
Window Navigation with Adaptive Probing
for Executing BlockMax WAND

Jinjin Shao, Yifan Qiao, Shiyu Ji, Tao Yang
Department of Computer Science, University of California

Santa Barbara, California, USA

ABSTRACT
BlockMax WAND (BMW) and its variants can effectively prune
low-scoring documents for fast top-k disjunctive query processing.
This paper studies a boosting approach that further accelerates
document retrieval by executing BMW, or one of its variants, on a
sequence of posting windows with an order prioritized to tighten
the threshold bound earlier. This optimization could add benefits
to safely eliminate more operations involved in posting block visi-
tation and document score evaluation. This paper evaluates such
index navigation for BMW and two of its variants.

KEYWORDS
Top-k Query Evaluation, Dynamic Pruning, Efficiency

ACM Reference Format:
Jinjin Shao, Yifan Qiao, Shiyu Ji, Tao Yang. 2021. Window Navigation with
Adaptive Probing for Executing BlockMax WAND. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3404835.3463109

1 INTRODUCTION
Document retrieval for top-k search with disjunctive query seman-
tics identifies all documents containing at least one query term , and
it often uses a simple additive linear ranking to select top-k results
for later-stage re-ranking. This initial stage of query processing is
time-consuming in searching over a large document set. Dynamic
pruning techniques such as MaxScore [33], WAND [2], and Block-
Max WAND (BMW) [12] can greatly speed up the top-k document
retrieval process by skipping the evaluation of documents that are
unable to appear in the final top-k results. As posting lists are often
compressed in blocks, BMW [12] stores the maximum score per
block and leverages such scores to skip unnecessary decompression
and inspections of posting blocks. There are various improvements
following the work of BMW (e.g. [6, 10, 16, 17, 20–23, 25, 26, 29, 31])
and the next section discusses some of them.

Pruning of posting block visitations or document evaluations
happens if the top-k threshold lower bound is higher than the
estimated ranking score upper bounds for documents, and the effec-
tiveness of pruning heavily depends on the tightness of the updated
threshold lower bound. BMW and its variants visit the posting

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8037-9/21/07.
https://doi.org/10.1145/3404835.3463109

lists typically following an increasing order of document IDs. The
question posed in this paper is whether posting visitation order
can be changed to examine query-specific high-scoring documents
first, which naturally tightens the threshold bound earlier and thus
helps to skip more operations.

The main contribution of this paper is a complementary scheme
to safely accelerate BMW or its variants by changing their way of
visiting the index through window navigation with adaptive prob-
ing. Without changing the internal core structure of BMW or its
variants, we consider document retrieval flows through document
ID windows and prioritizes a subset of windows that may hold
high-scoring documents for a given query. That results in earlier
pruning of many windows and the retrieval only navigates through
unpruned windows while following a dynamically-selected order.
We have evaluated the application of our technique in BMW with
uniform block sizes, variable-sized BMW [22], and DBMW with
document-ID-oriented blocks [10, 11]. Our evaluation finds that
the proposed technique can significantly reduce the query time for
short queries with 2 and 3 terms, and a certain range of k values.

2 DEFINITIONS AND BACKGROUND
The top-k search problem uses an inverted index with a set of terms,
and a document posting list of each term represents documents that
contain such a term. Ranking for document retrieval uses a simple
additive formula based on term features of each document which
is RankScore(d) =

∑
t ∈Q wtS(t ,d), where Q is the set of all search

terms, S(t ,d) is the feature score of term t for document d , andwt is
the weight for the corresponding term. An example of the additive
formula is widely used BM25 [15]. A posting record of each term
contains document ID and its term feature score.

BMW [12] assumes that a posting list, sorted in ascending order
of document IDs, is compressed and stored in blocks. Some informa-
tion of a posting block p can be accessible without decompression,
and such information contains the maximumweighted term feature
score among all documents and the maximum document ID in this
block, denoted as BlockMax(p) andMaxDocID(p).

Our work is inspired by the candidate filtering approach [10, 24]
which divides the scope of document IDs visited during document
retrieval as a sequence of equal-sized windows. A query processing
scheme to call a Live Block computation scheme that detects if
a window can be pruned. Window pruning is related to interval-
based pruning in [3]. These techniques prune a window or an
interval when the estimated score upper bound is below the top-k
threshold, and a similar technique is used in the local Block-Max
method [29]. Following the posting block window setting of [10, 11],
to further improve efficiency, LazyBM in [17] combines the WAND-
based and MaxScore [33]-based pruning. The major difference of
our effort compared to the above work is that we do not execute

https://doi.org/10.1145/3404835.3463109
https://doi.org/10.1145/3404835.3463109

the document retrieval strictly in a sorted order of document IDs,
and we dynamically detect and prioritize windows that may hold
high-scoring documents. The work in [3] proposes to use a sorted
order of its intervals in terms of interval score upper bound, which
has an expensive sorting and execution logic, and outweighs its
benefits as verified in [17]. Our work uses a fast selection strategy
in a linear complexity to identify a set of windows that hold high
scoring documents while we do not explicitly sort them.

Our work is orthogonal to the previous work that improves
BMW as we can use a variation of BMW in our algorithm instead
of the original BMW. One class of improvement is to estimate top-
k threshold in advance before running BMW based on sampling,
feature-based prediction, and past queries [9, 16, 25, 26, 26, 34]. The
second class is to use a tiered index [7, 8, 28]. The third class is to
improve pruning condition [1, 17]. The fourth class is to support
different block structures: VBMW [22] uses variable sized blocks
to reduce the gap between theMaxScore value and the actual av-
erage document term weight in a block, and DBMW [10, 11] uses
document-ID-oriented posting blocks and each of them covers a
fixed number of consecutive document IDs. We will demonstrate
the use of our work for VBMW and DBMW in addition to BMW.

3 INDEX NAVIGATIONWITH PROBING
This section presents our proposedwindow-driven index navigation
with adaptive probing to execute BMW, denoted as BMWp . Besides
the original BMW, a variant of BMW can also be applied in each
phase of the algorithm described below. All returned documents
satisfy the top-k scoring constraint with safe pruning.

Like [10], we divide the whole range of searchable document IDs
into a disjoint set of document ID windows, and unlike [10], these
windows are not equal-sized. A posting block p intersects with a
windowW , denoted by p ∈W , if any document ID in this window
is betweenMinDocID(p) andMaxDocID(p) (both inclusive). Given
a set of posting blocks B, the maximum window score of a window
W is defined asWinMax(W) =

∑
p∈B∧p∈W BlockMax(p).

We focus on block-aligned windows. Our evaluation adopts the
boundary IDs of each window to be identical toMaxDocID(p) of a
block p in this window. Fig. 1 shows 6 windows whose boundaries
only aligned with the maximum IDs of posting blocks for two terms.
The reason is that if we can skip the visitation of a window, the
cost of decompressing a block can be avoided. Alternatively, we
can opt to have windows aligned with the MinDocID(p) of each
block. Unlike [3], we do not use both the minimum and maximum
IDs of posting blocks as window boundaries. We intend to let the
number of block-aligned windows be as small as possible because
such a number affects the probing time cost significantly as shown
later. Compared to BMW, BMWp adds fieldMinDoc(p) as a small
extra space overhead for each posting block.

We define Ω(Z) as the top-k threshold found by running Block-
Max WAND through top Z windows with the highestWinMax
values, for a given set of windows. Define Γ(W) as the highest rank
score of documents that appear in windowW .

If we arbitrarily select k windows, at least k distinct documents
can be returned, and their minimum rank score can be used as a
lower bound of the final top-k threshold. Our goal is to find most
promising windows and probe these windows with BMW to yield

documents whose rank scores can be close to those of final top-k
documents. With N being the total number of windows, we set
parameter value Z to limit the number of such promising windows
with the largestWinMax values to be probed.

The question is, how to find a good value for Z? A smaller and
the earlier derivation of the top-k threshold bound will create more
opportunities to prune the unnecessary visitations of posting blocks
and their documents. Z needs to be sufficiently larger than k since
the highest-scoring document of the top window with the largest
WinMax value may not be included in the final top-k documents.
It is challenging to find an optimal solution and our idea is to find
a reasonable cutoff value Z which satisfies

min
Z

{Z ≥ α ∗ k such that Ω(Z) ≥WinMax(W Z)}

where α is a constant andW Z is the window which has the Z -th
largestWinMax value. Let NTZ denote the set of the remaining
N −Z windows which are not in top Z . The above inequality means
Z is sufficiently large to discover a tight bound for top-k threshold
θ . Then all windows in NTZ can be pruned because

Ω(Z) ≥WinMax(W Z) ≥ max
p∈NT Z

WinMax(p) ≥ max
p∈NT Z

Γ(p).

To find the minimum value for Z following the above inequality
efficiently, we first use an exponential probing strategy by guessing
a series of cutoff point candidatesZ1,Z2, ...,Zt whereZi = Z1∗bi−1

and b is a constant. In our evaluation, we use b = 8 and α = 12.8.
Description of BMWp is presented as follows.
• Derive the block-aligned document ID windows based on the
posting block metadata of searched terms.

• We let Z1 = αk as a starting value, Z2 = Z1 ∗ b, · · · , and Zt =
Z1 ∗ bt−1, until Zt+1 > N .

• Find the top Zi window positions in the derived N windows
where 1 ≤ i ≤ t . That is done recursively as follows:
– Find top Zt windows among all N windows using a quick
selection algorithm [5].

– Recursively find top Zi windows among top Zi+1 windows.
This procedure ends when we find top Z1 windows.

• Starting from Z1, run BMW on posting blocks in selected win-
dows Zi from i = 1 to t until we find the smallest i value such
that Ω(Zi) ≥WinMax(W Zi). Let Z j be the smallest Zi found.

• In case that the j value derived above is j = t , and it does not
satisfy Ω(Z j) ≥WinMax(WZ j), the final pass is to set θ = Ω(Z j),
and prune any un-probed window W in NTZ j if it satisfies
θ >WinMax(W). Then execute BMW through all the surviving
windows, and continue to update the top-k threshold θ . During
this process, prune any windowW satisfying θ >WinMax(W).
Notice that posting blocks in windows that are inspected by an

earlier round of probing will be annotated with a special mark on
their metadata, and will not be re-inspected in a later round when
running BMW. Thus during the final pass that has to run BMW
through the surviving N − Z j windows, windows that have been
examined earlier will not be re-examined again.
Example. Fig. 1 shows retrieval navigation for a two-term query
with 6 windowsW1, · · · ,W6 in ascending order of document ID
ranges. The descending order of windows in theirWinMax values
isW5,W2,W1,W4,W3 andW6, even though the algorithm does

not explicitly derive this order. The left side of this figure shows
that BMWp plans to probe top Z1 and Z2 windows where Z1 = 2,
Z2 = 4, k = 1, and α = 2. The right side shows the actual windows
visited during retrieval. The top window locating step identifies
W2 and W4 are the 2nd and 4th top positions. Round 1 probes
top 2 windows W2 andW5. Round 2 probes the top 4 windows
W1,W2,W4, andW5 while skippingW2 andW5 marked with a strike-
through (since they have been probed), and their corresponding
BMW execution is depicted by dotted arrows. The details on how
to do skipping these windows with a strike-through are discussed
in the next paragraph. For the final pass, assuming the derived
threshold Ω(4) ≥ WinMax(W4), the two un-probed windowsW3
andW6 are pruned immediately and marked with slashes because
Ω(4) ≥ Γ(W3) and Ω(4) ≥ Γ(W6). That is inferred by the fact that
Ω(4) ≥ WinMax(W4), and we also know that WinMax(W4) ≥

max(WinMax(W3),WinMax(W6)). In summary, index navigation
with probing selects and visits a total of 4 windows in the order of
W2,W5,W1, andW4 to safely complete the document retrieval.

Probing #1:

Probing #2:

Final pass: Actual windows visited: W2 W5 W1 W4

t1
t2

W1 W2 W3 W4 W5 W6

WinMax order: W5 W2 W1 W4 W3 W6

Z1 Z2

Probing #1 plan: W5 W2

Probing #2 plan: W5 W2 W1 W4

Final pass plan: W5 W2 W1 W4 W3 W6

Figure 1: Navigation of windows with 2-round probing

Modified BMW for inspecting only selected windows.We ap-
ply BMW as described in [12] with some changes in its two func-
tions Next(d) and NextShallow(d). Function Next(d) returns the first
posting record whose document ID is no less than d . Function
NextShallow(d), described in Section 5.1 of [12], returns the first
posting block whose maximum document ID is no less than d , with-
out loading and decompressing the data of any block. To apply
BMW on a specific set of windows, we first mark each posting
block in all selected windows by examining the metadata of all
posting blocks without any block data decompression. Next, we
can apply BMW directly on posting blocks window by window
from the beginning in ascending order of document IDs. The modi-
fied functions Next(d) and NextShallow(d) return the first posting
record or posting block, skipping all marked posting blocks.
Time cost of BMWp . For simplicity, the cost of index loading from
a disk is not included. Notice that many search systems pre-load
compressed index into memory [13]. The total time cost for multi-
round probing plus the final pass using BMW isO(N)+O(T

Z j
BMW)+

O(T
N−Z j
BMW). HereTZ j

BMW is the time cost for running BMW through

top Z j windows with the largestWinMax values and T
N−Z j
BMW is

the time for running BMW through the remaining windows. The
item O(N) is the time cost for driving windows from the posting
block metadata of searched terms, and for locating the top scored
window positionsZ1,Z2, ...,Zt . Cost of window generation is linear
to the number of windows, which is proportional to the number of
posting blocks. Finding the first position Zt is O(N) with a O(N)

quick selection algorithm, and the next positionZt−1 costs N
b . With

the recursion ended at Z1, the total time to locate these t positions
are O(N + N

b +
N
b2 + · · ·) which is less than O(bNb−1).

Since the documents in windows are only visited during window-
driven index navigation, the total cost of running BMW in BMWp is
bounded by the total time for running an original BMW through all
windows in a document ID sorted order while BMWp should skip
more operations related to block visits and document evaluation.

4 EVALUATION
Datasets. The experiments are performed on the ClueWeb 2009
TREC category B with 33.6 million documents after filtering with
Waterloo spam score [4] threshold 60. The header and body text for
all documents is extracted using Indri [27]. All words are lowercased
and stemmed using the Krovetz stemmer [18]. The inverted index is
compressed using SIMD-BP128 [19]. We use TREC 2006 Efficiency
Track topics where each query term has more than 100 postings.
We randomly select 2500 queries containing two to six terms, where
the length distributions are 16.8%, 28.2%, 27.7%, 17.3%, and 10.0%.
Testing environment. The algorithms evaluated are implemented
in C++, and compiled with GCC 4.8.5 using the highest optimization
settings. For the block partitioning in VBMW, we use the released
code from [22]. The experiments are conducted with Intel Xeon E5-
2680 v3 2.50GHz and 128GB memory. Query processing times are
reported in milliseconds using one CPU core on average with mul-
tiple runs. Ranking follows the linear additive formula BM25 [15].
Before timing the queries, all compressed posting lists and metadata
for tested queries are loaded into memory, and the previous work
typically makes the same assumption [17, 22].
Baselines.We apply our scheme to BMWwith uniform block sizes
(64 postings); VBMW [22] with variable-sized blocks (the average
size is 64 postings); and DBMW [10, 11] for document-ID-oriented
blocks where each block covers 1024 consecutive document IDs.
We assume that the block metadata for VBMW is preloaded with
space optimization described in [10, 11]. LazyBM [17] belongs to
the same sub-family as DBMWwith the same posting structure. We
have not used LazyBM [17] as its implementation is not in public
domain yet, and our current implementation of LazyBM is still
slower than DBMW. We will study this more in the future.
A comparison with the baselines. Table 1 reports the mean
query times in milliseconds for different algorithms with query
lengths varying from 2 to 6. The window-driven execution of
VBMW and DBMW is denoted as VBMWp and DBMWp respec-
tively. This table also lists the 95th percentile tail latency for each
query length within parentheses, corresponding to the response
time occurring in the 95th percentile, as defined in [20]. Table 2 fur-
ther shows the reduction ratio of the mean time for different query
length and k values. A negative ratio indicates an improvement
while a positive ratio indicates a degradation, and the overhead of
probing and window navigation outweighs benefits.

BMWp significantly outperforms BMW for 2 termswith all tested
k values and for 3 terms with k ≤ 100. For the mean time and 2
terms, BMWp is 3.5x and 1.2x faster than BMW when k = 10 and
k = 1000, respectively. For the tail latency and 2 terms, it is 4.9x
and 1.8x faster when k = 10 and k = 1000, respectively. For 4 or
more terms, BMWp loses its advantages when k ≥ 50. For long

queries, WinMax value is less accurate as a proxy for possible
document scores. As k becomes larger, window navigation with
probing becomes less effective, especially for long queries. One
reason is that the gap of average score between top-k documents
and remaining documents becomes smaller when k is large, and
thus earlier probing becomes less effective for window pruning.

Like BMW, applying the proposed technique makes VBMW and
DBMW significantly faster for queries with 2 terms and k ≤ 1000
and with 3 terms and k ≤ 100. When k = 10, VBMW becomes
7.8x and 10x faster for the mean and tail latencies, respectively.
The reduction ratio when applied to VBMW is in general higher
than to BMW because the variable block size design in VBMW
makes BlockMax value closer to the score average within a block
and henceWinMax value is more accurate as a proxy for possible
document scores. DBMWp also does very well for 2 and 3 terms,
and because each equal sized block uses consecutive IDs, the cost of
window generation is zero, which reduces optimization overhead.

Table 1 also lists WAND [2] and interval-pruning [3] integrated
with BMW-based traversal (denoted as IBMW) in Rows 11 and 12
as a reference point. In general, they are slower than the other
algorithms, and IBMW costs too much in interval generation.
Impact of adaptive probing. Row 5 of Table 1 lists the time of
BMWp without probing, denoted as BMWw . It simply generates
windows and runs the final BMW pass. Even though some win-
dows are pruned, the overhead of generating windows and window
pruning outweighs the benefits, and the overall time is even slower
than BMW. Another alternative, denoted as BMWws in Row 6, is to
sort all block-aligned windows first and visit them in a descending
order of theirWinMax values. BMWp outperforms BMWws signif-
icantly, which illustrates the benefits of adaptive probing. It is too
expensive to sort and jump around to access the sorted windows.
Time cost breakdown. Table 3 shows the breakdown of query pro-
cessing time for BMWp , and the total number of windows handled.
The percentage of window selection cost in the total cost is small,
varying from 2.6% to 5.5%. If our fast O(N) selection method is not
used, sorting based onWinMax would be O(N logN) cost, where
N is the total number of windows, and this translates to about 7x
to 10x more cost. Specifically, sorting all windows explicitly would
cost 3.0ms, 11.8ms, 27.2ms, 44.1ms, and 65.1ms for query length
from 2 to 6, respectively. That would add too much overhead.

The time cost distribution of VBMWp is similar proportionally as
that of BMWp . For DBMWp , there is no cost for window generation.
As every posting block covers 1024 document IDs uniformly, there
are total about fixed 33,000 windows for this ClueWeb dataset.

5 CONCLUDING REMARKS
This paper proposes and evaluates a performance boosting scheme
for BMW or its variants by changing their top-k search flow with
window navigation and adaptive probing. The evaluation shows
this technique can offer a significant speed advantage for short
queries with a certain range of k values. For the mean response
time, the reduction ratio varies from 16.6% to 90.9% with 2 terms
and k ≤ 1000, and from 11.0% to 65.8% with 3 terms and k ≤ 100.
The reduction trend is similar for the 95th percentile tail latency.

Considering that the average number of words in queries of
popular search engines is between 2 and 3 [14, 30], the proposed
technique can be very effective for a search engine which deploys

Table 1: Mean query latency and tail latency in ms
Q. len. 2 3 4 5 6

k = 10
BMW 14.5 (84) 50.2 (229) 119.5 (413) 220.0 (735) 348.4 (1023)
BMWp 4.2 (17) 33.1 (119) 102.8 (331) 189.6 (761) 309.7 (1042)
BMWw 16.1 (57) 88.5 (470) 171.0 (487) 302.3 (923) 473.7 (1453)
BMWws 15.7 (60) 86.9 (328) 174.2 (545) 274.2 (890) 485.1 (1528)
VBMW 11.1 (80) 38.2 (203) 81.1 (321) 156.7 (479) 282.6 (671)
VBMWp 1.4 (8) 13.1 (70) 57.3 (240) 105.7 (445) 251.5 (625)
DBMW 12.3 (63) 44.7 (166) 93.6 (241) 158.0 (378) 253.5 (537)
DBMWp 1.1 (7) 15.9 (89) 45.3 (183) 99.9 (373) 180.7 (526)
WAND 33.7 (186) 74.3 (324) 144.0 (507) 244.5 (806) 484.5 (1157)
IBMW 25.4 (104) 96.6 (520) 210.2 (693) 345.1 (1289) 557.1 (1615)

k = 100
BMW 19.1 (108) 64.1 (277) 146.8 (460) 271.4 (800) 476.3 (1248)
BMWp 9.6 (36) 57.1 (199) 153.1 (459) 326.2 (1045) 485.5 (1395)
VBMW 14.7 (96) 56.1 (246) 112.5 (352) 196.2 (518) 315.7 (709)
VBMWp 7.4 (30) 49.2 (178) 121.9 (348) 236.2 (607) 368.7 (831)
DBMW 16.1 (83) 54.5 (182) 118.8 (289) 198.5 (435) 302.2 (632)
DBMWp 7.2 (37) 36.7 (163) 90.0 (284) 175.1 (510) 289.6 (726)

k = 1000
BMW 33.3 (140) 101.5 (300) 224.4 (460) 409.9 (922) 690.0 (1426)
BMWp 27.7 (78) 127.0 (367) 282.2 (656) 495.8 (1304) 722.0 (1710)
VBMW 32.4 (142) 101.9 (291) 218.9 (468) 350.1 (669) 534.1 (961)
VBMWp 23.6 (64) 104.8 (283) 255.1 (518) 432.3 (834) 665.2 (1182)
DBMW 33.6 (166) 99.3 (252) 214.4 (439) 368.8 (653) 503.2 (802)
DBMWp 23.0 (113) 76.4 (220) 178.7 (390) 327.0 (662) 470.7 (850)

Table 2: Mean time reduction ratio (-) or increase ratio (+)
Q. len. k=10 k=30 k=50 k=100 k=1000

T (BMWp)

T (BMW)
−1

2 -71.3% -58.2% -52.6% -49.6% -16.6%
3 -34.1% -23.1% -16.6% -11.0% +25.2%
4+ -13.0% -9.1% +2.2% +9.0% +16.9%

T (VBMWp)

T (VBMW)
−1

2 -87.2% -69.6% -63.8% -49.9% -27.3%
3 -65.8% -43.7% -27.0% -12.3% +2.9%
4+ -23.8% -6.5% +0.6% +15.3% +21.4%

T (DBMWp)

T (DBMW)
−1

2 -90.9% -76.7% -73.8% -55.4% -31.6%
3 -64.3% -59.1% -57.5% -32.7% -23.1%
4+ -39.1% -37.9% -32.4% -13.6% -11.9%

Table 3: Mean time breakdown in ms for BMWp

Query length 2 3 4 5 6
Num. of windows 41.5K 145.8K 323.7K 509.2K 737.7K
Window generation 1.4 7.6 19.2 32.1 38.1
Window selection 0.2 1.1 3.0 5.2 8.1
Adaptive probing 1.8 16.1 53.0 105.2 186.0
Final pass 0.7 8.3 27.6 47.2 77.5

many disjoint index partitions and when k does not need to be large
for each individual partition that contributes part of top results.

ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable comments.
This work is supported in part by NSF IIS-2040146 and a Google
faculty research award. This work used the Extreme Science and
Engineering Discovery Environment [32] supported by NSF ACI-
1548562. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES
[1] Edward Bortnikov, David Carmel, and Guy Golan-Gueta. 2017. Top-k Query

Processing with Conditional Skips. In Proc. of the 26th International Conference
on World Wide Web Companion. 653–661.

[2] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
2003. Efficient Query Evaluation Using a Two-level Retrieval Process. In Proc. of
the 12th ACM International Conference on Information and KnowledgeManagement.
426–434.

[3] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. 2011. Interval-
Based Pruning for Top-k Processing over Compressed Lists. In Proc. of the 2011
IEEE 27th International Conference on Data Engineering. 709–720.

[4] Gordon V. Cormack, Mark D. Smucker, and Charles L.A. Clarke. 2011. Efficient
and Effective Spam Filtering and Re-ranking for Large Web Datasets. Information
Retrieval 14, 5 (2011), 441–465.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, 3rd Edition. MIT Press, Cambridge, MA, USA.

[6] Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trot-
man. 2017. A Comparison of Document-at-a-Time and Score-at-a-Time Query
Evaluation. In Proc. of the 10th ACM International Conference on Web Search and
Data Mining. 201–210.

[7] Caio Moura Daoud, Edleno Silva Moura, David Fernandes, Altigran Soares Silva,
Cristian Rossi, and Andre Carvalho. 2017. Waves: a Fast Multi-tier Top-k Query
Processing Algorithm. Information Retrieval 20, 3 (2017), 292–316.

[8] Caio Moura Daoud, Edleno Silva de Moura, Andre Carvalho, Altigran Soares da
Silva, David Fernandes, and Cristian Rossi. 2016. Fast Top-k Preserving Query
Processing Using Two-Tier Indexes. Information Processing & Management 52, 5
(2016), 855–872.

[9] Lídia Lizziane Serejo de Carvalho, Edleno Silva de Moura, Caio Moura Daoud,
and Altigran Soares da Silva. 2015. Heuristics to Improve the BMW Method and
Its Variants. Journal of Information and Data Management 6, 3 (2015), 178–191.

[10] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. A
Candidate Filtering Mechanism for Fast Top-k Query Processing on Modern
CPUs. In Proc. of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 723–732.

[11] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. Opti-
mizing Top-k Document Retrieval Strategies for Block-Max Indexes. In Proc. of
the 6th ACM International Conference on Web Search and Data Mining. 113–122.

[12] Shuai Ding and Torsten Suel. 2011. Faster Top-k Document Retrieval Using
Block-Max Indexes. In Proc. of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 993–1002.

[13] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei Zhu,
and Jason Zien. 2011. Evaluation Strategies for Top-k Queries over Memory-
Resident Inverted Indexes. Proc. VLDB Endow. 4, 12 (2011), 1213–1224.

[14] Bernard J. Jansen and Amanda Spink. 2006. How are we searching the World
Wide Web? A comparison of nine search engine transaction logs. Information
Processing & Management 42, 1 (2006), 248–263.

[15] Karen Spärck Jones, Steve Walker, and Stephen E. Robertson. 2000. A probabilis-
tic model of information retrieval: development and comparative experiments.
Information Processing & Management 36, 6 (2000), 779–840.

[16] Andrew Kane and Frank Wm. Tompa. 2018. Split-Lists and Initial Thresholds for
WAND-Based Search. In Proc. of the 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval. 877–880.

[17] Omar Khattab, Mohammad Hammoud, and Tamer Elsayed. 2020. Finding the
Best of Both Worlds: Faster and More Robust Top-k Document Retrieval. In Proc.

of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1031–1040.

[18] Robert Krovetz. 2000. Viewing morphology as an inference process. Artificial
Intelligence 118, 1-2 (2000), 277–294.

[19] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second
through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1–29.

[20] Joel Mackenzie, J. Shane Culpepper, Roi Blanco, Matt Crane, Charles L. A. Clarke,
and Jimmy Lin. 2018. Query Driven Algorithm Selection in Early Stage Retrieval.
In Proc. of the 11th ACM International Conference on Web Search and Data Mining.
396–404.

[21] Joel Mackenzie and Alistair Moffat. 2020. Examining the Additivity of Top-k
Query Processing Innovations. In Proc. of the 29th ACM International Conference
on Information and Knowledge Management. 1085–1094.

[22] AntonioMallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano
Venturini. 2017. Faster BlockMax WAND with Variable-sized Blocks. In Proc.
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 625–634.

[23] Antonio Mallia, Michal Siedlaczek, and Torsten Suel. 2019. An Experimental
Study of Index Compression and DAAT Query Processing Methods. In Proc. of
41st European Conference on IR Research, ECIR’ 2019. 353–368.

[24] AntonioMallia, Michał Siedlaczek, and Torsten Suel. 2021. Fast Disjunctive Candi-
date Generation Using Live Block Filtering. In Proc. of the 14th ACM International
Conference on Web Search and Data Mining. 671–679.

[25] Antonio Mallia, Michal Siedlaczek, Mengyang Sun, and Torsten Suel. 2020. A
Comparison of Top-k Threshold Estimation Techniques for Disjunctive Query
Processing. In Proc. of the 29th ACM International Conference on Information and
Knowledge Management. 2141–2144.

[26] Matthias Petri, Alistair Moffat, Joel Mackenzie, J. Shane Culpepper, and Daniel
Beck. 2019. Accelerated Query Processing Via Similarity Score Prediction. In Proc.
of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 485–494.

[27] The Lemur Project. 2020. https://www.lemurproject.org/indri.php. (2020).
[28] Cristian Rossi, Edleno S. de Moura, Andre L. Carvalho, and Altigran S. da Silva.

2013. Fast Document-at-a-time Query Processing using Two-tier Indexes. In Proc.
of the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 183–192.

[29] Dongdong Shan, Shuai Ding, Jing He, Hongfei Yan, and Xiaoming Li. 2012.
Optimized Top-k Processing with Global Page Scores on Block-Max Indexes. In
Proc. of the 15th ACM International Conference on Web Search and Data Mining.
423–432.

[30] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a very large web search engine query log. In ACM SIGIR Forum,
Vol. 33. ACM, 6–12.

[31] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 2018. Efficient Query
Processing for Scalable Web Search. Foundations and Trends in Information
Retrieval 12, 4-5 (2018), 319–500.

[32] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. Scott, and N.Wilkins-Diehr. 2014.
XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering
16, 05 (2014), 62–74.

[33] Howard Turtle and James Flood. 1995. Query Evaluation: Strategies and Opti-
mizations. Information Processing & Management 31, 6 (1995), 831–850.

[34] Erman Yafay and Ismail Sengor Altingovde. 2019. Caching Scores for Faster Query
Processing with Dynamic Pruning in Search Engines. In Proc. of the 28th ACM
International Conference on Information and Knowledge Management. 2457–2460.

	Abstract
	1 Introduction
	2 Definitions and Background
	3 Index Navigation with Probing
	4 Evaluation
	5 Concluding Remarks
	Acknowledgments
	References

