
Towards Accurate Prediction for Laser-Coolable Molecules: Relativistic

Coupled-Cluster Calculations for Yttrium Monoxide and Prospects for Improving its

Laser Cooling E�ciencies

Chaoqun Zhang,
1
Hannah Korslund,

1
Shiqian Ding,

2, a)
and Lan Cheng

1, b)

1)
Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218,

USA

2)
JILA, National Institute of Standards and Technology and

the University of Colorado, Boulder, Colorado 80309-0440,

USA and Department of Physics, University of Colorado, Boulder,

Colorado 80309-0390, USA

1



Benchmark relativistic coupled-cluster calculations for yttrium monoxide (YO) with

accurate treatment of relativistic and electron correlation e↵ects are reported. The

spin-orbit mixing of 2⇧ and 2� is found to be an order of magnitude smaller than

previously reported in the literature. This together with experimental measurement

for the lifetime of the A02�3/2 state implies an enhanced capability of a narrow-line

cooling scheme to bring YO to sub-recoil temperature. The computed electronic

transition properties also support a four-photon scheme for closing the leakage of

the A2⇧1/2 $ X2⌃+
1/2 cycle through the A02�3/2 state by repumping the molecules

leaking to the A02�3/2 state to the B2⌃+
1/2 state, which subsequently decay back

to X2⌃+
1/2 states with the same parity as those initially in the optical cycle. Rela-

tivistic coupled-cluster methods capable of providing accurate spectroscopic param-

eters that characterize the local potential curves and hence of providing accurate

Franck-Condon factors appear to be promising candidates for accurate predictions of

laser-coolable molecules.
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I. INTRODUCTION

Cold molecules have the potential of providing new avenues for quantum information

science, cold chemistry, and precision tests of fundamental physics.1–17 Laser cooling tech-

niques o↵er a promising route for bringing molecules towards the ultracold regime.18–25

However, the more complex internal structure of a molecule poses challenges for applying

laser-cooling techniques readily established for atoms. A molecule in the vibrational ground

state of an electronic upper state can make transitions to a number of vibrational states

of a lower electronic state, which requires the use of additional repumping lasers to form

nearly closed optical cycles. This leads to complicated molecule-specific experimental setup.

The selection of a suitable molecule thus is of importance to the success of an experimental

e↵ort. Determination of molecular parameters pertinent to laser cooling mainly relies on

experimental measurement using high-resolution laser spectroscopy.26–30 At the same time,

calculations of these parameters aiming at identifying laser-coolable molecules have also

attracted considerable attention.31–40

A class of molecules of particular interest to laser cooling is alkaline or early/late tran-

sition metal containing small molecules in their doublet electronic states comprising an

alkaline or transition metal atom and an electron-withdrawing ligand. These molecules

usually possess an X2⌃ ground state with an unpaired electron in the metal s-type orbital.

The first manifold of electronically excited states consist of the A2⇧ and A02� states as well

as a B2⌃ state. Since the unpaired electrons in these excited states are also largely localized

at the metal site, these excited states largely preserve the nature of the metal-ligand bond

and exhibit geometries and vibrational structures similar to those of the ground state. This
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leads to diagonally dominant Franck-Condon factors for transitions between these excited

states and the ground state, which is crucial for forming closed optical cycles. Many polar

molecules studied in laser cooling fall into this category.18–25

As mentioned above, the most important molecular properties pertinent to laser cooling

are perhaps the Franck-Condon factors (FCFs) for transitions between electronic ground

and excited states. In particular, FCFs for dipole-allowed X2⌃ ! A2⇧ and X2⌃ ! B2⌃

transitions as possible candidates for optical cycles are of paramount importance. Pertinent

to accurate calculations of FCFs are the local potential energy curves (PECs) around the

equilibrium geometries. Therefore, the most important criterion for selecting electronic

structure methods is the capability of providing accurate spectroscopic parameters that

characterize the local PECs, i.e., the equilibrium structures, harmonic vibrational frequen-

cies, as well as cubic and quartic force constants. Further, the level positions for the A02�

states and the transition intensities between A2⇧ and A02� are also of significant interest.

They are responsible for whether the X2⌃ $ A2⇧ cycle has a significant leakage to the

“dark” A02� state. Finally, accurate calculation for the spin-orbit mixing between A02�

and A2⇧ plays an important role in determining the lifetime and transition properties of

the A02� states, which is possibly relevant to narrow-line cooling techniques using the A02�

state41 or repumping schemes to reduce the e↵ects due to leakage of the A2⇧1/2 $ X2⌃1/2

cycle to the A02�3/2 state.

The present work reports a benchmark computational study of the above mentioned prop-

erties pertinent to laser cooling for yttrium monoxide (YO)20,42–44 together with prospects

for enhancing laser cooling e�ciencies for this molecule. Since the prospect schemes use the
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A02� state, treatment of spin-orbit e↵ects on the low-lying electronic states of YO, especially

on the lifetime and transition properties of the A02� state, is one focus of the present study.

An experimental measurement of the A02� lifetime is also reported here. The implication

of A02�-A2⇧ spin-orbit mixing to a narrow-line cooling scheme of YO proposed in Ref.41

and a new idea of using the A02�3/2 ! B2⌃+
1/2 transition to close the leakage to the A02�3/2

from the A2⇧1/2 $ X2⌃+
1/2 cycle are discussed. The other focus of the computational study

presented here is to use the hierarchies of coupled-cluster methods and systematically ex-

panded basis sets to evaluate the convergence of computational results. A variety of forms

for potential energy curves, including ab initio potential, harmonic potential, and Morse

potential, have also been used in calculations of Franck-Condon factors to study the e↵ects

of the potential function. These analyses as well as comparison with experimental measure-

ments for YO45–52 aim to assess the accuracy of computed properties, paving the way to

quantitative calculations with predictive value.

II. METHODS

A. Experimental

The experimental measurement reported here focuses on the lifetime of the A02�3/2 state.

A molecular beam at a speed of 100 m/s is generated with a bu↵er gas cell filled with helium

at 4 K temperature. We excite the molecules from X2⌃+
1/2 to A02�3/2 with a resonant laser

pulse at 689.6 nm applied perpendicular to the moleculer beam. We then switch o↵ the laser,

and collect the fluorescence from the molecules with a photomultiplier tube (PMT). The data

is shown in Fig. 1. The measured fluorescence yield is assumed to decay exponentially with

respect to time, i.e., / e�t/⌧ with ⌧ being the lifetime of the A02�3/2 state, which is extracted
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in a fitting procedure to be 23(2) µs (Fig. 1).

FIG. 1. Measurement of A02�3/2 lifetime. The jagged line represents the experimental data and

the smooth line is a fit to the function ae�t/⌧ + b.

B. Computational

The CFOUR program package53–59 has been used in all computations presented here. The

electron configurations of the X2⌃+, A2⇧, A02�, and B2⌃+ states of YO comprise the same

closed-shell cationic configuration augmented with an additional unpaired electron occupy-

ing the valence 1�, 1⇡, 1�, and 2� orbitals, respectively. Since the closed-shell configuration

is stable, response theories using the closed-shell configuration as the reference and adding

one electron to obtain the target states, e.g., the equation-of-motion electron attachment

coupled cluster (EOMEA-CC)60 methods, are expected to provide balanced descriptions for
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these states. To investigate the accuracy of EOMEA-CC methods for the present appli-

cation, we have carried out EOMEA-CC singles and doubles (CCSD) and singles doubles

triples (CCSDT) calculations for the equilibrium geometries and vibrational frequencies of

these four electronic states of YO. The EOMEA-CCSDT calculations have used the re-

cent e�cient implementation of EOM-CCSDT for excitation energies within the CFOUR

program61 together with the continuum-orbital trick62 for accessing electron attached states.

The scalar-relativistic e↵ects have been taken into account using the spin-free exact two-

component theory in its one-electron variant (SFX2C-1e)57,63,64 unless otherwise specified.

Perturbative treatment of spin-orbit coupling has been performed using spin-orbit integrals

of the SFX2C-1e atomic mean-field (AMF) spin-orbit approach65 and spin-orbit coupling

matrix elements computed using the EOM-CCSD expectation-value formulation,66,67 hereby

taking the SFX2C-1e wavefunctions as the zeroth-order wavefunctions68. In this way, scalar-

relativistic contributions to both the unperturbed states and the spin-orbit integrals have

been taken into account. This perturbative scheme has recently been shown to provide ac-

curate spectroscopic parameters for the ThO+ molecule,65 which has an electronic structure

similar to YO.

Unrestricted Hartree-Fock (UHF) based coupled-cluster singles doubles augmented with

a noniterative triples [CCSD(T)]69,70 calculations have also been performed for the X2⌃+,

A2⇧, and A02� states, which are the lowest electronic states in the corresponding irreducible

representations. We have also carried out CCSD(T) calculations with non-perturbative

treatment of spin-orbit coupling [SO-CCSD(T)]71 using the X2C scheme64,72,73 and the

corresponding AMF approach74 for the X2⌃+
1/2, A02�3/2, and A02�5/2 states to obtain

benchmark results for treatment of both spin-orbit coupling and electron correlation. These
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CCSD(T) calculations directly optimize the wavefunctions for the targeted states, and thus

are expected to provide more accurate energies and properties than EOM-CC calculations

when a similar level of truncation for the cluster expansion is applied. On the other hand, it

should be noted that the EOM-CC methods are more flexible than the UHF-CC methods,

especially for states that are not the lowest in an irreducible representation. Although we

have converged UHF-CCSD(T) calculations for the B2⌃+ state as well as SO-CCSD(T)

calculations for the A2⇧1/2 and A2⇧3/2 states in the vicinity of the equilibrium structures by

using a maximum-overlap method (MOM),75 convergence di�culties have been encountered

for SO-CCSD(T) calculations of the B2⌃+
1/2 state.

The contraction coe�cients of standard basis sets have been constructed for scalar-

relativistic calculations. In the present study, we have used basis sets in the fully un-

contracted form to ensure su�cient degrees of freedom for accurately accounting for both

scalar-relativistic and spin-orbit e↵ects. The set of primitive s-, p-, d- functions of the ANO-

RCC basis set for yttrium76 are augmented with correlating functions of cc-pCVTZ and

cc-pCVQZ basis sets77 to form TZ and QZ sets for yttrium. The uncontracted correlation

consistent cc-pCVTZ and cc-pCVQZ basis sets of oxygen have been used and are denoted

as TZ and QZ sets for oxygen.78 Virtual orbitals with orbital energies greater than 1000

hartree have been kept frozen in all CC calculations.

For each scheme of electronic-structure calculations, the local potential energy curves

(PECs) have been scanned and fitted into sixth-order polynomial functions. Equilibrium

bond lengths, harmonic vibrational frequencies, and anharmonic constants were obtained

using these force constants and second-order vibrational perturbation theory.79 More exten-
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sive calculations of PECs in the range of bond lengths [1.55 Å, 2.20 Å] covering around 10000

cm�1 above the energies of the equilibrium geometries have also been performed for EOM-

CC calculations. These computed energies have been fitted into tenth-order polynomials to

reproduce the energies in this region faithfully. These ab initio PECs (documented in the

supplementary material) have been used for discrete variable representation (DVR) calcula-

tions to obtain vibrational wavefunctions, energy levels, and Franck-Condon factors. DVR

calculations have also been carried out using harmonic and Morse potentials with spectro-

scopic parameters including bond lengths, harmonic frequencies, and anharmonic constants

obtained from ab initio calculations or experiments to test how the forms of PECs a↵ect the

computed Franck-Condon factors.

III. RESULTS AND DISCUSSIONS

A. Spin-orbit mixing and electronic transition dipole moments

The compositions of the X2⌃+
1/2, A

2⇧1/2, A2⇧3/2, A02�3/2, A02�5/2, and B2⌃+
1/2 wave-

functions in terms of scalar-relativistic wavefunctions in the bond length of 1.8 Å have been

obtained by diagonalizing the e↵ective Hamiltonian (Table I) and summarized in Table II.

The spin-orbit mixing between these scalar-relativistic wavefunctions is in general small,

e.g., the A02�3/2 state has a contribution of less than 0.1% from the 2⇧ wavefunction (an

expansion coe�cient of ca. 0.03). Importantly, the 2⇧ � 2� spin-orbit mixing obtained in

the present calculations is substantially smaller than the value reported in Ref.48 calculated

using the spin-orbit coupling strength of yttrium 4d orbitals. This discrepancy can be

attributed to that the 2⇡ orbitals are dominated by yttrium 5p±1 contributions with only

small contributions from 4d±1 orbitals (Figure 1). Note that yttrium atomic spin-orbit
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interaction directly couples 4d±2 with 4d±1 but not with 5p±1. Therefore, as shown in Table

I, the spin-orbit matrix elements between the 2⇧ and 2� wavefunctions amount to less than

30 cm�1, one order of magnitude smaller than those between 2�xz and 2�yz wavefunctions.

The small 2⇧ and 2� spin-orbit mixing has important implications for the lifetime of the

A02� state and the transition intensities of nominally dipole forbidden A02� $ X2⌃ and

A02� $ B2⌃ transitions, as detailed below.

Computed electronic transition dipole moments between scalar-relativistic wavefunctions

as summarized in Table III compare reasonably well with computational results reported

in Ref.80. The transition dipole moments for dipole-allowed transitions between spin-orbit-

coupled stated including the X2⌃+
1/2 $ A2⇧1/2, X2⌃+

1/2 $ B2⌃+
1/2, and A2⇧1/2 $ A02�3/2

transitions largely derive from the corresponding values between scalar-relativistic wave-

functions. The lifetime values of 26 ns and 24 ns for the A2⇧1/2 and A2⇧3/2 states obtained

using the Einstein A coe�cients in Table IV compare favorably with experimental values

of 33 ns and 30ns.46 The computed lifetime of ca. 20 ns for the B2⌃+
1/2 state is similar to

those of the A2⇧ states. The transition moment for the A2⇧1/2 $ A02�3/2 transition is of

similar magnitude to that of the X2⌃+
1/2 $ B2⌃+

1/2 transition. Owing to the much smaller

transition energy, the spontaneous decay rate from A2⇧1/2 to A02�3/2 is three orders of mag-

nitude lower than that from A2⇧1/2 to X2⌃+
1/2. The computed branching ratio of 6⇥10�4

for A2⇧1/2 ! A02�3/2 is in reasonable agreement with the value of 3⇥10�4 reported in Ref.41

The X2⌃+
1/2 $ A02�3/2 and A02�3/2 $ B2⌃+

1/2 transitions are nominally dipole forbid-

den and borrow intensities entirely through spin-orbit mixing. As shown in Table IV, the

transition moment for the X2⌃+
1/2 $ A02�3/2 transition is three order of magnitude smaller
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than that of the dipole-allowed X2⌃+
1/2 $ A2⇧1/2 transition. This leads to a value of 40 µs

for the spontaneous decay lifetime of the A02�3/2 state, around 1500 times longer than that

of the A2⇧1/2 state. This computed lifetime for the A02�3/2 state is in good agreement with

the measured value of 23(2) µs presented in Section II-A. The A02�3/2 $ B2⌃+
1/2 transition

has an oscillator strength of similar magnitude to that of the X2⌃+
1/2 $ A02�3/2 transition.

Finally, since the unpaired electrons in the X2⌃+, A2⇧, and B2⌃+ states are dominated by

yttrium 5s, 5px/5py, and 5pz orbitals, respectively, B2⌃+
1/2 $ A2⇧1/2 transition possesses a

much smaller transition dipole moment (25 times smaller) than that of theX2⌃+
1/2 $ B2⌃+

1/2

transition. Consequently, the oscillator strength of this transition is only about the same

magnitude as those of dipole-forbidden transitions.

B. Benchmark calculations of molecular parameters and Franck-Condon

factors

1. Equilibrium geometries, harmonic frequencies, and term energies

Since Franck-Condon factors (FCFs) involving low-lying vibrational states are largely

determined by the local potential energy curves (PECs), we first focus on structural pa-

rameters such as equilibrium bond lengths and vibrational frequencies that characterize

the local PECs. In general, EOM-CCSD provides qualitatively correct results, while the

inclusion of triples contributions build the way to obtain accurate results. The triples cor-

rections (the di↵erence between EOM-CCSDT and EOM-CCSD, the first two columns in

Tables V and VI) amount to around 0.02 Å for equilibrium bond lengths and around 50

cm�1 for harmonic frequencies. EOM-CCSD underestimates the bond lengths and overes-

timate harmonic frequencies for all the electronic states studied here. The basis-set and
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core-correlation e↵ects are smaller, i.e., around 0.005 Å for the bond lengths and a few cm�1

for harmonic frequencies. Spin-orbit corrections (the di↵erence between the fourth and fifth

columns in Tables V and VI) amount to around 0.001 Å for bond lengths and a few cm�1

for harmonic frequencies. The deviations between the best EOM-CC results (the columns

”EOM-CCSD/1Z/sc+�T+�SO” in Tables V and VI) and experimental values are below

0.005 Å for bond lengths and 15 cm�1 for harmonic frequencies.

As shown in Tables V and VI, SO-CCSD(T) bond lengths are as accurate as the best

EOM values, while SO-CCSD(T) harmonic frequencies agree with experiment even more

closely. Namely, SO-CCSD(T) harmonic frequencies are around 5 cm�1 higher than the

corresponding experimental values, while the EOM values are 10 cm�1 lower than the ex-

periments. A notable exception is that, although it is also 15 cm�1 higher than the EOM

values, CCSD(T) harmonic frequency for B2⌃+ is more than 20 cm�1 greater than the

experimental value. This might be due to a perturbing electronic state nearly degenerate to

vibrational excited states of B2⌃+51 and seems worth further investigation. The perturbing

electronic state is not expected to have significant e↵ects on the present calculations of

Franck-Condon factors, which only include vibrational ground state of B2⌃+. Note that

CCSD(T) feautures a noniterative triples correction to CCSD with a cost of a single step

that scales as the seventh power of the system size, while the cost of CCSDT scales as the

eighth power of the system size for each CC iteration. Therefore, CCSD(T) appears to

be a more e�cient approach for the present purpose of obtaining accurate spectroscopic

parameters for YO. The SO e↵ects obtained from SO-CCSD(T) calculations are consistent

with those obtained from perturbative SO calculations, e.g., the spin-orbit splittings of bond

lengths and harmonic frequencies amount to around 0.001 Å and 1 cm�1.
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Unlike in calculations of bond lengths and harmonic frequencies, basis-set e↵ects play

an important role in calculations of term energies. Since the X2⌃ and A02� states possess

quite di↵erent electronic orbital angular momenta, di↵erential basis-set e↵ects on the term

energy of A02� are significant. As shown in Table VII, the remaining basis-set e↵ects for

the term energies of the A02� states obtained using the TZ basis amount to more than 600

cm�1. It thus is necessary to perform basis-set extrapolation81 to estimate the basis-set-limit

values to obtain accurate results. CCSD(T) appear to be more accurate than EOM-CCSDT

for term energies, e.g., EOM-CCSDT term energies of the A02� states appear to be 200

cm�1 too high, while the SO-CCSD(T) ones agree with the experimental values to within 50

cm�1. Perturbative spin-orbit calculations have obtained values of 285 cm�1 and 423 cm�1

for the spin-orbit splittings of the A02� and A2⇧ states, which compare reasonably well

with experimental values of 339 cm�1 and 431 cm�1. SO-CCSD(T) provides more accurate

spin-orbit splittings, which agree with experimental values to within 5 cm�1. Computed

term energies are obviously less accurate than experimental values obtained from using

high resolution laser spectroscopy. On the other hand, for electronic states in absence of

experimental measurements, e.g., the A02� state of BaF or RaF, one may speculate that

electronic-structure calculations may provide useful estimate for energy levels to facilitate

experimental search for these states.

2. Franck-Condon factors

As vibrational overlap integrals, Franck-Condon factors (FCFs) are expected to be sen-

sitive to the di↵erence between the equilibrium bond lengths of two electronic states. The

variation of computed FCFs with respect to bond-length di↵erences is demonstrated in
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Table VIII with calculations using the same PECs with shifted equilibrium bond lengths.

The absolute values of individual FCFs are very sensitive to the variation of bond-length

di↵erences, with an approximate linear dependence. For example, a shift of the bond-length

di↵erence by 0.005 (or 0.01) Å leads to a change of the FCF for the B2⌃(0) ! X2⌃(0)

transition by around 5% (or 10%). On the other hand, the sum of FCFs up to a certain

vibrational level is less sensitive to the change of bond-length di↵erence. For example, the

sum of FCFs for the B2⌃+(0) ! X2⌃+(v) transitions with v = 0� 3 (v = 0� 4) saturates

to 99.99% (99.999%) for all calculations with a shift of bond-length di↵erence less than 0.01

Å. In general it seems necessary to have bond-length di↵erence accurate to within 0.01 Å to

obtain qualitatively correct results for FCFs and to within 0.003 Å to obtain quantitative

results. We mention that, as show in supplementary material, the dependence of computed

FCFs with respect to harmonic frequencies is less pronounced.

As discussed in the previous section, the EOM-CCSD equilibrium bond lengths di↵er

from experimental values by more than 0.01 Å. One may expect significant errors in com-

puted bond-length di↵erences and FCFs. However, it should be noted that EOM-CCSD

consistently overestimates the equilibrium bond lengths for all electronic states studied

here; the errors for EOM-CCSD bond-length di↵erences thus are less than 0.01 Å. Conse-

quently, while EOM-CCSD tends to overestimate the diagonal FCFs, EOM-CCSD results

are in general robust and qualitatively correct. As shown in Table IX, the deviations of

the EOM-CCSD result from those of EOM-CCSDT amount to 1% for the FCF of the

B2⌃+(0) ! X2⌃+(0) transition and to 4% for the FCF of the A02�(0) ! X2⌃+(0) transi-

tion. The vibrational transitions required to saturate the sum of A2⇧(0) ! X2⌃+(⌫) FCFs

to more than 99.999% are both ⌫ = 0� 2 for EOM-CCSD and EOM-CCSDT calculations.
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We mention that enlargement of basis sets reduces the bond lengths for all electronic states

and has small e↵ects on bond-length di↵erences and hence FCFs (shown as the di↵erences

between the second and third columns of Table IX). The e↵ects of core correlation and

spin-orbit coupling appear to be even smaller.

The forms of the potential energy functions seem to play a minor role in calculations of

FCFs. While the use of harmonic approximation could introduce significant errors for tran-

sitions to higher vibrational levels (see the di↵erence between the first and second columns

of Table X), the results obtained using Morse potentials agree closely with those obtained

using ab initio potentials, provided they share the same equilibrium bond lengths, harmonic

frequencies, and anharmonic constants. The first and third columns of Table X respectively

show FCFs obtained using the best EOM potential and the Morse potential with the same

spectroscopic parameters. The di↵erences between these FCFs are essentially negligible. In

contrast, the results obtained using EOM and experimental parameters (columns 3 and 4

in Table X) di↵er more substantially. When the EOM potential is shifted to match the

experimental equilibrium bond length (the last column of Table X), the results agree very

well with those obtained using Morse potentials with experimental parameters. Since the

semiempirical Morse potentials with accurate spectroscopic parameters are capable of pro-

viding accurate FCFs, a useful practical computational strategy is to obtain spectroscopic

parameters from relativistic CCSD(T) or EOM-CC calculations and then calculate FCFs

using Morse potentials built with these parameters.
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C. Prospects for enhancing laser cooling e�ciencies for YO

1. An alternative scheme for addressing the leakage through the 2�3/2 state

A typical experiment to laser cool molecules requires scattering ⇠ 105 photons. The YO

molecules with an initial speed of 100 m/s are first slowed to ⇠5 m/s42, and then captured

by a magneto-optical trap43 and laser cooled to 4 µK82. The transition X2⌃+ $ A2⇧1/2

forms an optical cycling transition. Only two vibrational repumpers are required to scatter

enough number of photons (to obtain an optical cycle with branching ratios saturated to

>99.999%), which is consistent with the present computational results for FCFs in Table

X. However, except decaying to X2⌃+, YO molecules also leak to A02�3/2 from A2⇧1/2

with a branching ratio on the order of 10�4 (6⇥10�4 as derived from Table IV and 3⇥10�4

as reported in Ref.42). The molecules in the A02�3/2 state subsequently decays to the

X2⌃+
1/2 state. The optical cycle involving the leakage to A02�3/2 is a three-photon process,

which leads to a decay to the molecular states with the opposite parity compared with the

initial state. Separate lasers or microwaves are required to repump these dark states in

various rotational states back to the initial states, as demonstrated in Ref.42,43. However,

the FCFs of the X2⌃1/2 $ 2�3/2 transition are not highly diagonal with the FCF of the

X2⌃+
1/2(0) $ 2�3/2(0) transition being less than 90% (Table X). More than one vibrational

states may possibly need to be repumped to enable scattering of 105 photons, which sub-

stantially complicates the repumping scheme.

We present here an alternative scheme to close the leakage through A02�3/2 by coupling

A02�3/2 to B2⌃+
1/2. The formally dipole-forbidden transition A02�3/2 $ B2⌃+

1/2 borrows

intensity from spin-orbit coupling and has a similar oscillator strength as X2⌃+
1/2 $ A02�3/2
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(Table IV). It is therefore feasible to fully saturate this transition using a laser at 1.602

µm with a saturation intensity of 0.19 µW/cm2. This reduces the probability for A02�3/2

to spontaneously decay to X2⌃1/2 by a factor of ⌧A0/⌧B ⇠ 103, where ⌧A0 and ⌧B are the

lifetimes of 2�3/2 and B2⌃+
1/2, respectively, since B2⌃+

1/2 decays much faster than A02�3/2.

This suppression factor is high enough for us to ignore the direct decay from A02�3/2. The

molecules in the B2⌃+ state subsequently decay to the A2⇧1/2 and X2⌃+
1/2 states. Note

that the B2⌃+
1/2 $ A2⇧1/2 transition possesses a very small transition dipole moment, 25

times smaller than that of the B2⌃+
1/2 $ X2⌃+

1/2 transition (Table IV). Consequently, the

spontaneous decay rate of the former transition is four orders of magnitude smaller than

that of the latter one. This indicates that a vast majority of the molecules in the B2⌃+
1/2

state decay directly to the ground electronic state. This optical cycle involves X2⌃+
1/2,

A2⇧1/2, A02�3/2, and B2⌃+
1/2 states and is a four-photon process with the parity of the

states conserved. Therefore, the molecules decay back to the same rotational states as those

of X2⌃+
1/2 initially in the X2⌃+ $ A2⇧1/2 optical cycle.

2. Narrow-line cooling below recoil temperature

A narrow-line cooling scheme using the narrow linewidth of the A02�3/2 state has been

proposed and analyzed in detail in Ref.41. Since the 2��2⇧ spin-orbit mixing is significantly

lower than previously reported, the linewidth of the A02�3/2 state is much narrower than

that used in Ref.41. It would thus be of interest to update the analysis for the narrow-line

cooling scheme. The Doppler temperature estimated using the measured lifetime of 23 µs

for the A02�3/2 state is as low as 160 nK, which is comparable with the recoil temperature

of ca. 200 nK and more than one order of magnitude lower than the lowest temperature

achieved so far for laser-cooled molecules. We mention that the Doppler temperature es-
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timated using the computed lifetime of 40 µs amounts to around 100 nK. Here we adopt

the more conservative value of 160 nK in our discussion. This deep cooling can be applied

following the gray molasses cooling, which is recently shown to be able to cool YO molecules

to 4 µK. According to the computed FCFs of the X2⌃+
1/2 $ A02�3/2 transition (the last

two columns of Table X), repumping one vibrationally excited state forms an optical cycle

containing around 99% vibrational branching. This enables ⇠ 100 photon scatterings and

might be enough for sub-recoil cooling.

The linewidth of 2�3/2 is appropriate for employing the SWAP83–85 cooling to YO

molecules86. This technique has been recently demonstrated for Sr atoms83,85 using a transi-

tion with a similar linewidth. It relies on the time-ordered photon absorption and emission,

and substantially reduces the required number of photon scattering events. It opens up the

possibility for laser cooling a large class of molecules with less diagonal FCFs.

It has been proposed to implement quantum gates with diatomic molecules by making

use of the dipole-dipole interaction87,88. The rapid progress in creating ultracold molecules,

either by association of ultracold atoms or by direct laser cooling of molecules, and loading

them in an optical lattice89 or an optical tweezer array90 make this perspective particularly

appealing. Control of the molecular motion in the quantum regime is desirable for high

gate fidelity88. However, due to the large tensor Stark shifts presented in molecules, it is

challenging to apply the cooling techniques demonstrated for atoms, e.g., Raman sideband

cooling, to molecules91. This challenge can be overcome by using the narrow-line cooling,

as demonstrated in alkaline earth atoms92–95. It represents a simple method to control the

molecular motion in the quantum regime, which paves the way for implementing quantum

gates between dipolar molecules in optical tweezers.
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IV. SUMMARY AND OUTLOOK

Benchmark calculations for the electronic and vibrational structures of low-lying elec-

tronic states of YO are reported. Coupled-cluster methods, which o↵er accurate treatment

of electron correlation around equilibrium structures, appear to be promising candidates

for accurate calculations of Franck-Condon factors. In this context, accurate calculation

of equilibrium structures seems of paramount importance. It would be of particular inter-

est to extend the coupled-cluster techniques for obtaining highly accurate structures for

molecules containing light elements96,97 to heavy-metal containing molecules by including

scalar-relativistic and spin-orbit e↵ects.

A four-photon process comprising repumping from the A02�3/2 state to the B2⌃+
1/2 state

is proposed to address leakage of the A2⇧1/2 $ X2⌃+
1/2 cycle through the A02�3/2 state

and enhance the e�ciency for laser cooling YO. This scheme is supported by the computed

electronic transition properties and Franck-Condon factors presented in this work. Further,

prospects of a narrow-line cooling scheme41 using the A02�3/2 state have been updated using

the computed transition properties and measured lifetime of the A02�3/2 state. This narrow-

line cooling scheme seems to have the potential of bringing YO to sub-recoil temperature.
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FIG. 2. Frontier molecular orbitals of YO.
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TABLE I. The e↵ective Hamiltonian (cm�1) diagonalized to obtain the low-lying spin-orbit-coupled

states of YO in the bond length of 1.8 Å. Spin-orbit matrix elements (the o↵-diagonal elements)

have been calculated using the SFX2C-1e EOM-CCSD transition density matrices and the SFX2C-

1e AMF spin-orbit integrals, while the scalar-relativistic energies (the diagonal elements) are the

SFX2C-1e-CCSD(T)/1Z values.

X2⌃+(ms =
1
2) A2⇧y(ms = �1

2) A2⇧x(ms = �1
2) A02�xy(ms =

1
2) A02�2z2�x2�y2(ms =

1
2) B2⌃+(ms =

1
2)

X2⌃+(ms =
1
2) 0 -87.8i 87.8 0 0 0

A2⇧y(ms = �1
2) 89.1i 16544.7 -203.3i -27.5 27.5i -203.7i

A2⇧x(ms = �1
2) 89.1 203.3i 16544.7 -27.5i -27.5 -203.7

A02�xy(ms =
1
2) 0 -26.1 26.1i 14651.2 140.3i 0

A02�2z2�x2�y2(ms =
1
2) 0 -26.1i -26.1 -140.3i 14651.2 0

2B2⌃+(ms =
1
2) 0 206.1i -206.1 0 0 20999.9
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TABLE II. Combination coe�cients of scalar-relativistic wavefunctions to compose the spin-orbit-

coupled wavefunctions obtained by diagonalizing the e↵ective Hamiltonian in Table I.

X2⌃+ A2⇧ A02� B2⌃+

X2⌃+
1/2 0.99997 0.00771 0 0.0001

A02�3/2 0 0.02454 0.99970 0

A02�5/2 0 0 1.0 0

A2⇧1/2 0.00760 0.99803 0 0.06221

A2⇧3/2 0 0.99973 0.02334 0

B2⌃+
1/2 0.00036 0.06150 0 0.99811
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TABLE III. SFX2C-1e-EOM-CCSD transition dipole moments (a.u.) between scalar-relativistic

wavefunctions as well as the dipole moments of the scalar-relativistic wavefunctions computed at

the bond length of 1.8 Å using the TZ basis sets.

X2⌃+ A2⇧y A2⇧x A02�xy A02�2z2�x2�y2 B2⌃+

X2⌃+ 1.87 -2.11 -2.11 0 0 -1.66

A2⇧y -2.10 1.59 0 1.06 -1.06 0.10

A2⇧x -2.10 0 1.59 1.06 1.06 0.10

A02�xy 0 1.07 1.07 3.07 0 0

A02�2z2�x2�y2 0 -1.07 1.07 0 3.07 0

B2⌃+ -1.68 0.07 0.07 0 0 0.78
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TABLE IV. The square of electronic transition dipole moments, |TDM|2, and the oscillator

strengths for transitions between spin-orbit-coupled wavefunctions computed at the bond length of

1.8 Å. The Einstein A coe�cients for the corresponding spontaneous emission are also presented.

|TDM|2 Oscillator strength Einstein A coe�cient

(a.u.) (a.u.) (s�1)

A2⇧1/2,⌥1/2 ! X2⌃+
1/2,±1/2 4.43 2.19E-01 3.90E+07

A2⇧1/2,±1/2 ! X2⌃+
1/2,±1/2 0.01 5.14E-04 9.13E+04

A2⇧3/2,±3/2 ! X2⌃+
1/2,±1/2 4.44 2.26E-01 4.23E+07

A02�3/2,±3/2 ! X2⌃+
1/2,±1/2 4.0E-03 1.77E-04 2.50E+04

B2⌃+
1/2,±1/2 ! X2⌃+

1/2,±1/2 2.76 1.74E-01 5.02E+07

B2⌃+
1/2,⌥1/2 ! X2⌃+

1/2,±1/2 1.7E-02 1.06E-03 3.06E+05

A2⇧1/2,±1/2 ! A02�3/2,±3/2 2.26 1.23E-02 2.61E+04

A2⇧3/2,±3/2 ! A02�3/2,±3/2 1.0E-03 7.16E-06 2.34E+01

B2⌃+
1/2,±1/2 ! A02�3/2,±3/2 8.2E-03 1.56E-04 4.08E+03

A2⇧3/2,±3/2 ! A02�5/2,±5/2 2.27 1.30E-02 3.04E+04

B2⌃+
1/2,±1/2 ! A2⇧1/2,⌥1/2 7.2E-03 9.74E-05 1.30E+03

B2⌃+
1/2,±1/2 ! A2⇧1/2,±1/2 2.4E-03 3.22E-05 4.31E+02

B2⌃+
1/2,±1/2 ! A2⇧3/2,±3/2 7.6E-03 9.30E-05 1.02E+03
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TABLE V. Equilibrium bond lengths (Å) for low-lying electronic states of YO. ”lc” and ”sc” refer

to freezing 15 and 5 core orbitals in coupled-cluster calculations, respectively.

X2⌃+ A02� (2�3/2/
2�5/2) A2⇧ (A2⇧1/2/A

2⇧3/2) B2⌃+

EOM-CCSD/TZ/lc 1.7813 1.8038 1.7838 1.8125

EOM-CCSDT/TZ/lc 1.7979 1.8261 1.8006 1.8313

CCSD(T)/TZ/lc 1.7922 1.8184 1.7955 1.8262

EOM-CCSD/1Z/sc+�T 1.7909 1.8198 1.7951 1.8252

EOM-CCSD/1Z/sc+�T+�SO 1.7921 1.8212/1.8205 1.7968/1.7959 1.8263

SO-CCSD(T)/TZ/sc 1.7915 1.8180/1.8172 1.7951/1.7943 /

SO-CCSD(T)/QZ/sc 1.7883 1.8153/1.8144 1.7928/1.7921 /

SO-CCSD(T)/1Z/sc 1.7859 1.8123/1.8115 1.7911/1.7904 /

Experiment 1.7875 1.8184 1.7936 1.8252
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TABLE VI. Harmonic vibrational frequencies (cm�1) for low-lying electronic states of YO. ”lc”

and ”sc” refer to freezing 15 and 5 core orbitals in coupled-cluster calculations, respectively.

X2⌃+ A02� (2�3/2/
2�5/2) A2⇧ (A2⇧1/2/A

2⇧3/2) B2⌃+

EOM-CCSD/TZ/lc 893.8 837.1 860.1 817.8

EOM-CCSDT/TZ/lc 851.6 784.9 818.4 775.2

CCSD(T)/TZ/lc 864.2 797.6 829.1 788.3

EOM-CCSD/1Z/sc+�T 853.5 785.7 815.9 774.6

EOM-CCSD/1Z/sc+�T+�SO 852.3 784.5/785.4 813.8/814.5 773.1

SO-CCSD(T)/TZ/sc 866.0 798.7/799.9 830.7/831.5 /

SO-CCSD(T)/QZ/sc 866.0 798.9/800.2 827.9/828.6 /

SO-CCSD(T)/1Z/sc 866.0 799.1/800.3 826.5/825.9 /

Experiment 862.0 794.6 821.5 758.7/765.5
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TABLE VII. Equilibrium term energies (cm�1) for low-lying electronic states of YO. ”lc” and ”sc”

refer to freezing 15 and 5 core orbitals in coupled-cluster calculations, respectively.

X2⌃+ A02� (2�3/2/
2�5/2) A2⇧ (A2⇧1/2/A

2⇧3/2) B2⌃+

EOM-CCSD/TZ/lc 0 15386.5 16693.8 21620.7

EOM-CCSDT/TZ/lc 0 14956.5 16706.7 21265.5

CCSD(T)/TZ/lc 0 15149.9 16589.5 21020.4

EOM-CCSD/1Z/sc+�T 0 14486.9 16659.5 21169.6

EOM-CCSD/1Z/sc+�T+�SO 0 14344.7/14629.8 16441.2/16864.5 21189.4

SO-CCSD(T)/TZ/sc 0 15144.5/15469.7 16417.3/16846.6 /

SO-CCSD(T)/QZ/sc 0 14766.3/15097.0 16369.4/16802.0 /

SO-CCSD(T)/1Z/sc 0 14491.0/14825.7 16335.6/16770.5 /

Experiment 0 14531.2/14870.4 16315.8/16746.8 20793.33
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TABLE VIII. Variation of calculated FCFs for the A2⇧(0) ! X2⌃+(⌫), B2⌃+(0) ! X2⌃+(⌫),

and A02�(0) ! X2⌃+(⌫) transitions with respect to the shift of bond-length di↵erences Re(A2⇧)�

Re(X2⌃+), Re(B2⌃+) � Re(X2⌃+), and Re(A02�) � Re(X2⌃+). The origin refers to the use of

EOM-CCSD/1Z/sc+�T potential energy curves. FCFs greater than 0.001% are explicitly given.

Shifts of bond-length di↵erence (Å)

transitions ⌫ -0.003 0.000 0.003 0.005 0.010 0.020

A2⇧(0) ! X2⌃(⌫) 0 99.938% 99.643% 99.049% 98.491% 96.541% 90.459%

1 0.039% 0.338% 0.928% 1.480% 3.392% 9.181%

2 0.022% 0.020% 0.023% 0.029% 0.066% 0.353%

3 <0.001% <0.001% <0.001% <0.001% 0.001% 0.007%

B2⌃(0) ! X2⌃(⌫) 0 84.897% 82.195% 79.345% 77.374% 72.244% 61.460%

1 13.848% 16.127% 18.450% 20.005% 23.842% 30.803%

2 1.185% 1.575% 2.055% 2.429% 3.571% 6.786%

3 0.066% 0.098% 0.143% 0.182% 0.322% 0.873%

4 0.003% 0.004% 0.007% 0.009% 0.020% 0.074%

5 <0.001% <0.001% <0.001% <0.001% 0.001% 0.004%

A02�(0) ! X2⌃(⌫) 0 89.306% 86.907% 84.323% 82.508% 77.690% 67.207%

1 10.058% 12.198% 14.443% 15.981% 19.895% 27.477%

2 0.612% 0.857% 1.174% 1.432% 2.258% 4.810%

3 0.023% 0.037% 0.058% 0.077% 0.149% 0.476%

4 0.001% 0.001% 0.002% 0.003% 0.006% 0.029%

5 <0.001% <0.001% <0.001% <0.001% <0.001% 0.001%
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TABLE IX. Franck-Condon factors calculated using EOM-CC potential energy curves. In the last

column with spin-orbit coupling included, X2⌃+, B2⌃+, A2⇧, and A02� refer to X2⌃+
1/2, B

2⌃+
1/2,

A2⇧1/2, and A02�3/2, respectively. FCFs greater than 0.001% are explicitly given.

CCSD/ CCSDT/ CCSD/ CCSD/ CCSD/

transitions ⌫ TZ/lc TZ/lc 1Z/lc+�T 1Z/sc+�T 1Z/sc+T+�SO

A2⇧(0) ! X2⌃+(⌫) 0 99.851% 99.836% 99.600% 99.643% 99.563%

1 0.135% 0.149% 0.380% 0.338% 0.416%

2 0.014% 0.015% 0.020% 0.020% 0.020%

B2⌃+(0) ! X2⌃+(⌫) 0 84.296% 83.034% 81.885% 82.195% 82.411%

1 14.367% 15.444% 16.372% 16.127% 15.954%

2 1.262% 1.434% 1.633% 1.575% 1.536%

3 0.072% 0.085% 0.104% 0.098% 0.094%

4 0.003% 0.004% 0.005% 0.004% 0.004%

A02�(0) ! X2⌃+(⌫) 0 91.389% 87.518% 86.805% 86.907% 86.600%

1 8.210% 11.661% 12.287% 12.198% 12.464%

2 0.389% 0.787% 0.869% 0.857% 0.895%

3 0.011% 0.033% 0.038% 0.037% 0.040%

4 <0.001% 0.001% 0.001% 0.001% 0.001%
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TABLE X. Calculated FCFs for transition using a variety of potential energy curves. “EOM”

refers to using ab initio EOM-CCSD/1Z/sc+�T potential energy curves. “Harmonic (EOM)”

and “Morse (EOM)” denote the use of harmonic and Morse potentials with ab initio spectroscopic

parameters. “Morse (Exp.)” refers to using a Morse potential with experimental parameters.

“EOM (shifted)” refers to the use of the ab initio potential shifted to match the experimental

equilibrium bond length. FCFs greater than 0.001% are explicitly given.

transitions ⌫ EOM Harmonic (EOM) Morse (EOM) Morse (Exp.) EOM (shifted)

A2⇧(0) ! X2⌃(⌫) 0 99.643% 99.679% 99.648% 99.261% 99.301%

1 0.338% 0.288% 0.333% 0.715% 0.678%

2 0.020% 0.032% 0.019% 0.024% 0.021%

B2⌃(0) ! X2⌃(⌫) 0 82.195% 82.423% 82.142% 76.584% 77.174%

1 16.127% 15.068% 16.176% 20.345% 20.160%

2 1.575% 2.204% 1.579% 2.784% 2.469%

3 0.098% 0.271% 0.098% 0.266% 0.187%

4 0.004% 0.030% 0.004% 0.020% 0.010%

5 <0.001% 0.003% <0.001% 0.001% <0.001%

A02�(0) ! X2⌃(⌫) 0 86.907% 87.087% 86.912% 85.018% 85.204%

1 12.198% 11.472% 12.197% 13.879% 13.685%

2 0.857% 1.305% 0.853% 1.053% 1.060%

3 0.037% 0.125% 0.037% 0.049% 0.050%

4 0.001% 0.011% 0.001% 0.001% 0.002%

5 <0.001% 0.001% <0.001% <0.001% <0.001%
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