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ABSTRACT

This work examines how to train fair classifiers in settings where

training labels are corrupted with random noise, and where the

error rates of corruption depend both on the label class and on

the membership function for a protected subgroup. Heterogeneous

label noise models systematic biases towards particular groups

when generating annotations. We begin by presenting analytical

results which show that naively imposing parity constraints on

demographic disparity measures, without accounting for hetero-

geneous and group-dependent error rates, can decrease both the

accuracy and the fairness of the resulting classifier. Our experiments

demonstrate these issues arise in practice as well. We address these

problems by performing empirical risk minimization with carefully

defined surrogate loss functions and surrogate constraints that help

avoid the pitfalls introduced by heterogeneous label noise. We pro-

vide both theoretical and empirical justifications for the efficacy of

our methods. We view our results as an important example of how

imposing fairness on biased data sets without proper care can do

at least as much harm as it does good.
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1 INTRODUCTION

Recent work shows that machine learning classifiers can perpetuate
and amplify existing systemic injustices in society. Notable exam-

ples include discrepancies in allocation of medical care to patients
on the basis of race [36] and significant disparities in predicting
recidivism rates for African-American defendants [4, 13], and more

[9, 38, 42]. A number of techniques have been developed in order
to mitigate bias in machine learning classifiers [1, 10, 17, 22, 33, 45].
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Typically, these methods consider populations with groups corre-

sponding to a set of protected sensitive attributes, such as race or

gender. The classifier is then required to exhibit similar behavior

across all groups [13, 22, 24, 45]. This can be done by imposing

equality of true positive rate or true negative rate conditioned on

group membership. These are called “fairness,” or parity constraints.

Many of these methods assume the availability of clean and accu-

rate labels. However, this is often not the case. In fact, bias in data is

particularly pertinent to label corruption. Tomake things worse, the

accuracy of available labels is often strongly influenced by whether

a person falls within a protected group, and these discrepancies

can have significant and often life-altering outcomes. For exam-

ple, it has been shown that labels for criminal activity generated

via crowdsourcing are systematically biased against certain racial

groups [14]. As another example, both women and lower-income

individuals often receive significantly less accurate diagnoses for

cancer and other ailments than men, due to imbalance in the sam-

ple population of medical trials [20], and due to bias from doctor

treatment [8]. Similar discrepancies arise in the accuracy of math-

ematical aptitude evaluations for males and females in primary

school [27], and it has long been known that an employer’s evalua-

tion of a resume will be influenced by the perceived ethnic origin

of an applicant’s name [6]. Moreover, studies show that people of

all races use and sell illegal drugs at remarkably similar rates, but

in some states, black male have been admitted to prison on drug

charges at rates twenty to fifty times greater than those of white

men [2].

The structure and magnitude of group-specific label noise can

dramatically affect the performance and fairness of a classifier. To

see this, we consider the following examples.

Example 1. Enforcing fairness constraints without accounting for

group-specific label noise can harm the accuracy of the classifier for

the group whose labels have been accurate recorded.

Consider training classifiers using data from two groups 𝑧 ∈
{𝐴, 𝐵} with homogeneous data distributions P(𝑌 = +1|𝑋 = 𝒙, 𝑧 =

𝐴) = P(𝑌 = +1|𝑋 = 𝒙, 𝑧 = 𝐵), where 𝒙 = [𝑥1, 𝑥2], a 2-dimensional

feature vector. In this setting, the Bayes-optimal classifiers for 𝐴

and 𝐵 (denoted as 𝑓 ∗
𝐴
and 𝑓 ∗

𝐵
respectively) will obey any parity

constraint. However, suppose group 𝐴 has a set of clean labels,

while group 𝐵 has clean labels when the ground truth is 𝑦 = +1 but
there is a 70% chance that corrupting noise will cause the observed

label to be flipped from the true value when 𝑦 = −1. In this case,

𝑓 ∗
𝑓 𝑎𝑖𝑟

trained on both groups achieves perceived equal True Positive

Rates (TPR) (50%) between the two groups and is the best one to do

so - this indeed hurts group𝐴’s prediction performance (as opposed

to 100% accuracy before), but the labels in group 𝐴 are not affected

by noise. Although [7] also considers this single-group noise setting

and shows that fairness interventions could aid in reducing the

526

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3442188.3445915
https://doi.org/10.1145/3442188.3445915
https://creativecommons.org/licenses/by/4.0/


Fair Classification with Group-Dependent Label Noise FAccT ’21, March 3–10, 2021, Virtual Event, Canada

error caused by label bias, our observation demonstrates a special

case where potential harm occurs.

Example 1: A simple classification problem to illustrate the

possibility of harming the clean group when training a fair

True Positive Rate (TPR) model over a set of noisy labels.

Group 𝐴 Group 𝐵 Pooled

(𝑥1, 𝑥2), 𝑦 +1 −1 𝑓 ∗
𝐴

+1 −1 𝑓 ∗
𝐵

+1 −1 𝑓 ∗
𝑓 𝑎𝑖𝑟

(0, 0), −1 0 25 −1 70 30 +1 70 55 +1
(0, 1), −1 0 25 −1 70 30 +1 70 55 −1
(1, 0), +1 25 0 +1 100 0 +1 125 0 +1
(1, 1), +1 25 0 +1 100 0 +1 125 0 −1

Example 2: A simple classification problem to illustrate the

possibility of wrongly perceived fairness due to training on

noisy labels.

Group 𝐴 Group 𝐵 Pooled

(𝑥1, 𝑥2), (𝑦𝐴, 𝑦𝐵) +1 −1 𝑓 ∗
𝐴

+1 −1 𝑓 ∗
𝐵

+1 −1 𝑓 ∗
𝑓 𝑎𝑖𝑟

(0, 0), (−1,−1) 0 100 −1 75 225 −1 75 325 −1
(0, 1), (−1, +1) 0 100 −1 75 25 +1 75 125 +1
(1, 0), (+1, +1) 100 0 +1 75 25 +1 175 25 −1
(1, 1), (+1, +1) 100 0 +1 75 25 +1 175 25 +1

Example 2. A classifier may appear to achieve parity when it does

not. Furthermore, imposing a parity constraint might actually make

everyone worse off.

Consider training classifiers using data from two groups 𝑧 ∈
{𝐴, 𝐵} with heterogeneous data distributions P(𝑌 = +1 | 𝑋 = 𝒙, 𝑧 =

𝐴) = P(𝑌 = +1 | 𝑋 = 𝒙, 𝑧 = 𝐵). Suppose group 𝐴 has a set of

clean labels, while one quarter of group 𝐵’s labels are incorrect.

We denote the Bayes-optimal classifiers for 𝐴 and 𝐵 as 𝑓 ∗
𝐴
and 𝑓 ∗

𝐵
respectively and they obey any parity constraint. The classifier

𝑓 ∗
𝑓 𝑎𝑖𝑟

trained on the observed corrupted data is subject to equal

TPR constraint for both groups.
1
However, 𝑓 ∗

𝑓 𝑎𝑖𝑟
has a higher TPR

(2/3: 200 correct predictions out of 300 true +1 labels) on 𝐵 than

on 𝐴 (1/2: 100 correct predictions out of 200 true +1 labels) when
evaluated on the clean data.

In this paper, we look at the problem of fair classification from

data whose labels are corrupted, such that the error rates of cor-

ruption are group-dependent. Several recent works deal with fair

classification with noisy labels [7, 23, 26]. In particular, it has been

shown that fairness constraints on the noisy training labels can be

beneficial when the label noise is homogeneous across the different

groups that are to be protected [7]. More recently, [18] shows that

how the true fairness rates, such as TPR, are related to observed

quantities with respect to noise parameters. Our work complements

these results: we show that enforcing fairness constraints when

training on data with noisy labels produces a classifier that vio-

lates the fairness constraints as measured with respect to the clean

1
Note that 𝑓 ∗

𝑓 𝑎𝑖𝑟
on the pooled data output +1 for (0, 1) and -1 for (1, 0) because

equal TPR constraint is enforced. In this case, the TPRs for both groups are 50%. If the

classifier output -1 for (0, 1) and +1 for (1, 0) instead, the TPR for group A is 100%

while the TPR for group B is only 50%, which violates the equal TPR constraint.

data. We then provide a fair empirical risk minimization (ERM)

framework that handles heterogenous label noise. Our framework

uses an estimation procedure that infers the knowledge of group-

dependent noise in the training data and applies this knowledge

using bias removal techniques, thus eliminating the effects of noisy

labels in both the objective function and the fairness constraints

(in expectation).

Ourmain contributions are as follows: (1)We show that imposing

fairness constraints on the training process without accounting for

bias in the noisy labels can result in classifiers being less accurate

and less fair (Theorems 1 and 3 of Section 3). (2) We experimentally

demonstrate that these harms can indeed occur in practice with real

data sets, and show that obliviously enforcing equality of oppor-

tunity without awareness of the noise leads to classifiers with no

discriminatory power. (3) We design two noise-resistant fair ERM

approaches that address these problems (Section 4). The main idea

is to construct unbiased estimators of the loss functions and of the

fairness constraints. (4) We provide empirical evidence showing

that these fair ERM solutions improve both accuracy and fairness

guarantees when facing group-dependent label noise (Section 5).

(5) Our codes for solving the noise-resistant fairness constrained

ERM can be found at https://github.com/Faldict/fair-classification-

with-noisy-labels.

1.1 Related Works

A great deal of research has been devoted to fair classification in

general, including fair classification under statistical constraints

[1, 17, 22, 45], decoupled training with preference guarantees [10,

16, 28, 41, 44], and preventing gerrymandering [25], among many

others [12, 33].

In this work, we specifically focus on fairness in the presence

of biased and group-dependent noisy training labels. Our work

contributes to the fair classification literature by introducing ro-

bust methods for dealing with heterogeneous label noise. We also

provide insight into the effects of noise being present in the la-

bels. Our work parallels others’ on fair classification with noisy

labels [7, 23]. Ours differs primarily in two main respects. First,

existing works often assume knowledge of the noise generation

process. Second, previous works have only considered noise rates

that are homogeneous across different groups. We consider a more

realistic setting, where different groups might suffer different levels

of bias, and therefore reach very different conclusions. Mitigating

bias is substantially more challenging in our setting. Nevertheless,

our results could generalized prior work when the noise is assumed

constant across groups, or only one group is assumed to have noise.

Both of our fair ERM approaches extend the literature on learn-

ing with noisy data [3, 11, 19, 29, 31, 32, 34, 37, 39]. Our first uses

surrogate loss functions based on [34] to create unbiased estimators

of the fairness constraints. This first approach requires knowledge

of the noise parameters. Our second approach relaxes this assump-

tion by extending the work of [30] to account for both biases in the

fairness constraints and for group specific label noise.

Recent work on fair classification with imperfect data shows

how to emulate noiseless fair classification by appropriately re-

scaling the fairness tolerance with the noise but is only restricted
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to class-conditional random noise without considering group dif-

ference [26]. Most of the reported results are for the cases with

noisy sensitive attributes but not the labels (despite that the au-

thors provided discussions to how the two problems are related).

The surrogate fairness constraints in our paper could be viewed

as an extension of their method. Nonetheless, our work is more

general, as we consider the more sophisticated settings with group-

dependent label noise. [21] explores the use of proxy variables

when the sensitive attributes are missing. Lastly, [18] also provides

some insights on correcting for observed predictive bias might fur-

ther increase outcome disparities but is concerned with fairness

evaluation rather than learning. In contrast with their work, we

simplify the assumption on instance-dependent noise into group-

dependent, and further develop two fair ERM approaches in terms

of the unbiased estimators.

2 PRELIMINARIES

We start with a dataset with 𝑛 examples (𝒙𝑖 , 𝑦𝑖 , 𝑧𝑖 )𝑛𝑖=1, where each
example consists of a feature vector 𝒙𝑖 = (1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝑑 ) ∈ R𝑑+1,
a label 𝑦𝑖 ∈ {+1,−1}, and a group attribute 𝑧𝑖 ∈ 𝑍 (e.g., 𝑧𝑖 =

1[female]). We assume that there are𝑚 = |𝑍 | ≥ 2 groups. We let

𝑛𝑧 denote the number of examples in group 𝑧, and we use 𝐼𝑧 = {𝑖 |
𝑧𝑖 = 𝑧} and 𝐼 =

⋃
𝑧∈𝑍 𝐼𝑧 to denote their indices. We assume that

each example is drawn iid from a joint distribution D of random

variables (𝑋,𝑌, 𝑍 ).
We use the data set to train a classifier 𝑓 ∈ H : R𝑑+1 → {+1,−1},

whereH denotes our concept class. To this end, we consider solving

a standard risk minimization problem with fairness constraints.

min

𝑓 ∈H
E(𝑋,𝑌 )∼D [1(𝑓 (𝑋 ) ≠ 𝑌 )] (1)

s.t. |𝐹𝑧 (𝑓 ) − 𝐹𝑧′ (𝑓 ) | ≤ 𝛿 ∀𝑧, 𝑧′ ∈ 𝑍 . (2)

Here, 𝐹𝑧 (𝑓 ) is some fairness statistic of 𝑓 for group 𝑧 given the

true labels 𝑦, such as true positive rate :

(TPR) : 𝐹𝑧 (𝑓 ) = P(𝑓 (𝑋 ) = +1|𝑌 = +1, 𝑍 = 𝑧) .

Constraint (2) restricts the disparity between 𝑧, 𝑧′ to atmost𝛿 ≥ 0. A

standard approach for performing above constrained minimization

is via empirical risk minimization (ERM):

min

𝑓 ∈H

𝑛∑
𝑖=1

1(𝑓 (𝒙𝑖 ) ≠ 𝑦𝑖 ) (3)

s.t. |𝐹𝑧 (𝑓 ) − 𝐹𝑧′ (𝑓 ) | ≤ 𝛿 ∀𝑧, 𝑧′ ∈ 𝑍 . (4)

where 𝐹𝑧 (𝑓 ) is our fairness metric defined using training data. For

instance, when using the TPR as a fairness measure:

𝐹𝑧 (𝑓 ) :=
#(𝑓 (𝒙𝑖 ) = +1, 𝑦𝑖 = +1, 𝑧𝑖 = 𝑧)

#(𝑦𝑖 = +1, 𝑧𝑖 = 𝑧) ,

where #(·) is simply a counting function that counts the number of

samples that satisfy the specified conditions.

For computational purposes, ERM is performed in practice by

minimizing over a classification-calibrated loss function [5] ℓ :

R × {±1} → R+ . This fits:

min

𝑓 ∈H

𝑛∑
𝑖=1

ℓ (𝑓 (𝒙𝑖 ), 𝑦𝑖 ) (5)

s.t. |𝐹𝑧 (𝑓 ) − 𝐹𝑧′ (𝑓 ) | ≤ 𝛿 ∀𝑧, 𝑧′ ∈ 𝑍 . (6)

Typical ℓ (·)s include square loss, logistic loss, cross-entropy loss

and more.

We aim to train a classifier using a dataset where the ground

truth labels 𝑦𝑖 are replaced by noisy (or corrupted) labels 𝑦𝑖 ∼ 𝑌̃ .

A noisy label 𝑦 corresponds to a true label 𝑦 that may have been

flipped based on noise rate 0 ≤ 𝜖+𝑧 + 𝜖−𝑧 < 1 (as a function of true

label 𝑦). More precisely, we assume that the noise rates vary based

on the true label 𝑦 as well as the group attribute 𝑧:

𝜖+𝑧 = P(𝑌̃ = −1 | 𝑌 = +1, 𝑍 = 𝑧),
𝜖−𝑧 = P(𝑌̃ = +1 | 𝑌 = −1, 𝑍 = 𝑧)

i.e., the training labels are generated as:

𝑦𝑖 =

{
𝑦𝑖 w.p. 1 − 𝜖

sign(𝑦𝑖 )
𝑧𝑖

−𝑦𝑖 w.p. 𝜖
sign(𝑦𝑖 )
𝑧𝑖 .

This reflects a setting where noise rates are independent of the 𝒙𝑖
at fixed values 𝑦𝑖 and 𝑧𝑖 (e.g., a medical problem where 𝑦𝑖 is the

presence of a disease, and the disease is diagnosed less reliably for

females 𝑧𝑖 = 1).

In this paper, we mainly focus on two specific fairness con-

straints: Equal Opportunity and Equal Odds [22]. Equal opportunity

requires that each group achieves equal true positive rate (TPR) or

false positive rate (FPR), while equal odds requires both equal TPR

and equal FPR. We use the following shorthand to denote different

measures of performance, including TPR and FPR, computed for

each group using the true labels 𝑦 and the noisy labels 𝑦, where

𝑦,𝑦 ∈ {+1,−1}:
TPR𝑧 := P(𝑓 (𝑋 ) = +1 | 𝑌 = +1, 𝑍 = 𝑧)
FPR𝑧 := P(𝑓 (𝑋 ) = +1 | 𝑌 = −1, 𝑍 = 𝑧)

T̃PR𝑧 := P(𝑓 (𝑋 ) = +1 | 𝑌̃ = +1, 𝑍 = 𝑧)

F̃PR𝑧 := P(𝑓 (𝑋 ) = +1 | 𝑌̃ = −1, 𝑍 = 𝑧)

T̃PR𝑧 and F̃PR𝑧 are taken with respect to the noisy labels.

3 ENFORCING FAIRNESS CONSTRAINTS ON

NOISY LABELS CAN BE HARMFUL

Recent results have established that enforcing fairness constraints

improves classifier accuracy when the labels suffer from label noise

that is uniform across different groups [7]. However, as we shall see,

adding fairness constraints can lead to harm when group-dependent

noise is present in the labels.

3.1 Parity Constraints on Noisy Labels Harms

Groups with Clean Labels

The first message that we wish to deliver is that naively enforcing

parity constraints on the noisy labels may harm the accuracy of the

classifier for the groups that are not affected by label noise. Without

loss of generality, we present our results in settings where we

wish to train a classifier with equal TPR across groups. Similar
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Table 3: Label noise harms accuracy: Adult dataset. High

FPR implies weak discrimination power. We highlight any

high harm the classifier suffers when enforcing equal TPR.

Metrics Groups 𝑓 𝑓fair

TPR

female 97.12% ⇒ 96.44%

male 92.40% ⇒ 98.26%

FPR

𝑓 𝑒𝑚𝑎𝑙𝑒 53.35% ⇒ 78.11%

male 46.81% ⇒ 84.32%

Accuracy

𝑓 𝑒𝑚𝑎𝑙𝑒 91.62% ⇒ 88.32%

male 80.39% ⇒ 72.97%

derivations hold for other related constraints (e.g., the ones as

linear combinations of the entries in the confusion matrix), such as

equal FPR, and equal balance error (BER) [33].

Consider a classification problem with two identical groups 𝑧

and 𝑧′ where samples from group 𝑧 have uncorrupted labels while

samples from group 𝑧′ have noisy labels. On the clean data, the

parity constraints naturally hold since the data for both groups

is drawn from an identical distribution. We next show that the

label noise presented in group 𝑧′ can harm the clean group 𝑧 when

enforcing parity constraints. Formally:

Theorem 1. Consider a setting with two identical groups (𝑋,𝑌, 𝑍 =

𝑧) and (𝑋,𝑌, 𝑍 = 𝑧′). Group 𝑧 has clean labels, i.e., 𝜖+𝑧 = 𝜖−𝑧 = 0.

Group 𝑧′ suffers from symmetric noise 𝜖+
𝑧′ = 𝜖−

𝑧′ = 𝑒 > 0. In this

setting, a classifier trained subject to the equal TPR constraint (TPR𝑧 =

T̃PR𝑧′) leads to an uninformative classifier that TPR𝑧 = FPR𝑧 .

We defer the proof to Section Ommited Proofs. Thus, even if

group 𝑧 is represented with completely uncorrupted labels in the

training data, the imposition of equal TPR in the presence of noise

for 𝑧′ will diminish the classifier’s predictive accuracy on members

of group 𝑧.

Case study. We empirically examine the above observation on

the Adult dataset fromUCIMachine Learning repository [15]. There

are two sensitive groups, 𝑍 = {𝑚𝑎𝑙𝑒, 𝑓 𝑒𝑚𝑎𝑙𝑒}, in this data set. We

inject symmetric noise 𝜖+ = 𝜖− = 0.3 into labels for members of the

𝑓 𝑒𝑚𝑎𝑙𝑒 group. Then, we train two classifiers: 𝑓 , which is trained

without any fairness constraints, and 𝑓fair, which is trained with

the imposition of equal TPR using the reduction method [1]. As is

shown in Table 3, the empirical results mirror Theorem 1. When the

difference between 𝑓fair’s TPR for the two groups becomes small

(less than 2%), 𝑓fair’s TPR and FPR become close together, and the

accuracy decreases significantly. The above trends hold even when

we try to equalize TPR and FPR together across groups. We notice

that the two groups are not strictly identical in the Adult dataset,

but our example implies that there exists dangerous cases where

enforcing fairness constraints can harm classifier accuracy for the

group with uncorrupted labels.

3.2 Violation of Fairness under Perceived

Fairness

Our second message is that training fair classifiers using noisy la-

bels may lead to a false impression of fairness. This arises when the

fairness constraints are satisfied over the noisy labels while being

violated over the clean labels. Before proceeding, we require extend-

ing Proposition 16 of [32] into the situation with group-dependent

label noise. A similar result appears in [40].

Lemma 1. For each group 𝑧 we have that

TPR𝑧 =(1 − 𝜖+𝑧 ) · T̃PR𝑧 + 𝜖+𝑧 · F̃PR𝑧 (7)

FPR𝑧 =𝜖−𝑧 · T̃PR𝑧 + (1 − 𝜖−𝑧 ) · F̃PR𝑧 (8)

Proof. Expanding P(𝑓 (𝑋 ) = +1 | 𝑌 = +1, 𝑍 = 𝑧) using law of

total probability we have

TPR𝑧 = P(𝑓 (𝑋 ) = +1 | 𝑌 = +1, 𝑍 = 𝑧)

= P(𝑓 (𝑋 ) = +1, 𝑌̃ = +1 | 𝑌 = +1, 𝑍 = 𝑧)

+ P(𝑓 (𝑋 ) = +1, 𝑌̃ = −1 | 𝑌 = +1, 𝑍 = 𝑧)

= P(𝑌̃ = +1 |𝑌 = +1, 𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌̃ = +1, 𝑌 = +1, 𝑍 = 𝑧)

+ P(𝑌̃ = −1 |𝑌 = +1, 𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌̃ = −1, 𝑌 = +1, 𝑍 = 𝑧)

= P(𝑌̃ = +1 |𝑌 = +1, 𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌̃ = +1, 𝑍 = 𝑧)

+ P(𝑌̃ = −1 |𝑌 = +1, 𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌̃ = −1, 𝑍 = 𝑧)

= (1 − 𝜖+𝑧 ) · T̃PR𝑧 + 𝜖+𝑧 · F̃PR𝑧 (9)

Note in the above we drop the dependence on𝑌 when conditioning

on 𝑌̃ . This is because 𝑓 is trained purely on the noisy labels, and 𝑌̃

encodes all the information 𝑓 has about 𝑌 .

A similar derivation holds for FPR𝑧 . □

We also note that, in the special case where all groups suffer from

an identical rate of label corruption, the learner can be oblivious to

the specific error rates:

Theorem 2. Consider a classification problem with noisy labels

where the noise rates are independent of group membership, so that

𝜖+𝑧 = 𝜖+
𝑧′ and 𝜖−𝑧 = 𝜖−

𝑧′ ∀𝑧, 𝑧
′ ∈ 𝑍 . Then it follows that TPR𝑧 =

TPR𝑧′ ∀𝑧, 𝑧′ ∈ 𝑍 , if equal odds (equalizing both TPR and FPR) on

the noisy labels is imposed.

The proof follows by applying the assumption of equal error

rates and equal odds on the noisy labels with Lemma 1. However,

things break down in the general case. If we impose equal odds

across groups on a learner that is unaware of the labels’ noisiness

(i.e. whenever T̃PR𝑧 = T̃PR𝑧′ ), then:

Theorem 3. Assume that a classifier is subject to equal odds in the

presence of group-dependent label noise. Then for any two groups

𝑧, 𝑧′ ∈ 𝑍 , we have

| TPR𝑧 −TPR𝑧′ | = |T̃PR𝑧 − F̃PR𝑧 | · |𝜖+𝑧 − 𝜖+𝑧′ |,

| FPR𝑧 − FPR𝑧′ | = |T̃PR𝑧 − F̃PR𝑧 | · |𝜖−𝑧 − 𝜖−𝑧′ |.

Unless the classifier is random on the noisy training data, i.e., T̃PR𝑧 =

F̃PR𝑧 , it is impossible to satisfy equal odds over the clean data when-

ever 𝜖+𝑧 ≠ 𝜖+
𝑧′ and 𝜖

−
𝑧 ≠ 𝜖−

𝑧′ .

Proof. Noticing that T̃PR𝑧 = T̃PR𝑧′ and F̃PR𝑧 = F̃PR𝑧′ (equaliz-

ing fairness metrics on the noisy data) and applying Lemma 1, we
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obtain

| TPR𝑧 −TPR𝑧′ | = | ( (1 − 𝜖+𝑧 ) · T̃PR𝑧 + 𝜖+𝑧 · F̃PR𝑧 )

− ( (1 − 𝜖+
𝑧′ ) · T̃PR𝑧′ + 𝜖+

𝑧′ · F̃PR𝑧′ ) |

= |𝜖+𝑧 · (F̃PR𝑧 − T̃PR𝑧 ) − 𝜖+
𝑧′ · (F̃PR𝑧 − T̃PR𝑧 ) |

= | (𝜖+𝑧 − 𝜖+
𝑧′ ) · (F̃PR𝑧 − T̃PR𝑧 ) |

= |T̃PR𝑧 − F̃PR𝑧 | · |𝜖+𝑧 − 𝜖+
𝑧′ |

The argument for FPR is symmetrical:

| FPR𝑧 − FPR𝑧′ | = | (𝜖−𝑧 · T̃PR𝑧 + (1 − 𝜖−𝑧 ) · F̃PR𝑧 )

− (𝜖−
𝑧′ · T̃PR𝑧′ + (1 − 𝜖+

𝑧′ ) · F̃PR𝑧′ ) |

= |𝜖−𝑧 · (T̃PR𝑧 − F̃PR𝑧 ) − 𝜖−
𝑧′ · (T̃PR𝑧 − F̃PR𝑧 ) |

= | (𝜖−𝑧 − 𝜖−
𝑧′ ) · (T̃PR𝑧 − F̃PR𝑧 ) |

= |T̃PR𝑧 − F̃PR𝑧 | · |𝜖−𝑧 − 𝜖−
𝑧′ |

Therefore

| TPR𝑧 −TPR𝑧′ | > 0, | FPR𝑧 − FPR𝑧′ | > 0,

when T̃PR𝑧 ≠ F̃PR𝑧 , 𝜖
+
𝑧 ≠ 𝜖+

𝑧′, 𝜖
−
𝑧 ≠ 𝜖−

𝑧′ . □

The proof follows by a direct application of Lemma 1. Theorem 3

implies that the true fairness violation is proportional to the differ-

ence in error rates across the different sub-groups. We offer two

remarks. First, if the error rates are systematically biased towards a

particular group, then a perceived fair classifier will lead to unequal

odds. Second, the above bias will be reinforced when the trained

model is more accurate on noisy data; a more accurate model will

lead to a larger difference in |T̃PR𝑧 − F̃PR𝑧 |.

4 FAIR ERM WITH NOISY LABELS

In this section, we describe two noise-tolerant and fair ERM solu-

tions that address the combined challenges of heterogeneous and

group-dependent label noise. Both the surrogate loss and group-

weighted peer loss approaches for handling noisy labels rely on

estimations of the label noise. Our procedure for estimating the

noise parameters, detailed in Section 4.3, is an adaptation of [35].

Section 4.3 also offers discussion of the impacts of noisy estimates.

4.1 A Surrogate Loss Approach

Aswe shall see, training an unmodified loss function using the noisy

labels 𝑦𝑖 corrupts the model in a manner that cannot be addressed

via post-hoc correction. Thus, a natural resolution is to modify the

loss function itself. This modified loss function is called a surrogate

loss.

Bias removal surrogate loss functions. Bias removal via a surrogate

loss is a popular approach to handling label noise [34]. The original

loss function ℓ (·) is replaced with a surrogate loss function ℓ̃ (·) that

Table 4: Surrogate constraints for surrogate loss.

Metric 𝐹
∧
𝑧 (𝑓 )

TPR (1 − 𝜖+𝑧 ) · TPR
∧

𝑧 + 𝜖+𝑧 · FPR
∧

𝑧

FPR 𝜖−𝑧 · TPR
∧

𝑧 + (1 − 𝜖−𝑧 ) · FPR
∧

𝑧

Equal Odds both TPR and FPR

Table 5: Surrogate constraints for group weighted peer loss

Metric 𝐹
∧
𝑧 (𝑓 )

TPR P(𝑓 (𝑋 ) = +1|𝑍 = 𝑧) + Δ𝑧

2
(TPR
∧

𝑧 − FPR

∧
𝑧)

FPR P(𝑓 (𝑋 ) = +1|𝑍 = 𝑧) − Δ𝑧

2
(TPR
∧

𝑧 − FPR

∧
𝑧)

Equal Odds both TPR and FPR

“corrects" for noise in the labels in expectation. Formally, the surro-

gate loss is chosen so that the cost of mis-classifying an element

𝒙𝑖 with true label 𝑦𝑖 is equivalent to the expected loss value that

arises from using noisy label 𝑦𝑖 . Thus, we want to find a surrogate

loss ℓ̃ such that:

ℓ (𝑓 (𝒙), 𝑦) = E
𝑌̃
[ℓ̃ (𝑓 (𝒙), 𝑌̃ ) | 𝑌 = 𝑦] (10)

for all 𝒙 and 𝑦. When the noise depends on the label value, the

function given by

ℓ̃ (𝑓 (𝒙𝑖 ), 𝑦̃𝑖 = +1) :=
(1 − 𝜖−𝑧𝑖 )ℓ (𝑓 (𝒙𝑖 ), +1) − 𝜖+𝑧𝑖 ℓ (𝑓 (𝒙𝑖 ),−1)

1 − 𝜖+𝑧𝑖 − 𝜖−𝑧𝑖
, (11)

ℓ̃ (𝑓 (𝒙𝑖 ), 𝑦̃𝑖 = −1) :=
(1 − 𝜖+𝑧𝑖 )ℓ (𝑓 (𝒙𝑖 ),−1) − 𝜖−𝑧𝑖 ℓ (𝑓 (𝒙𝑖 ), +1)

1 − 𝜖+𝑧𝑖 − 𝜖+𝑧𝑖
. (12)

satisfies the above property, as shown by Lemma 1 in [34]. A

classifier 𝑓 minimizing the surrogate loss on noisy data ℓ̃ (𝑋, 𝑌̃ )
will minimize the loss on clean data ℓ (𝑋,𝑌 ) in expectation. This

property allows us to perform model selection on a noisy validation

set, and one could choose the model that performs better on the

validation set to deploy.

Surrogate fairness constraints. We will also need to modify the fair-

ness constraints to account for the effects of noise. Our method

of doing so is inspired by the surrogate loss that we need to work

with an unbiased estimate of the fairness constraints. For the case

of binary classification, we can express the surrogate measures of

group-based fairness constraints using Lemma 1.

We use Equation (11) and Equation (12) to define our surrogate

loss functions ℓ̃𝑧 (𝑓 (𝒙𝑖 ), 𝑦𝑖 = +1), and ℓ̃𝑧 (𝑓 (𝒙𝑖 ), 𝑦𝑖 = −1). Further-
more, define the empirical TPR and FPR over the noisy labels as

follows:

TPR

∧
𝑧 (𝑓 ) =

#(𝑓 (𝒙𝑖 ) = +1, 𝑦𝑖 = +1, 𝑧𝑖 = 𝑧)
#(𝑦𝑖 = +1, 𝑧𝑖 = 𝑧) (13)

FPR

∧
𝑧 (𝑓 ) =

#(𝑓 (𝒙𝑖 ) = +1, 𝑦𝑖 = −1, 𝑧𝑖 = 𝑧)
#(𝑦𝑖 = −1, 𝑧𝑖 = 𝑧) (14)

We then define our surrogate fairness measures 𝐹
∧
𝑧 (𝑓 ) using only

noisy data, as detailed in Table 4. Our noise-resistant fair ERM

states as follows:

min

𝑓 ∈H

𝑛∑
𝑖=1

ℓ̃ (𝑓 (𝒙𝑖 ), 𝑦𝑖 )

s.t. |𝐹
∧
𝑧 (𝑓 ) − 𝐹

∧
𝑧′ (𝑓 ) | ≤ 𝛿, ∀𝑧, 𝑧′. (15)

4.2 Group Weighted Peer Loss Approach

The recently developed peer loss function partially circumvents the

issue of noise rate estimation [30]. The peer loss requires less prior
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knowledge of the noise rates for each class. It is defined as:

ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝒙𝑖 ), 𝑦𝑖 ) := ℓ (𝑓 (𝒙𝑖 ), 𝑦𝑖 ) − 𝛼 · ℓ
(
𝑓 (𝒙𝑖1 ), 𝑦𝑖2

)
, (16)

where

𝛼 = 1 − (1 − 𝜖− − 𝜖+) · P(𝑌 = +1) − P(𝑌 = −1)
P(𝑌̃ = +1) − P(𝑌̃ = −1)

is a parameter to balance the instances for each label, and where 𝑖1
and 𝑖2 are uniformly and randomly selected samples from 𝐼𝑧/{𝑖}
(i.e., “peer" samples which inspired the name peer loss as noted

in [30]). Although the noise parameters explicitly appear in the

definition of 𝛼 , only the knowledge of Δ := 1 − 𝜖− − 𝜖+ is needed.

In practice, we could tune 𝛼 as a hyper-parameter during training.

This loss function has the following important property, proven in

Lemma 3 of [30]:

E
˜D𝑧
[ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋 ), 𝑌̃ )] = Δ𝑧 · ED𝑧

[ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋 ), 𝑌 )], (17)

where
˜D𝑧 denotes the noisy distribution for group 𝑧 and Δ𝑧 =

1 − 𝜖−𝑧 − 𝜖+𝑧 . Adapting the peer loss function to labels with group

dependent noise requires accounting for the differing values of

Δ𝑧 . We do so by re-weighting Equation (16) to obtain our group-

weighted peer loss ℓ𝑔𝑝 :

ℓ𝑔𝑝 (𝑓 (𝒙𝑖 ), 𝑦𝑖 ) :=
1

Δ𝑧𝑖

(
ℓ (𝑓 (𝒙𝑖 ), 𝑦𝑖 ) − 𝛼 · ℓ

(
𝑓 (𝒙𝑖1 ), 𝑦𝑖2

) )
. (18)

When class is balanced for every group 𝑧, i.e., P𝑍=𝑧 (𝑌 = +1) =

P𝑍=𝑧 (𝑌 = −1) = 1

2
, the parameter 𝛼 is exactly 1. In this case, the

expected group-weighted peer loss on the noisy distribution
˜D is

the same as the expected uncorrected loss ℓ on the true distribution

D. More precisely:

Theorem 4. For all group dependent noise rates 𝜖−𝑧 and 𝜖+𝑧 satisfying

𝜖−𝑧 + 𝜖+𝑧 < 1, taking ℓ (·) as the 0-1 loss 1(·) and when P𝑍=𝑧 (𝑌 =

+1) = P𝑍=𝑧 (𝑌 = −1) = 1

2
,

E
˜D [ℓ𝑔𝑝 (𝑓 (𝑋 ), 𝑌̃ )] = ED [ℓ (𝑓 (𝑋 ), 𝑌 ] − 1

2

. (19)

Proof. Observe that

ℓ𝑔𝑝 (𝑓 (𝒙𝑖 ), 𝑦) =
1

Δ𝑧𝑖
ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝒙𝑖 ), 𝑦)

Taking expectations over noisy data, we have

E ˜D [ℓ𝑔𝑝 (𝑓 (𝑋 ), 𝑌̃ ) ]

=
1

|𝐼 | ·
∑
𝑧∈𝑍

|𝐼𝑧 | · E ˜D𝑧
[ℓ𝑔𝑝 (𝑓 (𝑋𝑧 ), 𝑌̃𝑧 ) ]

=
1

|𝐼 | ·
∑
𝑧∈𝑍

|𝐼𝑧 |
Δ𝑧

· E ˜D𝑧
[ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋𝑧 ), 𝑌̃𝑧 ) ]

=
1

|𝐼 | ·
∑
𝑧∈𝑍

|𝐼𝑧 |
Δ𝑧

· Δ𝑧ED𝑧 [ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋𝑧 ), 𝑌𝑧 ) ] (by Equation 17)

= ED [ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋 ), 𝑌 ) ] (20)

Notice that 𝛼 = 1when P(𝑌 = +1) = P(𝑌 = −1) = 1

2
, the definition

of peer loss function gives

E𝑋,𝑌 [ℓ𝑝𝑒𝑒𝑟 (𝑓 (𝑋 ), 𝑌 ) ] = E𝑋,𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 ) ] − E𝑋E𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 ) ] (21)

Using the assumption that P(𝑌 = +1) = P(𝑌 = −1) = 1

2
and the

fact that ℓ is 0-1 loss function,

E𝑋E𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 ) ] = P(𝑌 = +1) · E𝑋 [ℓ (𝑓 (𝑋 ), +1) ]+
P(𝑌 = −1) · E𝑋 [ℓ (𝑓 (𝑋 ),−1) ]

=
1

2

· ℓ (𝑓 (𝑋 ), +1) + 1

2

· ℓ (𝑓 (𝑋 ), +1)

=
1

2

· 1(𝑓 (𝑋 ) ≠ +1) + 1

2

· 1(𝑓 (𝑋 ) ≠ −1)

=
1

2

P(𝑓 (𝑋 ) = −1) + 1

2

· P(𝑓 (𝑋 ) = +1)

=
1

2

(22)

Combining Eq. (20), Eq. (21) and Eq. (22), we complete the proof

E ˜D [ℓ𝑔𝑝 (𝑓 (𝑋 ), 𝑌̃ ) ] = ED [ℓ (𝑓 (𝑋 ), 𝑌 ] − 1

2

□

Peer-based surrogate fairness constraints. We acquire the following

result in order to create group-aware surrogate constraints:

Lemma 2. True TPR and FPR relate to T̃PR𝑧 , F̃PR𝑧 defined on the

noisy labels as follows:

TPR𝑧 = P(𝑓 (𝑋 ) = +1 |𝑍 = 𝑧) + Δ𝑧 · (T̃PR𝑧 − F̃PR𝑧 ) · P(𝑌 = −1 |𝑍 = 𝑧)
(23)

FPR𝑧 = P(𝑓 (𝑋 ) = +1 |𝑍 = 𝑧) − Δ𝑧 · (T̃PR𝑧 − F̃PR𝑧 ) · P(𝑌 = +1 |𝑍 = 𝑧)
(24)

Proof. Following Lemma 1 we have,

TPR𝑧 − FPR𝑧 = (1 − 𝜖+𝑧 − 𝜖−𝑧 ) (T̃PR − F̃PR) = Δ𝑧 · (T̃PR − F̃PR)

Notice that

P(𝑓 (𝑋 ) = +1 | 𝑍 = 𝑧) = P(𝑌 = +1 | 𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌 = +1, 𝑍 = 𝑧)
+ P(𝑌 = −1 |𝑍 = 𝑧) · P(𝑓 (𝑋 ) = +1 | 𝑌 = −1, 𝑍 = 𝑧)
= P(𝑌 = +1 |𝑍 = 𝑧) · TPR𝑧 +P(𝑌 = −1 |𝑍 = 𝑧) · FPR𝑧

Solving the two equations above we complete the proof. □

Lemma 2 allows us to derive the appropriate surrogate fairness

constraints for the peer loss, displayed in Table 5. Note that we

have assumed that the datasest is balanced for each group; i.e.,

∀𝑧 ∈ 𝑍 P(𝑌 = +1|𝑍 = 𝑧) = 1

2
. If the data is imbalanced, we will

require knowing the marginal prior P(𝑌 = +1|𝑍 = 𝑧). We note that

it is straightforward to get the estimated marginal priors as given

by Equation (27) in Section 4.3.

We merely require knowledge of Δ𝑧 for each 𝑧 in order to define

ℓ𝑔𝑝 and 𝐹
∧
𝑧 (𝑓 ). This is a weaker requirement compared to knowing

the error rates (which will carry estimation of two parameters for

each group). We indeed see our group peer loss approach performs

more stably as compared to the surrogate loss approach introduced

in last subsection when using noisy estimates of the noise rates.

With group-weighted peer loss function and surrogate fairness con-

straints, we are able to perform a fair ERM as detailed in Equaltion

(15) by replacing ℓ̃ with ℓ𝑔𝑝 and the corresponding 𝐹
∧
𝑧 (𝑓 ) term.
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4.3 Error Rates Estimation and its Impact

We employ “confident learning” to perform noise rate estimation in

our experiments [35]. The first step is to pre-train a classifier 𝑓𝑝𝑟𝑒
over the noisy labels directly and learn a noisy predicted probability

𝑝 (𝑦; 𝒙, 𝑧) = P(𝑓𝑝𝑟𝑒 (𝒙) = 𝑦 |𝑍 = 𝑧) .

Then, for each pair of classes 𝑘, 𝑙 ∈ {+1,−1}, we define the subset
of samples:

𝑋𝑦̂=𝑘,𝑧 := {𝒙𝑖 |𝑦𝑖 = 𝑘, 𝑖 ∈ 𝐼𝑧 },

𝑋𝑦̂=𝑘,𝑦=𝑙,𝑧 := {𝒙𝑖 |𝑦𝑖 = 𝑘, 𝑝 (𝑦 = 𝑙 ; 𝒙𝑖 , 𝑧) ≥ 𝑡𝑙,𝑧 , 𝑖 ∈ 𝐼𝑧 },

where

𝑡𝑙,𝑧 =
1

|𝑋𝑦̂=𝑙,𝑧 |

∑
𝒙∈𝑋𝑦̂=𝑙,𝑧

𝑝 (𝑦 = 𝑙 ; 𝒙, 𝑧)

is the expected self-confidence probability for class 𝑙 and group 𝑧.

Using the above quantities, we estimate the group-aware joint

probability 𝑄 𝑦̃=𝑘,𝑦=𝑙,𝑧 = P(𝑌 = 𝑘,𝑌 = 𝑙, 𝑍 = 𝑧) over the noisy

labels 𝑦 and clean labels 𝑦 with:

𝑄𝑦̃=𝑘,𝑦=𝑙,𝑧 =

|𝑋𝑦̃=𝑘,𝑦=𝑙,𝑧 |∑
𝑙 |𝑋𝑦̃=𝑘,𝑦=𝑙,𝑧 |

· |𝑋𝑦̃=𝑘,𝑧 |∑
𝑘,𝑙

(
|𝑋𝑦̃=𝑘,𝑦=𝑙,𝑧 |∑
𝑙 |𝑋𝑦̃=𝑘,𝑦=𝑙,𝑧 |

· |𝑋𝑦̃=𝑘,𝑧 |
) (25)

We use the marginals of estimated joint to compute the noise

parameter estimates for each group 𝑧:

𝜖+𝑧 =
𝑄𝑦̃=−1,𝑦=+1,𝑧

𝑄𝑦̃=−1,𝑦=+1,𝑧 +𝑄𝑦̃=+1,𝑦=+1,𝑧
,

𝜖−𝑧 =
𝑄𝑦̃=+1,𝑦=−1,𝑧

𝑄𝑦̃=+1,𝑦=−1,𝑧 +𝑄𝑦̃=−1,𝑦=−1,𝑧

(26)

To estimate Δ𝑧 , we simply substitute 𝜖−𝑧 and 𝜖+𝑧 for 𝜖−𝑧 and 𝜖+𝑧 in the

equation for Δ𝑧 . As a byproduct, we could estimate the marginal

priors P(𝑌 = +1|𝑍 = 𝑧) by

𝑄𝑦̃=+1,𝑦=+1,𝑧 +𝑄𝑦̃=−1,𝑦=+1,𝑧

𝑄𝑦̃=+1,𝑦=+1,𝑧 +𝑄𝑦̃=−1,𝑦=+1,𝑧 +𝑄𝑦̃=−1,𝑦=+1,𝑧 +𝑄𝑦̃=−1,𝑦=−1,𝑧
(27)

Effects of noisy estimates. It is important to quantify the impact of

the noise rate estimation error on the accuracy and fairness of the

resulting classifier. We first note that, for any 𝜂, 𝜏 > 0, the law of

large numbers implies that taking sufficiently many samples from

D will ensure that the following holds for all 𝑧 with probability at

least 1 − 𝜂:

max

{ ��𝜖+𝑧 − 𝜖+𝑧
�� , ��� 𝜖+𝑧

1−𝜖+𝑧−𝜖−𝑧
− 𝜖+𝑧

1−𝜖+𝑧−𝜖−𝑧

���,��𝜖−𝑧 − 𝜖−𝑧
�� , ��� 1−𝜖−𝑧

1−𝜖+𝑧−𝜖−𝑧
− 1−𝜖−𝑧

1−𝜖+𝑧−𝜖−𝑧

���} ≤ 𝜏 .

(28)

Denote by ℓ̂ (·) the surrogate loss function defined using the

estimated noises {𝜖+𝑧 , 𝜖−𝑧 }, and let

ˆ𝑓 ∗ = argmin

𝑓 ∈H

𝑁∑
𝑖=1

ℓ̂ (𝑓 (𝒙𝑖 ), 𝑦̃𝑖 ), ˜𝑓 ∗ = argmin

𝑓 ∈H

𝑁∑
𝑖=1

ℓ̃ (𝑓 (𝒙𝑖 ), 𝑦̃𝑖 )

We have the following result and defer the proof to Section ??:

Theorem 5. For every 𝜂, 𝜏 > 0 there exists 𝑁 such that

1

𝑁
·
𝑁∑
𝑖=1

ℓ̃ ( ˆ𝑓 ∗ (𝒙𝑖 ), 𝑦̃𝑖 ) −
1

𝑁
·
𝑁∑
𝑖=1

ℓ̃ ( ˜𝑓 ∗ (𝒙𝑖 ), 𝑦̃𝑖 ) ≤ 4𝜏 · ℓ̄ (29)

with probability at least 1 − 𝜂, where ℓ̄ := max ℓ .

Because the fairness constraints 𝐹
∧
𝑧 (𝑓 ) are linear in 𝜖+𝑧 , 𝜖

−
𝑧 s, the

additional fairness violations incurred due to the noisy estimates

of the error rates will also be linear in 𝜏 too. Similar observations

hold when using the estimated Δ̃𝑧 in the peer loss.

5 EXPERIMENTS

Due to the difficulty of acquiring real world datasets with known la-

bel corruption characteristics, we artificially synthesize the datasets

with a noise generation step. These controlled experiments help us

understand the robustness of our approaches under different noise

scenarios.

5.1 Experimental Setup

Dataset. We evaluate our methods as well as other baseline meth-

ods on five datasets:

• Adult, the Adult dataset from the UCI ML Repository with

males and females as the protected groups [15].

• Arrest and Violent, the COMPAS recidivism dataset for

arrest and violent crime statistics, with race (restricted to white

and black) and gender as the sensitive attributes [4].

• German, the German credit dataset from UCI ML Repository

with gender as the sensitive attribute [15].

• Law, a subset of the original data set from LSAC with race (re-

stricted to black and white) as the sensitive attribute [43].

Table 6 describes the dataset statistics and parameters used in

the experiments. We chose to apply a diverse set of noise parame-

ters to the different subgroups. The fairness tolerance 𝛿 and noise

parameters 𝜖 for Adult, German and Law data sets are identi-

cal, but they are different from Arrest and Violent data sets

because Arrest and Violent data sets contain more protected

groups. We make this choice mainly for the baseline models to

obtain meaningful results to compare with.

Noise generation. We randomly split the clean dataset D =

{(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )}𝑛𝑖=1 into a training set and a test set in a ratio of 80

to 20. We add asymmetric label noises to the training dataset, and

leave the test data untouched for verification purposes. For each

sensitive group 𝑧 ∈ 𝑍 , we randomly flip the clean label 𝑦 with

probability 𝜖−𝑧 if its value is −1, and we flip the clean label with

probability 𝜖+𝑧 if it’s +1. After injecting this noise, we use the same

training set and test set to benchmark all the methods.

Methods. For all of the methods above, we use logistic regression

to perform classification and leverage the reduction approach as

proposed in [1] for solving our constrained optimization problem.

We evaluate the performance of several methods:

• Clean, in which the classifier is trained on the clean data subject
to the equal odds constraint

• Corrupt, which directly trains the classifier on the corrupted

data subject to the equal odds fairness constraint
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Table 6: Dataset statistic and parameters.

Dataset Source Number of data examples 𝑛 Fairness Tolerance 𝛿 Sensitive Groups

Noise Rates

𝜖− 𝜖+

adult UCI [15] 32561 2%

female 0.45 0.15

male 0.35 0.55

arrest COMPAS [4] 6644 5%

white 0.40 0.30

black 0.15 0.25

arrest COMPAS [4] 6644 5%

white male 0.45 0.10

black male 0.10 0.35

white female 0.35 0.45

black female 0.55 0.25

violent COMPAS [4] 5278 5%

white male 0.45 0.10

black male 0.10 0.35

white female 0.35 0.45

black female 0.55 0.25

German UCI [15] 1000 2%

female 0.45 0.15

male 0.35 0.55

law LSAC [43] 18692 2%

white 0.45 0.15

black 0.35 0.55

• Surrogate Loss, which uses the surrogate loss approach

described in Section 4.1

• Group Peer Loss, which uses the group weighted peer loss

approach described in Section 4.2 to train a fair classifier on the

corrupted training set.

The Corrupt baseline gives us a sense about the harm caused

by the unawareness of the labels’ noise, and the clean baseline

shows the biases contained in the datasets.

We set the samemaximum fairness violation 𝛿 for all themethods

on the same dataset during training. As there are more sensitive

groups on arrest and violent datasets, we set 𝛿 = 5% on these

datasets and 𝛿 = 2% on the other datasets. We report metrics for

each of the above methods averaged over five runs.

Computing Infrastructure. We conducted all the experiments on a

3 GHz 6-Core Intel Core i5 CPU. The running time for Surrogate
Loss is about 10 minutes, while the running time for Group
Peer Loss could be over 30 minutes.

Tuning 𝛼 in Peer Loss. The performance of our group weighted

peer loss is highly influenced by the hyperparameter 𝛼 . Recall that

E
˜D𝑧
[ℓ𝑔𝑝 (𝑓 (𝑋 ), 𝑌̃ )] = ED𝑧

[ℓ𝑔𝑝 (𝑓 (𝑋 ), 𝑌 )]

We split 10% of data examples in the train set for validation and

found the optimal 𝛼 using grid search. The range of 𝛼 we searched

varied between 0.0 to 2.0. We observed that both the accuracy and

fairness violation on the validation set exhibit the same trends on

the test set. In practice, the group weighted peer loss with 𝛼 = 0.3

achieves the best performance on the Adult dataset.

5.2 Results

We present an overview of the performance for each method on

the test set in Table 7. We compare the two fair ERM approaches

using both the true and estimated noise rates. The metrics we report

include violation, the maximum difference in TPR and FPR between

groups 𝑧, 𝑧′ ∈ 𝑍 , and accuracy, the accuracy achieved on test set.

Wemake the following observations about our results. First, both

of the two fair ERM approaches in Section 4 produce classifiers that

are more effective at mitigating unfairness than a classifier that is

naively trained on the corrupted data.

In particular, the group weighted peer loss approach achieves

almost 0% violation on the German and law data sets, when given

the true noise parameters. The only noticeable worse case arises

when applying the surrogate loss approach to the German dataset.

This may be due to the high variance of the German dataset, which

has fewer than 1000 samples.

Second, as expected, models trained using our proposed fair

ERM methods do not achieve the same level of accuracy as a model

that is fit using clean labels. However, our models are typically

more accurate than the model fit directly to the corrupted data.

For example, on the arrest data set with four protected groups,

the surrogate loss approach achieves a similar accuracy to the

classifier trained on clean data while incurring an even smaller

fairness violation. Third, Our methods perform similarly well when

trained using both the true and with the estimated noise parameters,

indicating that the noise estimation procedures are effective. On

arrest and violent datasets, our methods with estimated noise

parameters even perform better than those with true parameters.

This is probably due to the biases and noise in these datasets. Finally,

our fair ERM frameworks adapt well to multiple sensitive groups,

as demonstrated by the good performance on the Arrest and

Violent data sets.

5.3 Impact of noise levels on classifier

performance.

We present the results of varying noise rate on the adult data

set (with two groups) in Table 8. We only add symmetric noise to

𝑓 𝑒𝑚𝑎𝑙𝑒 group and keep the 𝑚𝑎𝑙𝑒 group clean. ERM is generally

robust to symmetric noises when a significant subset of the data is

clean (one group in our example), so we do not expect significant

accuracy improvement from ourmethods.We focus on how fairness

violation reduces. Observe that, comparing to training with clean
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Table 7: Overview of group-based performance metrics for all methods on 5 data sets. We highlight the best values achieved

for fairness violation and accuracy in green and the worst in red.𝑚 is the number of sensitive groups, 𝜖 is the average of error

rates over all the groups and all label classes 𝜖+𝑧 , 𝜖
−
𝑧 s. true indicates training with true noise parameters and estimated indicates

training with estimated noise parameters. The values after ± are the standard deviation.

Surrogate Loss Group Peer Loss

Dataset Metrics Avg. 𝜖 Clean Corrupt true estimated true estimated

Adult

𝑚 = 2

violation

accuracy

0.38

0.47%

83.76%

8.36 ± 1.36%

76.08 ± 2.49%

1.46 ± 0.50%

81.16 ± 3.41%

1.39 ± 0.80%

75.99 ± 7.45%

1.18 ± 0.63%

77.00 ± 2.52%

1.69 ± 0.86%

75.13 ± 5.15%

Arrest

𝑚 = 2

violation

accuracy

0.28

2.27%

65.16%

2.98 ± 0.74%

60.72 ± 0.66%

0.54 ± 0.27%

61.7 ± 3.23%

0.36 ± 0.24%

62.3 ± 5.30%

1.78 ± 0.89%

63.81 ± 3.35%

1.05 ± 0.55%

65.31 ± 3.41%

Arrest

𝑚 = 4

violation

accuracy

0.34

5.89%

66.0%

12.93 ± 0.95%

53.7 ± 1.82%

0.88 ± 0.27%

65.7 ± 2.92%

2.48 ± 1.42%

58.8 ± 4.96%

1.36 ± 0.69%

60.27 ± 2.90%

1.40 ± 0.36%

57.56 ± 2.96%

Violent

𝑚 = 4

violation

accuracy

0.34

0.37%

60.18%

7.16 ± 0.80%

52.2 ± 0.23%

4.81 ± 0.70%

53.14 ± 4.91%

7.76 ± 1.02%

55.4 ± 0.71%

2.06 ± 0.81%

55.64 ± 4.88%

0.68 ± 0.28%

52.7 ± 0.57%

German

𝑚 = 2

violation

accuracy

0.38

0.68%

74.5%

2.68 ± 0.32%

70.5 ± 0.00%

11.79 ± 3.87%

68.5 ± 4.27%

11.08 ± 2.16%

71.5 ± 2.53%

0.00 ± 0.00%

70.0 ± 0.71%

1.64 ± 0.32%

70.5 ± 2.53%

Law

𝑚 = 2

violation

accuracy

0.38

0.6%

90.67%

2.74 ± 0.12%

90.16 ± 0.79%

0.36 ± 0.08%

90.26 ± 0.48%

1.98 ± 1.16%

89.92 ± 2.86%

0.03 ± 0.02%

90.32 ± 0.10%

0.57 ± 0.12%

90.29 ± 0.20%

Table 8: We show how different levels of symmetric noise

𝜖− = 𝜖+ = 𝜖 affect the classifiers’ performance on adult
dataset. SL: Surrogate Loss. GPL: Group Peer Loss. We high-

light substantial improvement of fairness in green and sever

violation in red.

Noise 𝜖 Metric Clean Corrupt SL GPL

0.1

violation 0.47% 3.91% 5.15% 1.41%

accuracy 83.76% 83.22% 82.73% 82.71%

0.2

violation 0.47% 3.83% 3.98% 1.49%

accuracy 83.75% 82.08% 82.54% 82.16%

0.3

violation 0.47% 7.23% 3.63% 1.22%

accuracy 83.76% 81.36% 82.01% 81.24%

0.4

violation 0.47% 5.14% 1.13% 3.1%

accuracy 83.76% 79.58% 80.62% 80.21%

data, training on corrupted data substantially increases fairness

violations, even for relatively low noise rates. The SL and GPL

columns show that our fair ERM approaches can effectively mitigate

the biases. This holds true even when increasing the noise rate.

5.4 Insights on running on data directly,

without adding additional noise

Weevaluate our algorithm on the cleanadult andarrest datasets

as shown in Table 9. On the arrest dataset, our methods achieve

a similar performance of accuracy compared with the Clean base-

line, but we do observe a consistent drop of fairness violations

on the arrest dataset. The fairness violation of our methods on

adult dataset is not as good as that of Clean baseline. This fact

may imply the possibility that the arrest dataset contains more

human biases in labels than the adult dataset. The small drop in

accuracy and (sometimes) in fairness is due to the additional noise

estimation step, which introduces another layer of complication -

this is the price we pay for dealing with potentially highly noisy

labels.

Table 9:We examine the performance of ourmethods on the

clean adult and arrest datasets. Clean: train a fair classi-

fier directly with equal odds constraint. SL: Surrogate Loss

with estimated noise parameters. GPL: Group Peer Losswith

estimated noise parameters. The values after ± are the stan-

dard deviation.

adult arrest

Method accuracy violation accuracy violation

Clean 83.76 ± 0.0 0.47 ± 0.0 65.46 ± 0.0 4.46 ± 0.0

SL 76.97 ± 0.24 3.51 ± 0.24 63.07 ± 0.44 2.90 ± 0.72

GPL 81.20 ± 0.19 3.76 ± 0.19 64.98 ± 0.40 1.85 ± 0.36

6 CONCLUDING REMARKS, LIMITATIONS

AND FUTUREWORKS

We have demonstrated, both theoretically and empirically, that

naively enforcing parity constraints without taking noisy labels

into consideration can indeed do harm. Our results show the im-

portance of accounting for group-dependent label-noise when per-

forming ERM subject to fairness constraints. In realistic applica-

tions, such as criminal justice and evaluating loan applications,
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labels are often contaminated by human biases against a certain

protected group. The insights gained from this work forewarn

decision-makers that improperly mitigating unfairness might do

harm on the clean groups. Our two fairness-aware ERM frameworks

are an important step toward addressing this problem.

Our work extends a growing body of methods for training clas-

sifiers to provide equal opportunity to members of different sub-

groups within a population. Our new contribution is to address

situations where feature and label information for one or more of

the subgroups has been recorded less faithfully than for members

of other subgroups. Just one example of this, discussed in the text,

is the significant disparity in the quality of evaluations for males

and females which occur in both medical and academic contexts.

These disparities can and do have significant impacts on the quality

of life for members of each group, and are well worth addressing.

This work shows how applying existing techniques for mitigat-

ing bias in classifiers can actually increase inequality in outcomes,

if disparities in the accuracy of training data are not accounted for.

We offer new methods for addressing these problems as well. We

believe that applying our methods thoughtfully will improve exist-

ing methods of bias mitigation in machine learning. Our technical

solutions and solvers should be of interests to machine learning

practitioners/researchers, as well as to policy makers when decided

to use classification tools but face a training data with low-quality

annotations.

Our work has limitations. Our selection of data sets is limited: we

rely on synthetic training data corruption in order to test our meth-

ods. This limitation arises from the unavailability of such sensitive

data sets for the broader research community. Both this research,

and the methods whose shortcomings we have attempted to ad-

dress, should be re-examined as richer data sets become available

for studying disparities in the quality of information recording be-

tween members of different subgroups. The lack of relevant data for

studying unfairness in machine learning, and the concerns about

how to acquire such data while preserving the privacy of people

concerned, is itself an important question in this area, although we

do not address it in this work.

It is also possible that blind and uncareful application of our

approach (by improperly attempting to correct otherwise accurate

labels) may in fact create classifiers that produce even greater in-

equality, or lead to other problems that we have not foreseen. The

temptation to apply our methods simply for the purpose of making

existing models seem “more fair,” especially to unsuspecting down-

stream users, is very real. We very much discourage the use of our

research in this fashion.

Both the limitations and the insights gained through this work

underscore an important underlyingmessage: that blind application

of bias mitigation techniques in machine learning may do more

harm than good.
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