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Abstract

Decentralized algorithms solve multi-agent problems over a connected network, where
the information can only be exchanged with the accessible neighbors. Though there
exist several decentralized optimization algorithms, there are still gaps in convergence
conditions and rates between decentralized and centralized algorithms. In this paper,
we fill some gaps by considering two decentralized algorithms: EXTRA and NIDS.
They both converge linearly with strongly convex objective functions. We will answer
two questions regarding them. What are the optimal upper bounds for their stepsizes?
Do decentralized algorithms require more properties on the functions for linear con-
vergence than centralized ones? More specifically, we relax the required conditions
for linear convergence of both algorithms. For EXTRA, we show that the stepsize
is comparable to that of centralized algorithms. For NIDS, the upper bound of the
stepsize is shown to be exactly the same as the centralized ones. In addition, we relax
the requirement for the objective functions and the mixing matrices. We provide the
linear convergence results for both algorithms under the weakest conditions.
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1 Introduction

We consider a network of n agents minimizing f (x)::% Y7y fi(x) collaboratively.
Each convex and differentiable function f;: R” — R is known only by the corre-
sponding agent i. The whole system is decentralized in the sense that each agent has
an estimation of the global variable and can only exchange the estimation with their
accessible neighbors during each iteration. A symmetric mixing matrix W € R"**”
is used to encode the communication weights between the agents and enforce the
consensus. The minimum condition for W is having one eigenvalue 1 with the all-one
vector 1 being a corresponding eigenvector. All other eigenvalues of W are less than
1.

Early decentralized methods based on decentralized gradient descent [8,16,18,23,
33] have sublinear convergence for strongly convex objective functions, because of
the diminishing stepsize that is needed to obtain a consensual and optimal solution.
This sublinear convergence rate is much slower than that for centralized ones. The first
decentralized algorithm with linear convergence [25] is based on alternating direction
method of multipliers (ADMM) [2,6]. Note that this type of algorithms has O (1/k) rate
for general convex functions [3,7,30]. After that, many linearly convergent algorithms
are proposed. Some examples are EXTRA [26], NIDS [10], DIGing [19,22], ESOM
[12], gradient tracking methods [5,13,19,21,22,32,37], exact diffusion [34,35], and
dual optimal [24,29]. There are also works on composite functions, where each private
function is the sum of a smooth and a non-smooth functions [1,4,10,27]. Another topic
of interest is decentralized optimization over directed and dynamic graphs [11,14,17,
19,28,31,36]. Interested readers are referred to [15] and the references therein.

This paper focuses on two linear convergent algorithms: EXTRA and NIDS,
and provides better theoretical convergence results. EXact firsT-ordeR Algorithm
(EXTRA) was proposed in [26], and its iteration is described in (2). For the general
convex case, where each f; is convex and L-smooth (i.e., has a L-Lipschitz continuous

gradient), the convergence condition in [26] is o € (O, M) Therefore, there

is an implicit condition for W that the smallest eigenvalue of W is larger than —1.

0. 53kmin(W)
» T 4L

Later the condition is relaxed to o € ( ) in [9], and the corresponding

requirement for W is that the smallest eigenvalue of W is larger than —5/3. In addi-
tion, this condition for the stepsize is shown to be optimal, i.e., EXTRA may diverge
if the condition is not satisfied. Though we can always manipulate W to change the
smallest eigenvalue, the convergence speed of EXTRA depends on the matrix W. In
the numerical experiment, we will see that it is beneficial to choose small eigenvalues
for EXTRA in certain scenarios.

The linear convergence of EXTRA requires additional conditions on the functions.
There are mainly three types of conditions used in the literature: the strong convexity
of f (and some weaker variants) [26], the strong convexity of each f; (and some
weaker variants) [9], and the strong convexity of one function f; [35]. Note that
the condition on f is much weaker than the other two; there are cases where f is
strongly convex but none of f;’s is, e.g., fi = ||el.Tx||% for p = n > 1, where
e; is the vector whose ith component is 1 and all other components are 0. If f is
(restricted) strongly convex with parameter p 7 the linear convergence of EXTRA
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0 7 (1-+hmin (W)
L2

is very conservative, and the better performance with a larger stepsize was shown

numerically in [26] without proof. If each f; is strongly convex with parameter u, the

linear convergence is shown when @ € (0, %"}iw)) ando € (O, W) in[1]
and [9], respectively. One contribution of this paper is to show the linear convergence

0 5+43Amin (W)
’ 4L .

is shown when o € (O, ) in [26]. The upper bound for the stepsize

of EXTRA under the (restricted) strong convexity of f and « € (

The algorithm NIDS (network-independent stepsize) was proposed in [10]. Though
there is a small difference from EXTRA, NIDS can choose a stepsize that does not
depend on the mixing matrices. The linear convergence of NIDS in [10] requires
I > W > —I and strong convexity of f(x). In this paper, we relax this condition for
linear convergence to (restricted) strong convexity of f(x) and the relaxed mixing
matrices with I = W > —(5/3)I.

In sum, we provide new and stronger linear convergence results for two state-of-
the-art algorithms: EXTRA and NIDS. More specifically,

— We show the linear convergence of EXTRA under the strong convexity of f and
the relaxed condition Anin (W) > —5/3. The upper bound of the stepsize can be
as large as W, which is shown to be optimal in [9] for general convex
problems;

— We show the linear convergence of NIDS under the same condition on f and W
as EXTRA with any network-independent stepsize o € (0, 2/L).

2 Notation

We let

f):=)_ filx), (1)

i=1
where each x; € RP? is the local copy of the global variable x and the kth iterated
point is xf . Since agent i has its own estimate x; of the global variable x, we put them
together and define

X =[x1,%2,...,x,] € R"™P.

The gradient of f is defined as

VEX) = [VAi(x1), VA, ..., V)] € RM™P,

We say that x is consensual if x;] = x = --+ = x,, 1.e., X = 1x T, where x € RP*!
and1=[1,1,...,1]T e R"™1
In this paper, we use || - || and (-, -) to denote the Frobenius norm and the corre-

sponding inner product, respectively. For a given matrix M € R"*” and any positive
(semi)definite matrix H, which is denoted as H > 0 (H = 0 for positive semidefinite),
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we define |[M||g:=+/tr(M T HM). The largest and the smallest eigenvalues of a matrix
A are defined as Amax (A) and Apmin(A). For a symmetric positive semidefinite matrix
A, we let )\'$m (A) be the smallest nonzero eigenvalue. AT is the pseudo-inverse of A.
For a matrix A € R"*", we say a matrix B € R"*7 is in Ker{A} if AB = 0, ,,, and
B is in Range{A} if there exists C € R"*? such that B = AC. For simplicity, we may

use x* and x to replace x**! and x*, respectively, in the proofs.

3 Algorithms and Prerequisites
One iteration of EXTRA can be expressed as
k2 (1 4 W)xFt! — Wk — o[ Ve — VExD)]. )

The stepsize o« > O and the symmetric matrices W and W satisfy I+W = 2W 2W.
The initial value x? is chosen arbitrarily, and x! = Wx" — o VF(x°). In practice, we
usually let W= I+W

One iteration of NIDS is

xkt2 = BW [oxktl _ xk (VA — VEGK))], (3)

where o > 0 is the stepsize. The initial value x° is chosen arbitrarily, and x! =
BWix0 — avExO)].

If we choose W = # in (2), the difference between EXTRA and NIDS in the
above mathematical forms happens only in the communicated data, i.e., whether we
exchange the gradient information or not at each step. In practice, EXTRA can gain
the advantage of time overlap by parallelizing communication and gradient evaluation,
while NIDS evaluates the gradient and then communicates after the gradient is added.
However, this small difference brings big changes in the convergence [10]. In order
for both algorithms to converge, we have the following assumptions on W and W.

Assumption 1 (Mixing matrix) The connected network G = {V, £} consists of a set
of nodes V = {1,2,...,n} and a set of undirected edges £. An undirected edge
(i, j) € € means that there is a connection between agents i and j and both agents
can exchange data. The mixing matrices W = [w;;] € R"*" and W = [w,'j] c R"xn
satisfy:

1. (Decentralized property): If i # J and (i, j) ¢ £, then w;; = w;; = 0.
2. (Symmetry): W=WT, W=W"

3. (Null space property): Null{W — W} = span{1} € Null{I — W}

4. (Spectral property): LW W =W = ——I W= W.

Remark 3.1 Parts 2—4 imply that the spectrum of W is enlarged to (—%, 1], while
the original assumption is (—1, 1] for doubly stochastic matrices. Therefore, in our
assumption, # does not have to be positive definite. This assumption for W is

strictly weaker than those in [26] and [10].
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Remark 3.2 From [26, Proposition 2.2], Null{I — W} = span({1}. It is a critical result
for both algorithms.

Before showing their theoretical results, we reformulate both algorithms.
Reformulation of EXTRA: We reformulate EXTRA by introducing a variabley € R"*”
as

xFt = Wxk + yk — an(xk), (4a)
yk+1 — yk _ (W _ W)Xk+1, (4b)
with y® = —(W — W)x°. Then, (4) is equivalent to EXTRA (2).

Proposition 3.1 Let the x-sequence generated by (4) with y° = —(W — W)x° be
{Xk}]fil, then it is identical to the sequence generated by EXTRA (2) with the same
initial point x°.

Proof From (4a), we have
x' =Wx? 4+ y? — aVF(x%) = Wx" — (W — W)x? — o VF(x?)
=Wx" — aVE(x°).
For k > 0, we have
Xk+2 :ka+1 + yk+1 _ OlVf(Xk+1) — ka+1 + yk _ (XVf(Xk+1)
=1 4+ W)xFt! — Wxk — o[f(x*T1) — £(xM)],
where the second and last equalities are from (4b) and (4a), respectively. O

Remark 3.3 By (4b) and the assumption of yo, yF e Range{W~— W} for all k. Also,
k1 = (W — W)T(y* — y¥+1) + 2EF1 for some z*! € Ker{W — W}.

Reformulation of NIDS: We adopt the following reformulation from [10]:

dk+l — gk + %[Xk — O[Vf(Xk) - Oldk]a (52)

XK1 = xk — o VExF) — ad*t!, (5b)

with d® = 0. The equivalence is shown in [10].
To establish the linear convergence of EXTRA and NIDS, we need the following
two assumptions.

Assumption 2 (Uniqueness) There is a unique minimizer x* for f (x).

Assumption 3 (L-smoothness and restricted strong convexity) Each function f; is a
proper, closed and convex function with a Lipschitz continuous gradient:

IVfi(x) = VI < Llix = X[, Vx, ¥ € R?, (6)
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where L > 0 is the Lipschitz constant. Furthermore, f(x) is (restricted) strongly
convex with respect to x*:

(r = 2% Vf(0) = V@) = uflle =27, Va e R, @
From [20, Theorem 2.1.5], the inequality (6) is equivalent to, for any x, X € R"*?,
(x — X, VE(x) — VE®)) > L7|VE(x) — VE®)||>. (8)

Proposition 3.2 ([26, Appendix A]) The following two statements are equivalent:

1. f(x) is (restricted) strongly convex with respect to x*;

2. For any n > 0, g(x):=f(x) + g||x||%_w is g (restricted) strongly convex with
*\ T
)

respect to X* = 1(x*) . Specially, we can characterize

2,4
. K7 Mf)‘min(l_w)
=min{ —, ———m«—
Me 27 2+ l6L2 7

This proposition shows
(x —x*, VE(x) — VE(X") + nllx — x*If_w > pgllx — x*||? )

for any x € R"*P.

4 New Linear Convergence Results for EXTRA and NIDS

Throughout this section, we assume that Assumptions 1-3 hold. Two techniques are
used to show the linear convergence: (a) Proposition 3.2 serves as a bridge to connect
f(x) and f(x). It is the key to the weaker assumption on objective functions. (b) Both
algorithms are equivalent to the extended proximal alternating predictor—corrector
(PAPC) in [9], and this equivalence is the key to relaxing the conditions on the mixing

matrices W and W.

4.1 Linear Convergence of EXTRA

When W = %, EXTRA is recovered by applying the extended PAPC in [9] to the
following dual form of the decentralized consensus problem

minimizey f*(vI— Wy),
where f* is the conjugate function of f and y is the dual variable. In this case, EXTRA
has the optimal bound of the stepsize over the relaxed mixing matrix W > —(5/3)1.

This fact enlightens us on the critical Lemma 4.3.
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For simplicity, we introduce some notations. Because of part 4 of Assumption 1,
given the mixing matrices W and W, there is a constant

0 e (%,min{m, 1}]

such that
W:=0W + (1 — )1 = 0, (10)
H=W+ @0 - Ha-w) =1%o, (11)
M:=(W-W)" =0, (12)
G:=W +1-2W = 0. (13)

Based on (10), we have
W=W-—(1-6)1A-W). (14)

Let (x*, y*) be a fixed point of (4), it is straightforward to show that

(W — W)x* =0. (15)
Part 3 of Assumption 1 shows that x* is consensual, i.e., x = l(x”‘)T for certam
x* € R”. The y-iteration in (4b) and the initialization of y° show y* Range{W -
W} = Ker{1"}. Then, we have 1Ty* = 1" Vf(x*) = 0. Thus, x* is the unique

minimizer of f (x).

Lemma 4.1 (Norm over range space [10, Lemma 3]) For any symmetric positive
(semi)definite matrix A € R™" with rankr (r < n), let .y > Ay > -+ > A > 0 be
its r eigenvalues. Then, Range{A} is a rp-dimensional subspace in R"*?P and has a
norm defined by ||x||% . :=(x, Ax), where AT is the pseudo-inverse of A. In addition,

THIxI? < IxI3; < A7 x| for all x € Range(A).

For simplicity, we let x* and x stand for x**! and x*, respectively, in the proofs.
The same simplification applies to yX.

Lemma 4.2 (Norm equality) Lez {(x*, yk)},fil be the sequence generated by (4), then
it satisfies

I = X1y = Iy = YRy (16)
Proof From Remark 3.3, we have
= M(y — y+) +zt (17)
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forzt e Ker{W — W}. This equality and (15) give

T Xy =T xS (W= W) —x%) = (xT, (W = W)x*)

=M@y -y, y—y" =ly -y Ik

IIx

where the third equality holds because of (12), (17), andy — y* € Range(W —W).
O

Lemma 4.3 (A key inequality for EXTRA) Let {(x*, y*)}2° | be the sequence gener-
ated by (4), then we have

k1 2 k41 2
X — X"l + 1y = vy

k 2 k 2 k _ k)2
<X = x*[lg A+ 1y© =y Iy — I = xS

O-HaA-W)
— |IxF = xkH! ||% —2a(xFt — x* v — VEx"). (18)

k1 2
X —x*|lg

Proof The iteration (4) and equation (14) show

2u(xT — x*, VF(x) — VE(x*))
=2(x" —x*, Wx —x") + W™ —x*) — x" —x*) + (y — y)
=2(xt —x*, Wx — x1) + (W = D(xt — x*)
+ W-W)x" —x)+y" —y+y—y"
=2(x" —x*, W(x — x)) + 2(xt —x*, y" —y*) —2x* —x*||%
=2(xT —x*, Wx —x)) — 2(xt —x*, (1 —0)A — W)(x — x 1))
+2(xt —x* yT —y*) = 2lIxt - x*lg, (19)
where the first equality comes from (4a), the second one follows (4b), and the last
one is from (14). From Remark 3.3, xT —x* = M(y — y") + z" — x* for some
zt € Ker{W — W}. Thus, (z© — x*,y" — y*) = 0, and the equality (19) can be
rewritten as
20(xT — x*, VE(x) — VE(x*))
=2(xT —x*, Wx —x7)) = 2(xt —x*, (1 —0)X — W)(x — x 1))
+2M(y —y 5,y —y*) —2Ix" — x5

Using the basic equality 2(a — b, b — ¢) = |la — ¢||*> — |la — b||*> — ||b — ¢||* and
Lemma 4.2, we have

2 2 2
||X+ - X*”W - ”X+ - X*”(l—e)(I—W) + ||y+ - y*”M
2 2 2
= ”X - X*”W - ”X - X*”(l—e)(I—W) + ”y - y*”M
2 2 2
- ”X - X+”W + ||X - X+||(179)(17W) - ||X+ - X*”";V*W
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—2fxT —x*||g — 2a(xT —x*, VE(x) — VE(X¥)). (20)

Note that the following inequality holds,

LS FE S [ Saeh ol N T D o R 1 S il
Adding it onto both sides of (20), we have
Ixt —x*1Z = Lixt —x 14 + Iyt —y*II3,
<llx —x*1Z — SIx —x*I1Z + Iy — y* 1}
1

_ et _ et 2 - - e t2

Ix = XTI = Ix =X sy + 71X —xTllg
—2||X+—1i(*||é—20z(x+ —x*, VI(x) — VE(x¥)). (1)

Apply the inequality ‘1‘||x —xt2 < %Hx — x*|2 + %Hx“‘ — x*||Z, then the key

inequality (18) is obtained. O

In the following theorem, we assume G # 0 (i.e., w # (I+ W)/2). It is easy to
amend the proof to show the result for this special case.

Theorem 4.1 (Q-linear convergence of EXTRA) Under Assumptions 1-3, we define

_ 46-3
"= Ty > O (22)
_ 1
2 _meax(GW_]) = O’ (23)
"3 =rgntan € 0D 24)

and choose two small parameters & and n such that

. r3

5 €<O’ i !me(VVM)’ 1}) (25)
)Lmin(W)s

ne (O’ 4akmin(ViV)72oz2L)' (26)

In addition, we define

P:=H+ 51— W) >0,
Q:=M + (r3 — 2EAmax (WM)W™! = 0.

Then, for any stepsize o € (0, M), we have

I —x* [+ Iy = v IG < pUx* = XM+ Y - ¥iIlg). @D
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where

o _ _ o’L o 20%L n
p= maX{ ! (20( Amin (W) )Mg’ <4a Amin (W)) g’

n (28)
_ 3 4Ehma (WM } <1
73+ (1=26) Amax (WM) :
Proof From (18) in Lemma 4.3, we have
Ix* —x*lIg + Iyt — y* Iy
<Ix—x g+ Iy =y I3 — Ix—xF2 5 s — X7 —x*|I¢
= H M O=A-W) G
—|Ix — x+||%v —2a(xT — x*, VE(x) — VE(xY)). (29)

Then, we find an upper bound of —|x — x™ ||%TV —2a(xt — x*, Vf(x) — VF(x")).

—|Ix - x+||€7v —20(xT —x*, VE(x) — VE(x"))
=2 || VE(x) — Vf(x*)||%7v71 —2a(x — x*, VE(x) — VE(x*))
— [Wx —x") — a(VEx) — VE&) 1%,
<— (2 - Am?:(L\TV)NX —x*, VE(x) — VE(X*))
— W —xT) — a(VEx) - VE&) 5,

where the inequality comes from (8). Combining it with (29), we have

Ix T — X3+ IlyT = y* I — Ix — x* I3 — Iy — Y134
< — (20 — L) (x — x*, VE(x) — VE(x*))

)\min(W)
— IWx —x") —a(VEx) — VE) I3,
=X = XTI g, — X=X (30)

The inequality (30) shows that {(x*, yk)},fi | is a Cauchy sequence converging to the
fixed point (x*, y*) of (4). From (9), we can bound the first term on the right-hand
side of (30) as

— (20 — —CL_)(x — x*, VE(x) — VE(x*))

- )Vmin(W)
__d’L ¥ 2 _ __d’L ¥ 2
=20 = ALYl = Xy — (20— kS gl = X7 (D)
Next, we bound the two terms involving successive iterated points, i.e., —||V_V(X —
+y _ * 2 o e t2
xT) —a(VE(x) — VI(x ))”W—l Ix — x ||(0_%)(I_V~V).Note that

W —x) — a(VE(x) — VE())
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=G(x" —x") = (" —y)+ (1 -Od - W)x—x). (32)

We use T1, T», and 73 to denote the three terms on the right-hand side of (32),
respectively. Using the definition of 7; in (22), we have

_ 2 _ _ %t
ITi+ Ta+ Tolig — X =xVI5, s

oL _1
=17+ Dol —2W (T + 1), W2 T3) — T30,

46-3 2
~ z0=p) IX — X ”(1 —6)(1— W)

_1 —_1
<— 1T +T2||* = 2(W 2(T1 +1),W2T3) — (1 +’”1)||T3||%,_
< — Z= T + T2

w1

where the last inequality comes from the Cauchy inequality

—2(a, b) <

+ (14 r)|Ib]2.

Combining it with the last term —|x* — x* ||é on the right-hand side of (30), we
have

2
— =T+ Dl — I X
2ry -1 -1
<— EInlE - F (W2 T, WoaT) —
—nlT ||W,1 - znx+ —x*Ilg
2 2
<—nllyt =y = §ixT = x*IIg, (33)

where § < 1 is a small positive parameter, and r; and r3 are defined as (23) and (24),
respectively. Since G = (I — W) — 2(W — W), we have

It —x*1E = Ix* = x*I_w = 2lly =y I3 (34)
Therefore,
— T IT + DA — X - xFIlg
- _ + o2 CE et w2 _ w2
<= nly" =y % = 3lIxt =X Iy — &1y =y IR
<—nllyt =y I = §IxT = x Uy + 250y — v IR+ 28y — v I

< — (r3/dmax (WM) = 28)ly" — y*[I3; — 5IIx* — x*|I7_w + 261y — ¥*II3;. (35)

Let £ < r3/(4Amax(WM)), then we have r3/Amax(WM) — 26 > 2&. Putting (31)
and (35) together onto (30), we have

Ix* = x*[1 + 5Ixt —x* 12y + (1 + 73/ Amax (WM) — 26)[ly* — y*[I3;
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=(1— (2o — 7255 g Ix — X1 + (20 — 25k )l — x¥IFy
+ (1+28)ly — ¥l

Let p be defined as (28), we get (27). Note that the choice of § and 7 affects the
definition of P and Q, but not the algorithm. Hence, for any o € (0, M), Q-
linear convergence is guaranteed for (x¥ — x*, y* — y*).

Because ||x¢ — x*[|3 < [Ix* —x*||3 + |ly* — y*llé, the sequence {[|x* — X*||%}lfi1
converges R-linearly to O at the rate of p. O

Two special cases are not covered by the theorem: 6 = 1 and W = ﬂ . When

6 =1, we have rj = coand r3 = - . When W = I+W

. In both cases, the linear convergence rate is

,le, G = 0 we have
rp=o0cand r3 =

- 1+r

_ 202L o’ n
o= max{ 1- (2a - m)ﬂg’ (40‘ 2- 9+9Amm(W)>§’

_ __Brs—4£Q—6p)
Br3+(1-26)2-0p) |~

(36)

where 8 = 1 — X>(W) is the spectral gap. It is exactly the limit of p in (28) with r|
or rp approaching infinity.

Remark 4.1 The upper bound for the stepsize o, 2(1 — 0+9Amm (W)) /L, 1s much larger
than that in [26] for ensuring hnear convergence, 2fLgAmin (W) / L2, when Wis positive
definite. In the special case W= dX+W)/2,wehave @ < (2 — 0 + OAmin(W))/L.
Since we can choose 6 as close as possible to 3/4, the upper bound of « attains
BAmin(W) + 5)/(4L), which coincides the optimal bound given in [9] for general
convex functions. In [9], the linear convergence was shown under the strong convexity
of all functions {f;}_,.

4.2 NIDS Without Non-smooth Term

We consider NIDS next. In the smooth case, NIDS can be recovered by PAPC applied
to the primal form of the decentralized consensus problem

minimizey f(x), s.ta/I—Wx=10

It motivates us to show the inequality in Lemma 4.5.
[10, Lemma 1] shows that, with the initialization (d0 =0, xo), the fixed point
(d* € Range(I — W), x*) of (5) satisfies

d* + VE(x*) = 0, (37a)
I—-W)x* =0, (37b)
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and x* is the consensual solution to the problem (1). We will use the following impor-
tant equality, which can be derived from (5)

@ 5@ —dh = 15— x), (%)

Motivated by the proof of EXTRA, we introduce another matrix to measure the
distance to the fixed point. We still pick 6 € (%, 1] such that

() +a—or=1-0(5¥) ~0. (39)
Define a new symmetric matrix
M =2(I— W) — 01 = (%) oL (40)

Then, M is a norm over Range(I — W). Note that M is invertible because M1 = —61.
In the following proofs, we use the same simplification x and x*.

Lemma 4.4 (Equality) Let {(d*, Xk)},‘zi | be the sequence generated by (5), we have
the following two equalities:

(Xk+l _ X*, dk+1 _ d*) — a<dk+l _ dk, dk+1 _ d*>f\7[_(1_9)l (413)
K+l ok gkl gky _ k+1 gk 2

= x T —d) =t - (41b)

Proof Since d* — d* € Range(I — W), we have

xt —x*,dT —d*) =(d - W)x" —x*), - W) d+ —d*))
=o(2I — I —=W)(@" —d), X— W)@ —a»)
=a(2I -= W)  — D@t —d),dt —d*), (42)

where the second equality follows (38). Replacing d* with d in (42), we get (41b) in
the same way. O

Lemma 4.5 (A key inequality for NIDS) Let {(d¥, x)}2° | be the sequence generated
by (5). We have, with any r4 € (0,0 — %),

kel _ ox2 4 2kl g2
IIx X7 +o”d d ”M+(0—%+2r4)l

ko 12 o o2 01dk — g% 112 ik — gkt
<< ~ ~
<Ix* = x*|I* +a’|d" —d ”M+(07%72r4)l a”ld* —d ”M+(07%7r4)l

+ &2 || VE(x) — VExN)|)? = 20 (xk — x*, VEx') — VE(x¥)). (43)
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Proof The iteration (5) and the definition of M in (40) show

200(x — x*, VI(x) — VI (x*))
=2(x —x*, x —x") = 2a(x —x*, d" — d*)
=2(x —x",x —x*) — 2a(x —xT,dT —d*) — 2o(xT — x*,dT —d%)
=2(x —x",x —ad® —x* + od*) + 207 (d — d", d* — d*)5_ g
=2(x — xT,xT —x* + aVE(x) — aVE(x*)) + 2> (d — d T, dt — )i 1o

where the first and the last equalities use (5b) and the third one follows (41a). From (5b),
we obtain

20(x — x T, Vi(x) — VE(x"))
=Ix — x| + 2| VE(x) — VEXH)|]*> — [Ix — x" — aVE(X) + a VI
=|x — x| + 2| VE(x) — VEXH)||* — &?dT — d* % (44)

Together with the basic equality 2(a — b, b —¢) = |la —¢||*> — |b —c||* — |la — b|]?,
we get

Ix* = x*I? + ot = d¥ Iy
= lx = x*I1” + & ld = d* IG5, _pyy — @A = d I3 g — @ClldT —d)?
+ a? || VE(x) — VEXY) > — 2a(x — x*, VE(x) — VE(x")). (45)

Since ry < 6 — % < 1/4, the following inequality holds,
—(5 = 2r) [T —d*)? < (3 — 2r9)lld — @ — (5 — ra)lld — dT|%.

Adding it onto both sides of (45), we get (43). O

Theorem 4.2 (Q-linear convergence for NIDS) Under Assumptions 1-3, we define

(46)

(Amax (I — W) — 2)? )

r5 = max (2, 3 .
2 - (Z + 74) Amax(I — W)

For any stepsize o € (0, %), we choose n € (0 ) and define

1
> a(R—al)rs

_ _ _ _ _ 4ry
p3 = max {l a2 —al)ug, a2 —al)nrs, 1 ZAmax((IW)+)§+2r4} <1,

(47)
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Then, we have

||Xk+1 _ X>I<||?+ﬂ +(X2||dk+1 _ d*lle
5
(48)
<p(Ix* — x*nﬁ% +a?[d* —d*g).

where Q::l\~/I + (0 — % + 2rg)I = 0.

Proof Given any « € (0, %), we have

o2 VE(x) — VEXY)|]? — 2 (x — x*, VE(x) — VE(x¥))

< —a2—al){x —x*, VE(x) — VI (x*))

=—a—al){x—x* VI(x) — VI(x")) —a(2 —aL)n|x — X*H%_W
+a@—al)lx — x*||f_w

< —a@Q—al)pgllx —x*|* + a2 — aL)n|x — X*||f_w.

where the first inequality is from (8) and the second one uses (restricted) strong con-
vexity (9). Together with (43), we have

+ _ ¢*2 2ndt — a*12
X" =x7" +o7d" —d ”M+(9—%+2r4)1

<lx — x*[2 20d — q*112. _220d — a2
<% =X P ol =AUy, el AT

— a2 —aLl)pglx — x*|I* + a2 — aL)nlIx — x*[[{_y. (49)

The equality (38) gives

Ix* — x|l _yy
=1 =W)X =Xy = &1L = A= W)A" = DTy,

—2 2 _ 2 +2
= — A7 o q_wy)a—wyrer—a-wy = @ lld —d7 g,

2 +12
< — r
=o7rsld —dlg, 63 e

W)i —41+(I-W)
(50

where the second equality follows (38), the fourth equality comes from d — d* €
Range(I — W), and the inequality holds with the definition of 5 in (46). Combing (49)
and (50), we derive

+ w12 & Lt — x*)2 211d+ — d*112
It = X2 4 e lx =Xy el —d I
<(1 —a@2—aL)ug)lx — x*|* + a2 — aL)nllx — X*[{_w

+o2|d — a*|%

Y SR PR} & (5D

Let p3 be defined as (47), and we show (48). Meanwhile, the Q-linear convergence
of (d*, x*) implies the R-linear convergence of xX. O
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This theorem shows that NIDS is still linearly convergent over a relaxed W and
keeps the network-independent stepsize, which attains % practically.

5 Numerical Experiments

In this section, we compare the performance of EXTRA and NIDS over the relaxed
mixing matrices in the following two scenarios: !

— Comparison of decentralized gradient descent (DGD), EXTRA, and NIDS with
different stepsizes for a doubly stochastic matrix W.
— Comparison of EXTRA and NIDS with different stepsizes for a relaxed matrix W.

We consider the following decentralized sensing problem. Each agent i €
{1, ..., n} has its own private measured data M; € R™*? and y; € R™ based on the
unknown common variable x € R”. Suppose that y; = M;x + ¢; with independently
identically distributed random noise e; € R™. The goal is to estimate x cooperatively
over the network, and the problem is

L I 1
minimize, f(x) = - z; §||M,<x — )’i||%~
i

The data {M;}!_, and x are generated from Gaussian distribution. We normalize each
M; such that ||MI.TMi|| = 10, i.e., L = 10. In both scenarios, we setn = 10, p = 5,
x’ = 0,and W = W for EXTRA.

For the first scenario, we construct the matrix W based on the Metropolis constant
edge weight matrix in [26, §2.4]. In this case, W is positive definite, and we can set

0 = %. Then, W = w. We implement EXTRA with three different stepsizes:

]+)Lmin W f . . . .
o] = % (the stepsize for linear convergence in [26]), oy = w (the

stepsize for convergence only in [26]), and a3 = W (our largest stepsize).
For NIDS, the stepsize is set to ag = % although it is the upper bound of the stepsize
which is not attainable in our proof theoretically.

The result with m; = 1 is illustrated in Fig. 1. Because we have n > p, the function
f(x) is strongly convex with probability one. NIDS requires the least number of
iteration to attain the expected tolerance. Meanwhile, EXTRA with our proposed
stepsize has better performance than that given in [26].

Then, we set m; = 10 in Fig. 2. In this case, individual functions f; (x) and f(x) are
strongly convex. NIDS and EXTRA with the largest stepsize lead the performance.
Here, two results of EXTRA are the same as that of NIDS although they are set with
different stepsizes. The observation may indicate that there is an optimal choice of

stepsize between o and «3 for both EXTRA and NIDS. By setting as = %“Z;W)
for EXTRA and ag = ﬁ, we compare these algorithms in Fig. 3. This figure

! The datasets generated during and/or analyzed during the current study are available from the correspond-
ing author on reasonable request.
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Fig. 1 LEFT: the error % vs iterations for DGD with different stepsizes, EXTRA with three
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stepsizes, and NIDS. RIGHT: The random network with 10 nodes
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Fig. 2 LEFT: the error H vs iterations for DGD with different stepsizes, EXTRA with three
—x*[F

stepsizes, and NIDS. RIGHT: The random network with 10 nodes

suggests that the optimal stepsize may depend on the problem/functions. How to find
the optimal stepsize is an important research topic and beyond the scope of this paper.

Next, we turn to the relaxed mixing matrices. Based on the previous created W,
we replace it by Wpew = 4‘}%_1 to scale the range of eigenvalues to —%, 1]. In
this case, some diagonal entries of Wpew may be negative. We consider the worst
topology of network, line topology, i.e., each agent has at most two neighbors. In this
experiment, we solve the same problem using EXTRA and NIDS on the unrelaxed
and relaxed mixing matrices, respectively, over the line. For NIDS, since the stepsize
is network-independent, we relax the mixing matrix W to Wpew more aggressively
so that Amin (Wnew) approaches —% and compare the performance with the unrelaxed
case of NIDS under ¢ = % For EXTRA, we set the stepsize to o = 3H3min W) ap g

40
compare the performance with the relaxed one under the stepsize « = SHM““Z—(OWHG"V)

where we only perturb W mildly so that Apyin(Wnew) approaches —1. The result is
shown in Fig. 4.
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Fig.3 The comparison of proved stepsizes for EXTRA and NIDS with the optimal choice
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Fig.4 The figure of residuals ——+——— with respect to iteration. The left graph is for strongly convex f(x),
X0 —x*|

and the right one is for strongly convex f(x). re-EXTRA and re-NIDS stand for implementing EXTRA and
NIDS over relaxed Wpew

From Fig. 4, if the topology of network is weak, switching to the relaxed mixing
matrix may offer better performance when using NIDS and EXTRA to solve the
problem. The improvement for NIDS is more distinguished.

6 Conclusion

In this paper, we relax the mixing matrices and prove the linear convergence of EXTRA
and NIDS under the (restricted) strongly convexity assumption on f. A larger upper
bound of the stepsize is derived for EXTRA compared with that given in [26] and [1].
NIDS can choose a network-independent stepsize, and this stepsize can be chosen as
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the same as that of centralized ones. We relax the conditions for the mixing matrices
and the functions, while keeping the same stepsize.

In numerical experiments on linear regression, EXTRA with the larger stepsize con-
verges faster than using the f--dependent stepsize in [26]. Over the unrelaxed mixing
matrix, NIDS leads the performance in most cases and is the easiest to implement. If
the topology of network is weak, using the relaxed mixing matrix can accelerate NIDS.
For EXTRA, in general, we may not choose the mixing matrices to be relaxed due to
the tiny improvement, but the larger stepsize derived in the relaxed case is competent
to be considered.
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