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Abstract
We consider a primal-dual algorithm for minimizing f (x) + h l(Ax) with Fréchet
differentiable f and l∗. This primal-dual algorithm has two names in literature:
Primal-Dual Fixed-Point algorithm based on the Proximity Operator (PDFP2O) and
Proximal Alternating Predictor-Corrector (PAPC). In this paper, we prove its conver-
gence under a weaker condition on the stepsizes than existing ones. With additional
assumptions, we show its linear convergence. In addition, we show that this condition
(the upper bound of the stepsize) is tight and can not be weakened. This result also
recovers a recently proposed positive-indefinite linearized augmented Lagrangian
method. In addition, we apply this result to a decentralized consensus algorithm
PG-EXTRA and derive the weakest convergence condition.

Keywords Linearized augmented lagrangian · Primal-dual ·
Decentralized consensus
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1 Introduction

Minimizing the sum of two functions has applications in various areas including
image processing, machine learning, and decentralized consensus optimization [4, 5,
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17, 26]. In this paper, we aim to minimize the sum of two functions in the following
form:

minimize
x∈X

f (x) + h l(Ax), (1)

where X and S are two real Hilbert spaces; f (x) : X → (−∞, +∞], h(s) :
S → (−∞, +∞], and l(s) : S → (−∞, +∞] are proper lower semi-continuous
(lsc) convex functions; h l is the infimal convolution of h and l that is defined as
h l(s) = inft∈S h(t) + l(s − t); the linear operator A : X → S is bounded. In
addition, we assume that f (x) is Fréchet differentiable with a Lipschitz continuous
gradient, l is strongly convex in dom(l)1, and the proximal operator of h, which is
defined as:

proxλh(t) = (I + λ∂h)−1(t) := argmin
s∈S

h(s) + 1

2λ
s − t 2,

has a closed-form solution or can be easily computed. Here, ∂h is the subdifferential
of the convex function h.

Many existing papers considered a special case of (1) with l(s) being the indicator
function ι{0}(s) that returns 0 if s = 0 and +∞ otherwise. In this special case, the
infimal convolution h l degenerates to h, and the problem (1) becomes:

minimize
x∈X

f (x) + h(Ax). (2)

The corresponding saddle-point problem is:

min
x∈X

max
s∈S

f (x) Ax, s h∗(s). (3)

If a saddle point (x , s ) exists for (3), then x is an optimal solution for (2).
In order to solve (2) (or (3)), a primal-dual algorithm was proposed in different

fields under different names [7, 12, 23]. Loris and Verhoeven [23] focused on a par-
ticular smooth function f (x) = 1

2 Kx − y 2, where K is a linear operator and y is
given. Chen, Huang, and Zhang [7] considered the general problem (2) and proposed
a Primal-Dual Fixed-Point algorithm based on the Proximity Operator (PDFP2O).
Then, the same algorithm was rediscovered under the name Proximal Alternating
Predictor-Corrector (PAPC) in [12] to solve (2) and its extension to a finite sum of
composite functions when h is separable. One iteration of the algorithm is:

sk+1 = I + σ∂h∗ −1
(I − τσAA )sk + σA xk − τ∇f (xk) , (4a)

xk+1 = xk − τ∇f (xk) − τA sk+1. (4b)

Here, τ and σ are the primal and dual stepsizes, respectively, and the convergence
of this algorithm is shown when τσ AA 1 and 2τ/L < 1 [7]. Here, L is the
Lipschitz constant of ∇f (x) and AA is the operator norm of AA . When A is a
matrix, AA is the largest eigenvalue of AA .

1It means that l∗(s) (the Legendre-Fenchel conjugate of l(s)) is Fréchet differentiable with a Lipschitz
continuous gradient.
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There are many other algorithms for solving (2) and its extensions. For example,
Condat-Vu [6, 10, 27] solves a more general problem than (2) with an additional non-
differential function. However, the corresponding parameters τ and σ have to satisfy
τσ AA 2τ/L ≤ 1 [18]. When f (x) = 0, Condat-Vu reduces to Chambolle-
Pock [4]. There are several other primal-dual algorithms for minimizing the sum of
three functions, one of which is differentiable [2, 3, 8, 9, 11, 20, 31]. Interested read-
ers are referred to [19, 31] for the comparison of different primal-dual algorithms
for minimizing the sum of three functions. All the algorithms mentioned above solve
bilinear saddle-point problems in the form of (3) or its variants. Recently, many
algorithms have been developed to solve more general saddle-point problems with
non-bilinear terms [13, 14, 16, 29, 30]. A review for primal-dual algorithms is beyond
the scope of this paper, and we focus on the specific primal-dual algorithm PAPC
here.

When there is only one function f (x), i.e., h(s) = 0, we let A = 0, and the
primal-dual algorithm reduces to the gradient descent with stepsize τ . Therefore, the
condition τ < 2/L can not be relaxed. The remaining question is can the condition
τσ ≤ 1/ AA be relaxed? In [7, Section 5.1], the authors numerically showed that
a larger stepsize (e.g., τσ = 4/(3 AA )) gives a better performance than stepsizes
satisfying the condition τσ ≤ 1/ AA . The convergence for τσ < 4/(3 AA )

was an open problem, and this work resolves it.
For linearized Augmented Lagrangian Method (ALM) [32]—a special case of

the primal-dual algorithm (4)—the condition τσ ≤ 1/ AA is relaxed in [15].
Consider the constrained optimization problem:

minimize
s

h∗(s),

subject to −A s = b.

Its dual problem is

minimize
x

b x + h(Ax),

which is the problem (2) with f (x) = b x. The linearized ALM is

sk+1 = argmin
s

h∗(s) + β

2
s − sk − 1

β
A(xk − τ(A sk + b))

2

, (6a)

xk+1 = xk − τ(A sk+1 + b). (6b)

It is exactly the primal-dual algorithm (4) with β = 1/σ . Note that the step in (6a)
can be rewritten as:

argmin
s

h∗(s) xk,A s + b
τ

2
A s + b 2

2 + 1

2σ
s − sk 2

I−τσAA .

In [32], positive-definiteness of I−τσAA is required for showing the convergence.
Then, the authors in [15] relaxed the condition and showed that (4/3)I − τσAA
being positive definite is the necessary and sufficient condition for the convergence
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of linearized ALM. That is, this relaxed condition is sufficient for the convergence of
linearized ALM, and if the condition is not satisfied, there exist a function h∗(s), a
linear operatorA, and an initialization such that the algorithm does not converge. This
result motivates us to show the convergence of (4) under a weaker condition. In this
paper, we provide the necessary and sufficient condition on τσ for the convergence
of algorithm (4). This extension from [15] is nontrivial because the function f (x)
from linearized ALM is linear, i.e., f (x) = b x, and the Lipschitz constant of ∇f

is 0.
Furthermore, we consider the more general problem (1) with infimal convolu-

tion, which was not considered in [7, 12], because it provides a tight upper bound
for the stepsize of Proximal Gradient EXact firsT-ordeR Algorithm (PG-EXTRA) in
decentralized consensus optimization. More details are in Section 3.

In this paper, we relax the parameters for the primal-dual algorithm (4) and provide
a tight bound for the primal and dual stepsizes. This result recovers one special case of
the positive-indefinite ALM in [15]. Instead of using positive semidefinite operators
for primal-dual variables in standard analysis, we allow the operator to be indefinite;
see the operator in (8). Note that the analysis in this paper with indefinite operators
is nontrivial because the standard techniques can not be applied. In addition, the
linear convergence result is better than existing ones. Finally, we apply this result to
a decentralized consensus algorithm and obtain its weakest convergence condition.

The rest of this paper is organized as follows. In Section 2, we present the algo-
rithm to solve (1). We show its convergence for the general case in Section 2.3 and
linear convergence rates under additional assumptions in Section 2.4. In Section 2.5,
we provide one example to show that the upper bound for its stepsize is tight. The
application to a decentralized consensus algorithm is provided in Section 3. Then, we
end this paper with a short conclusion.

2 New convergence results with weaker conditions

2.1 A primal-dual algorithm

In this paper, we extend an existing primal-dual algorithm (4) to solve (1) with an
infimal convolution and show its convergence results with weaker conditions. Firstly,
we explain this algorithm via operator splitting, which is different from those in the
literature. Instead of considering problem (1), we consider the corresponding saddle-
point problem:

min
x

max
s

f (x) Ax, s h∗(s) − l∗(s), (7)

whose optimality condition for a saddle point (x , s ) is

0
0

∈ 0 A
−A ∂h∗

x
s

+ ∇f (x )

∇l∗(s )
.
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We apply the following forward-backward operator splitting with self-adjoint posi-
tive definite operators P and D − τσAP−1A defined on X and S, respectively:

P 0
0 D − τσAP−1A

xk

sk
− τ∇f (xk)

σ∇l∗(sk)

∈ P 0
0 D − τσAP−1A

xk+1

sk+1 + 0 τA
−σA σ∂h∗

xk+1

sk+1 . (8)

Here, τ and σ are two positive parameters. When P and D are the identity operators
in X and Y , respectively, τ and σ are the primal and dual stepsizes, respectively.
Different operators P and D may be chosen in different scenarios. For example, we
can choose P (or D) to be a diagonal matrix such that the stepsize is different for
different coordinates of x (or s) when X (or S) is finite dimensional. Define M =
τ
σ
(D − τσAP−1A ). Then, we apply the Gaussian elimination and obtain:

P 0
σA σ

τ
M

xk

sk
− τ∇f (xk)

στAP−1∇f (xk) + σ∇l∗(sk) ∈ P τA
0 D + σ∂h∗

xk+1

sk+1 .

Given (xk, sk), one iteration of the primal-dual algorithm is

sk+1 = D + σ∂h∗ −1 σ

τ
Msk + σA xk − τP−1∇f (xk) − σ∇l∗(sk) , (9a)

xk+1 = xk − τP−1∇f (xk) − τP−1A sk+1. (9b)

From this analysis, we can easily see that a point (x , s ) is a saddle point of (7) if
and only if it is a fixed point of (9). Therefore, we only need to show the convergence
to a fixed point of (9). Note that we could store A s in the implementation, and the
iteration is equivalent to

sk+1 = D + σ∂h∗ −1 Dsk + σA xk − τP−1(∇f (xk) + A sk) − σ∇l∗(sk) ,

xk+1 = xk − τP−1∇f (xk) − τP−1A sk+1.

Therefore, only one application of A and one application of A are needed in each
iteration.

Let I be the identity operator defined on a Hilbert space. For simplicity, we do not
specify the space on which it is defined when it is clear from the context. When l is
the indicator of a singleton2, P = I, and D = I, the iteration of (9) reduces to (4), the
existing primal-dual algorithm proposed in [7, 12, 23]. Its convergence is shown if
I−τσAA is positive semidefinite and τ < 2/L with L being the Lipschitz constant
of ∇f .

If the operators P andD−τσAP−1A are positive definite, the convergence of (9)
with an additional condition for τ can be shown easily from nonexpansive operators
with metric [1, 25, 31]. To the best of our knowledge, this paper is the first one
to show the convergence of a primal-dual algorithm when D − τσAP−1A is not
positive definite, and the analysis is different from positive definite cases.

2It means that ∇l∗(s) ≡ 0.
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2.2 Assumptions for new analysis

An extension of this existing primal-dual algorithm (4) to (9) is derived to solve the
problem (1) with an infimal convolution. In addition, we show the convergence of (4)
with a larger τσ . Specifically, we can choose τσ such that (4/3)D − τσAP−1A is
positive semidefinite, i.e., the upper bound for τσ is increased by 1/3. It means that
we can choose a larger stepsize σ when the primal stepsize τ is fixed.

For convenience, we introduce two operators as:

M1 := τ

σ
(D − θτσAP−1A ), M2 := τ 2(1 − θ)AP−1A .

Here, θ ∈ (3/4, 1] is chosen such that M1 is positive definite and M2 is positive
semidefinite. We can find such θ ∈ (3/4, 1] whenever (4/3)D − τσAP−1A is
positive semidefinite. We would like to emphasize here that θ > 3/4 is crucial in the
proof of the convergence because we need 4θ − 3 to be positive. On the other side,
θ ≤ 1 is required for M2 being positive semidefinite. With these two operators, we
haveM = M1 − M2. In addition, we define a positive definite operator as follows:

M := M1 + M2.

Given a self-adjoint operator M, we let s, t M s,Mt and s 2
M

s,Ms .

Note that s 2
M

can be negative ifM is not positive semidefinite. WhenM is positive

definite, we further define the induced norm as s M = s, s M. Let λmin(M) be the
smallest eigenvalue ofM. For (x, s) ∈ X ×S, we define (x, s) 2

P,M
x 2

P s 2
M
.

Assumption 1 Functions f , h, and l are proper lsc convex. In addition, f is Frechet
differentiable and l is strictly convex (i.e., l∗ is Frechet differentiable). Operators P
andM1 are positive definite. The iteration (9) has at least one fixed point. Let (x , s )

be any fixed point of (9). For any x ∈ X and s ∈ S, we have:

x − x , ∇f (x) − ∇f (x ) β f (x) − ∇f (x ) 2
P−1 , (11)

s − s , ∇l∗(s) − ∇l∗(s ) β l∗(s) − ∇l∗(s ) 2
M−1

1
, (12)

for some β > 0.

Lemma 1 When f and l∗ have Lipschitz continuous gradients with parameters Lf

and Ll∗ , respectively, we can choose

β = min λmin(P)L−1
f ,

τ

σ
λmin(D − θτσAP−1A )L−1

l∗

such that Assumption 1 is satisfied. When D and P are identity matrices, we can
simplify it as

β = min L−1
f ,

τ

σ
(1 − θτσλmax(AA ))L−1

l∗ .
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The proof for this lemma is simple and omitted.

Remark 1 We choose norms that are different from standard norms for simplicity.
They come from the operators P and M in (8).

– The condition (11) usually comes from the cocoerciveness of ∇f . It is satisfied

with β = minx x 1 Px
Lf

if f (x) has a Lipschitz continuous gradient with con-
stant Lf [1, Theorem 18.15]. One example of P is the diagonal matrix when
f is separable and the Lipschtiz continuous constants are different for differ-
ent blocks. By choosing a diagonal matrix P, we can have a fast algorithm. For
example, in [22], we let different agents choose different stepsizes to improve
the convergence speed.

– Note that the condition (12) depends on θ , which does not exist in the algorithm.
We choose to have the same β in (11) and (12) for simplicity. From the definition
of M1, we can see that the condition (12) depends on function l∗, P, D, A, β,
θ , τ , and σ . But it is not as complicated as it looks like. Let us assume that
D = I and P = I, f and l∗ have Lipschitz continuous gradients with Lf and Ll∗ ,
respectively. The condition (12) requires:

β ≤ λmin(M1)/Ll∗ = τ(1 − θτσ AA )/(σLl∗).

Therefore, we can also choose a small θ ∈ (3/4, 1] to make it valid if a larger
β works. By making θ small, we can have a large dual stepsize σ for a given
primal stepsize τ . In fact, we do not need to know β explicitly to determine both
stepsizes. When we consider both conditions ((11) and (12)) and the condition
τ < 2β in Theorem 1, we have:

τLf < 2, σLl∗ < 2(1 − θτσλmax(AA )). (13)

For comparison, the condition in [27] is max(τ, σ )max(Lf , Ll∗) < 2(1 −
τσ AA ). Our condition has two benefits. One is that we consider τ and

σ differently and can obtain a large stepsize even when the Lipschitz constants
Lf and Ll∗ have different scales. The other is the introduction of θ ∈ (3/4, 1],
which may increase the upper bounds for the stepsizes. The best result in this
paper comes from choosing a θ that is close to 3/4 even when θ = 1 is enough
for M1 being positive definite. See the example in Section 2.5.

– (Special cases) The positiveness ofM1 gives an upper bound for τσ that depends
on P, D, and A. The convergence of (9) requires an upper bound for τ that is
τ < 2β; see Theorem 1. If ∇l∗ is fixed for all s, e.g., problem (2), then (12) is
satisfied with any β > 0, and the upper bound of τ depends on P and Lf only,
i.e., τ < 2λmin(P)L−1

f . The condition is strictly weaker than that in [27] and [2]
because of the introduction of θ . If ∇f is fixed for all x, e.g., the linear f in
linearized ALM, then (11) is satisfied with any β > 0, and the upper bound for τ

depends on σ , A, D, P, and the Lipschitz constant of ∇l∗ because ofM1 in (12),
i.e., σ < 2λmin(D − (3/4)τσAP−1A )L−1

l∗ .
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Assumption 2 Let (x , s ) be any fixed point of (9). There exist μf ≥ 0, μh ≥ 0,
and μl ≥ 0, such that, for any x ∈ X and s ∈ S,

x − x , ∇f (x) − ∇f (x ) μf x − x 2
P, (14)

s − s ,ph(s) − ph(s ) μh s − s 2
M1

, (15)

s − s , ∇l∗(s) − ∇l∗(s ) μl s − s 2
M1

, (16)

where ph(s) ∈ ∂h∗(s) and ph(s ) ∈ ∂h∗(s ).

The assumption is satisfied if functions f (x), h(s), and l(s) are convex, and in
this case, μf = μh = μl = 0. We choose the norms P and M1 for the two
spaces for simplicity. All the results in this paper also hold for standard norms, but
the formulas are complicated. We will need this assumption with positive values to
show the linear convergence for strongly convex functions. In this case, because P
andM1 are positive definite, μf > 0 (or μh > 0, μl > 0) is implied from the strong
convexity of the function f (x) (or g∗(s), l∗(s)).

2.3 Convergence for general convex functions

First of all, we find a subgradient of h∗ at sk+1:

qh(sk+1) := 1

τ
Msk − 1

τ
Msk+1 + Axk+1 − ∇l∗(sk) ∈ ∂h∗(sk+1). (17)

It can be easily obtained from (9), and its proof is omitted here. Let (x , s ) be any
fixed point of (9), and we have a subgradient of h∗ at s :

qh(s ) := Ax − ∇l∗(s ) ∈ ∂h∗(s ). (18)

Lemma 2 (Fundamental inequality) Let (x , s ) be any fixed point of (9), and
{(xk, sk)} a sequence generated by (9). Then, we have:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

sk − sk+1 2
M1

−2τ sk+1 − s ,qh(sk+1) − qh(s ) + ∇l∗(sk) − ∇l∗(s )

+2τ f (xk) − ∇f (x ), x − xk + (4θ − 3)(xk − xk+1)

−(4θ − 3) xk − xk+1 2
P + 4(1 − θ)τ 2 f (xk) − ∇f (x ) 2

P−1 . (19)

Proof The definitions of qh(sk+1) and qh(s ) in (17) and (18), respectively, and the
update of xk+1 in (9b) show:

2τ sk+1 − s ,qh(sk+1) − qh(s ) + ∇l∗(sk) − ∇l∗(s )

(17)(18)= 2τ sk+1 − s ,
1

τ
Msk − 1

τ
Msk+1 + Axk+1 − Ax

= 2 sk+1 − s , sk − sk+1
M + 2τ sk+1 − s ,Axk+1 − Ax

= 2 sk+1 − s , sk − sk+1
M + 2τ A sk+1 − A s , xk+1 − x
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(9b)= 2 sk+1 − s , sk − sk+1
M + 2 xk − xk+1, xk+1 − x P

−2τ f (xk) − ∇f (x ), xk+1 − x (20)

sk − s 2
M sk+1 − s 2

M sk − sk+1 2
M

xk − x 2
P xk+1 − x 2

P xk − xk+1 2
P

+2τ f (xk) − ∇f (x ), x − xk+1 ,

where we expanded the first two terms in (20) using 2 a, b a+b 2 a 2 b 2

to obtain the last equality. Therefore, we have:

(xk+1, sk+1) − (x , s ) 2
P,M

= 2τ f (xk) − ∇f (x ), x − xk+1

−2τ sk+1 − s ,qh(sk+1) − qh(s ) + ∇l∗(sk) − ∇l∗(s )

(xk, sk) − (x , s ) 2
P,M xk − xk+1 2

P sk − sk+1 2
M. (21)

The fact that M = M1 − M2 gives us an upper bound for the last term of (21).

sk − sk+1 2
M sk − sk+1 2

M1
sk − sk+1 2

M2

sk − sk+1 2
M1

sk − s + s − sk+1 2
M2

sk − sk+1 2
M1

+ 2 sk − s 2
M2

+ 2 sk+1 − s 2
M2

. (22)

Adding 2 sk+1 − s 2
M2

onto both sides of (21), recalling that M = M1 + M2 =
M + 2M2, and combining (22) and (21), we have:

(xk+1, sk+1) − (x , s ) 2
P,M

≤ 2τ f (xk) − ∇f (x ), x − xk+1

−2τ sk+1 − s ,qh(sk+1) − qh(s ) + ∇l∗(sk) − ∇l∗(s )

(xk, sk) − (x , s ) 2
P,M

xk − xk+1 2
P sk − sk+1 2

M1

+4 sk+1 − s 2
M2

. (23)

With the definition of M2, the last term in (23) can be written as:

4 sk+1 − s 2
M2

= 4(1 − θ) τP−1A sk+1 − τP−1A s
2
P

= 4(1 − θ) xk − τP−1∇f (xk) − xk+1 + τP−1∇f (x )
2
P

= 4(1 − θ) xk − xk+1 2
P + 4(1 − θ)τ 2 f (xk) − ∇f (x ) 2

P−1

−8(1 − θ)τ xk − xk+1, ∇f (xk) − ∇f (x ) , (24)

where the second equality comes from (9b). Then, we plug (24) into (23) and obtain:

(xk+1, sk+1) − (x , s ) 2
P,M

≤ 2τ f (xk) − ∇f (x ), x − xk + (4θ − 3)(xk − xk+1)
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−2τ sk+1 − s ,qh(sk+1) − qh(s ) + ∇l∗(sk) − ∇l∗(s )

(xk, sk) − (x , s ) 2
P,M

sk − sk+1 2
M1

−(4θ − 3) xk − xk+1 2
P + 4(1 − θ)τ 2 f (xk) − ∇f (x ) 2

P−1 .

The result is proved.

Lemma 3 Let (12) be satisfied, then

sk − sk+1 2
M1

− 2τ sk+1 − s , ∇l∗(sk) − ∇l∗(s )

≤ − (1 − τ/(2β)) sk − sk+1 2
M1

.

Proof Because M1 is positive definite, we have

sk − sk+1 2
M1

− 2τ sk+1 − s , ∇l∗(sk) − ∇l∗(s )

sk − sk+1 2
M1

− 2τ sk+1 − sk, ∇l∗(sk) − ∇l∗(s )

−2τ sk − s , ∇l∗(sk) − ∇l∗(s )

sk − sk+1 2
M1

+ τ

2β
sk − sk+1 2

M1
+ 2τβ l∗(sk) − ∇l∗(s ) 2

M−1
1

−2τβ l∗(sk) − ∇l∗(s ) 2
M−1

1

sk − sk+1 2
M1

+ τ

2β
sk − sk+1 2

M1
,

where the inequality comes from the Cauchy-Schwarz inequality and (12).

Theorem 1 Let Assumption 1 hold, θ ∈ (3/4, 1], and τ ∈ (0, 2β). The sequence
{(xk, sk)} is generated by (9). For any fixed point (x , s ) of (9), we have:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

≤ − 1 − τ
2β sk − sk+1 2

M1
− (4θ−3)(2β−τ)

2β−4(1−θ)τ
xk − xk+1 2

P. (25)

Proof Applying Lemma 3 and h being convex to the inequality (19) in Lemma 2
gives:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

− (1 − τ/(2β)) sk − sk+1 2
M1

+ 2τ f (xk) − ∇f (x ), x − xk

A

+4(1 − θ)τ 2 f (xk) − ∇f (x ) 2
P−1

−(4θ − 3) xk − xk+1 2
P + 2τ(4θ − 3) f (xk) − ∇f (x ), xk − xk+1

B

. (26)

Next, we bound terms A and B. For term A, the assumption (11) implies

2τ f (xk) − ∇f (x ), x − xk 2τβ f (xk) − ∇f (x ) 2
P−1 , (27)
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and the Cauchy-Schwarz inequality applied to term B implies

2τ(4θ − 3) f (xk) − ∇f (x ), xk − xk+1

≤ (2τβ − 4(1 − θ)τ 2) f (xk) − ∇f (x ) 2
P−1

+ τ(4θ − 3)2

2β − 4(1 − θ)τ
xk − xk+1 2

P, (28)

when θ ∈ (3/4, 1] and τ ∈ (0, 2β). The inequality holds because 2β−4(1−θ)τ > 0,
owing to the bounds on τ and θ . Plugging (27) and (28) into (26), we have:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

− (1 − τ/(2β)) sk − sk+1 2
M1

−(4θ − 3) xk − xk+1 2
P + τ(4θ − 3)2

2β − 4(1 − θ)τ
xk − xk+1 2

P

(xk, sk) − (x , s ) 2
P,M

− (1 − τ/(2β)) sk − sk+1 2
M1

− (4θ − 3)(2β − τ)

2β − 4(1 − θ)τ
xk − xk+1 2

P.

The inequality (25) is proved.

Remark 2 When β = +∞, i.e., the Lipschitz constant of ∇f (x) and ∇l∗(s) is 0,
then (25) becomes:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

sk − sk+1 2
M1

− (4θ − 3) xk − xk+1 2
P.

This is the key result in [15, Theorem 3.1] for linearized ALM. In [15], the authors
also considered the case with a general dual stepsize.

Remark 3 (Large stepsizes) We let P = I and D = I for simplicity. Consider the
problem (2) without function l. We have β = 1/L, where L is the Lipschitz constant
of ∇f . Then, we can choose τ < 2/L, and τσ ≤ 4/(3 AA ).

However, for the problem (1) with function l, the choice of the primal stepsize τ

also depends on σ because of the operator M1 in the assumption (12). For this case,
how to choose τ and σ is complicated. From Remark 11, if f and l∗ have Lipschitz
continuous gradients with constants Lf and Ll∗ , respectively, a sufficient condition
for convergence is τLf < 2 and σLl∗ < 2(1 − (3/4)τσ AA ). Except the same
conditions τ < 2/L and τσ ≤ 4/(3 AA ), there is an additional condition σ <

2(1 − (3/4)τσ AA )/Ll∗ .

Theorem 2 Under the assumptions in Theorem 1, the sequence {(xk, sk)} converges
weakly to a fixed point of (9). If the iteration (9) is demicompact at 0 [24],3 the
sequence converges strongly.

3 An operator T is demicompact at x ∈ H if for every bounded sequence {xk}k≥0 in H such that T xk −
xk → x, there exists a strongly convergent subsequence.
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Proof Theorem 1 shows that the sequence {(xk, sk)} is bounded, so weakly conver-
gent subsequences of {(xk, sk)} exist. For any weakly convergent subsequence such
that (xki , ski x, s), the inequality (25) gives (xki−1−xki , ski−1−ski ) → 0. Then,
based on the iteration (9), we obtain [1, Fact 1.37]:

∇f (xki ) + A ski = 1

τ
P(xki−1 − xki ) + ∇f (xki ) − ∇f (xki−1) → 0,

−Axki + qh(ski ) + ∇l∗(ski ) = 1

τ
M(ski−1 − ski ) − ∇l∗(ski−1) + ∇l∗(ski ) → 0.

Because f , h∗, and l∗ are convex, the operator:

∇f A
−A ∂h∗ + ∇l∗

is maximal monotone. Thus, (x, s) is a fixed point of (9) because of [1, Proposition
20.33(ii)].

The inequality (25) also shows that the sequence {(xk, sk)} is Fejér monotone with
respect to the set of fixed points of (9). Then [1, Theorem 5.5] shows that {(xk, sk)}
converges weakly to a fixed point of (9).

The inequality (25) shows that {(xk, sk)} is a bounded sequence and (xk+1 −
xk, sk+1 − sk) → 0. Then, the demicompactness of the iteration in (9) at 0 shows
that there is a strongly convergent subsequence (xkn, skn) → (x̄ , s̄ ), and (x̄ , s̄ ) is
a fixed point of (9) because this subsequence is also weakly convergent. Then, the
inequality (25) shows that the whole sequence {(xk, sk)} converges to the fixed point
(x̄ , s̄ ).

Remark 4 When X and S are finite dimensional, the sequence {(xk, sk)} converges
strongly to a fixed point of (9).

In Theorem 2, we showed the convergence of this primal-dual algorithm without
providing the convergence rate. The ergodic sublinear convergence rate is showed for
primal-dual algorithms for more general problems [6, 31].

2.4 Linear convergence

In this subsection, we prove the linear convergence of the sequence {(xk, sk)} in
Theorem 3 under the additional Assumption 2.

Before showing the linear convergence, we prove the following lemma, which
provides a different upper bound for the same object in Lemma 3.

Lemma 4 Let (12) and (16) be satisfied, then

sk − sk+1 2
M1

− 2τ sk+1 − s , ∇l∗(sk) − ∇l∗(s )

M2(sk+1 − sk) + τAxk+1 − τAx − τqh(sk+1) + τqh(s ) 2
M−1

1
(29)

− 2τ − τ 2/β μl sk − s∗ 2
M1

.
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Proof Because M1 is positive definite, we have:

sk − sk+1 2
M1

− 2τ sk+1 − s , ∇l∗(sk) − ∇l∗(s )

sk − sk+1 2
M1

− 2τ M1/2
1 (sk+1 − sk),M−1/2

1 (∇l∗(sk) − ∇l∗(s ))

−2τ sk − s , ∇l∗(sk) − ∇l∗(s )

M1/2
1 (sk+1 − sk) + M−1/2

1 τ(∇l∗(sk) − ∇l∗(s )) 2

+τ 2 l∗(sk) − ∇l∗(s ) 2
M−1

1
− 2τ sk − s , ∇l∗(sk) − ∇l∗(s ) . (30)

The first term on the right-hand side of (30) becomes:

M1/2
1 (sk+1 − sk) + M−1/2

1 τ(∇l∗(sk) − ∇l∗(s )) 2

M1(sk+1 − sk) + τ(∇l∗(sk) − ∇l∗(s )) 2
M−1

1

M2(sk+1 − sk) + M(sk+1 − sk) + τ(∇l∗(sk) − ∇l∗(s )) 2
M−1

1

(17),(18)
M2(sk+1 − sk) + τAxk+1 − τAx − τqh(sk+1) + τqh(s ) 2

M−1
1

,

where the second equality comes fromM = M1 − M2.
For the other two terms on the right-hand side of (30), we have:

τ 2 l∗(sk) − ∇l∗(s ) 2
M−1

1
− 2τ sk − s , ∇l∗(sk) − ∇l∗(s )

(12),(16)≤ −(2τ − τ 2/β)μl sk − s 2
M1

.

Combining both inequalities together with (30) gives (29).

Theorem 3 Let (x , s ) be a fixed point of (9) and Assumptions 1 and 2 hold. Define
M := (1 + 2τμh)M1 + M2, and we have

(xk+1, sk+1) − (x , s ) 2
P,M

≤ ρ1 (xk, sk) − (x , s ) 2
P,M

, (31)

where

ρ1 = max
1 − (2τ − τ 2/β)μl + C1

1 + 2τμh + C1
, 1 − (2τ − τ 2/β)μf .

Here, C1 M−1/2
1 M2M

−1/2
1 0. The sequence {(xk, sk)} converges linearly to

the fixed point (x , s ) with rate ρ1 < 1 if τ ∈ (0, 2β), μh + μl > 0, and μf > 0.
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Proof Applying Lemma 4 to (19) in Lemma 2 gives:

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

− 2τ − τ 2/β μl sk − s∗ 2
M1

−2τ sk+1 − s ,qh(sk+1) − qh(s )

+2τ f (xk) − ∇f (x ), x − xk + (4θ − 3)(xk − xk+1)

−(4θ − 3) xk − xk+1 2
P + 4(1 − θ)τ 2 f (xk) − ∇f (x ) 2

P−1

(xk, sk) − (x , s ) 2
P,M

− 2τ − τ 2/β μl sk − s∗ 2
M1

−2τ sk+1 − s ,qh(sk+1) − qh(s )

−2τ f (xk) − ∇f (x ), xk − x∗ τ 2 f (xk) − ∇f (x ) 2
P−1

−(4θ − 3) xk − xk+1 − τP−1(∇f (xk) − ∇f (x )) 2
P.

Note that

−2τ f (xk) − ∇f (x ), xk − x∗ τ 2 f (xk) − ∇f (x ) 2
P−1

(11)≤ −(2τ − τ 2/β) f (xk) − ∇f (x ), xk − x∗
(14)≤ −(2τ − τ 2/β)μf xk − x∗ 2

P.

Then we have, together with (15):

(xk+1, sk+1) − (x , s ) 2
P,M

(xk, sk) − (x , s ) 2
P,M

− 2τ − τ 2/β μl sk − s∗ 2
M1

−2τμh sk+1 − s 2
M1

− (2τ − τ 2/β)μf xk − x∗ 2
P.

That is

xk+1 − x 2
P sk+1 − s 2

(1+2τμh)M1+M2

≤ (1 − (2τ − τ 2/β)μf ) xk − x 2
P sk − s 2

(1−(2τ−τ 2/β)μl)M1+M2
. (32)

For the last term on the right hand of (32), we have:

sk − s 2
(1−(2τ−τ 2/β)μl)M1+M2

M1/2
1 (sk − s ) 2

(1−(2τ−τ 2/β)μl)I+M−1/2
1 M2M

−1/2
1

≤ 1 − (2τ − τ 2/β)μl + C1

1 + 2τμh + C1
M1/2

1 (sk − s ) 2
(1+2τμh)I+M−1/2

1 M2M
−1/2
1

= 1 − (2τ − τ 2/β)μl + C1

1 + 2τμh + C1
sk − s 2

(1+2τμh)M1+M2
.

Therefore, the inequality (31) is proved.
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Note that paper [7] proves the linear convergence rate for the case with l∗(s) ≡ 0
and M2 = 0 as

max 1 − minx x 1 A Ax
A A

, 1 − (2τ − τ 2/β)μf

under the additional assumption that A A is surjective. However, μh > 0 is not
required.

Next, we compare this result with the linear convergence rate of Condat-Vu in [2]
by letting h∗(s) ≡ 0 and M2 = 0, P = I, D = I. For simplicity, we assume that f

and l∗ are both μ-strongly convex and have L-Lipschitz continuous gradients. The
linear convergence rate of Condat-Vu is

4

4 + min μ2

L2 ,
μ2

AA

,

with the primal and dual stepsizes in the order of μ/L2. However, if we let τ = σ

in (9), then we have μl ≥ μ = μf and β = (1 − τ 2 AA )/L in Assumptions 1
and 2. In addition, we let τ = β, then the linear convergence rate in Theorem 3
becomes:

1 − τμ = 1 − 2μ

L2 + 4 AA L
.

We can see that the linear convergence rate of (9) is much better than that of Condata-
Vu in [2].

2.5 Tight upper bound for the stepsizes

A very simple example was provided in [15] to show the upper bound’s tightness for
a case without infimal convolution. In this subsection, we provide another example to
show the tightness for a case with infimal convolution. This result will be applied to
decentralized consensus optimization in the next section. Given a self-adjoint positive
definite operator D, we consider the following optimization problem:

minimize
x

a x + x A D−1Ax
2

.

It is a special case of (1) with f (x) = a x, h∗(y) = 0, and l∗(y) = y Dy/2. The
primal-dual iteration (9) after a change of order is:

xk+1 = xk − τP−1a − τP−1A sk,

sk+1 = (I − τσD−1AP−1A − σ I)sk + σD−1Axk+1 − τσD−1AP−1a.

Denote D = D−1/2AP−1A D−1/2. Then, the iteration is equivalent to

D−1/2Axk+1

D1/2sk+1 = I −τD
σ I (1 − σ)I − 2τσD

D−1/2Axk

D1/2sk

− τD−1/2AP−1a
2τσD−1/2AP−1a

.
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The convergence of this iteration for any given initial (s0, x0) requires the magnitudes
of the eigenvalues of the operator:

I −τD
σ I (1 − σ)I − 2τσD

being less than 1. Since D is self-adjoint, we need the magnitudes of the eigenvalues:
of

M := 1 −τλ

σ 1 − σ − 2τσλ

being less than 1 for all λ being the eigenvalues of D. We calculate the determinant
of M − dI for any d below:

det(M − dI) = d2 − (2 − σ − 2τσλ)d + (1 − σ − τσλ).

Particularly, the convergence requires det(M + I) > 0, that is

1 + (2 − σ − 2τσλ) + (1 − σ − τσλ) = 4 − 3τσλ − 2σ > 0.

It is equivalent to

σ < 2 1 − 3

4
τσ D .

On the other hand, we proved the convergence of the primal-dual algorithm under the
condition:

τ < 2β = 2λmin(D−1/2M1D−1/2) = 2τ

σ
(1 − θτσ D )

for some θ ∈ (3/4, 1]. It shows that the upper bounds for the stepsizes in this paper
are optimal.

3 Application in decentralized consensus optimization

In this section, we first show that algorithm (9) recovers PG-EXTRA [26] for decen-
tralized consensus optimization. Then, we provide its convergence result under a
weaker condition than that in [26] and a tight upper bound for the stepsize. Note
that PG-EXTRA was shown to be equivalent to Condat-Vu for a problem without
infimal convolution [28], but this equivalence can not give the weaker condition for
convergence and the tight upper bound for the stepsize.

We use the same notation as [26]. The decentralized consensus problem is

minimize
x∈Rp

n

i=1

si(x) + ri(x),

where si : Rp → R and ri : Rp → (−∞, +∞] are proper lsc convex functions
held privately by the node i to encode the node’s objective function. The objective
of decentralized consensus is minimizing the sum of all private objective functions
while using information exchange between neighboring nodes in a network. Here, si
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has a Lipschitz continuous gradient with parameter L > 0 and the proximal mapping
of ri is simple. We let xi be one copy of x kept at node i. These {xi}ni=1 are not the
same in general, and we say that it is consensual if they are the same. Stacking all the
copies together, we define:

x :=

⎛

⎜
⎜
⎜
⎝

− x1 −
− x2 −

...
− xn −

⎞

⎟
⎟
⎟
⎠

∈ Rn×p,

and

s(x) =
n

i=1

si(xi), r(x) =
n

i=1

ri(xi).

Then, the decentralized consensus problem becomes:

minimize
x

s(x) + r(x), subject to x1 = x2 = · · · = xn.

The gradient of s at x is written in the following matrix form:

∇s(x) :=

⎛

⎜
⎜⎜
⎝

− (∇s1(x1)) −
− (∇s2(x2)) −

...
− (∇sn(xn)) −

⎞

⎟
⎟⎟
⎠

∈ Rn×p,

and F is the Frobenius norm for a matrix in Rn×p. One iteration of PG-EXTRA
reads as:

zk+1 = zk − xk + I + W
2

(2xk − xk−1) − α∇s(xk) + α∇s(xk−1), (33a)

xk+1 = argmin
x

r(x) + 1

2α
x − zk+1 2

F , (33b)

where α is the stepsize and W is a symmetric matrix that represents information
exchange between neighboring nodes. We have I − W being positive semidefinite,
so we can find A such that I − W = AA . In addition, we assume that Null(A ) =
Null(I − W) = span(1n×1), which means that A x = 0 is equivalent to x1 = x2 =
· · · = xn. Therefore, the decentralized consensus problem becomes

minimize
x

s(x) + r(x) subject to A x = 0.

The equivalence between PG-EXTRA and Condat-Vu can be obtained via consider-
ing the primal problem with an indicator function for the constraint [28]. Here, we
consider its dual problem in the following form:

minimize
y

r∗ s∗(Ay), (34)
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where r∗ and s∗ are convex conjugate functions of r and s, respectively. We apply (9)
to (34) (h ⇒ r∗, l ⇒ s∗, x ⇒ y, s ⇒ t) and arrive at:

zk+1 = (I − τσAA )tk + σAyk − σ∇s(tk), (35a)

tk+1 = argmin
t

{r(t) + 1

2σ
t − zk+1 2

F }, (35b)

yk+1 = yk − τA tk+1. (35c)

Combining (35a) and (35c), we get:

zk+1 = zk − tk + (I − τσAA )(2tk − tk−1) − σ∇s(tk) + σ∇s(tk−1). (36)

We let τσ = 1
2 and σ = α, then (36) is exactly (33a) with t ⇒ x. Because M =

2τ 2(I − (1/2)AA ) = τ 2(I + W) is positive definite, we can let M1 = M. If
{∇si(x)}ni=1 are Lipschitz continuous with constant L > 0, the other condition for
convergence is:

τ < 2β ≤ 2

L
λmin(M1) = 2τ 2

L
λmin(I + W),

where the second inequality comes from:

s(x̃) − ∇s(x̄), x̃ − x̄
1

L
x̃ − x̄ 2 ≥ 1

L
λmin(M1) x̃ − x̄ 2

M−1
1
.

Therefore, we obtain the condition on the stepsize:

α = 1

2τ
< λmin(I + W)/L.

This is exactly the upper bound in [26].
The previous upper bound is obtained with θ = 1. As we mentioned before, we

can choose θ to be close to 3/4 to obtain large stepsizes. By letting θ = 3/4 +
with an arbitrary small 0, we have M1 = 2τ 2(I − (3/4 + 1/2)AA ) and
M2 = (1/4 − 2AA . Then, a larger upper bound for the stepsize:

α = 1

2τ
≤ λmin(2I − (3/4 + AA )/L

< λmin(2I − (3/4)AA )/L = ((3/4)λmin(I + W) + 1/2)/L,

is derived.
The new relaxed condition forW isM1 = τ 2(2I − (3/4 + AA ) = τ 2((5/4 −
I+ (3/4+ W) being positive definite. That is 5I+ 3W is positive definite. Also,

the special example in Section 2.5 shows that the condition for the stepsize of PG-
EXTRA can not be weakened. Its linear convergence without {ri} is discussed in [21]
under the relaxed condition forW and stepsize.

4 Conclusion

In this paper, we consider the primal-dual algorithm in [7, 12, 23] to solve the prob-
lem f (x) + h l(x) and show its convergence under a weaker condition. We provide
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an example to show that this condition can not be weakened for a general problem.
This result recovers and is more general than the positive-indefinite linear ALM pro-
posed in [15]. Then, we apply this result to decentralized consensus optimization and
obtain the tight upper bound for the stepsize in PG-EXTRA.
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