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Abstract

We consider a primal-dual algorithm for minimizing f(x) + AU/ (Ax) with Fréchet
differentiable f and [*. This primal-dual algorithm has two names in literature:
Primal-Dual Fixed-Point algorithm based on the Proximity Operator (PDFP20) and
Proximal Alternating Predictor-Corrector (PAPC). In this paper, we prove its conver-
gence under a weaker condition on the stepsizes than existing ones. With additional
assumptions, we show its linear convergence. In addition, we show that this condition
(the upper bound of the stepsize) is tight and can not be weakened. This result also
recovers a recently proposed positive-indefinite linearized augmented Lagrangian
method. In addition, we apply this result to a decentralized consensus algorithm
PG-EXTRA and derive the weakest convergence condition.

Keywords Linearized augmented lagrangian - Primal-dual -
Decentralized consensus
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1 Introduction

Minimizing the sum of two functions has applications in various areas including
image processing, machine learning, and decentralized consensus optimization [4, 5,
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17, 26]. In this paper, we aim to minimize the sum of two functions in the following
form:

minir}r}ize f(x) + hOJI(AX), (€))]

where X’ and S are two real Hilbert spaces; f(x) : X +— (—o0,40o0], A(S) :
S +— (—00,400], and I(s) : S — (—00, +00] are proper lower semi-continuous
(Isc) convex functions; kL1l is the infimal convolution of ~ and [ that is defined as
hI(s) = infies h(t) 4+ [(s — t); the linear operator A : X +— § is bounded. In
addition, we assume that f(x) is Fréchet differentiable with a Lipschitz continuous
gradient, [ is strongly convex in dom(/)!, and the proximal operator of /, which is
defined as:

1
prox,, (t) = I+ A0h)~L(t) = argmin h(s) + —||s — t)2,
seS 2

has a closed-form solution or can be easily computed. Here, 04 is the subdifferential
of the convex function #.

Many existing papers considered a special case of (1) with /(s) being the indicator
function ¢y (s) that returns 0 if s = 0 and 400 otherwise. In this special case, the
infimal convolution A/ degenerates to &, and the problem (1) becomes:

minimize f(x) + h(AX). 2)
xeX
The corresponding saddle-point problem is:
minmax f(x) + (Ax,s) — h*(s). 3)
xeX seS

If a saddle point (x*, s*) exists for (3), then x* is an optimal solution for (2).

In order to solve (2) (or (3)), a primal-dual algorithm was proposed in different
fields under different names [7, 12, 23]. Loris and Verhoeven [23] focused on a par-
ticular smooth function f(x) = %HKX — y|I?, where K is a linear operator and y is
given. Chen, Huang, and Zhang [7] considered the general problem (2) and proposed
a Primal-Dual Fixed-Point algorithm based on the Proximity Operator (PDFP20).
Then, the same algorithm was rediscovered under the name Proximal Alternating
Predictor-Corrector (PAPC) in [12] to solve (2) and its extension to a finite sum of
composite functions when 4 is separable. One iteration of the algorithm is:

$H = (T4 00h*) ™" ((I — t0AAT)S* + oA (xk — er(xk))) . (4a)
Xt =y v b)) — tATSHL (4b)

Here, t and o are the primal and dual stepsizes, respectively, and the convergence
of this algorithm is shown when 7o ||AAT|| < 1 and 2t/L < 1 [7]. Here, L is the
Lipschitz constant of V f(x) and IAAT] is the operator norm of AAT. When A is a
matrix, |AAT| is the largest eigenvalue of AAT.

1t means that I*(s) (the Legendre-Fenchel conjugate of /(s)) is Fréchet differentiable with a Lipschitz
continuous gradient.
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There are many other algorithms for solving (2) and its extensions. For example,
Condat-Vu [6, 10, 27] solves a more general problem than (2) with an additional non-
differential function. However, the corresponding parameters 7 and o have to satisfy
1o ||AAT|| + 2t/L < 1[18]. When f(x) = 0, Condat-Vu reduces to Chambolle-
Pock [4]. There are several other primal-dual algorithms for minimizing the sum of
three functions, one of which is differentiable [2, 3, 8, 9, 11, 20, 31]. Interested read-
ers are referred to [19, 31] for the comparison of different primal-dual algorithms
for minimizing the sum of three functions. All the algorithms mentioned above solve
bilinear saddle-point problems in the form of (3) or its variants. Recently, many
algorithms have been developed to solve more general saddle-point problems with
non-bilinear terms [13, 14, 16, 29, 30]. A review for primal-dual algorithms is beyond
the scope of this paper, and we focus on the specific primal-dual algorithm PAPC
here.

When there is only one function f(x), i.e., i(s) = 0, we let A = 0, and the
primal-dual algorithm reduces to the gradient descent with stepsize t. Therefore, the
condition T < 2/L can not be relaxed. The remaining question is can the condition
1o < 1/||AAT| be relaxed? In [7, Section 5.1], the authors numerically showed that
a larger stepsize (e.g., to = 4/(3||AAT|))) gives a better performance than stepsizes
satisfying the condition o < 1/||AAT||. The convergence for to < 4/(3||AAT])
was an open problem, and this work resolves it.

For linearized Augmented Lagrangian Method (ALM) [32]—a special case of
the primal-dual algorithm (4)—the condition to < 1/|[AAT| is relaxed in [15].
Consider the constrained optimization problem:

minismize h*(s),
subjectto —ATs =h.
Its dual problem is
minimize b'x + h(Ax),

which is the problem (2) with f(x) = b "x. The linearized ALM is

2

k—+1 i (621)

S

1
argmin h*(s) + g s—sk— EA(xk — (AT  + b))
S
X = ¢k — ‘[(A—rsk+1 +b). (6b)

It is exactly the primal-dual algorithm (4) with § = 1 /0. Note that the step in (6a)
can be rewritten as:

. T 1
argmin h*(s) — (x*, ATs +b) + §||ATS + b“% + Z”S - Sk”%—mAAT‘
S
In [32], positive-definiteness of I — o AAT is required for showing the convergence.

Then, the authors in [15] relaxed the condition and showed that (4/3)I — tc AAT
being positive definite is the necessary and sufficient condition for the convergence
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of linearized ALM. That is, this relaxed condition is sufficient for the convergence of
linearized ALM, and if the condition is not satisfied, there exist a function A*(s), a
linear operator A, and an initialization such that the algorithm does not converge. This
result motivates us to show the convergence of (4) under a weaker condition. In this
paper, we provide the necessary and sufficient condition on o for the convergence
of algorithm (4). This extension from [15] is nontrivial because the function f(x)
from linearized ALM is linear, i.e., f(x) = b'x, and the Lipschitz constant of V f
is 0.

Furthermore, we consider the more general problem (1) with infimal convolu-
tion, which was not considered in [7, 12], because it provides a tight upper bound
for the stepsize of Proximal Gradient EXact firsT-ordeR Algorithm (PG-EXTRA) in
decentralized consensus optimization. More details are in Section 3.

In this paper, we relax the parameters for the primal-dual algorithm (4) and provide
a tight bound for the primal and dual stepsizes. This result recovers one special case of
the positive-indefinite ALM in [15]. Instead of using positive semidefinite operators
for primal-dual variables in standard analysis, we allow the operator to be indefinite;
see the operator in (8). Note that the analysis in this paper with indefinite operators
is nontrivial because the standard techniques can not be applied. In addition, the
linear convergence result is better than existing ones. Finally, we apply this result to
a decentralized consensus algorithm and obtain its weakest convergence condition.

The rest of this paper is organized as follows. In Section 2, we present the algo-
rithm to solve (1). We show its convergence for the general case in Section 2.3 and
linear convergence rates under additional assumptions in Section 2.4. In Section 2.5,
we provide one example to show that the upper bound for its stepsize is tight. The
application to a decentralized consensus algorithm is provided in Section 3. Then, we
end this paper with a short conclusion.

2 New convergence results with weaker conditions

2.1 A primal-dual algorithm

In this paper, we extend an existing primal-dual algorithm (4) to solve (1) with an
infimal convolution and show its convergence results with weaker conditions. Firstly,
we explain this algorithm via operator splitting, which is different from those in the
literature. Instead of considering problem (1), we consider the corresponding saddle-

point problem:

mxin max f(X) + (Ax, s) — h*(s) — I*(s), @)

whose optimality condition for a saddle point (x*, §*) is
0 . 0 AT][x* 4 V f(x*)
0 —A on*||s* VI*(s*) |-
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We apply the following forward-backward operator splitting with self-adjoint posi-
tive definite operators P and D — to AP~ 'AT defined on X’ and S, respectively:

P 0 X1 [tV
0 D—tcAP AT | s o VI*(sh)
P 0 Xk+l 0 T AT Xk-H
€ [0 D - ‘L'(TAP_IAT:| [sk“] + [—UA Uah*] [skﬂ] ’ ®)
Here, t and o are two positive parameters. When P and D are the identity operators
in X and ), respectively, T and o are the primal and dual stepsizes, respectively.
Different operators P and D may be chosen in different scenarios. For example, we
can choose P (or D) to be a diagonal matrix such that the stepsize is different for

different coordinates of x (or s) when X’ (or S) is finite dimensional. Define M =
D - 1o AP~'AT). Then, we apply the Gaussian elimination and obtain:

P 0 ][x TV f (x5) P AT xk+1
oA IM|[s* | T [oTAPTIVF(K) + oVIF(sh) | [0 D+ oon* | [

Given (xk, sk), one iteration of the primal-dual algorithm is
$+ = (D +oon®) ™ (EMsk oA (xk - rP’IVf(xk)) _ on*(Sk)) . (%)
T
Xt = xk — PV i) — tPTIATSML (9b)

From this analysis, we can easily see that a point (x*, s*) is a saddle point of (7) if
and only if it is a fixed point of (9). Therefore, we only need to show the convergence
to a fixed point of (9). Note that we could store ATs in the implementation, and the
iteration is equivalent to

st = (D+ Gf)h*y1 (Dsk +0A (Xk — PN (vixh + ATsk)> - aVl*(sk)> ,
K = xk Py F(xk) — rPIAT SR

Therefore, only one application of A and one application of AT are needed in each
iteration.

Let I be the identity operator defined on a Hilbert space. For simplicity, we do not
specify the space on which it is defined when it is clear from the context. When [ is
the indicator of a singletonz, P =1, and D = I, the iteration of (9) reduces to (4), the
existing primal-dual algorithm proposed in [7, 12, 23]. Its convergence is shown if
I—7t0AAT is positive semidefinite and < 2/L with L being the Lipschitz constant
of Vf.

If the operators P and D—to AP~ 'A T are positive definite, the convergence of (9)
with an additional condition for T can be shown easily from nonexpansive operators
with metric [1, 25, 31]. To the best of our knowledge, this paper is the first one
to show the convergence of a primal-dual algorithm when D — to AP~'AT is not
positive definite, and the analysis is different from positive definite cases.

2Tt means that VI*(s) = 0.
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2.2 Assumptions for new analysis

An extension of this existing primal-dual algorithm (4) to (9) is derived to solve the
problem (1) with an infimal convolution. In addition, we show the convergence of (4)
with a larger o . Specifically, we can choose 7o such that (4/3)D — to AP~ 'AT is
positive semidefinite, i.e., the upper bound for 7o is increased by 1/3. It means that
we can choose a larger stepsize o when the primal stepsize t is fixed.

For convenience, we introduce two operators as:

M, = Z(D—0tcAP'AT), M, :=2(1 —6)AP'AT.
o

Here, 6 € (3/4, 1] is chosen such that M is positive definite and M, is positive
semidefinite. We can find such 6 € (3/4, 1] whenever (4/3)D — tc AP7'AT is
positive semidefinite. We would like to emphasize here that & > 3/4 is crucial in the
proof of the convergence because we need 40 — 3 to be positive. On the other side,
0 < 1 is required for M, being positive semidefinite. With these two operators, we
have M = M| — M. In addition, we define a positive definite operator as follows:

M := M, + M.

Given a self-adjoint operator M, we let (s, tyr = (s, Mt) and ||s||2M = (s, Ms).

Note that ||s||2ﬁ can be negative if M is not positive semidefinite. When Mis positive
definite, we further define the induced norm as ||s|lz7 = /(S, S)§7- L€t Amin (M) be the
smallest eigenvalue of M. For (x, s) € X’ x S, we define ||(x, s) ||fJ M= ||x||% + ||s||2ﬁ.

Assumption 1 Functions f, h, and l are proper Isc convex. In addition, f is Frechet
differentiable and [ is strictly convex (i.e., I* is Frechet differentiable). Operators P
and M are positive definite. The iteration (9) has at least one fixed point. Let (x*, s*)
be any fixed point of (9). For any x € X and s € S, we have:

(X=X, Vfx) = V() = BIVFE) = V&), (11)
(s =%, VI*(s) = VI*(s") = BIIVI*(s) — Vl*(S*)Ilfw_l, 12)
1

for some B > 0.

Lemma 1 When f and I* have Lipschitz continuous gradients with parameters L ¢
and L=, respectively, we can choose

8 = min (Amin(P)L’l, L rmin(D — emAP—lAT)L;‘)
' o

such that Assumption 1 is satisfied. When D and P are identity matrices, we can
simplify it as

. 1 T _
8 = min (Lfl, ~(1- GtaxmaX(AAT))Ll*l) .
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The proof for this lemma is simple and omitted.

Remark 1 We choose norms that are different from standard norms for simplicity.
They come from the operators P and M in (8).

The condition (11) usually comes from the cocoerciveness of V f. It is satisfied

. ingx—1 [Px]| . o . . .
with g = %?HXH if f(x) has a Lipschitz continuous gradient with con-

stant Ly [I, Theorem 18.15]. One example of P is the diagonal matrix when
f is separable and the Lipschtiz continuous constants are different for differ-
ent blocks. By choosing a diagonal matrix P, we can have a fast algorithm. For
example, in [22], we let different agents choose different stepsizes to improve
the convergence speed.

Note that the condition (12) depends on 6, which does not exist in the algorithm.
We choose to have the same g in (11) and (12) for simplicity. From the definition
of M, we can see that the condition (12) depends on function [*, P, D, A, 8,
0, t, and o. But it is not as complicated as it looks like. Let us assume that
D =Iand P =1, f and/* have Lipschitz continuous gradients with L ; and L+,
respectively. The condition (12) requires:

B < AminM1)/L = t(1 — 070 |AAT) /(0 Ls+).

Therefore, we can also choose a small 6 € (3/4, 1] to make it valid if a larger
B works. By making 6 small, we can have a large dual stepsize o for a given
primal stepsize t. In fact, we do not need to know 8 explicitly to determine both
stepsizes. When we consider both conditions ((11) and (12)) and the condition
T < 28 in Theorem 1, we have:

tLy <2, oLy <2(1 — 0t0 hmax(AAT)). (13)

For comparison, the condition in [27] is max(t, o) max(Ly, L) < 2(1 —
VTo||AAT|)). Our condition has two benefits. One is that we consider 7 and
o differently and can obtain a large stepsize even when the Lipschitz constants
Ly and L;+ have different scales. The other is the introduction of 6 € (3/4, 1],
which may increase the upper bounds for the stepsizes. The best result in this
paper comes from choosing a 6 that is close to 3/4 even when 6 = 1 is enough
for M being positive definite. See the example in Section 2.5.

(Special cases) The positiveness of M gives an upper bound for 7o that depends
on P, D, and A. The convergence of (9) requires an upper bound for 7 that is
T < 2B; see Theorem 1. If VI* is fixed for all s, e.g., problem (2), then (12) is
satisfied with any 8 > 0, and the upper bound of t depends on P and L ¢ only,
i.e., T < 2Amin (P)L;l. The condition is strictly weaker than that in [27] and [2]
because of the introduction of 6. If V f is fixed for all x, e.g., the linear f in
linearized ALM, then (11) is satisfied with any § > 0, and the upper bound for t
depends on o, A, D, P, and the Lipschitz constant of VI* because of M| in (12),
ie., 0 < 2hmin(D — 3/4)Tc AP 'ATL .
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Assumption 2 Let (x*,s*) be any fixed point of (9). There exist g > 0, pup = 0,
and p; > 0, such that, foranyx € X ands € S,

(X=X, Vf(®) = V() = prlx—x*, (14)
(s — %, pi(s) — pr(s™) = punlls — 13y, (15)
(s — 8", VI*(s) = VI*(s") = pulls — s* I3y, (16)

where py(s) € dh*(s) and pp,(s*) € dh*™(s*).

The assumption is satisfied if functions f(x), 4 (s), and /(s) are convex, and in
this case, s = pp = w = 0. We choose the norms | - ||p and || - ||m, for the two
spaces for simplicity. All the results in this paper also hold for standard norms, but
the formulas are complicated. We will need this assumption with positive values to
show the linear convergence for strongly convex functions. In this case, because P
and M; are positive definite, s > 0 (or py > 0, uy > 0) is implied from the strong
convexity of the function f(x) (or g*(s), I*(s)).

2.3 Convergence for general convex functions

First of all, we find a subgradient of #* at K+

1 1
(K1) = =Mk — —MsFF! 4 AXFH — vt (sK) € ant (s, (17)
T T
It can be easily obtained from (9), and its proof is omitted here. Let (x*, s*) be any
fixed point of (9), and we have a subgradient of h* at s*:
qn(s") = Ax* — VI*(s*) € dh*(s¥). (18)

Lemma 2 (Fundamental inequality) Let (x*,s*) be any fixed point of (9), and
{(Xk, sk)} a sequence generated by (9). Then, we have:

I S — (12

< x589 = s = I8 = sy,
=20 (sF — 5%, qu (55T — qu (%) + VI*(sE) — VI*(sY))
+20(V f(xF) = VF(x*), x* — xF + (40 — 3)(xF — x*T1y)

—@40 = 3 =+ 40 — OV L) = VEEOIE. (19)

Proof The definitions of qj, (sk‘H) and qz (s*) in (17) and (18), respectively, and the
update of x**1 in (9b) show:

20(sFT — 8%, qu (55T — qu (%) + VIF () — VI*(s))

1 1
WS 50 (g1 g% "Mk — —Ms+! 4+ AxFH! = Ax*)
T T
=2(s"! — g §F — sFThy + 20 (5K — 5%, AxFT — AxY)
— 2(Sk+] _ S*, Sk _ Sk+]>M + ZT(ATSk+] _ ATS*, XkJrl _ X*>
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b
@ 2K — g%, sk — Ty 42k — XL xET xt)p
—20(V () — v F(x*), ! —x*) (20)
= [Is* — s*l3 — 15T = s* I3 — 18" = s TR

I = x*[1F — I - - xE— xR
20V () — VF(x), x* —x ),

where we expanded the first two terms in (20) using 2(a, b) = la+b|2—lal*>—|b|>
to obtain the last equality. Therefore, we have:

k1 k1 2
T 8 — (", s9)1lpm

= 20(Vf(x") — Vf(x"), x* —x*)
=20 (s — %, qu (8T — qu(sh) + VI*(Y) — VIF(s)
HIE ) — s 1Ip g — I =X Fp — st =R @D

The fact that M = M| — M gives us an upper bound for the last term of (21).

k k+1,2 k k412 k k4112
— SRy = sk = SR st - s

— s
k_ k12 k k4112
= —lIs" ="y, +lIs" = 8"+ =" Iy,

k k+12 k 2 k+1 2
—lls* = Ry, + 2118t — st I3y, + 2085 — 513, 22)

IA

Adding 2||skt1 — s"||12\,[2 onto both sides of (21), recalling that M = M| +M; =
M + 2M,;, and combining (22) and (21), we have:
I 4 — (I &
< 20(Vf(x) — Vf(x), x* —x*t)
—27(sFT — %, qu(sFT1) — @i (s*) + VI*(sF) — VI*(s))
e R O A e e A i [ ]

+4[|s*H — ¥ 13y, - (23)

With the definition of M, the last term in (23) can be written as:

4T — s* |3y, = 41 —0)[|TPTTATS — rP_lATs*le,
=4(1 - 0)|x* — PV F(xF) — x4 rP—1Vf(x*)||f,
= 41 = O) X" =X+ 40 — )TV £ = VLI
—8(1 —o)r(x* —x" ! vixh) — vixY)), (24)
where the second equality comes from (9b). Then, we plug (24) into (23) and obtain:
[+ sy = (x*, s*)”%,M

< 20(VFEN = Vi), x — x5 + (40 — 3)(x* — xt1y)
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2z (s — s, () — qu(sh) + VIF ) — VIF(sh)
k k N k k412
I 89 = & s g — I8 = sy
2
—(40 = 3)|Ix* —xTp + 41 =)V FE) = VL5

The result is proved. O

Lemma 3 Let (12) be satisfied, then
—lIs* = Ry, — 20 (s — 57, VIR — VIF(sh))
< —(—1/B) IIs* — sy,

Proof Because M is positive definite, we have
—|Is" = "Ry, — 208K — 57, ViR (sh) — vIF(sh))
= —|s* = sy, — 20 (¢ — s virsh) — vir(s)
—27(sk — s, VI*(s) — VI*(s)

k1 T ok k12 k o (12
< —|Is* —s** IIMl ﬁllS — sy, + 2TBIVIEES) — VI (s My
28| VI*(s¥) — Vl*(s*)||2 _
_ k_ gkl T sk — gktl
= 18" =Ry, + 558 = SR
where the inequality comes from the Cauchy-Schwarz inequality and (12). O

Theorem 1 Ler Assumption 1 hold, 6 € (3/4,1], and © € (0,28). The sequence
{(xK, s5)} is generated by (9). For any fixed point (x*, s*) of (9), we have:

I $H) — (8, s 5 — 11686 = (L NI g
40—3)(28—
= — (1 %) I8 =413, - G2 —x g @)

Proof Applying Lemma 3 and % being convex to the inequality (19) in Lemma 2
gives:

||(Xk+1, Sk+1) _ (X*, S*)”f) l{;[
< &85 = (s g 5 — (= /@A) IS = sy,
+20(VFE) = VI x* = xX) +4(1 — )|V () = VD) Ip
A
—(46 — 3)||x* — x+! ||f, +27(40 = 3)(Vf(x*) — Vi), x* —xhy . (26)

B

Next, we bound terms A and B. For term A, the assumption (11) implies

(V) = VI, X" —x) < 2BV F) = ViED)p, @7
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and the Cauchy-Schwarz inequality applied to term B implies
27(40 — 3)(V £ (x*) — Vf(x*), xk — xF1)
< QB -4 —OT)VFE) = V)5
T(40 — 3)2
28 —4(1 —0)t
when 6 € (3/4, 1]and t € (0, 28). The inequality holds because 28 —4(1—0)t > 0,
owing to the bounds on t and 6. Plugging (27) and (28) into (26), we have:

k+1 k+1y _ rox *V12
IO+ S — s

Ixk — x5+, (28)

< &85 = & g — (1= 7/@B) IIs* =y,
40— B~ 2,;5‘2(—1_?;)1 I — xR
= 1" 89 = & sY)lIp 5 — (1= /@B Is* — "Iy,
_@-3@f-1) Ixk — x5 12,
2B —4(1 —0)t
The inequality (25) is proved. O

Remark 2 When B = +o00, i.e., the Lipschitz constant of V f(x) and VI*(s) is O,
then (25) becomes:

k+1 k+1 2 k ok 2
I ) — 82 g - I8 — L sOIR
k k412 k k+1(2
< — s = Ry, — @0 — 3 xk — X,

This is the key result in [15, Theorem 3.1] for linearized ALM. In [15], the authors
also considered the case with a general dual stepsize.

Remark 3 (Large stepsizes) We let P = I and D = I for simplicity. Consider the
problem (2) without function /. We have 8 = 1/L, where L is the Lipschitz constant
of V f. Then, we can choose < 2/L, and to < 4/(3||AAT|).

However, for the problem (1) with function /, the choice of the primal stepsize ©
also depends on o because of the operator M in the assumption (12). For this case,
how to choose T and o is complicated. From Remark 11, if f and [* have Lipschitz
continuous gradients with constants Ly and L;+, respectively, a sufficient condition
for convergence is tLy < 2and o Ljx < 2(1 — (3/4)to||AAT|). Except the same
conditions 7 < 2/L and to < 4/(3||AAT|), there is an additional condition o <
2(1 — (3/4)to ||AAT )/ L.

Theorem 2 Under the assumptions in Theorem 1, the sequence {(x*, sX)} converges
weakly to a fixed point of (9). If the iteration (9) is demicompact at 0 [24],> the
sequence converges strongly.

3 An operator T is demicompact at x € H if for every bounded sequence {xk},@o in H such that Tx* —

xk — x, there exists a strongly convergent subsequence.
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Proof Theorem 1 shows that the sequence {(Xk, sk)} is bounded, so weakly conver-
gent subsequences of {(x¥, s¥)} exist. For any weakly convergent subsequence such
that (x¥, ski) — (x, s), the inequality (25) gives (xki—l —xki gki—=1 _gkiy — 0. Then,
based on the iteration (9), we obtain [1, Fact 1.37]:

1
Vi) +ATs8 = —Ppxhi—! —xkiy 4 vixh) — viEhii—1) - 0,
T

1
—AXN 4 g (s") + VIF(M) = —M(sE T — 4 — it st + itk — 0.
T

Because f, h*, and [* are convex, the operator:

Vi AT
|:—A ah* 4+ Vi *:|
is maximal monotone. Thus, (X, s) is a fixed point of (9) because of [1, Proposition
20.33(ii)].

The inequality (25) also shows that the sequence {(x¥, s¥)} is Fejér monotone with
respect to the set of fixed points of (9). Then [1, Theorem 5.5] shows that {(xF, s%)}
converges weakly to a fixed point of (9).

The inequality (25) shows that {(x*, s*)} is a bounded sequence and (x**! —
xk gkt — s¥) — 0. Then, the demicompactness of the iteration in (9) at 0 shows
that there is a strongly convergent subsequence (xfn, k) — (x*,§%), and (X*, §%) is
a fixed point of (9) because this subsequence is also weakly convergent. Then, the
inequality (25) shows that the whole sequence {(xF, sK)} converges to the fixed point
(x*, s%). O

Remark 4 When X and S are finite dimensional, the sequence {(Xk, sk)} converges
strongly to a fixed point of (9).

In Theorem 2, we showed the convergence of this primal-dual algorithm without
providing the convergence rate. The ergodic sublinear convergence rate is showed for
primal-dual algorithms for more general problems [6, 31].

2.4 Linear convergence

In this subsection, we prove the linear convergence of the sequence {(x*, s5)} in
Theorem 3 under the additional Assumption 2.
Before showing the linear convergence, we prove the following lemma, which
provides a different upper bound for the same object in Lemma 3.
Lemma 4 Let (12) and (16) be satisfied, then
— 18" = $ IRy, — 20 (5T — 5%, VIR — Vit (sh)

< —IMLEH = 6 AT - AX - gD+ TanHIE ) (29)
1

= (20 = 22/8) mills' = 5" Ry,
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Proof Because M is positive definite, we have:

— 18" = s IRy, — 20 (85T — 5%, VIH Y — VIE(sY)

= —lIst = IRy, — 20 (M2 — o), MV (8F) — it (s))
—27(sk — §*, VI*(s5) — VI*(s*))

= M} — 68 + M P vty — Vi) )

+12 VI sk — Vl*(s*)||§/[_] —2¢(sk —§*, VI*(s") — VI*(s)). (30)
1

The first term on the right-hand side of (30) becomes:

—IM 2 = s M2 (s - Vs

—IMy T =8 4 T(VIR) = VI
= Mo =8+ MEH =Y + 1 (VIF Y = VIrE)IE
1

a7),(18)
=7 Mo =89+ rAXT -t AKX — T ) + a8
1

where the second equality comes from M = M| — M.
For the other two terms on the right-hand side of (30), we have:

2| VI sk — vz*(s*)uia_1 —2¢(sk —§*, VI*(sh) — VI*(s*)
1
(12),(16) R
< —Qr—/Bwmlst — sy,
Combining both inequalities together with (30) gives (29). O

Theorem 3 Let (x*, s*) be a fixed point of (9) and Assumptions I and 2 hold. Define
M := (1 4+ 2tup)M; + My, and we have

I s — (s g < AT $Y = & sNIG 31)
where
1 = Qt— /B + Ci )
= ma 1—-Qrt—1 .
p1 X( [ 420 1 O ( /By
Here, C1 = ||M1_1/2M2M1_1/2|| > 0. The sequence {(xk, sK)} converges linearly to

the fixed point (x*, s*) with rate p1 < 1ift € (0,28), pp +uy > 0, and g > 0.
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Proof Applying Lemma 4 to (19) in Lemma 2 gives:
k+1 k+1 * o xy 12
I 5 — o s 5
10, 85) = s g — (22 = 72/B) mallst = "Iy,
—2r (s — s () — qu(sh)
+27(V f(xE) — VF(x*), x* —xF + 40 — 3)xF — x*t1y)
2 *
— (40 = 3)|Ix* —x T p + 401 — OV F ) = VL D)IIp
= I8 = D12 g — (20 = 72/8) il = "1y,

k+])

IA

—27(s" — 8%, qu(s"T) — qu(s")
“20(V(X) = VD). X —x*) + V) = VIE) 5o

— (46 = 3)|IxF —xF — PNV () — V) I3
Note that

—20(V(X) = VA, X —x) + 2|V = V) 5

D - VI - VDK - x)

(14)
< —Qt—-7/Buslx —x*p.

Then we have, together with (15):
(K sk — (x*, S*)”%’,IVI
= I8 = o IR g — (27 = 72/B) st = s* IRy,
=2y IS = sy, — @ — /By — x5
That is

k+1 * 112 k+1 * 112
X570 = x"lp + 18" — ™11 120 )My M,

< (1= Q@ =/Bup X =X 1B+ 1 = "I8_2r_ 2 /)y vty 32)

For the last term on the right hand of (32), we have:

k *12
s —s “(1—(21—r2/ﬁ)m)M1+M2
/2, k * 112
= M -

M (s" —s )ll(l—(zr—rz/ﬁ)m)HM;

_l-@r-?/pm+C

12 172

MoM;

1/2 *
M} (s* — %))

- 14 2tu, +Ch (-2t up)T+M; MMy 2
_1-Q@ TP+ Cr
- 1+ 2tup + Cy ™ = ™l 420 My 40,

Therefore, the inequality (31) is proved. O
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Note that paper [7] proves the linear convergence rate for the case with [*(s) = 0
and My = 0 as

( mingxj=1 |ATAX]|
max | 1 — -
IATAl

1 —Qt -7/ f)

under the additional assumption that AT A is surjective. However, u;, > 0 is not
required.

Next, we compare this result with the linear convergence rate of Condat-Vu in [2]
by letting 2*(s) = 0 and M = 0, P = I, D = L. For simplicity, we assume that f
and [* are both pu-strongly convex and have L-Lipschitz continuous gradients. The
linear convergence rate of Condat-Vu is

4

2

2 9
; m K
4+m1n<L2, ||AAT|)

with the primal and dual stepsizes in the order of 1/L>. However, if we let T = o
in (9), then we have y; > u = g and B = (1 — 72||AAT|))/L in Assumptions 1
and 2. In addition, we let T = g, then the linear convergence rate in Theorem 3
becomes:

2p

VL2 4AAT|[+ L

We can see that the linear convergence rate of (9) is much better than that of Condata-
Vuin [2].

l—tpu=1-

2.5 Tight upper bound for the stepsizes

A very simple example was provided in [15] to show the upper bound’s tightness for
a case without infimal convolution. In this subsection, we provide another example to
show the tightness for a case with infimal convolution. This result will be applied to
decentralized consensus optimization in the next section. Given a self-adjoint positive
definite operator D, we consider the following optimization problem:
x"ATD'Ax
> .

It is a special case of (1) with f(x) = a'x, h*(y) = 0, and [*(y) = yTDy/2. The
primal-dual iteration (9) after a change of order is:

Xt = xk —p~la — P IATSF,

st = I —1oD'AP'AT —oDs* + oD 'AX ! — roD AP a.

Denote D = D~1/2AP~!ATD—1/2, Then, the iteration is equivalent to

D-'2AxH1] 1 —tD | [D12Axk
D2kl | 7 |61 (1 — o)l —2toD|| D2k
[ D7'2AP 'a
2tcD~V2AP la|”

minimize a' x +
X
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The convergence of this iteration for any given initial (s”, x°) requires the magnitudes
of the eigenvalues of the operator:

I —1D ~
ol (1 —o0)I—2t0D

being less than 1. Since Dis self-adjoint, we need the magnitudes of the eigenvalues:

of
~ 1 —TA
M:= [a 1—0—210A:|

being less than 1 for all A being the eigenvalues of D. We calculate the determinant
of M — dI for any d below:

detM—dl) =d> — 2 —0 —2tol)d + (1 — o — ToA).
Particularly, the convergence requires det(lV[ +1I) > 0, that is

1+2—0—-2toAM)+(1—0 —t0A) =4 —3t0A—20 > 0.

3 .
o<?2 (1 — —ro||D||> .
4

On the other hand, we proved the convergence of the primal-dual algorithm under the
condition:

It is equivalent to

2 ~
T <28 =2Amin(D"/>M,D"1/?) = ;r(l — 670 |D|)

for some 8 € (3/4, 1]. It shows that the upper bounds for the stepsizes in this paper
are optimal.

3 Application in decentralized consensus optimization

In this section, we first show that algorithm (9) recovers PG-EXTRA [26] for decen-
tralized consensus optimization. Then, we provide its convergence result under a
weaker condition than that in [26] and a tight upper bound for the stepsize. Note
that PG-EXTRA was shown to be equivalent to Condat-Vu for a problem without
infimal convolution [28], but this equivalence can not give the weaker condition for
convergence and the tight upper bound for the stepsize.

We use the same notation as [26]. The decentralized consensus problem is

n

minimize §i(x) + ri(x),
xeRP i—1
i=

where s; : R? — Rand r; : R? — (—o00, +00] are proper Isc convex functions
held privately by the node i to encode the node’s objective function. The objective
of decentralized consensus is minimizing the sum of all private objective functions
while using information exchange between neighboring nodes in a network. Here, s;
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has a Lipschitz continuous gradient with parameter L > 0 and the proximal mapping
of r; is simple. We let x; be one copy of x kept at node i. These {x;}!_, are not the
same in general, and we say that it is consensual if they are the same. Stacking all the
copies together, we define:

and

n

sX) =) siCx), r®) =Y rix).
i=1

i=1
Then, the decentralized consensus problem becomes:

minimize s(X) + 7(X), subjecttox; =xp = -+ = x,.
X

The gradient of s at x is written in the following matrix form:

= (VsiG)” —
Vs(x) i - (VS2(.162)) | crrr,
— (Vsalea)) T —
and || - || r is the Frobenius norm for a matrix in R"*?. One iteration of PG-EXTRA

reads as:
I+W
2K = K Xk g +T(2Xk — xk_l) — och(xk) + otVs(Xk_l), (33a)
1
X = argmin r(x) + —|[Ix — 27|13, (33b)
X 20

where « is the stepsize and W is a symmetric matrix that represents information
exchange between neighboring nodes. We have I — W being positive semidefinite,
so we can find A such that I — W = AA . In addition, we assume that Null(AT) =
Null(I — W) = span(1,,,.;), which means that ATx = 0 is equivalent to x| = x» =
--- = xy. Therefore, the decentralized consensus problem becomes

minimize s(X) + r(x) subject to ATx=0.
X
The equivalence between PG-EXTRA and Condat-Vu can be obtained via consider-

ing the primal problem with an indicator function for the constraint [28]. Here, we
consider its dual problem in the following form:

minimize r*Cs*(Ay), (34)
y
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where r* and s* are convex conjugate functions of r and s, respectively. We apply (9)
to(34)(h = r*, | = s*, x =y, s = t) and arrive at:

2! = (I — 1o AA D + o AYF — o Vs (th), (35a)
1

t“t! = argmin {r(t) + — |t — 2T, (35b)
t 20

gl = gk AT (35¢)

Combining (35a) and (35¢), we get:

2 =2F —tF + A - 10AAF — ) — o Vst + o Vs, (36)

We let to = % and 0 = «, then (36) is exactly (33a) with t = x. Because M =

2121 — (1/2)AAT) = 2(I + W) is positive definite, we can let M; = M. If
{Vs; (x)}f':1 are Lipschitz continuous with constant L > 0, the other condition for
convergence is:

2 272
T<28< Z)Lmin(Ml) = T)¥min(I +W),

where the second inequality comes from:

3 U U |
Vs(X) — Vs(X),X—%) > —|X—x|> > —
(Vs(x) — Vs(x), X X)_LIIX x|l =

Therefore, we obtain the condition on the stepsize:

Danin MK = X7 -
1

1
o =— < Apin(I+W)/L.
2T

This is exactly the upper bound in [26].

The previous upper bound is obtained with & = 1. As we mentioned before, we
can choose 0 to be close to 3/4 to obtain large stepsizes. By letting 6 = 3/4 + ¢
with an arbitrary small € > 0, we have M| = 2t°(I — (3/4 + €)(1/2)AAT) and
M, = (1/4 — €)T>AAT. Then, a larger upper bound for the stepsize:

1
@ = < dmin(20— 3/4+ )AAT)/L
T

< Amin@L = B/HAAT)/L = (B/Hrmin (A + W) + 1/2) /L,

is derived.

The new relaxed condition for W is M| = t2(2I — (3/4 4+ €)AAT) = 12((5/4 —
€)I 4+ (3/4 + €)W) being positive definite. That is 5T+ 3W is positive definite. Also,
the special example in Section 2.5 shows that the condition for the stepsize of PG-
EXTRA can not be weakened. Its linear convergence without {r;} is discussed in [21]
under the relaxed condition for W and stepsize.

4 Conclusion

In this paper, we consider the primal-dual algorithm in [7, 12, 23] to solve the prob-
lem f(x) + A0 (x) and show its convergence under a weaker condition. We provide
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an example to show that this condition can not be weakened for a general problem.
This result recovers and is more general than the positive-indefinite linear ALM pro-
posed in [15]. Then, we apply this result to decentralized consensus optimization and
obtain the tight upper bound for the stepsize in PG-EXTRA.
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