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ABSTRACT

This work examines how to train fair classifiers in settings where
training labels are corrupted with random noise, and where the
error rates of corruption depend both on the label class and on
the membership function for a protected subgroup. Heterogeneous
label noise models systematic biases towards particular groups
when generating annotations. We begin by presenting analytical
results which show that naively imposing parity constraints on
demographic disparity measures, without accounting for hetero-
geneous and group-dependent error rates, can decrease both the
accuracy and the fairness of the resulting classifier. Our experiments
demonstrate these issues arise in practice as well. We address these
problems by performing empirical risk minimization with carefully
defined surrogate loss functions and surrogate constraints that help
avoid the pitfalls introduced by heterogeneous label noise. We pro-
vide both theoretical and empirical justifications for the efficacy of
our methods. We view our results as an important example of how
imposing fairness on biased data sets without proper care can do
at least as much harm as it does good.
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1 INTRODUCTION

Recent work shows that machine learning classifiers can perpetuate
and amplify existing systemic injustices in society. Notable exam-
ples include discrepancies in allocation of medical care to patients
on the basis of race [36] and significant disparities in predicting
recidivism rates for African-American defendants [4, 13], and more
[9, 38, 42]. A number of techniques have been developed in order
to mitigate bias in machine learning classifiers [1, 10, 17, 22, 33, 45].
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Typically, these methods consider populations with groups corre-
sponding to a set of protected sensitive attributes, such as race or
gender. The classifier is then required to exhibit similar behavior
across all groups [13, 22, 24, 45]. This can be done by imposing
equality of true positive rate or true negative rate conditioned on
group membership. These are called “fairness,” or parity constraints.

Many of these methods assume the availability of clean and accu-
rate labels. However, this is often not the case. In fact, bias in data is
particularly pertinent to label corruption. To make things worse, the
accuracy of available labels is often strongly influenced by whether
a person falls within a protected group, and these discrepancies
can have significant and often life-altering outcomes. For exam-
ple, it has been shown that labels for criminal activity generated
via crowdsourcing are systematically biased against certain racial
groups [14]. As another example, both women and lower-income
individuals often receive significantly less accurate diagnoses for
cancer and other ailments than men, due to imbalance in the sam-
ple population of medical trials [20], and due to bias from doctor
treatment [8]. Similar discrepancies arise in the accuracy of math-
ematical aptitude evaluations for males and females in primary
school [27], and it has long been known that an employer’s evalua-
tion of a resume will be influenced by the perceived ethnic origin
of an applicant’s name [6]. Moreover, studies show that people of
all races use and sell illegal drugs at remarkably similar rates, but
in some states, black male have been admitted to prison on drug
charges at rates twenty to fifty times greater than those of white
men [2].

The structure and magnitude of group-specific label noise can
dramatically affect the performance and fairness of a classifier. To
see this, we consider the following examples.

Example 1. Enforcing fairness constraints without accounting for
group-specific label noise can harm the accuracy of the classifier for
the group whose labels have been accurate recorded.

Consider training classifiers using data from two groups z €
{A, B} with homogeneous data distributions P(Y = +1|X = x,z =
A) =P(Y = +1|X = x, z = B), where x = [x1, x2], a 2-dimensional
feature vector. In this setting, the Bayes-optimal classifiers for A
and B (denoted as f; and fg respectively) will obey any parity
constraint. However, suppose group A has a set of clean labels,
while group B has clean labels when the ground truth is y = +1 but
there is a 70% chance that corrupting noise will cause the observed
label to be flipped from the true value when y = —1. In this case,
f ;air trained on both groups achieves perceived equal True Positive
Rates (TPR) (50%) between the two groups and is the best one to do
so - this indeed hurts group A’s prediction performance (as opposed
to 100% accuracy before), but the labels in group A are not affected
by noise. Although [7] also considers this single-group noise setting
and shows that fairness interventions could aid in reducing the
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error caused by label bias, our observation demonstrates a special
case where potential harm occurs.

Example 1: A simple classification problem to illustrate the
possibility of harming the clean group when training a fair
True Positive Rate (TPR) model over a set of noisy labels.

Grour A Grour B PooLED
(¥1,x2),y  +1 -1 f} +1 -1 fy +1 -1 f;air
(0,0), -1 0 25 -1 70 30 +1 70 55  +1
(0,1), -1 0 25 -1 70 30 +1 70 55 -1
(1,0), +1 25 0 +1 100 0 +1 125 0 +1
(1,1), +1 25 0 +1 100 0 +1 125 0 -1

Example 2: A simple classification problem to illustrate the
possibility of wrongly perceived fairness due to training on
noisy labels.

Grour A Grour B PooLeED
(x1,x2), (ya, yB) +1 -1 f; +1 -1 fg +1 -1 f}kair
(0,0), (-1,-1) 0 100 -1 75 225 -1 75 325 -1
(0,1), (=1,+1) 0 100 -1 75 25 +1 75 125 +1
(1,0), (+1,+1) 100 0 +1 75 25 +1 175 25 -1
(1,1), (+1,+1) 100 0 +1 75 25 41 175 25 +1

Example 2. A classifier may appear to achieve parity when it does
not. Furthermore, imposing a parity constraint might actually make
everyone worse off.

Consider training classifiers using data from two groups z €
{A, B} with heterogeneous data distributions P(Y = +1 | X = x,z =
A) =P(Y = +1 | X = x,z = B). Suppose group A has a set of
clean labels, while one quarter of group B’s labels are incorrect.
We denote the Bayes-optimal classifiers for A and B as f; and fj
respectively and they obey any parity constraint. The classifier
f;air trained on the observed corrupted data is subject to equal

TPR constraint for both groups. ! However, f; me.r has a higher TPR

(2/3: 200 correct predictions out of 300 true +1 labels) on B than
on A (1/2: 100 correct predictions out of 200 true +1 labels) when
evaluated on the clean data.

In this paper, we look at the problem of fair classification from
data whose labels are corrupted, such that the error rates of cor-
ruption are group-dependent. Several recent works deal with fair
classification with noisy labels [7, 23, 26]. In particular, it has been
shown that fairness constraints on the noisy training labels can be
beneficial when the label noise is homogeneous across the different
groups that are to be protected [7]. More recently, [18] shows that
how the true fairness rates, such as TPR, are related to observed
quantities with respect to noise parameters. Our work complements
these results: we show that enforcing fairness constraints when
training on data with noisy labels produces a classifier that vio-
lates the fairness constraints as measured with respect to the clean

4ir O1 the pooled data output +1 for (0,1) and -1 for (1,0) because
equal TPR constraint is enforced. In this case, the TPRs for both groups are 50%. If the
classifier output -1 for (0,1) and +1 for (1, 0) instead, the TPR for group A is 100%

while the TPR for group B is only 50%, which violates the equal TPR constraint.

INote that f;
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data. We then provide a fair empirical risk minimization (ERM)
framework that handles heterogenous label noise. Our framework
uses an estimation procedure that infers the knowledge of group-
dependent noise in the training data and applies this knowledge
using bias removal techniques, thus eliminating the effects of noisy
labels in both the objective function and the fairness constraints
(in expectation).

Our main contributions are as follows: (1) We show that imposing
fairness constraints on the training process without accounting for
bias in the noisy labels can result in classifiers being less accurate
and less fair (Theorems 1 and 3 of Section 3). (2) We experimentally
demonstrate that these harms can indeed occur in practice with real
data sets, and show that obliviously enforcing equality of oppor-
tunity without awareness of the noise leads to classifiers with no
discriminatory power. (3) We design two noise-resistant fair ERM
approaches that address these problems (Section 4). The main idea
is to construct unbiased estimators of the loss functions and of the
fairness constraints. (4) We provide empirical evidence showing
that these fair ERM solutions improve both accuracy and fairness
guarantees when facing group-dependent label noise (Section 5).
(5) Our codes for solving the noise-resistant fairness constrained
ERM can be found at https://github.com/Faldict/fair-classification-
with-noisy-labels.

1.1 Related Works

A great deal of research has been devoted to fair classification in
general, including fair classification under statistical constraints
[1, 17, 22, 45], decoupled training with preference guarantees [10,
16, 28, 41, 44], and preventing gerrymandering [25], among many
others [12, 33].

In this work, we specifically focus on fairness in the presence
of biased and group-dependent noisy training labels. Our work
contributes to the fair classification literature by introducing ro-
bust methods for dealing with heterogeneous label noise. We also
provide insight into the effects of noise being present in the la-
bels. Our work parallels others’ on fair classification with noisy
labels [7, 23]. Ours differs primarily in two main respects. First,
existing works often assume knowledge of the noise generation
process. Second, previous works have only considered noise rates
that are homogeneous across different groups. We consider a more
realistic setting, where different groups might suffer different levels
of bias, and therefore reach very different conclusions. Mitigating
bias is substantially more challenging in our setting. Nevertheless,
our results could generalized prior work when the noise is assumed
constant across groups, or only one group is assumed to have noise.

Both of our fair ERM approaches extend the literature on learn-
ing with noisy data [3, 11, 19, 29, 31, 32, 34, 37, 39]. Our first uses
surrogate loss functions based on [34] to create unbiased estimators
of the fairness constraints. This first approach requires knowledge
of the noise parameters. Our second approach relaxes this assump-
tion by extending the work of [30] to account for both biases in the
fairness constraints and for group specific label noise.

Recent work on fair classification with imperfect data shows
how to emulate noiseless fair classification by appropriately re-
scaling the fairness tolerance with the noise but is only restricted
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to class-conditional random noise without considering group dif-
ference [26]. Most of the reported results are for the cases with
noisy sensitive attributes but not the labels (despite that the au-
thors provided discussions to how the two problems are related).
The surrogate fairness constraints in our paper could be viewed
as an extension of their method. Nonetheless, our work is more
general, as we consider the more sophisticated settings with group-
dependent label noise. [21] explores the use of proxy variables
when the sensitive attributes are missing. Lastly, [18] also provides
some insights on correcting for observed predictive bias might fur-
ther increase outcome disparities but is concerned with fairness
evaluation rather than learning. In contrast with their work, we
simplify the assumption on instance-dependent noise into group-
dependent, and further develop two fair ERM approaches in terms
of the unbiased estimators.

2 PRELIMINARIES

We start with a dataset with n examples (x;, y;, Zi)inzl’ where each

example consists of a feature vector x; = (1,x;1, ..., Xid) € Rd“,
a label y; € {+1,-1}, and a group attribute z; € Z (e.g., z;
1[female]). We assume that there are m = |Z| > 2 groups. We let
nz denote the number of examples in group z, and we use I; = {i |
zi = z} and I = | J,¢z I, to denote their indices. We assume that
each example is drawn iid from a joint distribution O of random
variables (X, Y, Z).

We use the data set to train a classifier f € H : R4*! — {+1,-1},
where H denotes our concept class. To this end, we consider solving
a standard risk minimization problem with fairness constraints.

1
@

fnéi% Ex,y)~o [L(f(X) # V)]
st |Fz(f) —Ex(f)| <6 Vz,z € Z.

Here, F;(f) is some fairness statistic of f for group z given the
true labels y, such as true positive rate :

(TPR) : F,(f) = P(f(X) = +1]Y = +1, Z = 2).

Constraint (2) restricts the disparity between z, z’ to atmost § > 0. A
standard approach for performing above constrained minimization
is via empirical risk minimization (ERM):

min Zl L(f(x:) # yi) (3)
st.|E(f)-Fu(f)| <8 Vz7 eZ (4)

where F, ( f) is our fairness metric defined using training data. For
instance, when using the TPR as a fairness measure:

#(f(xi) =+lLy;=+1,z; = Z)
#(yi =+1,zi = 2)

F; (f ) = >
where #(+) is simply a counting function that counts the number of
samples that satisfy the specified conditions.

For computational purposes, ERM is performed in practice by
minimizing over a classification-calibrated loss function [5] ¢ :
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R x {£1} — Ry. This fits:

min ;f(f(xi),yi) (5)
stF(f) - Fx(f)l <8 V272 eZ (6)

Typical £(+)s include square loss, logistic loss, cross-entropy loss
and more.

We aim to train a classifier using a dataset where the ground
truth labels y; are replaced by noisy (or corrupted) labels ij; ~ Y.
A noisy label i corresponds to a true label y that may have been
flipped based on noise rate 0 < €} + ¢, < 1 (as a function of true
label y). More precisely, we assume that the noise rates vary based
on the true label y as well as the group attribute z:

& =PY=-1|Y=+1,Z=2),
6 =P(Y=+1|Y=-1,Z=2)

i.e., the training labels are generated as:

- Yi
yi =
{—yi

This reflects a setting where noise rates are independent of the x;
at fixed values y; and z; (e.g., a medical problem where y; is the
presence of a disease, and the disease is diagnosed less reliably for
females z; = 1).

In this paper, we mainly focus on two specific fairness con-
straints: Equal Opportunity and Equal Odds [22]. Equal opportunity
requires that each group achieves equal true positive rate (TPR) or
false positive rate (FPR), while equal odds requires both equal TPR
and equal FPR. We use the following shorthand to denote different
measures of performance, including TPR and FPR, computed for
each group using the true labels y and the noisy labels ¢, where

y, g € {+1,-1}:

_ e;ign(yi)
sign(y;)

TPR, :=P(f(X) =+1|Y=41,Z=2)
FPR, :=P(f(X)=+1|Y=-1,Z=2)
TPR, :=P(f(X) =+1|Y =+1,Z = 2)
FPR, :=P(f(X)=+1|Y=-1,Z=2)

TPR, and FPR, are taken with respect to the noisy labels.

3 ENFORCING FAIRNESS CONSTRAINTS ON
NOISY LABELS CAN BE HARMFUL

Recent results have established that enforcing fairness constraints
improves classifier accuracy when the labels suffer from label noise
that is uniform across different groups [7]. However, as we shall see,
adding fairness constraints can lead to harm when group-dependent
noise is present in the labels.

3.1 Parity Constraints on Noisy Labels Harms
Groups with Clean Labels

The first message that we wish to deliver is that naively enforcing
parity constraints on the noisy labels may harm the accuracy of the
classifier for the groups that are not affected by label noise. Without
loss of generality, we present our results in settings where we
wish to train a classifier with equal TPR across groups. Similar
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Table 3: Label noise harms accuracy: Adult dataset. High
FPR implies weak discrimination power. We highlight any
high harm the classifier suffers when enforcing equal TPR.

Metrics Groups f Srair
TPR female 97.12% = 96.44%
male 92.40% = 98.26%
FPR female 5335% = 78./1 1%
male 46.81% = 84.32%
Accurac female 91.62% = 88.32%
V' male  8039% = 72.97%

derivations hold for other related constraints (e.g., the ones as
linear combinations of the entries in the confusion matrix), such as
equal FPR, and equal balance error (BER) [33].

Consider a classification problem with two identical groups z
and z’ where samples from group z have uncorrupted labels while
samples from group z’ have noisy labels. On the clean data, the
parity constraints naturally hold since the data for both groups
is drawn from an identical distribution. We next show that the
label noise presented in group z’ can harm the clean group z when
enforcing parity constraints. Formally:

Theorem 1. Consider a setting with two identical groups (X,Y,Z =
z) and (X,Y,Z = z’). Group z has clean labels, i.e, ef = ¢; = 0.
Group z’ suffers from symmetric noise e;r, =€, =e > 0. Inthis
setting, a classifier trained subject to the equal TPR constraint (TPR, =
ﬁz/ ) leads to an uninformative classifier that TPR, = FPR,.

We defer the proof to Section Ommited Proofs. Thus, even if
group z is represented with completely uncorrupted labels in the
training data, the imposition of equal TPR in the presence of noise
for z” will diminish the classifier’s predictive accuracy on members
of group z.

Case study. We empirically examine the above observation on
the Adult dataset from UCI Machine Learning repository [15]. There
are two sensitive groups, Z = {male, female}, in this data set. We
inject symmetric noise " = ¢~ = 0.3 into labels for members of the
female group. Then, we train two classifiers: f, which is trained
without any fairness constraints, and f;,;,, which is trained with
the imposition of equal TPR using the reduction method [1]. As is
shown in Table 3, the empirical results mirror Theorem 1. When the
difference between ff,;,’s TPR for the two groups becomes small
(less than 2%), ff,i,’s TPR and FPR become close together, and the
accuracy decreases significantly. The above trends hold even when
we try to equalize TPR and FPR together across groups. We notice
that the two groups are not strictly identical in the Adult dataset,
but our example implies that there exists dangerous cases where
enforcing fairness constraints can harm classifier accuracy for the
group with uncorrupted labels.

3.2 Violation of Fairness under Perceived
Fairness

Our second message is that training fair classifiers using noisy la-
bels may lead to a false impression of fairness. This arises when the
fairness constraints are satisfied over the noisy labels while being
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violated over the clean labels. Before proceeding, we require extend-
ing Proposition 16 of [32] into the situation with group-dependent
label noise. A similar result appears in [40].

Lemma 1. For each group z we have that

TPR, =(1 - €}) - TPR, + €} - FPR,
FPR, =¢, - TPR, + (1 —¢,) - FPR,

Proor. Expanding P(f(X) = +1 | Y = +1,Z = z) using law of
total probability we have

TPR, =P(f(X) =+1|Y =+1,Z=2z)
=P(f(X)=+LY=+1|Y=+1,Z=2)
+P(f(X)=+1,Y =-1|Y=41,Z=2)
=P(Y=+1|Y=+1,Z=2) - P(f(X) =+ | Y =41 Y =+1,Z = 2)
+P(Y=-1Y =+41,Z=2) - P(f(X) =+1 | Y =-1Y =+1,Z =2)
=P(Y=+|Y=+1,Z=2) -P(f(X) =+1 | Y =+1,Z = 2)
+P(Y=-1]Y=41,Z=2) P(f(X) =+1 | Y =-1.Z=2)

= (1-¢€!) - TPR, + ¢! - FPR, 9)

Note in the above we drop the dependence on Y when conditioning
on Y. This is because f is trained purely on the noisy labels, and Y
encodes all the information f has about Y.

A similar derivation holds for FPR,. [m]

We also note that, in the special case where all groups suffer from
an identical rate of label corruption, the learner can be oblivious to
the specific error rates:

Theorem 2. Consider a classification problem with noisy labels
where the noise rates are independent of group membership, so that
€7 = €}, ande; = €, Vz,z’ € Z. Then it follows that TPR, =
TPR, Vz,z' € Z, if equal odds (equalizing both TPR and FPR) on
the noisy labels is imposed.

The proof follows by applying the assumption of equal error
rates and equal odds on the noisy labels with Lemma 1. However,
things break down in the general case. If we impose equal odds
across groups on a learner that is unaware of the labels’ noisiness
(i.e. whenever TPR, = ﬁz/), then:

Theorem 3. Assume that a classifier is subject to equal odds in the
presence of group-dependent label noise. Then for any two groups
2,2’ € Z, we have
| TPR, — TPR, | = [TPR; — FPR,| - €] - €}],
|FPR, — FPR, | = |TPR, — FPR| - |e; — ¢,
Unless the classifier is random on the noisy training data, i.e., TPR, =
FPR,, it is impossible to satisfy equal odds over the clean data when-
everey # ¢, ande; # €.

Proor. Noticing that ’fﬁll = f‘f’ﬁz/ and I-:ISf{z = I;ﬁizz (equaliz-
ing fairness metrics on the noisy data) and applying Lemma 1, we
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obtain
| TPR, —TPR | = |((1 - €}) - TPR; + €} - FPRy)
- ((1-€},) - TPRy + ¢, - FPR)|
= |€; - (FPR; ~ TPR;) — €}, - (FPR; — TPR;)|
= |(e} - €},) - (FPR; — TPR;)|
= |TPR; — FPR; | - |ef — €, |
The argument for FPR is symmetrical:
|FPR, —FPR | = |(€; - TPR, + (1 - €;) - FPR;)
(€ - TPRy + (1~ €},) - FPRy)
= |e; - (TPR — FPR;) — €, - (TPR; - FPR;)|
= |(€; =€) - (TPR, — FPR,) |
= [TPR; - FPR, | - |¢; — €|
Therefore
| TPR, — TPR, | > 0,| FPR, —FPR, | > 0,

when TPR; # FPR;, €} # €6, €, o

The proof follows by a direct application of Lemma 1. Theorem 3
implies that the true fairness violation is proportional to the differ-
ence in error rates across the different sub-groups. We offer two
remarks. First, if the error rates are systematically biased towards a
particular group, then a perceived fair classifier will lead to unequal
odds. Second, the above bias will be reinforced when the trained
model is more accurate on noisy data; a more accurate model will
lead to a larger difference in |ﬁz - laf’ﬁzL

4 FAIR ERM WITH NOISY LABELS

In this section, we describe two noise-tolerant and fair ERM solu-
tions that address the combined challenges of heterogeneous and
group-dependent label noise. Both the surrogate loss and group-
weighted peer loss approaches for handling noisy labels rely on
estimations of the label noise. Our procedure for estimating the
noise parameters, detailed in Section 4.3, is an adaptation of [35].
Section 4.3 also offers discussion of the impacts of noisy estimates.

4.1 A Surrogate Loss Approach

As we shall see, training an unmodified loss function using the noisy
labels ¢j; corrupts the model in a manner that cannot be addressed
via post-hoc correction. Thus, a natural resolution is to modify the
loss function itself. This modified loss function is called a surrogate
loss.

Bias removal surrogate loss functions. Bias removal via a surrogate
loss is a popular approach to handling label noise [34]. The original
loss function £(-) is replaced with a surrogate loss function ¢(-) that

Table 4: Surrogate constraints for surrogate loss.

Metric Fo(f)

TPR (1-¢f)-TPR, + ¢} - FPR,
FPR e -TPR, + (1—¢;) - FPR,
Equal Odds both TPR and FPR
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Table 5: Surrogate constraints for group weighted peer loss

Metric IAJZ f)

TPR P(f(X) = +1|Z = z) + 52 (TPR, - FPR;)
FPR P(f(X) = +1|Z = z) - 52 (TPR, - FPR;)
Equal Odds both TPR and FPR

“corrects" for noise in the labels in expectation. Formally, the surro-
gate loss is chosen so that the cost of mis-classifying an element
x; with true label y; is equivalent to the expected loss value that
arises from using noisy label §j;. Thus, we want to find a surrogate
loss ¢ such that:

((f(x),y) =E¢[6(f(x),¥) | Y = y] (10)

for all x and y. When the noise depends on the label value, the
function given by

1—ez)e(f(xi), +1) — ez, £(f (x:),-1)

: (
Ef G, G = +1) = e (1

(1—eX)e(f(x:),=1) — ez, £(f (1), +1)

+ +
1-€;; — €

(f(xi), G = -1) = (12)

satisfies the above property, as shown by Lemma 1 in [34]. A
classifier f minimizing the surrogate loss on noisy data £(X, Y)
will minimize the loss on clean data £(X,Y) in expectation. This
property allows us to perform model selection on a noisy validation
set, and one could choose the model that performs better on the

validation set to deploy.

Surrogate fairness constraints. We will also need to modify the fair-
ness constraints to account for the effects of noise. Our method
of doing so is inspired by the surrogate loss that we need to work
with an unbiased estimate of the fairness constraints. For the case
of binary classification, we can express the surrogate measures of
group-based fairness constraints using Lemma 1.

We use Equation (11) and Equation (12) to define our surrogate
loss functions £ (f(x;), §; = +1), and & (f(x;), §; = —1). Further-
more, define the empirical TPR and FPR over the noisy labels as
follows:

oo = L= ns =) gy
F/Piz(f) _ #(f(xi) =41, 17,' =-1,z; = z) (14)

-1,zi =z2)

#(7i

We then define our surrogate fairness measures F, (f) using only
noisy data, as detailed in Table 4. Our noise-resistant fair ERM
states as follows:

min ;ﬂf(xi),gi)
st |Fo(f) = F2(f)| <68, Vz.2". (15)

4.2 Group Weighted Peer Loss Approach

The recently developed peer loss function partially circumvents the
issue of noise rate estimation [30]. The peer loss requires less prior
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knowledge of the noise rates for each class. It is defined as:

[peer(f(xi)»gi) =0(f (%), i) —a - € (f(xh),giz) > (16)
where
P(Y =+1) -P(Y = -1)

a=1-(1—-€ —€") . —= =
P(Y =+1) - P(Y = -1)

is a parameter to balance the instances for each label, and where iy
and iy are uniformly and randomly selected samples from I /{i}
(i.e., “peer" samples which inspired the name peer loss as noted
in [30]). Although the noise parameters explicitly appear in the
definition of «, only the knowledge of A := 1 — ¢~ — €* is needed.
In practice, we could tune « as a hyper-parameter during training.
This loss function has the following important property, proven in
Lemma 3 of [30]:

E g [fpeer (f(X). V)] = Az -Ep, [fpeer (f(X). V)], (17)

where D, denotes the noisy distribution for group z and A, =
1 - ¢, — €. Adapting the peer loss function to labels with group
dependent noise requires accounting for the differing values of
Az. We do so by re-weighting Equation (16) to obtain our group-
weighted peer loss fgp:

bep(F (60, 0) = 3= (6. 60) = - € (F ) Gi) - (1)
When class is balanced for every group z, i.e., Pz—,(Y = +1) =
Py, (Y =-1) = %, the parameter « is exactly 1. In this case, the
expected group-weighted peer loss on the noisy distribution Dis
the same as the expected uncorrected loss ¢ on the true distribution
D. More precisely:

Theorem 4. For all group dependent noise rates €; and e} satisfying
€, +ef < 1, taking £(-) as the 0-1 loss 1(-) and when Pz_,(Y =
+1) =Pz (Y=-1) =,

E 5 [bgp (f(X), V)] = Ep [£(f(X), Y] (19)

-5
Proor. Observe that

_ 1 _
[gp(f(xi)s j) = A_z[peer(f(xi)s )
Taking expectations over noisy data, we have

Eg Lgp (f(X). V)]

= S L g [t (F(Xe). 7)1

|I| zeZ

L )
= ﬁ > % “Ep, [peer (f(X2), Y2)]
zeZ ~F

1 L
-1 ] AEo, ltpeer (f(X2), Y2)]  (by Equation 17)

zeZ Az
=Ep[fpeer (f(X),Y)] (20)

Notice that @ = 1 when P(Y = +1) =P(Y = -1) = % the definition
of peer loss function gives

Ex.y [fpeer (f (X), Y)] = Ex .y [£(f(X),Y)] - ExBEy [¢(f(X), V)] (21)
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Using the assumption that P(Y = +1) = P(Y = -1) = % and the
fact that ¢ is 0-1 loss function,
ExEy [£(f(X),Y)] =P(Y =+1) - Ex[£(f(X),+1) ]+
P(Y =-1) -Ex[£(f(X),-1)]

SO0, + 5 H(FO0,4)

SL(f(X) #+1) +% S1(f(X) #-1)

=N ==

= SBF(X) = =1+ 2 B(f(X) =+1)

= (22)
Combining Eq. (20), Eq. (21) and Eq. (22), we complete the proof

B[t (f 00, V)] = Ep [£(£(X), Y] - 5

[m]

Peer-based surrogate fairness constraints. We acquire the following
result in order to create group-aware surrogate constraints:

Lemma 2. True TPR and FPR relate to ’ff’ﬁz, I;I"RZ defined on the
noisy labels as follows:

TPR, =P(f(X) =+1|Z =z2) + A, - (TPR, —FPR,) - P(Y = —1|Z = 2)
(23)

FPR, = P(f(X) =+1|Z = z) — A, - (TPR, —FPR,) - P(Y = +1|Z = 2)
(24)

Proor. Following Lemma 1 we have,
TPR, - FPR, = (1 - €f —€;) (TPR - FPR) = A, - (TPR — FPR)
Notice that

P(f(X)=+1|Z=2)=P(Y=+1|Z=2) -P(f(X)=+1|Y=+1,Z =2)
+P(Y=-1|Z=2) - P(f(X)=+1 | Y =-1,Z =2)
=P(Y=+1|Z=2) - TPR, +P(Y = -1|Z = z) - FPR,

Solving the two equations above we complete the proof. O

Lemma 2 allows us to derive the appropriate surrogate fairness
constraints for the peer loss, displayed in Table 5. Note that we
have assumed that the datasest is balanced for each group; i.e.,
VzeZ P(Y=+1|Z=2) = % If the data is imbalanced, we will
require knowing the marginal prior P(Y = +1|Z = z). We note that
it is straightforward to get the estimated marginal priors as given
by Equation (27) in Section 4.3.

We merely require knowledge of A, for each z in order to define
£gp and F, (f). This is a weaker requirement compared to knowing
the error rates (which will carry estimation of two parameters for
each group). We indeed see our group peer loss approach performs
more stably as compared to the surrogate loss approach introduced
in last subsection when using noisy estimates of the noise rates.
With group-weighted peer loss function and surrogate fairness con-
straints, we are able to perform a fair ERM as detailed in Equaltion
(15) by replacing ¢ with {gp and the corresponding F, (f) term.
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4.3 Error Rates Estimation and its Impact

We employ “confident learning” to perform noise rate estimation in
our experiments [35]. The first step is to pre-train a classifier fpre
over the noisy labels directly and learn a noisy predicted probability

p(y:x,2) = P(fpre(x) = y|Z = 2).

Then, for each pair of classes k,I € {+1, -1}, we define the subset
of samples:
??g:k,z ={xil§i =k, i €L},

Xizk,y=1z = {xil§i =k, p(y = Lixi,2) 2 tj 5,0 € I},

where
1

tl,z =

D, PG=lkxz)

|Xg=l,z | xegg:u

is the expected self-confidence probability for class I and group z.
Using the above quantities, we estimate the group-aware joint

probability Qg:k,yzl,z =P(Y = kY = ,Z = z) over the noisy
labels § and clean labels y with:

X =k, y=1,z|
211X =k, y=1.z|

2kl

N X gk 2|

Q~:k, =1z = S (25)
y=hy=hz X =k, y=1,z

v en
21 Xk, y=1.2] K=tz

We use the marginals of estimated joint to compute the noise
parameter estimates for each group z:

et = QQ=71,y=+l,z
== — ,
Qi=—1,y=+1,z + Qi=+1,y=+1,
G=-ly=tlz ¥ g=tly=+lz (26)
_ Qi=+1,y=—1,
e = y=+Ly=-1z

z — = =
QQ:H,y:—l,z + QQ:—I,y:—l,z

To estimate Az, we simply substitute ¢ and €} for €7 and €} in the
equation for A,. As a byproduct, we could estimate the marginal
priors P(Y = +1|Z = z) by

Qg=+1, y=+1,z + QQ:*L y=+1,z

_ = = _ @7)
Qg=+1,y=+1,z + Qg=71,y=+l,z + QQ:*l,y=+l,z + Qf/:fl,y:fl,z

Effects of noisy estimates. It is important to quantify the impact of
the noise rate estimation error on the accuracy and fairness of the
resulting classifier. We first note that, for any 5, 7 > 0, the law of
large numbers implies that taking sufficiently many samples from
D will ensure that the following holds for all z with probability at
least 1 —n:

A+ +
A €. €.
max{lez+ —e;’, —F= - ——|,
1-€;-€; 1-e;—€, (28)
— - 1-é; 1-€;
- T AF A= T — < .
€ EZHH;—ez s s } =T

Denote by £(-) the surrogate loss function defined using the
estimated noises {é;r €7}, and let

N N
fr = i i i), Ui)s fr = i ¢ i), Ui
f arfgg;nz (e, f arfgern#nz (f (x0), )

i=1 i=1

We have the following result and defer the proof to Section ??:
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Theorem 5. Foreveryn,t > 0 there exists N such that

1 . . 1 &,

N ~;f(f (xi), 1) = -;t’(f (xi), i) <48 (29)
with probability at least 1 — n, where { := max{.

Because the fairness constraints F, (f) are linear in €}, € s, the
additional fairness violations incurred due to the noisy estimates
of the error rates will also be linear in 7 too. Similar observations
hold when using the estimated A, in the peer loss.

5 EXPERIMENTS

Due to the difficulty of acquiring real world datasets with known la-
bel corruption characteristics, we artificially synthesize the datasets
with a noise generation step. These controlled experiments help us
understand the robustness of our approaches under different noise
scenarios.

5.1 Experimental Setup
Dataset. We evaluate our methods as well as other baseline meth-
ods on five datasets:
e Adult, the Adult dataset from the UCI ML Repository with
males and females as the protected groups [15].

Arrest and Violent, the COMPAS recidivism dataset for
arrest and violent crime statistics, with race (restricted to white
and black) and gender as the sensitive attributes [4].

German, the German credit dataset from UCI ML Repository
with gender as the sensitive attribute [15].

e Law, a subset of the original data set from LSAC with race (re-
stricted to black and white) as the sensitive attribute [43].
Table 6 describes the dataset statistics and parameters used in

the experiments. We chose to apply a diverse set of noise parame-
ters to the different subgroups. The fairness tolerance § and noise
parameters € for Adult, German and Law data sets are identi-
cal, but they are different from Arrest and Violent data sets
because Arrest and Violent data sets contain more protected
groups. We make this choice mainly for the baseline models to
obtain meaningful results to compare with.

Noise generation. We randomly split the clean dataset D =
{(xi,yi, zi)}I| into a training set and a test set in a ratio of 80
to 20. We add asymmetric label noises to the training dataset, and
leave the test data untouched for verification purposes. For each
sensitive group z € Z, we randomly flip the clean label y with
probability €7 if its value is —1, and we flip the clean label with
probability €} if it’s +1. After injecting this noise, we use the same
training set and test set to benchmark all the methods.

Methods. For all of the methods above, we use logistic regression
to perform classification and leverage the reduction approach as
proposed in [1] for solving our constrained optimization problem.
We evaluate the performance of several methods:

e Clean,in which the classifier is trained on the clean data subject
to the equal odds constraint

e Corrupt, which directly trains the classifier on the corrupted
data subject to the equal odds fairness constraint



Fair Classification with Group-Dependent Label Noise

FAccT ’21, March 3-10, 2021, Virtual Event, Canada

Table 6: Dataset statistic and parameters.

Noise Rates

Dataset  Source Number of data examples n  Fairness Tolerance § ~ Sensitive Groups - o
female 045 0.15
adult  UCI[15] 32561 2% e 035 055
white 0.40  0.30
arrest COMPAS [4] 6644 5% black 015 025
white male 0.45 0.10
black male 0.10 0.35
arrest COMPAS [4] 6644 5% white female 035 045
black female 0.55 0.25
white male 0.45 0.10
black male 0.10 0.35

iol MPAS [4 2 o
violent  COMPAS [4] 5278 3% white female 035 045
black female 0.55 0.25
female 045 0.15
German  UCI [15] 1000 2% male 035 055
white 045 0.15
law  LSAC [43] 18692 2% block 03 055

e Surrogate Loss, which uses the surrogate loss approach
described in Section 4.1

e Group Peer Loss, which uses the group weighted peer loss
approach described in Section 4.2 to train a fair classifier on the
corrupted training set.

The Corrupt baseline gives us a sense about the harm caused

by the unawareness of the labels’ noise, and the clean baseline

shows the biases contained in the datasets.

We set the same maximum fairness violation ¢ for all the methods
on the same dataset during training. As there are more sensitive
groups on arrest and violent datasets, we set § = 5% on these
datasets and § = 2% on the other datasets. We report metrics for
each of the above methods averaged over five runs.

Computing Infrastructure. We conducted all the experiments on a
3 GHz 6-Core Intel Core i5 CPU. The running time for Surrogate
Loss is about 10 minutes, while the running time for Group
Peer Loss could be over 30 minutes.

Tuning a in Peer Loss. The performance of our group weighted
peer loss is highly influenced by the hyperparameter «. Recall that

E 5 lep (f(X), V)] = Enp, [Lp (f(X), V)]

We split 10% of data examples in the train set for validation and
found the optimal & using grid search. The range of « we searched
varied between 0.0 to 2.0. We observed that both the accuracy and
fairness violation on the validation set exhibit the same trends on
the test set. In practice, the group weighted peer loss with a = 0.3
achieves the best performance on the Adult dataset.

5.2 Results

We present an overview of the performance for each method on
the test set in Table 7. We compare the two fair ERM approaches
using both the true and estimated noise rates. The metrics we report
include violation, the maximum difference in TPR and FPR between
groups z,z’ € Z, and accuracy, the accuracy achieved on test set.
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We make the following observations about our results. First, both
of the two fair ERM approaches in Section 4 produce classifiers that
are more effective at mitigating unfairness than a classifier that is
naively trained on the corrupted data.

In particular, the group weighted peer loss approach achieves
almost 0% violation on the German and 1aw data sets, when given
the true noise parameters. The only noticeable worse case arises
when applying the surrogate loss approach to the German dataset.
This may be due to the high variance of the German dataset, which
has fewer than 1000 samples.

Second, as expected, models trained using our proposed fair
ERM methods do not achieve the same level of accuracy as a model
that is fit using clean labels. However, our models are typically
more accurate than the model fit directly to the corrupted data.
For example, on the arrest data set with four protected groups,
the surrogate loss approach achieves a similar accuracy to the
classifier trained on clean data while incurring an even smaller
fairness violation. Third, Our methods perform similarly well when
trained using both the true and with the estimated noise parameters,
indicating that the noise estimation procedures are effective. On
arrest and violent datasets, our methods with estimated noise
parameters even perform better than those with true parameters.
This is probably due to the biases and noise in these datasets. Finally,
our fair ERM frameworks adapt well to multiple sensitive groups,
as demonstrated by the good performance on the Arrest and
Violent data sets.

5.3 Impact of noise levels on classifier
performance.

We present the results of varying noise rate on the adult data
set (with two groups) in Table 8. We only add symmetric noise to
female group and keep the male group clean. ERM is generally
robust to symmetric noises when a significant subset of the data is
clean (one group in our example), so we do not expect significant
accuracy improvement from our methods. We focus on how fairness
violation reduces. Observe that, comparing to training with clean
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Table 7: Overview of group-based performance metrics for all methods on 5 data sets. We highlight the best values achieved
for fairness violation and accuracy in green and the worst in red. m is the number of sensitive groups, € is the average of error
rates over all the groups and all label classes €}, €; s. true indicates training with true noise parameters and estimated indicates
training with estimated noise parameters. The values after + are the standard deviation.

SURROGATE Loss Group PEER Loss

Dataset

Metrics Avg.é CLEan CorrupPT TRUE ESTIMATED TRUE ESTIMATED

Adult violation 0.38 0.47%  8.36 = 1.36% 1.46 + 0.50% 1.39 + 0.80% 1.18 £ 0.63% 1.69 + 0.86%
m=2 accuracy ' 83.76% 76.08 £2.49% 81.16 £3.41% 75.99 £7.45% 77.00 £2.52% 75.13 £5.15%
arrest  violation 0.28 2.27%  2.98+0.74%  0.54+0.27%  0.36 £ 0.24% 1.78 £ 0.89% 1.05 £ 0.55%
m=2 accuracy ' 65.16% 60.72 £0.66% 61.7 £3.23%  62.3+5.30% 63.81 £3.35% 65.31 +3.41%
Arrest  violation 0.34 5.89% 12.93+£0.95% 0.88+0.27%  2.48 + 1.42% 1.36 £ 0.69% 1.40 + 0.36%
m=4 accuracy ' 66.0%  53.7+1.82%  65.7+2.92% 588 +4.96% 60.27 £2.90% 57.56 £2.96%
violent  violation 0.34 037%  7.16£0.80% 4.81+x0.70% 7.76 £1.02%  2.06 +0.81%  0.68 = 0.28%
m=4 accuracy ' 60.18% 52.2+0.23% 53.14+£491% 55.4+0.71% 55.64+4.88% 52.7£0.57%
German  violation 0.38 0.68%  2.68+0.32% 11.79+3.87% 11.08 £2.16% 0.00 = 0.00% 1.64 £ 0.32%
m=2 accuracy ' 74.5%  70.5x0.00%  68.5%+4.27% 71.5+2.53% 70.0x0.71%  70.5 % 2.53%
Law violation 0.38 0.6% 2.74+£0.12%  0.36 £ 0.08% 1.98£1.16% 0.03£0.02%  0.57 £0.12%
m=2 accuracy ' 90.67% 90.16 £0.79% 90.26 + 0.48% 89.92 £ 2.86% 90.32 £0.10% 90.29 = 0.20%

Table 8: We show how different levels of symmetric noise
€~ = €' = ¢ affect the classifiers’ performance on adult
dataset. SL: Surrogate Loss. GPL: Group Peer Loss. We high-
light substantial improvement of fairness in green and sever

violation in red.

Noise ¢  Metric Clean Corrupt SL GPL
01 violation ~ 0.47% 3.91% 5.15% 1.41%
’ accuracy 83.76%  83.22%  82.73% 82.71%
0.2 violation ~ 0.47% 3.83% 3.98%  1.49%
’ accuracy 83.75%  82.08%  82.54% 82.16%
03 violation  0.47% 7.23% 3.63%  1.22%
’ accuracy 83.76% 81.36%  82.01% 81.24%
- violation 0.47%  5.14% 1.13%  3.1%
’ accuracy 83.76% 79.58%  80.62% 80.21%

data, training on corrupted data substantially increases fairness
violations, even for relatively low noise rates. The SL and GPL
columns show that our fair ERM approaches can effectively mitigate
the biases. This holds true even when increasing the noise rate.

5.4 Insights on running on data directly,
without adding additional noise

We evaluate our algorithm on the clean adult and arrest datasets
as shown in Table 9. On the arrest dataset, our methods achieve
a similar performance of accuracy compared with the Clean base-
line, but we do observe a consistent drop of fairness violations
on the arrest dataset. The fairness violation of our methods on

adult dataset is not as good as that of Clean baseline. This fact
may imply the possibility that the arrest dataset contains more
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human biases in labels than the adult dataset. The small drop in
accuracy and (sometimes) in fairness is due to the additional noise
estimation step, which introduces another layer of complication -
this is the price we pay for dealing with potentially highly noisy
labels.

Table 9: We examine the performance of our methods on the
clean adult and arrest datasets. Clean: train a fair classi-
fier directly with equal odds constraint. SL: Surrogate Loss
with estimated noise parameters. GPL: Group Peer Loss with
estimated noise parameters. The values after + are the stan-
dard deviation.

adult arrest
Method  accuracy violation accuracy violation
Clean 83.76 £ 0.0 0.47+00 6546+0.0 4.46+0.0
SL 76.97 £0.24 3.51+0.24 63.07+044 2.90+0.72
GPL 81.20+£0.19 3.76 £+0.19 64.98+0.40 1.85=+0.36

6 CONCLUDING REMARKS, LIMITATIONS
AND FUTURE WORKS

We have demonstrated, both theoretically and empirically, that
naively enforcing parity constraints without taking noisy labels
into consideration can indeed do harm. Our results show the im-
portance of accounting for group-dependent label-noise when per-
forming ERM subject to fairness constraints. In realistic applica-
tions, such as criminal justice and evaluating loan applications,
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labels are often contaminated by human biases against a certain
protected group. The insights gained from this work forewarn
decision-makers that improperly mitigating unfairness might do
harm on the clean groups. Our two fairness-aware ERM frameworks
are an important step toward addressing this problem.

Our work extends a growing body of methods for training clas-
sifiers to provide equal opportunity to members of different sub-
groups within a population. Our new contribution is to address
situations where feature and label information for one or more of
the subgroups has been recorded less faithfully than for members
of other subgroups. Just one example of this, discussed in the text,
is the significant disparity in the quality of evaluations for males
and females which occur in both medical and academic contexts.
These disparities can and do have significant impacts on the quality
of life for members of each group, and are well worth addressing.

This work shows how applying existing techniques for mitigat-
ing bias in classifiers can actually increase inequality in outcomes,
if disparities in the accuracy of training data are not accounted for.
We offer new methods for addressing these problems as well. We
believe that applying our methods thoughtfully will improve exist-
ing methods of bias mitigation in machine learning. Our technical
solutions and solvers should be of interests to machine learning
practitioners/researchers, as well as to policy makers when decided
to use classification tools but face a training data with low-quality
annotations.

Our work has limitations. Our selection of data sets is limited: we
rely on synthetic training data corruption in order to test our meth-
ods. This limitation arises from the unavailability of such sensitive
data sets for the broader research community. Both this research,
and the methods whose shortcomings we have attempted to ad-
dress, should be re-examined as richer data sets become available
for studying disparities in the quality of information recording be-
tween members of different subgroups. The lack of relevant data for
studying unfairness in machine learning, and the concerns about
how to acquire such data while preserving the privacy of people
concerned, is itself an important question in this area, although we
do not address it in this work.

It is also possible that blind and uncareful application of our
approach (by improperly attempting to correct otherwise accurate
labels) may in fact create classifiers that produce even greater in-
equality, or lead to other problems that we have not foreseen. The
temptation to apply our methods simply for the purpose of making
existing models seem “more fair,” especially to unsuspecting down-
stream users, is very real. We very much discourage the use of our
research in this fashion.

Both the limitations and the insights gained through this work
underscore an important underlying message: that blind application
of bias mitigation techniques in machine learning may do more
harm than good.
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