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Research that meaningfully integrates constraint-based

modeling with machine learning is at its infancy but holds much

promise. Here, we consider where machine learning has been

implemented within the constraint-based modeling

reconstruction framework and highlight the need to develop

approaches that can identify meaningful features from large-

scale data and connect them to biological mechanisms to

establish causality to connect genotype to phenotype. We

motivate the construction of iterative integrative schemes

where machine learning can fine-tune the input constraints in a

constraint-based model or contrarily, constraint-based model

simulation results are analyzed by machine learning and

reconciled with experimental data. This can iteratively refine a

constraint-based model until there is consistency between

experimental data, machine learning results, and constraint-

based model simulations.

Addresses
1Computer Science, Virginia Commonwealth University, 401 West Main

Street, Richmond, 23284, VA, USA
2Chemical and Life Science Engineering, Virginia Commonwealth

University, 601 West Main Street, Richmond, 23284, VA, USA

Corresponding author: Fong, Stephen S (ssfong@vcu.edu)
3 These authors contributed equally.

Current Opinion in Biotechnology 2020, 64:85–91

This review comes from a themed issue on Analytical biotechnology

Edited by Yinjie J Tang and Ludmilla Aristilde

For a complete overview see the Issue and the Editorial

Available online 5th December 2019

https://doi.org/10.1016/j.copbio.2019.11.007

0958-1669/ã 2019 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
With the development and improvements in DNA

sequencing technology, the high-level goal of biological

research has shifted towards understanding the genotype-

phenotype relationship. Whole-genome sequencing

enabled this pursuit, but it was quickly realized that

genomic data on their own are not sufficient to extrapolate

or predict function largely due to the multiple, intercon-

nected layers of biological functional units. Subsequent

advancements in methods and technology sought to fill

the information gap between genotype and the functional
www.sciencedirect.com 
phenotype by enabling systemic measurement of mRNA

(using RNASeq), proteins (using mass spectrometry

(MS), PCR etc.), metabolites (using gas chromatography

(GC), liquid chromatography (LC), or capillary electro-

phoresis (CE) coupled with subsequent MS), pathways

fluxes (using Nuclear magnetic resonance (NMR), gas

chromatography-mass spectrometry (GC–MS)), and

interactions between signal transduction, regulatory

and metabolic network modules. Computational

approaches have also been applied for integrating and

analyzing large-scale biological data to gain better insight

into biological function. However, there remains a need

to develop approaches that can identify meaningful fea-

tures/patterns in large-scale data and connect them to

biological mechanisms to establish causality, bridging the

gap between genotype and phenotype.

Two computational methods that have shown promise in

addressing current large-scale biological analyses research

are constraint-based modeling and machine learning. Both

are generalized approaches that can be implemented for

any biological system and can scale the levels of single cells,

organisms, or multi-organism consortia. Constraint-based

models were developed shortly after the first microbial

genomes were sequenced as a method of directly utilizing

genomic information to predict integrated metabolic func-

tion; thus, it has the potential to connect genotype to

phenotype through gene-protein-reaction mechanisms.

Machine learning (ML), on the other hand, encompass

the algorithms or statistical models that can identify pat-

terns and make hypotheses or inferences based on learning

from the observed datasets. ML has grown and evolved as

the scale of information has increased and has been used to

identify significant features from large datasets while con-

sidering the presence of noise and interconnectedness of

components. Given that both approaches can likely be

implemented to study the same biological system and data

and that the methods and results are largely complemen-

tary, a potentially fruitful computational approach to

studying biological systems would be to combine con-

straint-based modeling and machine learning.

In this review, we provide a brief overview of the various

elements that comprise the constraint-based modeling

reconstruction pipeline highlighting instances where

machine learninghas successfullybeen used inconjunction

with constraint-based modeling. Finally, we will comment

on areas where opportunities for growth by developing or
Current Opinion in Biotechnology 2020, 64:85–91
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implementing a combined constraint-based modeling and

machine learning approach.

Constraint-based modeling pipeline
Numerous review papers discuss various aspects of con-

straint-based modeling [1–4] and its applications. The

typical constraint-based model building pipeline for

model reconstruction and analysis will be used as the

underlying framework for discussing work using machine

learning approaches (Figure 1) and for proposing areas for

potential future work. An overview of studies relevant to

this integration of approaches is shown in Table 1.

Annotation

With the ability to rapidly generate genomic data, the

starting point for constructing constraint-based models is

most often a DNA sequence file (FASTA file). One of the

critical components of constraint-based models is the
Figure 1
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Overview of the constraint-based modeling pipeline highlighting areas

where machine learning has been applied using the oval shapes. It

additionally depicts four categories of data sources and seven broad

steps in the CBM modeling pipeline.
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annotation of genes that constitute the core model con-

tents. Currently there are multiple methods that can be

used for gene annotation, such as, Rapid Annotations

using Subsystems Technology (RAST) [5], Prokka [6],

and a variety of other annotation approaches [7] such as

Autograph [8] or GEM system [9] that generate gene-

protein-reaction (GPR) associations using orthology.

Despite the abundance of options for generating annota-

tion and biochemical information using different tools,

they can result in different gene annotations [10] which

will have a direct effect on the stoichiometric matrix of

constraint-based models and subsequent model-based

predictions.

To improve the annotation process, a machine learning

based multiclass classification method applying seven dif-

ferent machine learning algorithms using three reaction

fingerprints was developed to predict enzymatic reactions

[11�]. The training data consisted of 1055 hydrolysis and

2510 redox reactions from KEGG and further validated on

213 hydrolysis and 512 redox reactions from Rhea database.

Neural network and logistic regression-based models deliv-

ered the best performance and achieved around 0.9 F1

score for main class, subclass and superclass classification.

Here F1 score is a measure of test accuracy, and isexpressed

as the harmonic mean of precision and recall. Continued,

systematic use of machine learning to improve gene anno-

tations could potentially significantly impact and improve

the metabolic content of constraint-based models as errors

in gene annotation can directly lead to failure modes [12].

Gap filling

After an initial metabolic reconstruction is built from the

genomic and biochemical information, it is necessary to

analyze the metabolic network and potentially fill meta-

bolic gaps [7] (e.g. missing pathways where experimental

evidence indicates the organism has that functionality).

As with genome annotation, a variety of gap-filling

approaches have been developed [13,14].

Several machine learning methods including logistic

regression, decision trees, naive Bayes have been used

to identify missing reactions and enzymes in a model [15].

This work used a collection of 123 pathway features from

5610 pathway instances for learning. These machine

learning methods provide similar performance compared

to other pathway prediction algorithms. These ML meth-

ods also allow greater explainability (i.e. feature values are

causally related to model predictions, although they may

additionally require expert level verification) and exten-

sibility (e.g. adaptable to larger datasets or even other data

sources) by providing the probability for each predicted

pathway and ability to improve the predictions using

sophisticated input features. The association rule mining

method also performed efficiently when automating func-

tional prediction of proteins [16]. By training on Uni-

ProtKB/Swiss-Prot entries, the rule mining method
www.sciencedirect.com
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Table 1

Overview of machine learning algorithms applied/applicable to metabolic network model

CBM pipeline

component

Reference Machine learning method Objective

Annotation and

protein function

prediction

[15] Logistic regression, decision trees, naive Bayes Pathway prediction

[16] Rule based Function prediction of protein

[17] Deep learning Pathway completion and functional discovery

of genes

[11�] Neural network, logistic regression, decision

tree (DT), KNN, naive Bayes, random forest,

and SVM

Describe the type of reactions

Substrate constraints [18] Logistic regression, random forest, scalable

tree boosting system, neural network, KNN,

and SVM

Predict feed substrate

Metabolome section [24] SVM Identifying metabolites from mass

spectroscopy data

[25�] Random forest and ensemble prediction Metabolite identification

[26] Multiple linear regression Predict metabolome from enzyme expression

proteome data

Fluxomics [27] SVM, KNN, decision tree Accelerated the flux quantification

Interactomics [46] Automate metabolic model refinement using

gene Interaction data

Kinetics [47��] Different regression algorithms including

random forest and deep neural network

Protein turnover number

[38] Decision tree (CART algorithm) Reduce the range of kinetic parameters

[39�] Supervised Learning of Metabolic Dynamics Automate the prediction of the model dynamics

Multi-omic data

integration

[29] Kernel based Full fusion of multiview data

[30] Minimizing the disagreement between the

kernel matrix with imposing constraints

Full fusion of multiview data

[32] Penalized matrix tri-factorization Intermediate fusion of multiview data

gene essentiality [48] SVM Identify the essential genes

[49] SVM Identify the essential genes

Drug effects/

targeting

[50] SVM Predict the side effects of a drug

[51] Bayesian model Drug prediction

other [52] Supervised machine learning Optimize the production of specialty chemicals
achieved very high accuracy (F-measure = 0.982) while

predicting the pathway. One deep-learning-based model,

Stacked Denoising Autoencoder Multi-Label Learning

(SdaMLL), was also used for pathway completion and

functional discovery of genes [17]. This multi-label clas-

sification model achieved a moderate 0.577 coverage

precision after training on the feature matrix derived from

the term frequency of genes from 18 930 articles from

biomedical literature and gene annotation from the

KEGG database.

One facet of constraint-based models that bridges the

gap-filling step to running model-based simulations is the

need to specify input constraints. For example, flux

balance analysis would typically require input constraints

associated with numerical uptake rates of incoming nutri-

ents (i.e. carbon source, oxygen, etc.). This is also impor-

tant for the gap-filling stage of model building as it may be

difficult to know what inputs enter a cell for systems such

as unculturable organisms, symbiotic organisms, or micro-

bial communities, thus affecting the way a model is gap-

filled. One approach that has used machine learning to

address the issue of inputs focused on analyzing microbial

communities that can be utilized for microbial fuel cells

[18]. Six machine learning algorithms were trained on four
www.sciencedirect.com 
different input variables from 69 samples to predict feed

substrate from genomics dataset. The four input features

were built using family taxonomic level and phylum level

features, as well as dimensionally reduced features using

Principal Coordinate Analysis and Non-metric Multidi-

mensional Scaling of the dataset. The model based on a

neural network algorithm provided the highest accuracy

of 93 � 6%. Reapplication of this or similar approaches

may help guide the decision-making process in gap-filling

and input constraints for complex or poorly characterized

systems. However, to ensure its use for practical biosen-

sing applications, significantly more samples and input

features need to be considered in model training and

performance evaluation.

Data integration

After the gap-filling step, the contents of the stoichiomet-

ric matrix (S) are specified making it possible to run

analyses such as flux balance analysis (FBA). Improve-

ments to the predictive ability of constraint-based models

have largely utilized high-throughput experimental data

(i.e. omics data) integration. Successful approaches have

included use of transcriptomics or proteomics with

mixed-integer linear programming (MILP) [19], integra-

tion of proteome allocation theory [20], simulated
Current Opinion in Biotechnology 2020, 64:85–91
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annealing [21], and parsimonious FBA (pFBA) [22]. A

brief review on the integration of transcriptomics with

CBM is provided in [23].

Utilization of machine learning approaches for analysis of

high-throughput data is potentially fruitful and has been

conducted for several data types. Metabolomic data can

have problems with metabolite identification and classi-

fication as well as predicting common hidden features

between metabolites. A machine learning approach

named FIngerID learns the metabolite fingerprint for

identifying metabolites from mass spectroscopy data

using a kernel-based approach [24]. Next, it outputs a

ranked list of candidate metabolites matched with molec-

ular databases. Metabolite identification is a laborious and

time-intensive step, and machine learning methods can

shorten this time-frame and improve the accuracy of

metabolites identification. Another knowledge-based

machine learning tool for metabolite identification called

BioTransformer [25�] consists of two components, a met-

abolic prediction tool (BMPT) and a metabolite identifi-

cation tool (BMIT). BMPT uses a machine learning

model based on random forest and ensemble prediction

for prediction of substrate sensitivity and filtering for

BMIT resulting in high precision and recall values. An

application-driven analysis of metabolomic data and

machine learning used multiple linear regression

(MLR) to predict the metabolome from kinase knockout

enzyme expression proteome data [26] where multifacto-

rial relationships between enzyme expression and metab-

olite concentration were found.

Constraint-based models are often used to predict meta-

bolic fluxes, so fluxomic data can be the most direct

experimental data to use with CBMs. Machine learning

on fluxomics data discovered the hidden relationships

between genetic factors and reaction fluxes and acceler-

ated the flux quantification of the model [27]. This study

modeled flux prediction as a regression problem using five

categorical features and sixteen continuous features; next,

they applied various machine learning algorithms such as

Support vector machine (SVM), K-Nearest Neighbors

(KNN) and Decision tree on fluxomic data to formulate

a quadratic optimization problem for flux correction.

Recently, data-driven methods (e.g. data augmentation

and ensemble learning that alleviates the challenges of

sparse, non-standardized, and incomplete data sets) were

also integrated with genome scale metabolic models to

provide influential features and bioprocessing variables

using multiple correspondence and principal component

analysis for assessment of microbial bio-production in

terms of fermentation yield, titer and rate [28].

Multi-omic data integration
In addition to the application of machine learning to

single data types, analysis of heterogeneous data (e.g.

transcriptomics and omics) in different conditions can
Current Opinion in Biotechnology 2020, 64:85–91 
reduce the effects of noise and highlight significant

features. Multiview or multimodal learning algorithms

have become increasingly useful for multi-source data

integration. Multiview machine learning algorithms

reconstruct a comprehensive view of data by fusing

different sources of data. Data fusion from multiple

sources is not straightforward, due to the different inher-

ent biases and noise of data sources, and often carry

complementarity information. Wang et al. solved this

problem by constructing a network of samples from

different data sources individually and then efficiently

fusing them using a nonlinear combination method [29].

This type of data fusion is known as kernel based data

fusion or full fusion, where the similarity measure

between samples is first mapped to a proper nonlinear

kernel similarity function and the similarity kernel matrix

is next iteratively fused to achieve a single comprehen-

sive view of the data. Another similar fusion algorithm is

MCGS (multiview Consensus graph clustering) where

the consensus graph is constructed by minimizing the

disagreement between the kernel matrices by imposing

constraints on the rank of the Laplacian matrix [30].

Though these methods were not directly applied to

metabolic reconstruction as yet, they are generic enough

and hold immense potential towards improving metabolic

models. An excellent review of this topic can be found in

[31��].

One problem with these types of kernel-based data fusion

methods is that all data sources must represent a kernel

matrix of similar types. This may result in loss of infor-

mation and undermine cross-domain relations. In this

context, intermediate fusion or partial integration

becomes relevant which uses a single joint model for

multisource data. Intermediate fusion methods like

DFMF (Data Fusion by Matrix Factorization) have been

successfully applied to predict disease-disease associa-

tions [32]. DFMF considers a single object type (ri) for

each data source and pairs of object type (ri,rj) to relate

two data sources. Next, it performs data fusion on the

pair-wise relation matrix using a three-factor penalized

matrix factorization. Moreover, this method requires a

little transformation of the input data and can also handle

missing objects or relations.

Kinetics
Another significant area where efforts were made to

improve constraint-based models is the ability to simulate

cellular dynamics. These include methods such as

dynamic FBA (dFBA) [33], extensions of dFBA [34]

and [35], unsteady-state FBA (uFBA) [36], and Dyna-

micME that incorporates dynamic prediction of protein

expression [37�].

Application of machine learning on top of FBA has shown

some promise to estimate kinetic parameters for the

genome-scale model. Andreozzi et al. used machine
www.sciencedirect.com
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Proposed high-level iterative schemes integrating experimental data sets with machine learning, constraint-based models, and constraint-based

model simulation results. Top: Machine learning is applied to the input data to identify the important features for constructing reduced order

constraint-based models; the CBM simulations can be iteratively matched with input data for convergence until the proper set of features are

identified. Bottom: Machine learning is iteratively applied to CBM simulations to reconcile with experimental data. Interplay between the Top and

Bottom parts can iteratively lead to convergence between CBM simulations, experimental data and machine learning based predictions.
learning, named CART, with a kinetic modeling method

on steady-state flux profiles of metabolites to reduce the

range of kinetic parameters [38]. Here, the machine

learning algorithm was able to identify the reduced sub-

space of kinetic parameters where the kinetic model is

feasible. Another approach used machine learning on

time-series multi-omics data to automate the prediction

of the model dynamics [39�]. This method first performs a

derivative to extract the relationship between metabolo-

mics and proteomics data and next feed derivative pairs to

the training phase of the ML algorithm to learn the

dynamics. This supervised learning method significantly

outperformed a handcrafted dynamic model for the lim-

onene pathway.

Conclusion
As our ability to study biology in greater depth has

increased, so has the need for computational tools to

aid in testing knowledge, analyzing data, and predicting

function. While all computational approaches have lim-

itations, the respective strengths of constraint-based

modeling and machine learning make them natural com-

plementary approaches where identification of significant

features/patterns from machine learning can be evaluated

through the mechanistic framework of constraint-based

modeling. To date, there has been limited work to
www.sciencedirect.com 
directly integrate machine learning and constraint-based

modeling approaches for cellular systems. One could

envision iterative integrative schemes (Figure 2) where

machine learning could be used to analyze data that could

be used as input constraints in a constraint-based model

with a reconciliation step between CBM simulation

results and experimental phenotype. Additionally, con-

straint-based model simulation results could also be

analyzed by machine learning and reconciled with exper-

imental data. Feedback from both parallel paths could

iteratively refine a constraint-based model until there is

consistency between experimental data, machine learn-

ing results, and constraint-based model simulations.

The first steps to the realization of this systems-level

approach have started through studies described above

focused on specific components or data types. Incremental

improvements to constraint-based models and our collective

biological knowledge should naturally occur as machine

learning approaches are applied to analyze more data sets.

As machine learning analyses cover a broader range of a

single data type (e.g. genomics) more confidence will be

gained in results that are consistent (i.e. gene annotation).

Significant challenges remain in applying machine learning

to analyze heterogeneous data but there is potential for

significant discoveries through multi-data approaches.
Current Opinion in Biotechnology 2020, 64:85–91
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In addition to the needfor further useofmachine learning for

data analysis/integration, other facets of constraint-based

modeling can be addressed. Use of machine learning

approaches can help prune or extrapolate time course data

to help improve kinetic constraint-based model predictions.

Additional features including thermodynamic feasibility

[40] as well as protein cost and kinetic variability [41] can

identify the most likely pathways from a less well-

characterized set of reactions and result in better feedback

to the ML based annotation or gap-filling steps.

Ultimately, the model building process and improve-

ments made to the process are intended to produce the

best possible constraint-based model that can be used

with confidence to analyze and predict biological func-

tion. It is difficult to quickly externally gauge the inherent

‘quality’ of a newly built constraint-based model. If model

predictions do not reasonably predict biological function,

is the source of the discrepancy found in the model

contents, the computational algorithm used to make

the prediction, or in some biological variation? Some

discussion has occurred to address the potential for

computational error [42] and the potential for identifying

interesting biological hypotheses is one of the main goals

of building and analyzing these types of models. As for

evaluating the model contents, there have been attempts

to implement standards such as the development of

SBML level 3 [43] and quality scoring metrics, such as

Memote [44] and [45]. Eventually, the true gauge for the

quality of a model will need to reflect its functional utility

and machine learning has the potential to aid in improv-

ing numerous facets of a constraint-based model.
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