
Index Obfuscation for Oblivious Document Retrieval in a
Trusted Execution Environment

Jinjin Shao, Shiyu Ji, Alvin Oliver Glova, Yifan Qiao, Tao Yang, Tim Sherwood

Department of Computer Science, University of California

Santa Barbara, California, USA

ABSTRACT
This paper studies privacy-aware inverted index design and doc-

ument retrieval for multi-keyword document search in a trusted

hardware execution environment such as Intel SGX. The previous

work uses time-consuming oblivious computing techniques to avoid

the leakage of memory access patterns for privacy preservations in

such an environment. This paper proposes an efficiency-enhanced

design that obfuscates the inverted index structure with posting

bucketing and document ID masking, which aims to hide document-

term association and avoid the access pattern leakage. This paper

describes privacy-aware oblivious document retrieval during on-

line query processing based on such an index. Both privacy and

efficiency analyses are provided, followed by evaluation results

comparing proposed designs with multiple baselines.

CCS CONCEPTS
• Information systems→ Retrieval efficiency; • Security and
privacy → Privacy-preserving protocols; Management and
querying of encrypted data.

ACM Reference Format:
Jinjin Shao, Shiyu Ji, Alvin Oliver Glova, Yifan Qiao, Tao Yang, Tim Sher-

wood. 2020. Index Obfuscation for Oblivious Document Retrieval in a

Trusted Execution Environment. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3340531.3412035

1 INTRODUCTION
Privacy protection has become increasingly important for cloud-

based information services including keyword search. Searchable

encryption [8, 11, 22, 34] has been developed to support conjunctive

or disjunctive search without considering ranking. Secure linear ad-

ditive ranking based matrix transformation is studied in [5, 37, 41]

and such techniques based on matrix transformation is only ap-

plicable for small datasets while the solution in [1] still requires

a significant amount of post-ranking conducted at the client side

with partial server-side ranking, which is not suitable for a large

dataset. Nonlinear ranking privacy-aware solutions are studied

in [20, 33], where the number of results to be ranked is small. None

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412035

of the previous work has solved the problem of privacy-preserving

document retrieval with additive ranking in dealing with a large

dataset. This is a critical problem to address for document search be-

cause popular solutions for searching a large-scale dataset typically

involves a multi-stage ranking scheme [28, 40].

The previous work on the above searchable encryption work still

cannot reach a fully secured level, because it leaks certain statistical

query patterns, which can yield leakage-abuse attacks [6, 19, 25].

Another challenge is that ranking involves query-dependent fea-

ture calculations. Hiding feature information through encryption

prevents the server from performing effective scoring and result

comparison. On the other hand, unencrypted feature values can

lend themselves to privacy attacks [6, 19]. Homomorphic encryp-

tion techniques [15, 32] have been offered to secure data while

letting the server perform arithmetic calculations without decrypt-

ing the underlying data, and have been optimized for some practical

usage [27]. But such a scheme is still not computationally feasible

for large applications where a large number of slow multiplication

operations are involved, resulting in orders of magnitude slowdown.

All of the above solutions use traditional hardware platforms.

Given the difficulty faced in the previous work, this paper studies

the usage of trusted hardware technology. Recently, hardware-

based Trusted Execution Environments (TEE), such as Intel Soft-

ware Guard Extensions (SGX) and ARM TrustZone, have emerged

as options for secure computation [14, 17, 31] even if the hosting

operating system may still curiously seek for information. A TEE

provides a secure and isolated space where an application can run

protected operations that deal with sensitive data. The OS of a

server is blocked to inspect computations and data inside this TEE.

Even though a TEE can provide a reasonably-trustable computing

environment, a server can still observe the access traffic patterns of

its TEE to the main memory and to the TEE’s internal buffer during

server-side query processing. Various memory side-channel attacks

with such hardware have been found (e.g. [3]). Data-dependent

memory access pattern leakage can facilitate statistical privacy

attacks for document search [6, 19]. To protect the leakage of

data-dependent memory access patterns for keyword matching of

documents, ORAM-based search solutions are proposed in [17, 29],

but it is not computationally practical if the number of returned

results is large. For example, single-keyword search on a posting list

with 1000 documents can take around 100 seconds [17]. Another so-

lution called REARGUARD [38] for single-word queries is proposed

with oblivious memory accessing, in which a TEE intentionally

scans a large number of posting lists to obfuscate access patterns,

even if accessing only one of lists is needed. Oblivious computing

in this solution also incurs time-consuming query processing cost.

The contribution of this paper is to propose inverted index ob-

fuscation and a relatively efficient oblivious document retrieval

solution with additive ranking by leveraging trusted hardware. Our

https://doi.org/10.1145/3340531.3412035
https://doi.org/10.1145/3340531.3412035

evaluation results with analyses show that our scheme is much

faster than REARGUARD, though it is slower than the traditional

top K document retrieval based on the WAND and BMW optimiza-

tion without privacy constraint [4, 13]. But these algorithms are

vulnerable to privacy attacks, which we present in Section 3. To pre-

serve privacy, our algorithm pursues the oblivious but exhaustive

strategy, which represents a trade-off of efficiency for privacy.

2 BACKGROUND AND RELATEDWORK
2.1 Inverted index and document retrieval
An inverted index contains a set of terms, and a document posting
list of each term represents documents that contain such a term.

Each term can be a single word used in a document or can represent

other ranking features needed for a search system. Given a set of

query terms that correspond to a query, the goal of the document

retrieval problem is to find a set of documents that contain all query

terms following the conjunctive query semantics, or at least one of

these terms following the disjunctive query semantics. This paper

is focused on the disjunctive query semantic while the proposed

techniques are extensible for conjunctive queries.

The document retrieval problem is often associated with top K
search where only the top ranked results are selected. Computing

ranking scores during document retrieval provides an opportunity

to skip some low-score documents and speedup search. Ranking for
document retrieval is typically simple with a term-document based

additive formula (e.g. BM25 [21]) which is

∑
t ∈Q S(t ,d), where Q

is the set of all search terms, and S(t ,d) is a weighted term impact

score for this document d . To support such ranking, the posting

record of each term contains not only an document ID but also its

impact score associated with such a term. The document retrieval

scheme typically returns matched results to another search system

component wheremore advanced schemes can be applied to re-rank

after the top K results are selected in this stage.

The previous top K search studies have advocated earlier ter-

mination strategies for document retrieval to skip low-score docu-

ments, which cannot be on top K , during the traversal of posting
lists [4, 36]. The latest well-known scheme, BMW [13] and its vari-

ation [26], use the block-based document skipping technique based

on the WAND algorithm [4]. In such schemes, the runtime index

visitation order follows document-at-a-time (DAAT) and postings

are pre-ordered by their document IDs. Ordering postings by docu-

ment IDs also facilitates effective data compression. Another index

organization strategy is impact-layered index where postings are

divided by layers. Impact scores of documents in a lower layer are

higher than that of lower layers, and postings within each layer

is sorted by document IDs. For simplicity, this paper assumes the

document-sorted index.

2.2 Threat model
There are three entities in a cloud system: data owner, search user

(client) and cloud server. The data owner has a collection of docu-

ments to be outsourced by the cloud server. To enable the searching

and ranking functionality, the data owner needs to encrypt the

documents, the inverted index, and the ranking model for the cloud

server outsourcing. This proposal will initially assume that the

data owner and the search user are the same entity. The client

builds an encrypted but searchable index and lets a server host

such index. The server is honest-but-curious, i.e., the server will

honestly follow the client’s protocol, but will also try to learn any

private information from the client data based on what the server

can observe from the hosted data and runtime information. To con-

duct a search query, the client sends several encrypted keywords

and related information to the server. Our research targets at inex-

pensive client-server communication since extensive multi-round

communication between the server and client (e.g. [18, 30]) incurs

excessive high communication cost and response latency.

2.3 Known privacy attacks in document search
As the queries and documents are encrypted, the privacy abuse

attacks can occur by acquiring statistical information to reveal

search queries or documents partially. A server can always learn

something by observing query processing. The question is if the

learned information is sufficient for a server to recover original text

words from encrypted index and content. The statistical patterns

leaked during query processing can lead to the known attacks [6,

19, 25, 39] and we summarize them as follows.

• Co-occurrence probability of search terms in a document . Islam
et al. [19] proposed the IKK plaintext attack to recover the plain-

text of query words by computing the search word occurrence

probability when knowing the result overlapping patterns of two

single-word queries. The paper assumes that the adversary also

knows the co-occurrence probability of dictionary words used

in the dataset (e.g. approximated from a public dataset) and a

plaintext mapping from a small set of words to their IDs.

• Document frequency of search terms. This information can be

derived after knowing the length of a posting list for a term. The

work in [6] shows that after knowing co-occurrence of search

words in a document and their document frequency, an adversary

can recover the plaintext of search terms without knowing the

mapping from a small subset of search words to their word IDs.

• Query equality pattern. When a server knows about the repetition

ratio of search queries, it can compare with some known back-

ground knowledge on query popularity, and deduce plaintext for

some of queries as shown in [25].

• Document similarities. There are also attacks exploiting leaked

similarities among documents [39]. Their attacks only work if

the adversary knows occurrence frequency and co-occurrence

frequency of selected terms in the entire document set.

All of these attacks require the leakage of term co-occurrence and

term frequency, and knowing document sharing patterns among

posting lists, the posting list length, and the list access frequency can

lead to the above statistical information leakage. We will consider

countermeasures in our design. We will also study how a traditional

document retrieval algorithm without a privacy protection can

reveal the above statistical patterns.

Searchable encryption (e.g. [7, 8, 12, 22, 23]) has been proposed

to identify documents that match a user query from the encrypted

index. These schemes do not support ranking and they still suf-

fer from some degree of information leakage, which could cause

a leakage-abuse attack discussed above. For example, OXT [7, 8]

and IEX scheme [22] are the most comprehensive schemes to sup-

port multi-keyword queries. IEX for conjunctive queries leaks the

overlapping of search terms from one query to another, thus can

leak the co-occurrence probability of search terms and posting list

access patterns. OXT for conjunctive queries leaks the overlapping

of some search terms (e.g. leading terms) in a query history.

As discussed in Section 1, the previous work in [5, 37, 41] for

secure additive ranking based matrix transformation is only applica-

ble for small datasets, while the solution in [1] does not support full

server-side additive ranking. None of the previous work including

nonlinear ranking solutions in [20, 33] has solved the problem of

privacy protection in document retrieval with additive ranking in

dealing with a large dataset. Also, these schemes use deterministic

IDs for search terms, thus leak the query equality patterns.

2.4 Trusted hardware platform
We assume there is a server platform that incorporates a processor

where applications can create and make use of protected mem-

ory regions in their trusted execution environment. For example,

data center providers typically use SGX-equipped Intel processors.

Microsoft currently provides Intel SGX extensions in its cloud plat-

form. A TEE has its own memory space and a host processor can

monitor all accesses to the TEE’s memory space, knowing which

addresses are visited by the code running inside the TEE, but it

cannot view the content accessed by the TEE’s code.

To thwart attacks based on the leakage of posting list access pat-

terns, [38] designs REARGUARD, an oblivious matching algorithm

for one-word queries as follows. First it pads all posting lists with

encrypted useless records so that all lists have the same lengths.

Second, with one query word, the server scans all posting lists

one by one from the whole inverted index. When the TEE has

scanned all posting lists, only matched one is retained and the

server cannot differentiate which one is matched, corresponding to

the search terms. To alleviate the huge time cost to scale all posting

lists, [38] suggests to partition indexed terms into groups and a

server only scans a group of posting lists instead of the entire index.

This trade-off brings a leakage on keyword group access patterns.

To be effective for privacy protection, the group size still needs to

be large, thus the time cost is still expensive.

3 LEAKAGE-ABUSE ATTACKS AND DESIGN
CONSIDERATIONS

We discuss possible leakage-abuse attacks during document re-

trieval with or without WAND-based document skipping [4], and

present our design considerations in leveraging trusted hardware

platforms. The main design challenge is that naively running docu-

ment retrieval inside a TEE, even the index is encrypted, can leak

unique query-dependent memory access traces, and an adversary

server can take advantages and launch a leakage-abuse attack. We

describe two attacks below: the first one reveals co-occurrence in-

formation and the second one reveals posting list access patterns.

For the worst case, both attacks can recover plaintext queries from

encrypted queries ([6] and [25] resp.).

Assumptions on adversary’s knowledge. We assume the bi-

nary code of a program running inside TEE is known by a server

adversary, and the server can observe all the memory accesses

(namely, memory addresses that are read or written). Since some

server can guess which instruction in TEE’s code segment is read

and executed, for the worst case scenario, we assume there exists

an adversary who can trace program running step by step given

a previously-issued client query. Hence an adversary can learn at

least the number of search terms, and the number of the corre-

sponding posting lists loaded to the TEE. With special obfuscation,

the server can also learn the length of each posting list (the number

of documents) approximately after decryption and decompression

within the TEE.

We assume the run-time behavior of a document retrieval pro-

gram is deterministic, only dependent on the input query terms.

Also assume in a worst case, the binary code can be loaded into the

TEE with the same starting memory address.

Attack revealing co-occurrence of search terms. We con-

sider a standard document-at-a-time algorithmwithout usingWAND,

and it visits documents one by one in all posting lists in an increas-

ing order of document IDs. The TEE program should have a code

segment that adds the relevance score of matched postings from

each posting list. The adversary can trace code execution and mem-

ory accesses within such a segment, and infer the intersection

pattern of any two of the posting lists. Then the adversary can

compute the co-occurrence probability of two search terms in a

document as the number of common documents in two term lists

divided by the total number of documents.

By now, the adversary knows the co-occurrence probability of en-

crypted search terms, and the term frequency based on the posting

list length. The adversary can assume the dataset uses words from a

dictionary (e.g. English), obtain the term co-occurrence probability

based on the public knowledge, and recover the original plaintext

of these encrypted search terms, following the work of [6, 19].

Attack revealing query equality patterns. For any document

retrieval algorithm, there are twoways for a server to find the repeat

probability of a query. One is to recognize the same set of search

terms that has been used from one query to another. The other way

is to observe and consider the memory address access sequence as

a signature and detect if there is a repetition. With high probability,

different queries will yield different memory access sequences. Then

a server can use the derived repetition patterns to launch a query

recovery attack following [25].

To minimize the chance of launching the above attacks, our

countermeasure considerations are listed as follows.

• To hide document co-occurrence between posting lists, we can

merge multiple terms into one large posting list. Hence the inter-

section size between two merged lists does not reflect any true

co-occurrence information between two individual terms. Such

merging essentially combines several terms together as a term

bucket, which also hides the relationship of one-to-one mapping

between index and query terms.

• To avoid leaking the signature of the memory address sequence,

we pad the search results. For WAND/BMW based algorithms [4,

13, 26], it leaks a fixed memory address accessing sequence as

a signature and one can infer the query repetition patterns. Ini-

tially, we considered using randomization of document skipping

to yield different memory access patterns on the same input.

However, given one query from the client, the server adversary

can infer the statistical distribution of thememory access patterns

by repeating such a query until the distribution can be inferred

with a high confidence. Namely, the server can still approximate

query repetition patterns and detect the query repetition.

As a result, we decide not to useWAND-based document skipping

as a trade-off of efficiency for privacy. That essentially follows

an exhaustive search, which has a visible efficiency loss. We view

this efficiency loss acceptable with today’s CPU speed and will

evaluate the response time in our experiments.

We will reflect the above countermeasures in our algorithm design.

4 INDEX BUCKETING AND MASKING
We propose masked inverted index (MII) with term bucketing to

support efficient query processing, while avoiding the leakage of

query equality pattern, co-occurrence probability pattern, and term

frequency pattern. Our key ideas are: 1) To obfuscate the index,

we group terms into buckets. Each bucket is linked to the union of

posting lists of terms grouped in this bucket. The TEE of a server can

conduct the term-bucket based posting list retrieval, and identify

matched documents in an oblivious way to prevent the above-

mentioned leakage; for example, the server cannot differentiate the

identities of query terms. 2) To increase the degree of obfuscation,

we duplicate each term and its posting list by k times, and randomly

map duplicated copies to different term buckets. As a result, each

term bucket contains mixed popular or unpopular terms, and the

access pattern of each term bucket would be drastically different

from that of original individual terms. Then, it is unlikely that

a server can derive reasonably accurate query equality patterns

and document frequency patterns. We let a TEE decrypt a posting

record inside its trusted memory buffers to conduct protected query

processing. Since the server is unable to observe the buffer content,

it cannot detect co-occurrence probability patterns among term

posting lists.

Table 1 lists frequently used symbols through this paper.

Table 1: Frequently used notations
Symbols Explanations

K Number of top ranked results needed for document retrieval

V Vocabulary size, namely, number of searchable terms

q Number of search terms in a query

k Number of duplicate copies for each term

b Number of term copies hosted in each bucket

B Number of term buckets

m Mask code for indicating term association in a bucket

ui Term bucket ID for the i-th query term

m(ui) Selector for the i-th term hosted in Bucket ui
Enc Symmetric encryption with a random seed, e.g., AES256

r eдi The i-th register

4.1 Inverted index with term buckets
We organize the index as follows.

• The index contains a set of term buckets. These buckets along

with their posting lists will be compressed first, and then en-

crypted. Each a term bucket can represent b terms: t1, t2, · · · , tb .
A term bucket data structure is accessed by a bucket ID and its

value is a sequence of posting records. Each posting record is

denoted as (d,m, f) where d is the document ID,m is a masking

bit code with h bits indicates which of the corresponding h terms

Original Inverted Index

Terms Posting Lists
A d1, d4
B d2, d4, d5
C d2, d3

Pairs of
bucket IDs &

selectors
A (1,1), (3,2)
B (1,2), (2,1)
C (2,2), (3,1)

Term
Buckets Masked Posting Lists

1 (d1,012), (d2,102), (d4,112), (d5,102)
2 (d2,112), (d3,102), (d4,012), (d5,012)
3 (d1,102), (d2,012), (d3,012), (d4,102)

Client Server

Terms

Mapping from Terms to Term Buckets

Terms

Term
Buckets

A B C

A1,B1 B2,C1 C2,A2
1 2 3

(a) (b)

(c) (d)

Figure 1: Masked inverted index with term buckets

own this posting, and f is a sequence of features for these terms

in d . Document d belongs to the posting list of term ti if and
only if the rightmost i-bit of masking codem is 1. The f compo-

nent only stores the document features for terms ti whose term
posting list has d . Postings in this term bucket are sorted in an

increasing order of document IDs.

• Given V terms in an inverted index, we intend to duplicate each

term k times and randomly map these kV terms to a set of buck-

ets so that each bucket has b terms. Our goal in forming these

buckets is to have a random distribution of these term copies

among these buckets. As a result, such randomness enhances

privacy protection. After a random mapping, there exist some

buckets where multiple copies of the same term appear in the

same bucket, and we call this mapping collisions. A large number

of collisions reduces the effectiveness of randomness for privacy.

In the next subsection, we describe a collision tolerance condition,

and present a bucket building algorithm that reduces collisions

until the tolerance condition is satisfied.

• The index building process will derive a mapping from each

searchable term t to the bucket location of itsk copies:u1,u2, · · · ,uk .
map(t) = {(u1,m(u1)), (u2,m(u2)), · · · , (uk ,m(uk))} where for i
from 1 to k , them(ui)-th term of bucket ui represents term t . A
client-side machine maintains such a map.

Figure 1 illustrates a masked inverted index in Part (d) derived

from an original inverted index in Part (a). In Fig. 1(a), the posting

list of term A contains documents d1 and d4. In Fig. 1(b), each term

is duplicated twice. For example, A has two copies A1 and A2. The
copies of these terms are mapped to 3 buckets. Bucket 1 containsA1
and B1. Fig. 1(c) is the client-side map based on the bucket layout

from Fig. 1(b). "A→ (1, 1)(3, 2)" means that term A has one copy at

Bucket 1 as the first term with a term selector 1, and another copy

at Bucket 3 as the second term with a selector 2. Fig. 1(d) is the

server-side collection of term buckets. Term bucket 1 has a posting

list of four documents, where each document is associated with a

mask code. For example, d4 has binary mask 112, and is retrievable

with a selector 1 or 2, while d5 is only retrievable with a selector

2. For simplicity, Figure 1 does not include the feature sequence in

each posting record, which is discussed later in this section.

4.2 Term bucketing with limited collisions
Ideally speaking, a term t is duplicated to k copies and they are

mapped to k distinct term buckets, and each term bucket has b

Bucket IDs &
Encrypted
selectorsQuery

pre-processing Interface to the
client and

other
components

Encrypted
inverted index

Load index,
decrypt, match,

and rank

Server-sideClient-side

Trusted
memory

Unprotected
memory

TEE

Encrypted
results

Post-processing

Figure 2: Online document retrieval with TEE

distinct terms. As a result, search term t can be obfuscated by

the other (k · b − 1) unique terms. That was the goal of our design.

However, a randomizedmapping process most likely fails to achieve

the above optimal situation due to mapping collisions, thus as a

compromise, we design a near-optimal solution.

Our term bucket building algorithm performs as follows. Let S
be a sequence of combining the k duplicates of all terms S = {(i, j) :
1 ≤ i ≤ V , 1 ≤ j ≤ k} where tuple (i, j) represents the j-th copy

of the i-th term. We add fake terms if necessary to make the total

number of term copies divisible by b and pad these fake documents

at the end of S . We randomly shuffle the tuples in S , then group b
consecutive tuples.

We define a collision pair as two copies of the same term are

mapped to the same bucket. If the collision tolerance condition,

defined below, is not satisfied in the current mapping, wewill restart

another random shuffle of tuples in S , and regroup them again. We

repeat this randommapping until the collision condition is satisfied.

Collision tolerance condition: After executing a randomized

mapping from term copies to buckets, let each term t be duplicated
to the following k buckets:u1,u2, · · · , anduk . These buckets satisfy
both of the following constraints: 1) The set of {u1,u2, · · · ,uk }
has at least (k − 1) unique bucket IDs. 2) For each term bucket

in {u1,u2, · · · ,uk }, it has at least (b − 1) unique term copies from

different terms, among all b term copies.

Let z be the number of times required to conduct remapping until

the above collision tolerance condition is met. From Theorem A.3

in the appendix, the probability of having z iterations is (kb
2

V (
1

3
+

k+b
8
))z . For the datasets we tested, V is over 0.5 million, and kb2

is small, so the probability of z ≥ 3 is very small. Therefore, the

random re-mapping process stops after a few iterations.

4.3 Oblivious online document retrieval
Figure 2 illustrates the client-server interaction with the presence of

a TEE in a host server. Algorithm 1 is a description of our oblivious

document retrieval scheme with additive rank score calculations

for a disjunctive query. Given a query which corresponds to a

number of search terms, a client first performs a map lookup for

each term t as follows. Given map(t) = {(u1,m(u1)), (u2,m(u2)),
· · · , (uk ,m(uk))}, the client randomly selects one of these k tuples,

say, (ui ,m(ui)), and then sends its encrypted form to the server.

Once the server receives all term bucket IDs and encrypted

term selectors, its TEE loads encrypted posting lists for those term

buckets to the trusted buffer space of the TEE, decrypts and decom-

presses them. For example, given (ui ,Enc(m(ui))), the TEE loads en-

crypted list for ui , and decompresses the list after decryption. Then

the TEE accesses each posting record of bucket ui , say, (d,m, f).
Assumem(ui) is the current term selector, the TEE considers d as

a candidate whenm&(1 << (m(ui) − 1)) , 0, where “&” is with a

bit-wise AND. Then Algorithm 1 extracts a feature score from f
obliviously using Algorithm 2.

For the example in Fig. 1, with a query including a keyword "A",

a client can randomly choose and send term bucket ID 3 and a term

selector 2 to the server. On the server side, a TEE loads, decrypts,

and decompresses the posting list of bucket 3. For document d1
with binary mask 102, it matches the term selector 2, and thus d1
could be a candidate for the final result list.

Algorithm 1: Oblivious top K retrieval for MII in a TEE

Input: An encrypted query that contains q terms. The i-th query

term is represented by a bucket ID and an encrypted term

selector: (ui , Enc(mi))

For each i-th term where 1 ≤ i ≤ q, use ui to locate and load the

encrypted and compressed bucket posting list and decrypt term

selector to getmi ;

Let L be the list of posting lists of term buckets after decryption and

decompression such that L[i] is the posting list of the term bucket

corresponding to the i-th query term;

while there are documents left in L do
Let d be the next document with minimal id in L, and advance the

pointer of d in each list of L where d appears;

Let D be the set of indices i ’s such that for each i , d appears in

the posting list L[i];
The relevance score for d in L[i] where i ∈ D , i.e., si , can be

obliviously obtained through Algorithm 2;

The ranking score for d is

∑
i∈D si ;

end
Use oblivious sorting [43] to find the top K ranked documents;

Return the encrypted top K document IDs and rank information;

Oblivious feature extraction. As discussed in Section 4.1, the

third component, f , of each posting record (d,m, f) contains a
sequence of rank score feature for document d corresponding to

different terms specified by bit mask m of size b. To prove the

oblivious property of Algorithm 1 in Lemma 5.1, the feature score

fetch procedure is required to be oblivious with respect to different

term selectors. Given the number of bits in maskm is b, a naive
oblivious method is to store all b features for each bucket posting

record for which a special value is used for an invalid feature since

some of bits in m can be zero. However, this approach requires

higher storage cost given there are many 0 bits in term masks.

We devise a space-conscious oblivious method, without storing

invalid features. We let f store a sequence of valid features fol-

lowing the non-zero pattern in the bit mask m, and design a bit

manipulation procedure in Algorithm 2 which locates the position

of the corresponding feature in f given a term selector. The com-

plexity of Algorithm 2 is linear to the number of bits inm which is

b. Given any document in any bucket, Algorithm 2 is oblivious to

any term selector for this term bucket. Namely, Algorithm 2 gives

an identical access pattern for different term selectors from 1 to b.
Example of Algorithm 2. Assume a posting record is (d,m, f)
where maskm = 01012. Assume the input term selector is 3, which

means to select the third bit starting the rightmost. The feature list

f is [f1, f3]. Algorithm 2 first finds the feature offset ind = 2, since

there are 2 ones among the first 3 bits from the right side. Then

the extracted feature is s = 1 · f3 · 1 + 0 · f1 · 1 = f3. If the term
selector is 2, then ind = 1, and s = 0 · f1 · 0 + 1 · f3 · 0 = 0 implying

no feature is selected.

Algorithm 2: Oblivious Feature Extraction for MII

Input: A term selectorm(u), ranging from 1 to b (both inclusively).

A mask codem with b bits, and a list of all valid features f for

the current bucket posting record.

ind ← 0 ; ▷ Count # bit 1 before the m(u)-th bit in m
for c from 1 to b do

LetmaskBit be the c-th bit ofm;

r eд1 ← c −m(u) − 1;
Let siдnBit be the sign bit of r eд1, namely, 1 iff r eд1 < 0;

ind ← ind + (maskBit&siдnBit), where & is bit-wise AND;

end
Let test be them(u)-th bit ofm;

The selected feature score can be obliviously computed as

s ←
∑f .size
j=1 Equal(ind, j) · f [j] · test ;

Return extracted feature score s ;

Function Equal(a, b):
Store a to a register r eд1, and b to a register r eд2;
r eд3 ← r eд1 ⊕ r eд2, where ⊕ is bit-wise logical XOR;

Store logical NOR of the bits in r eд3 to r eд4;
return r eд4;

5 PRIVACY ANALYSIS
5.1 Obliviousness of MII
Definition 5.1. Memory access pattern and obliviousness [16,
35]. Memory access pattern is the sequence of memory accesses

during the lifetime of algorithm execution. If the accessed mem-

ory is within TEE, each memory access contains two pieces of

information: 1) access type (namely, read or write), and 2) memory

address. TEE hides its memory content from the server. A docu-

ment retrieval scheme is oblivious over an input query set if for any

two queries from this query set, the memory access patterns are

identical (for a deterministic algorithm) or identically distributed

(for a randomized algorithm).

Note that our main algorithm (Algorithm 1) is deterministic.

Hence we need to show that our algorithm gives identical memory

access patterns over some queries. If one works with a randomized

algorithm, then to be oblivious, this algorithm needs to preserve

the distribution of memory access patterns.

Lemma 5.1. Replacing any queried term with any term in the same
bucket cannot change the memory access pattern of Algorithm 1.

Proof. Replacing any queried term with any term in the same

bucket does not change L in Algorithm 1. The proof follows the

observations as below:

(1) Iterating over sorted bucket lists L is deterministic. Since we

do not change L, the memory access pattern of the iterating is

not changed either. Computing feature aggregation

∑
i ∈D si is

deterministic for each document given the same bucket lists L.

(2) The for loop in Algorithm 2 to compute the feature offset is

oblivious to any input, since the memory access sequence is

always a linear scan on the b bits of the bitmap.

(3) Following the for loop, the feature aggregation in Algorithm 2

is oblivious if only selector is changed in the input data. Note

that in Algorithm 1, as long as L is not changed, the sequence of

documents that are passed to Algorithm 2 is not changed either.

For each call of Algorithm 2, only selectors can be changed for

different queries, while masks and feature lists keep the same.

Hence the memory access pattern of feature aggregation in

Algorithm 2 is not changed.

(4) Equal has the same memory access pattern for any inputs a
and b, namely, the sequence (r1,↓, r2,↓,↓,↓, ret), where r1, r2
denote reading the memory locations of two arguments for

Equal respectively, ↓ denotes reading the next instruction of

the algorithm, and ret denotes returning to the caller of Equal.
(5) Decryption, decompression, oblivious sorting and encryption

give the same memory access pattern for any input lists with

identical length.

□

Theorem 5.2. For any query with q terms, there exist at least
bq − 1 other queries, where b denotes the number of terms in each
bucket, such that Algorithm 1 is oblivious over all these bq queries.

Proof. By Lemma 5.1, for any query with q terms, each of the q
terms can be replaced to b terms in the same bucket while preserv-

ing memory access patterns. Hence the entire query can change to

at least bq − 1 other alternative queries preserving obliviousness of
Algorithm 1. □

5.2 Obfuscations of terms and queries
Theorem 5.3. Assume each of V terms is duplicated to k buckets,

and each bucket merges b terms. Then on average each query with q

different terms is obfuscated over at least
(
(b − 1)(k − 1)(1 − bk (k−1)

2kV−2)
)q

different queries, which are possible to match the same buckets during
document retrieval.

Proof. We first derive the lower bound on the number of terms

which any query term is obfuscated over. Following the mapping

process of Section 4.2, letwi, j denote the j-th term merged by the

i-th matched bucket (1 ≤ i ≤ k and 1 ≤ j ≤ b). Hence

Pr[wi, j = wi′, j′ |i > i ′] =
V
(k
2

)(kV
2

) = k − 1

kV − 1
.

By union bound,

Pr[
∨

(i′, j′):i>i′
wi, j = wi′, j′] ≤

∑
(i′, j′):i>i′

Pr[wi, j = wi′, j′] =
(i − 1)b(k − 1)

kV − 1
.

Let indicator 1i, j denote that there exists no (i ′, j ′) such that i > i ′

andwi, j = wi′, j′ . Hence

E[1i, j] = 1 − Pr[
∨

(i′, j′):i>i′
wi, j = wi′, j′] ≥ 1 −

(i − 1)b(k − 1)

kV − 1
.

Following the collision tolerance condition enforced in the bucket

building process of Section 4.2, and by arranging the orders of

bucket locations for each term, and the term copies in each bucket,

we can satisfy that

(1) only the first two bucket locations for any term can be the

same, and

(2) only the first two term copies in each bucket can be the same.

Hence the average number of terms which the matched buckets

are obfuscated over is at least

E[
k∑
i=2

b∑
j=2

1i, j] =
k∑
i=2

b∑
j=2

E[1i, j] ≥
k∑
i=2

b∑
j=2

(
1 −
(i − 1)b(k − 1)

kV − 1

)
= (b − 1)(k − 1) −

b(b − 1)k(k − 1)2

2kV − 2
.

Since each of the q terms in the query has the above lower bound

of obfuscation, raising to the power of q gives the lower bound for

the entire query obfuscation. □

From the above result, any term t with k duplicates in a given

inverted index ofV terms with b terms per bucket, on average term

t is obfuscated by at least (b − 1)(k − 1)(1− bk (k−1)
2kV−2) different terms.

Since a term in REARGUARD is obfuscated by g − 1 terms in a

group of size g, we can choose (b − 1)(k − 1) ≈ g so that privacy

protection in MII is competitive to REARGUARD at least in terms

of term and query obfuscation.

5.3 Leakage profile
We list all the following information that can be observed by a

server when processing a query with MII. 1) Static size information.
The number of term buckets in the index. The number of documents

in each term bucket. 2)Dynamic query size information. The number

of search terms in each query. The size of matched documents with

padded results for a query. 3) Term bucket access patterns. The set
of term buckets accessed for each query is exposed. The server can

compute statistical information such as bucket access frequency.

When two or more term buckets are queried, the set of documents

appearing in these buckets may be leaked. Note that this only leaks

positions of documents in these buckets, not real documents IDs. 4)

Feature size patterns. The number of features of each document in

each bucket posting list is exposed. This also tells the adversary how

many of the b terms of the bucket are contained in each document.

Among all leakages specified above, there is no known privacy

issue on learning the number of search terms and buckets used.

For the length of each bucket, since the bucket has b randomly-

mixed terms where b > 1, it is unlikely that the server can calculate

the length of the posting list for a real term. For the result size

information, since we pad unmatched or unselected documents, the

server is not able to identify the real size. For the access patterns,

since a bucket contains multiple terms that a server cannot differ-

entiate, it is unlikely that the server can accurately compute the

frequency of terms that appear in a history of queries, and calculate

the document sharing pattern between postings of real terms.

6 COMPLEXITY COMPARISON
Table 2 gives a comparison of the index storage space and document

matching time of MII, with the extended REARGUARD scheme [38]

for handling q terms when the group size is g. The space cost is

represented by the number of integers used to store the index be-

fore compression. The original REARGUARD does not deal with

multiple search keywords or ranking also, and our extension is

based on the best option we choose. Thus this comparison is illus-

trative to explain a cost advantage of MII over REARGUARD under

certain assumptions. The time cost listed includes server side disk

I/O and in-memory data processing. Notice that decryption of post-

ing records can be conducted in the entire list for each term block,

thus it is relatively fast. The client-side query processing cost of

REARGUARD and MII is comparable, and is relatively insignificant.

Assumptions. Let n be the number of documents in a dataset, and

V be the number of unique terms. It is known that the number

of documents in each term’s posting list often follows a Zipf-like

distribution, and Table 2 illustrates the complexity difference under

a simple Zipf distribution: assuming that the length of posting list

for the i-th popular term is
n
i . The longest posting list length of a

term is n, and the average posting list length is
1

V
∑V
i=1

n
i ≈

n lnV
V .

The space cost of MII is the sum of all posting lists multiplied by

k because of term duplication. The query processing time cost of

MII is proportional to the average posting list length multiplied by

b and q.
For REARGUARD, with each posting list group of size g and

following the Zipf distribution, we can show that the average post-

ing list length of each group is Θ(
ng
V ln

V
д), considering V is large

and V >> g. The detailed analysis is omitted due to the page limit

of this paper. Given the fact that each posting list in a group has

to be processed for each query term, the time cost is this number

multiplied by g and q.
Table 2: A comparison of space and time complexity

REARGUARD MII

of integers in the index Θ(V + ng ln V
g) Θ(kVb + kn lnV)

Server-side time Θ(
qng2
V ln

V
g) Θ(

qbn
V lnV)

In general, b and k are small constants while g needs to be rea-

sonably large. Assuming n >> V and V >> g, the ratio of space

cost of REARGUARD over MII is approximately Θ(
g
kb), thus the

index storage space of MII should be the same as that of REAR-

GUARD, under this simple Zipf distribution when choosing g = kb.
In addition, the time cost ratio of REARGUARD over MII is about

Θ(
g2

b). As g > b, MII is significantly faster.

7 EVALUATION
Experimental Settings. We evaluate disjunctive queries on MII

and three other baselines, including block-max WAND, exhaustive

OR, and REARGUARD. Given the fact that there is no standard

IR toolkits supported by Intel SGX, we built our implementations

for MII and all baselines with the C/C++ library under the SGX

programming environment, which can make fair comparisons. The

implementations of REARGUARD and MII access their correspond-

ing encrypted indexes. All indexes are compressed using Simple-

9 [2] before any encryption and this compression is simple with a

reasonable effectiveness for our setting [42]. Our implementations

of BMW and exhaustive OR directly access unencrypted indexes.

We let g = 85 for REARGUARD following the setting in [38]. We

also let k = 18 and b = 6 for MII. In this case, g = (k − 1)(b − 1)

and thus the privacy level of MII is approximately the same as that

of REARGUARD. Experiments are conducted on a single machine

with Intel Core i7-9700K CPU 3.60GHz, 32GB RAM, Samsung 970

NVMe SSD running Ubuntu 18.04 with Intel SGX Linux 2.7 SDK.

Datasets. Two TREC collections are evaluated: ClueWeb-09-Cat-B

and TREC disks 4&5. TREC4&5 has about 0.5 million documents,

and ClueWeb has nearly 30 millions documents after removing

those with Waterloo spam score [9] below 40. We assume that

ClueWeb can be hosted on multiple cores for parallel query pro-

cessing. Thus we randomly partition this dataset and use one par-

tition with 1 million documents for performance assessment. For

TREC4&5, 530, 348 terms in total are indexed including Stop Words.

For ClueWeb, with discarding terms whose frequency no more than

2, there are in total 1, 239, 769 terms indexed. For query processing,

there are 837 queries for ClueWeb from WebTrack 2010-2012 and

Millions Query Track. TREC4&5 uses 250 queries from Robust 2004.

All test queries have 1-5 query keywords. Both documents and

query words are stemmed using the Krovetz stemmer [24].

A comparison of query processing times. In Table 3, the query

time for document retrieval with MII and three baselines are listed.

An average time is reported in each different query length, and the

rightmost column is the average time for all test queries. The time

cost in Table 3 measures the duration starting from the time when

the server receives (encrypted) queries, to the time when all top

1000 matched documents are derived. We make sure the index is

not cached before each single query.

MII vs. REARGUARD.We observe that compared with REAR-

GUARD, MII is 6.73x faster for TREC4&5, and 10.71x faster for

ClueWeb. Notice that the time spent on the disk I/O to fetch posting

lists occupies about 80% of time in REARGUARD, and about 56% in

MII. The reduction ratio is not as high as the predicted number in

Section 6, because the estimation does not include the startup cost

of each I/O operation to access the SSD, and our test data is not

exactly a simple Zipf distribution. The evaluation, however, still

agrees on the trend that MII reduces the matching time significantly,

including all the cases when the test query length varies.

Oblivious search vs. unprotected BMW. MII is slower than

BMW by 3.32x and 4.90x mainly because of block-max WAND skip-

ping documents based on top k thresholds and block-max scores.

When compared with exhaustive OR, MII is 1.04x and 1.09x slower

because there are posting duplicates in masked buckets. Notice that

our implementation of block-max WAND is 3.18x and 4.48x faster

than that of exhaustive OR, which is not as high as the ratio claimed

by Ding and Suel [13]. This is because our query processing time

includes the time of loading posting lists from disks, which is not

considered in the block-max WAND paper.

Storage cost. As mentioned above, all indexes were compressed

using Simple-9 compression technique. Using different compression

methods did affect our reported storage sizes [42], but not by much.

BMW and exhaustive OR use the same unencrypted index, which

is 0.2GB for TREC4&5, and 11.8GB for ClueWeb. The storage size

for MII is 3.1GB for TREC4&5, and 207.5GB for ClueWeb, which

includes masked posting lists, vocabulary, and term buckets. These

costs are around 15.5x and 17.6x as big as those of the unencrypted

index in both datasets because of posting duplication. For REAR-

GUARD, with the group size g as 85, the index size with group-wide

posting padding is 8.5GB for TREC4&5, and 709.1GB for ClueWeb.

Thus the index sizes of REARGUARD are about 2.7x and 3.4x as big

as those of MII for our two datasets. These ratios are not too far

away from the predicted ratio Θ(
g
k) in Section 6, which is around

4.7x.

Table 3: Comparing document retrieval time (milliseconds)
Query Words 1 2 3 4-5 Average

TREC4&5

BMW 1 2 3 4 2.8

Exhaustive OR 2 7 10 11 8.9

REARGUARD 21 45 72 83 62.6

MII 3 8 10 11 9.3

ClueWeb

BMW 31 73 134 254 125.7

Exhaustive OR 116 311 583 1,212 560.1

REARGUARD 620 2,112 6,409 16,723 6,557.9

MII 133 318 631 1,327 612.4

Table 4: Comparing different term bucketing settings in MII
MII Settings Avg. Query Time (ms) Index Size (GB)

TREC4&5

k = 18, b = 6 9.3 3.1

k = 6, b = 18 11.4 (1.2x) 0.9 (0.29x)

ClueWeb

k = 18, b = 6 612.4 207.5

k = 6, b = 18 924.7 (1.5x) 67.1 (0.32x)

Impact of different term bucket settings. Table 4 shows the

impact of different term bucket settings, k and b, average query
processing time and storage cost for our test datasets. The first

setting, k = 18 and b = 6, is the one used in Table 3. The second

one, k = 6 and b = 18, has the approximately same privacy level as

that of the first setting. For storage sizes, close to what we predicted

earlier, when k being 0.33x, MII costs around 0.29x and 0.32x as big

as the storage cost of the first setting. This observation is consistent

with Table 2 in Section 6 where MII space cost is proportional to k .
With b being 3x larger, the second setting costs 1.2x and 1.5x query

processing time compared to the first one on two datasets. The

increasing trend modestly agrees with Table 2 and the increasing

ratio is smaller than expected due to the discrepancy in posting

length distribution estimation.

Evaluating oblivious feature extraction. As discussed at the

end of Section 4, our oblivious feature extractionmethod is expected

to reduce the storage cost greatly, in a situation where a document

in a bucket posting record only matches some of those b terms in

the bucket, compared with the naive oblivious method described

in Section 4.3. Our experiments show that, when k = 18 and b = 6,

the naive method costs around 2.5x and 2.6x storage space as those

of our proposed oblivious method in two datasets, which shows the

advantage of our space-conscious oblivious design. In addition, the

time cost difference is insignificant to the total query processing

time, as both of them are linear with the value of b.

8 CONCLUDING REMARKS
This paper proposes an oblivious document retrieval scheme with

an obfuscated inverted index to hide document-term association

and avoid pattern leakage of memory access operations for pri-

vacy protection. Our evaluation shows MII achieves an up-to 18.9x

matching time speed-up over REARGUARDwhile the storage size is

up-to 3.4x smaller. The oblivious but exhaustive approach in MII is

still significantly slower than BMW [13], which represents a degra-

dation of efficiency traded for privacy because WAND-based opti-

mization in BMW designed without privacy constraints [4, 13, 26]

is vulnerable to leakage-abuse attacks as studied in Section 3.

Intel SGX has around 90MB usable protected buffer memory [10],

which is big enough to contain all posting records of the searched

term buckets for our tested datasets. For hosting buckets with

longer lists, there could be some slowdown in matching due to

buffer pages being swapped into/out of the untrusted memory.

TEEs like SGX still reside on the server machines and the risk

such as physical attacks [10] exists, which is outside the scope of

this study. Our solution provides an alternative approach to the

software-only privacy-preserving solutions for document matching.

A future work is to integrate with privacy-preserving ranking.

ACKNOWLEDGMENTS
This work is supported in part by NSF IIS-1528041 and 2040146, and

by a Google faculty research award. It has used the NSF-supported

resource in the Extreme Science and Engineering Discovery Envi-

ronment under allocation IRI190005. Any opinions, findings, con-

clusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the NSF.

REFERENCES
[1] Daniel Agun, Jinjin Shao, Shiyu Ji, Stefano Tessaro, and Tao Yang. 2018. Privacy

and efficiency tradeoffs for multiword top k search with linear additive rank

scoring. In Proceedings of the 2018 World Wide Web Conference. 1725–1734.
[2] Vo Ngoc Anh and Alistair Moffat. 2005. Inverted index compression using word-

aligned binary codes. Information Retrieval 8, 1 (2005), 151–166.
[3] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache

attacks are practical. In 11th USENIX Workshop on Offensive Technologies, 2017.
[4] Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.

2003. Efficient query evaluation using a two-level retrieval process. In Proc. of
CIKM’03. 426–434.

[5] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. 2014. Privacy-

Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data. IEEE
Trans. Parallel Distrib. Syst. 25, 1 (2014), 222–233.

[6] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. leakage-

abuse attacks against searchable encryption. In CCS’15. ACM, 668–679.

[7] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation.. In NDSS, Vol. 14.
23–26.

[8] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In CRYPTO 2013. 353–373.
[9] Gordon V Cormack, Mark D Smucker, and Charles LA Clarke. 2011. Efficient

and effective spam filtering and re-ranking for large web datasets. Information
retrieval 14, 5 (2011), 441–465.

[10] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive (2016), 1–118.

[11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions (CCS
’06). ACM, 79–88.

[12] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[13] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-

max indexes. In Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval. 993–1002.

[14] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-

schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and secure index

with SGX. In IFIP Ann. Conf. on Data and App. Security and Privacy. 386–408.
[15] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In

STOC ’09. ACM, 169–178.

[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[17] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A Yavuz. 2019.

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on

Very Large Dataset. Proc. on Privacy Enhancing Technologies 1 (2019), 172–191.
[18] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. 2011. Processing private

queries over untrusted data cloud through privacy homomorphism. In ICDE.
601–612.

[19] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In NDSS 2012.
[20] Shiyu Ji, Jinjin Shao, Daniel Agun, and Tao Yang. 2018. Privacy-aware Ranking

with Tree Ensembles on the Cloud. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval. ACM, 315–324.

[21] Karen Spärck Jones, SteveWalker, and Stephen E. Robertson. 2000. A probabilistic

model of information retrieval: development and comparative experiments. In

Information Processing and Management. 779–840.
[22] Seny Kamara and Tarik Moataz. 2017. Boolean searchable symmetric encryption

with worst-case sub-linear complexity. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 94–124.

[23] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 965–976.

[24] Robert Krovetz. 2000. Viewing morphology as an inference process. Artificial
intelligence 118, 1-2 (2000), 277–294.

[25] Chang Liu, Liehuang Zhu,MingzhongWang, and Yu-An Tan. 2014. Search pattern

leakage in searchable encryption: Attacks and new construction. Information
Sciences 265 (2014), 176–188.

[26] AntonioMallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano

Venturini. 2017. Faster BlockMax WAND with variable-sized blocks. In Proc. of
SIGIR’2017. 625–634.

[27] Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack Crawford, Flavio Bergam-

aschi, Maria E. Dela Rosa, Caio C. Quini, Camila T. Alves, Feranda de Souza, and

Deise G. Ferreira. 2019. Towards a Homomorphic Machine Learning Big Data

Pipeline for the Financial Services Sector. Cryptology ePrint Archive, Report

2019/1113. (2019).

[28] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong.

2006. High Accuracy Retrieval with Multiple Nested Ranker. In SIGIR (SIGIR ’06).
Association for Computing Machinery, New York, NY, USA, 437–444.

[29] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada

Popa. 2018. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium
on Security and Privacy (SP). 279–296.

[30] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. 2014. Dynamic

searchable encryption via blind storage. In 2014 IEEE Symposium on Security and
Privacy. IEEE, 639–654.

[31] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious multi-party machine

learning on trusted processors. In Proc. of 2016 USENIX Security Symp. 619–636.
[32] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT ’99. 223–238.
[33] Jinjin Shao, Shiyu Ji, and Tao Yang. 2019. Privacy-Aware Document Ranking

with Neural Signals. In Proc. of 2019 SIGIR. 305–314.
[34] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-

niques for Searches on Encrypted Data (SP ’00). IEEE Computer Society.

[35] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path oram: An

extremely simple oblivious ram protocol. J. ACM 65, 4 (2018), 1–26.

[36] Trevor Strohman and W Bruce Croft. 2007. Efficient document retrieval in main

memory. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval. 175–182.

[37] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou, and

Hui Li. 2014. Verifiable Privacy-Preserving Multi-Keyword Text Search in the

Cloud Supporting Similarity-Based Ranking. IEEE Trans. Parallel Distrib. Syst. 25,
11 (2014), 3025–3035.

[38] Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y Thomas Hou. 2018. Rearguard:

Secure keyword search using trusted hardware. In IEEE INFOCOM 2018. 801–809.
[39] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Kim-Kwang Raymond Choo, Peiyi

Han, Hezhong Pan, and Binxing Fang. 2018. Leakage Models and Inference

Attacks on Searchable Encryption for Cyber-Physical Social Systems. IEEE Access
6 (2018), 21828–21839.

[40] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A Cascade Ranking Model for

Efficient Ranked Retrieval. In SIGIR (SIGIR ’11). Association for Computing Ma-

chinery, New York, NY, USA, 105–114. https://doi.org/10.1145/2009916.2009934

[41] Zhihua Xia, Xinhui Wang, Xingming Sun, and Qian Wang. 2016. A secure and

dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE
Transactions on Parallel and Distributed Systems 27, 2 (2016), 340–352.

[42] Jiangong Zhang, Xiaohui Long, and Torsten Suel. 2008. Performance of com-

pressed inverted list caching in search engines. In Proceedings of the 17th Interna-
tional Conference on World Wide Web, WWW. 387–396.

https://doi.org/10.1145/2009916.2009934

[43] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed

analytics platform. In NSDI 17. 283–298.

A APPENDIX
A.1 Mapping from term copies to buckets
We investigate the probability of restarting a randommapping from

kV term copies to the kV /b buckets defined in Section 4.2. This

mapping groups b consecutive term copies in a randomly shuffled

sequence of kV term copies: {(i, j) : 1 ≤ i ≤ V , 1 ≤ j ≤ k} where
tuple (i, j) represents the j-th copy of the i-th term. Recall that a

collision pair is defined as two copies of the same term mapped to

the same bucket.

We also call (k,b)-allocation as a parameter pair with bucket

size b and k duplicate degree of each term. We define random
variable Y (k,b)i as the number of collision pairs among the b term

copies sent to the i-th bucket for this (k,b)-allocation.

Lemma A.1. For (k,b)-allocation,

Pr[Y
(k,b)
i ≤ 1] =

(V
b
)
kb +

(V
b−1

)
(b − 1)

(k
2

)
kb−2(kV

b
) .

Proof. The total number of all possible combinations of the term

copies sent to the i-th bucket is

(kV
b
)
. The number of combinations

that there is no collision among the b term copies sent to the i-th

bucket is

(V
b
)
kb . Hence Pr[Y

(k,b)
i = 0] =

(V
b
)
kb/

(kV
b
)
. The number

of combinations that there is exactly one collision among the b

term copies sent to the i-th bucket is

(V
b−1

)
(b − 1)

(k
2

)
kb−2, which

can be shown using a counting argument:

(1) choose b − 1 terms;

(2) choose one term amongb−1 for where the collision happens;
(3) the collision can happen between any two of k copies of the

chosen term;

(4) each of the other b − 2 terms has k copies to choose from.

Hence Pr[Y
(k,b)
i = 1] =

(V
b−1

)
(b − 1)

(k
2

)
kb−2/

(kV
b
)
. □

Lemma A.2. For (k,b)-allocation, if b(b+1)
2
− 1 << V , then

Pr[Y
(k,b)
i > 1] ≤

(b
3

)
+ 3

(b
4

)
V 2

.

Proof. By Lemma A.1 we have

Pr[Y
(k,b)
i ≤ 1] =

V · · · (V − b + 1) +V · · · (V − b + 2)b(b − 1)
(
1

2
− 1

2k

)
V · · ·

(
V − b−1

k

) .

Since
b(b+1)

2
− 1 << V , we have V − b + 1 >>

b(b−1)
2

. Hence

b(b−1)
2(V−b+1) = o(1), where o(1) denotes sufficiently small positive

number given sufficiently large V . Then

Pr[Y
(k,b)
i ≤ 1] =

V · · · (V − b + 1)(1 + o(1))

V · · ·
(
V − b−1

k

) ,

which asymptotically decreases as k increases. Hence the probabil-

ity Pr[Y
(k,b)
i > 1] is upper bounded by Pr[Y

(∞,b)
i > 1] for (∞,b)-

allocation, which has infinite buckets, and each bucket chooses b

Figure 3: Three ways to arrange two collision pairs among
four chosen term copies.

terms independently uniformly. For (∞,b)-allocation, Pr[Y
(∞,b)
i >

1] can be upper bounded by the following argument:

(1) the probability that there are two pairs of copies, each of

which comes from the same term, is

(b
4

)
· 3V b−2/V b

, which

can be shown using a counting argument: a) choose 4 copies

for two collision pairs; b) there are 3 ways to arrange the

chosen 4 copies for two pairs (see Figure 3); c) for each

collision pair and each copy that is not chosen in a), its term

has V possibilities;

(2) the probability that there are three copies from the same

term is

(b
3

)
V b−2/V b

, which can be shown by a counting

argument similar to 1);

(3) Y
(∞,b)
i > 1 if and only if (1) or (2) happens.

Note that the events of (1) and (2) are overlapped, e.g., the case

when more than 3 copies in one bucket come from the same term

is in both (1) and (2). Hence we only claim an upper bound using

union bound. □

Theorem A.3. If b(b+1)
2
− 1 << V , the probability to start over

the random mapping algorithm is at most

b2k

V

(
1

3

+
b + k

8

)
.

Proof. Let Xi denote the number of collision pairs among the

copies from the i-th term, and let Yj denote the number of collision

pairs among the copies to the j-th bucket. Then by Lemma A.2

Pr[Xi > 1] ≤

(k
3

)
+ 3

(k
4

)
B2

≤
1

B2

(
k3

6

+
k4

8

)
,

Pr[Yi > 1] ≤

(b
3

)
+ 3

(b
4

)
V 2

≤
1

V 2

(
b3

6

+
b4

8

)
.

By union bound and the fact B = kV /b,

Pr[max

1≤i≤V
Xi > 1] ≤

V∑
i=1

Pr[Xi > 1] =
b2

V

(
k

6

+
k2

8

)
,

Pr[max

1≤i≤B
Yi > 1] ≤

B∑
i=1

Pr[Yi > 1] =
k

V

(
b2

6

+
b3

8

)
.

Based on the collision tolerance condition in Section 4.2, the random

term-bucket re-mapping restarts if one or both of the following

conditions hold:

• 1) Each term has at least (k − 1) unique bucket locations if and
only if the number of collision pairs among the copies of each

term is more than 1, namely, max1≤i≤V Xi > 1.

• 2) Similarly, each bucket has at least (b − 1) unique terms if and

only if max1≤i≤B Yi > 1.

Thus the probability to start over re-mapping is at most

Pr[max

1≤i≤V
Xi > 1 ∨ max

1≤i≤B
Yi > 1] ≤

1

V

(
b2k

3

+
b2k2 + b3k

8

)
.

□

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Inverted index and document retrieval
	2.2 Threat model
	2.3 Known privacy attacks in document search
	2.4 Trusted hardware platform

	3 Leakage-Abuse Attacks and Design Considerations
	4 Index Bucketing and Masking
	4.1 Inverted index with term buckets
	4.2 Term bucketing with limited collisions
	4.3 Oblivious online document retrieval

	5 Privacy Analysis
	5.1 Obliviousness of MII
	5.2 Obfuscations of terms and queries
	5.3 Leakage profile

	6 Complexity Comparison
	7 Evaluation
	8 Concluding Remarks
	Acknowledgments
	References
	A Appendix
	A.1 Mapping from term copies to buckets

