic reconstruction as yet, they are generic enough
and hold immense potential towards improving metabolic
models. An excellent review of this topic can be found in
[31°°].

One problem with these types of kernel-based data fusion
methods is that all data sources must represent a kernel
matrix of similar types. This may result in loss of infor-
mation and undermine cross-domain relations. In this
context, intermediate fusion or partial integration
becomes relevant which uses a single joint model for
multisource data. Intermediate fusion methods like
DFMF (Data Fusion by Matrix Factorization) have been
successfully applied to predict disease-disease associa-
tions [32]. DFMF considers a single object type (r;) for
each data source and pairs of object type (r;,1]) to relate
two data sources. Next, it performs data fusion on the
pair-wise relation matrix using a three-factor penalized
matrix factorization. Moreover, this method requires a
little transformation of the input data and can also handle
missing objects or relations.

Kinetics

Another significant arca where efforts were made to
improve constraint-based models is the ability to simulate
cellular dynamics. These include methods such as
dynamic FBA (dFBA) [33], extensions of dFBA [34]
and [35], unsteady-state FBA (uFBA) [36], and Dyna-
micME that incorporates dynamic prediction of protein
expression [37°].

Application of machine learning on top of FBA has shown
some promise to estimate kinetic parameters for the
genome-scale model. Andreozzi e a/. used machine

Current Opinion in Biotechnology 2020, 64:85-91

www.sciencedirect.com



Figure 2

Machine learning and constraint-based modeling Rana et al. 89

Constraint-based model CBM simulations Machine learning '

Constraint-based model CBM simulation

T
VY

Data

Current Opinion in Biotechnology

Proposed high-level iterative schemes integrating experimental data sets with machine learning, constraint-based models, and constraint-based
model simulation results. Top: Machine learning is applied to the input data to identify the important features for constructing reduced order
constraint-based models; the CBM simulations can be iteratively matched with input data for convergence until the proper set of features are
identified. Bottom: Machine learning is iteratively applied to CBM simulations to reconcile with experimental data. Interplay between the Top and
Bottom parts can iteratively lead to convergence between CBM simulations, experimental data and machine learning based predictions.

learning, named CART, with a kinetic modeling method
on steady-state flux profiles of metabolites to reduce the
range of kinetic parameters [38]. Here, the machine
learning algorithm was able to identify the reduced sub-
space of kinetic parameters where the kinetic model is
feasible. Another approach used machine learning on
time-series multi-omics data to automate the prediction
of the model dynamics [39°]. This method first performs a
derivative to extract the relationship between metabolo-
mics and proteomics data and next feed derivative pairs to
the training phase of the ML algorithm to learn the
dynamics. This supervised learning method significantly
outperformed a handcrafted dynamic model for the lim-
onene pathway.

Conclusion

As our ability to study biology in greater depth has
increased, so has the need for computational tools to
aid in testing knowledge, analyzing data, and predicting
function. While all computational approaches have lim-
itations, the respective strengths of constraint-based
modeling and machine learning make them natural com-
plementary approaches where identification of significant
features/patterns from machine learning can be evaluated
through the mechanistic framework of constraint-based
modeling. To date, there has been limited work to

directly integrate machine learning and constraint-based
modeling approaches for cellular systems. One could
envision iterative integrative schemes (Figure 2) where
machine learning could be used to analyze data that could
be used as input constraints in a constraint-based model
with a reconciliation step between CBM simulation
results and experimental phenotype. Additionally, con-
straint-based model simulation results could also be
analyzed by machine learning and reconciled with exper-
imental data. Feedback from both parallel paths could
iteratively refine a constraint-based model until there is
consistency between experimental data, machine learn-
ing results, and constraint-based model simulations.

The first steps to the realization of this systems-level
approach have started through studies described above
focused on specific components or data types. Incremental
improvements to constraint-based models and our collective
biological knowledge should naturally occur as machine
learning approaches are applied to analyze more data sets.
As machine learning analyses cover a broader range of a
single data type (e.g. genomics) more confidence will be
gained in results that are consistent (i.e. gene annotation).
Significant challenges remain in applying machine learning
to analyze heterogeneous data but there is potential for
significant discoveries through multi-data approaches.
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Inaddition to the need for further use of machine learning for
data analysis/integration, other facets of constraint-based
modeling can be addressed. Use of machine learning
approaches can help prune or extrapolate time course data
to help improve kinetic constraint-based model predictions.
Additional features including thermodynamic feasibility
[40] as well as protein cost and kinetic variability [41] can
identify the most likely pathways from a less well-
characterized set of reactions and result in better feedback
to the ML based annotation or gap-filling steps.

Ultimately, the model building process and improve-
ments made to the process are intended to produce the
best possible constraint-based model that can be used
with confidence to analyze and predict biological func-
tion. It is difficult to quickly externally gauge the inherent
‘quality’ of a newly built constraint-based model. If model
predictions do not reasonably predict biological function,
is the source of the discrepancy found in the model
contents, the computational algorithm used to make
the prediction, or in some biological variation? Some
discussion has occurred to address the potential for
computational error [42] and the potential for identifying
interesting biological hypotheses is one of the main goals
of building and analyzing these types of models. As for
evaluating the model contents, there have been attempts
to implement standards such as the development of
SBML level 3 [43] and quality scoring metrics, such as
Memote [44] and [45]. Eventually, the true gauge for the
quality of a model will need to reflect its functional utility
and machine learning has the potential to aid in improv-
ing numerous facets of a constraint-based model.
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