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Abstract

In this paper, we study configurations of three rational points on the Hermitian curve
over Fq2 and classify them according to their Weierstrass semigroups. For q > 3, we show
that the number of distinct semigroups of this form is equal to the number of positive
divisors of q + 1 and give an explicit description of the Weierstrass semigroup for each
triple of points studied. To do so, we make use of two-point discrepancies and derive a
criterion which applies to arbitrary curves over a finite field.
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1. Introduction

The Weierstrass gap sequence of a point on an algebraic curve is a classically studied
object which was generalized to the gap set of a pair of points by Arbarello, Cornalba,
Griffiths, and Harris in 1985 [1] and that of an n-tuple of points for n ≥ 2 in a series of
works, including those by Ballico and Kim [2], Iishi [16], and Carvalho and Torres [9].
The gap sequence G(P1) at a single point P1 has many properties which do not carry
over to the gap set G(P1, . . . , Pn) of n distinct points P1, . . . , Pn. For example, while
the cardinality of G(P1) is equal to the genus of the curve for any point P1, the size of
G(P1, . . . , Pn) may depend on the choice of points P1, . . . , Pn for n ≥ 2; see, for instance,
[8].

The complement of the gap set, the Weierstrass semigroup, of an n-tuple of points
on a curve over finite field can be used to construct and decode algebraic geometry codes
[6, 7, 9, 13, 17, 18, 23, 26], determine dimensions of associated Riemann-Roch spaces,
and bound the number of rational points on a curve [15], among other applications. In
this setting, Hasse-Weil maximal curves are particularly interesting as they yield long
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codes. It is for these reasons that we consider Weierstrass semigroups of rational points
on the Hermitian curve over the field Fq2 .

The Weierstrass semigroup of a pair of rational points on the Hermitian curve was
determined in [21] and found to be independent of the choice of points. This is no
longer the case for Weierstrass semigroups of triples of rational points on this curve,
the subject of this paper. As we will see, triples of rational points on this curve admit
a neat classification by their Weierstrass semigroups. To explain further, we now give
explicit definitions of the objects involved. We also direct the reader to the end of this
introduction, where we have collected an outline of our notational conventions.

Given an absolutely irreducible, smooth, projective algebraic curve X over a finite field
F and a positive integer n < |F|, the Weierstrass semigroup of the n-tuple (P1, . . . , Pn)
of distinct points of X is defined as

H(P1, . . . , Pn) =

{
α ∈ Nn :

n∑
i=1

αiPi = (f)∞ for some f ∈ F(X )

}
,

where N denotes the set of nonnegative integers.
The Riemann-Roch theorem assures that the complement

G(P1, . . . , Pn) = Nn \H(P1, . . . , Pn)

of the Weierstrass semigroup is finite. This complement is called the set of Weirstrass
gaps, or just gaps, of (P1, . . . , Pn). Each gap α = (α1, . . . , αn) corresponds to an effective
divisor Dα = α1P1 + · · ·+ αnPn which has a base point at at least one of the points Pj ,
i.e., which satisfies

L(Dα) = L(Dα − Pj) (1)

for some j. A gap α is called a pure gap if (1) is satisfied for all j ∈ {1, . . . , n}, i.e., the
correpsonding divisor Dα has a base point at each Pj . We denote the set of pure gaps
at (P1, . . . , Pn) by G0(P1, . . . , Pn). Pure gaps provide the machinery to generalize the
notion of consecutive gaps in [13] to a multipoint setting, providing a much better bound
on the error-correcting capabilty of associated algebraic geometry codes [9]. In the same
paper, it is shown that α is a pure gap for (P1, . . . , Pn) if and only if

L(Dα) = L(Dα − P1 − · · · − Pn).

The Weierstrass semigroups have been determined for various collections of points on
particular families of curves of interest in coding theory [4, 5, 10, 11, 27].

For any automorphism σ of X , we note that

H(P1, . . . , Pn) = H(σ(P1), . . . , σ(Pn)). (2)

Thus, if Aut(X ) acts doubly transitively on the set of F-rational points, there are at most
#X (F)−2 distinct Weierstrass semigroups of triples of rational points of X ; indeed, if we
fix two distinct rational points on X , say P and Q, then for any distinct triple (P1, P2, P3)
of rational points, (2) implies that

H(P1, P2, P3) = H(P,Q,R)
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for some point R in X (F) \ {P,Q}. For the Hermitian curve, we will use the geometry
of the curve, along with two-point discrepancies, a concept introduced by Duursma and
Park in 2012 [12], to considerably refine this bound. In particular, as the main result of
the paper we determine the following.

Theorem 1. For q > 3, the number of distinct Weierstrass semigroups of triples of
rational points on the Hermitian curve over Fq2 is equal to the number of positive divisors
of q+ 1. For q = 2, there is a single three-point semigroup, and for q = 3, there are two.

In addition, we determine the cardinality of the associated sets of gaps and pure gaps,
and give an explicit description of the Weierstrass semigroups themselves, by describing a
subset which generates the semigroup with respect to the operation of taking coordinate-
wise maximums. Understanding these semigroups many be useful for studying three-
point algebraic geometry codes on the Hermitian curve, complementing the approach in
[3].

The remainder of the paper is organized as follows. This section concludes with a
summary of notation to be used throughout the paper. Section 2 describes the orbits
of three-point configurations on the Hermitian curve under the action of the automor-
phism group and introduces an invariant which determines the associated Weierstrass
semigroups. Section 3 introduces two-point discrepancies and derives a criterion for
identifying Weierstrass gaps. The results in this section apply to any smooth projective
curve; in particular, Proposition 8 and Corollary 9 may be of independent interest. In
Section 4, we apply this approach to triples of rational points on the Hermitian curve
to see that triangles of the same type have the same Weierstrass semigroup. Counting
arguments are applied in Section 5 to determine the total numbers of gaps of a triples
of rational points, completing the proof of the classification of triples of points according
to their semigroups. The semigroups themselves are described in Section 6.

Notation. We denote the nonnegative integers by N and the finite field of q elements
by Fq. The multiplicative group of nonzero elements of a field F will be written as F×.
We write ord(ζ) to denote the multiplicative order of ζ ∈ F×q .

Given a curve X over a field F, we denote the set of F-rational points by X (F) and the
function field of X by F(X ). For f ∈ F(X)×, we write div(f) and (f)∞ for the divisor
and pole divisor of f , respectively. For f ∈ F(X ) and P ∈ X , the valuation of f at P is
denoted by vP (f).

For a divisor A on X , we write L(A) = {f ∈ F(X )× : div(f) ≥ −A} ∪ {0} for the
Riemann-Roch space of the divisor A. Given two divisors A and B on X , we write
A ∼ B to mean that they are linearly equivalent, that is, that there is f ∈ F(X ) with
div(f) = A−B.

2. Hermitian triangles

For a prime power q, the Hermitian curve is the unique curve H = Hq over Fq2 , up
to birational isomorphism, which has genus g = q(q − 1)/2 and q3 + 1 rational points
[24]. These q3 + 1 points admit a doubly transitive action of the automorphism group
of H, which is isomorphic to PGU(3, q2) [25]. The curve H is isomorphic to the Fermat
curve of degree q + 1. However, in this work, we will use the smooth plane model for H
defined by the vanishing of

F (X,Y, Z) = Xq+1 − Y qZ − Y Zq. (3)
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This model has the benefit of admitting a natural choice of two rational points P∞ = (0 :
1 : 0) and P00 = (0 : 0 : 1), which will prove useful for dealing with the automorphism
group explicitly. We denote the q3 affine points of H(Fq2) \ {P∞} by Pαβ = (α : β : 1).

The rational functions x = X/Z and y = Y/Z satisfy xq+1 = yq +y and have divisors

div(x) = −qP∞ +
∑

βq+β=0

P0β and div(y) = m(P00 − P∞),

where m = q + 1. Since the automorphism group acts doubly transitive on H(Fq2),
composing the function y with an appropriate automorphism yields a function yAB with
divisor

div(yAB) = m(B −A)

for any A,B ∈ H(Fq2). Thus, the mth multiples of any two Fq2 -rational points of H are
linearly equivalent. If A = P∞ and B = Pαα, we denote the function yAB by yα, and
note that

yα = y − α− αq(x− α) = y − αq(x− 1). (4)

We are interested in studying Weierstrass semigroups H(P,Q,R) associated to triples
(P,Q,R) of distinct Fq2 -rational points of the Hermitian curve. Note that the Fq2 -rational
points of H are precisely its Weierstrass points [14]. We will see in Corollary 13 that
(perhaps unexpectedly) the semigroup H(P,Q,R) of any three rational points of H is
invariant under any permutation of the three points, so that H(P,Q,R) depends only on
the three-element set T = {P,Q,R}, which we call a Hermitian triangle. In this paper,
the term Hermitian triangle will only be used to refer sets of points defined over Fq2 . In
the degenerate case that P , Q, and R lie on a line in P2, we call T a collinear triangle.

For any Hermitian triangle T = {P,Q,R} and automorphism σ of H, Corollary 13
and (2) together imply that T and σ(T ) define the same semigroup. It is therefore natural
to consider triangles up to the action of Aut(H). We say that two triangles T and T ′ are
in the same automorphism class if there is σ ∈ Aut(H) such that σ(T ) = T ′.

The automorphism group of the Hermitian curve is well understood; see, for instance,
[25]. For our purposes, we make use of the following explicit representation of Aut(H)
which was shared with the first author by John Little, along with the results in Lemmas
3 and 4 [19].

Lemma 2. Let (α : β : γ) and (λ : µ : ν) be any two distinct points of H(Fq2), and
let ε ∈ F×q2 . Then there is an automorphism of H induced by the linear mapping on P2

defined by left multiplication by the matrix

M =

ε(γµ− βν)q εq+1ξλ α
ε(αµ− βλ)q εq+1ξµ β
ε(γλ− αν)q εq+1ξν γ

 ,
where ξ = −λqα+ µqγ + νqβ. Moreover, every element of Aut(H) can be written in this
form for some choice of two points and ε.

Proof. Let (x : y : z) be a point of P2 with image (x′ : y′ : z′) under M . Then one may
check directly that

F (x′, y′, z′) = εq+1F (A,B,C)F (x, y, z),
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where A = γµ − βν, B = αµ − βλ and C = γλ − αν, and F is the defining polynomial
of H given in (3). Thus, M leaves H invariant.

We now show that the matrix M is invertible, and hence defines an automorphism of
H. Since

detM = εq+2ξF (A,B,C) = εq+2ξq+2

and ε 6= 0, we want to show that ξ 6= 0. To do so, consider the sesquilinear form
Ψ: F3

q2 × F3
q2 → Fq2 defined by

Ψ(v, w) = vq1w1 − vq2w3 − vq3w2,

and note that F (v) = Ψ(v, v). If v, w ∈ F3
q2 satisfy Ψ(v, v) = 0, Ψ(w,w) = 0, and

Ψ(v, w) = 0, then for any a, b ∈ Fq2 , we have

F (av + bw) = Ψ(av, av) + Ψ(av, bw) + Ψ(bw, av) + Ψ(bw, bw)

= aq+1Ψ(v, v) + aqbΨ(v, w) + abqΨ(v, w)q + bq+1Ψ(w,w) = 0.

In particular, this means that if the two linearly independent vectors v = (λ, µ, ν)
and w = (α, β, γ) satisfy

ξ = −Ψ(v, w) = 0,

then H contains all q2 + 1 of the Fq2 -rational point on the line through (α : β : γ) and
(λ : µ : ν) in P2. However, this is not the case, as Bezout’s Theorem assures that any
line intersects H in at most q + 1 points.

To prove the final claim, we note that there are (q3 + 1)q3(q2− 1) choices for the two
points (α : β : γ) and (λ : µ : ν) and the unit ε, each yielding a distinct automorphism of
H. Since this is equal to the order of Aut(H), we have accounted for all elements of the
group.

Note that the matrix M maps the points P00 and P∞ to (α : β : γ) and (λ : µ : ν),
respectively, witnessing the double-transitivity of Aut(H) on H(Fq2). Moreover, the
stabilizer of the two points P00 and P∞ in Aut(H) consists of automorphisms φε(X : Y :
Z) = (εX : εq+1Y : Z) for ε ∈ F×q2 .

Since all automorphisms of H are induced by linear mappings on P2, the image of a
collinear triangle under an automorphism is again collinear.

By the double transitivity of Aut(H) on H(Fq2), each automorphism class of Her-
mitian triangles contains a triangle of the form T = {P∞, P00, Pαβ}. Such a triangle
satisfies β 6= 0, as P00 is the only point of H on the line y = 0. If α 6= 0, then acting on
T by φε with ε = (βα−1)−q produces a triangle with α = β.

Definition. A Hermitian triangle T is in standard form if T = {P∞, P00, Pαβ}, and
either α = 0 or α = β.

For T in standard form, the cases α = 0 and α = β are mutually exclusive. If α = 0,
then T is collinear, and if α = β, then T is noncollinear.

While the following fact is well-known, we include it and a short proof, since it is
important for this study.

Lemma 3. Given any Hermitian triangle T = {P,Q,R}, there is an automorphism of
H which acts as a 3-cycle on T .
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Proof. We may assume that (P,Q,R) = (P∞, P00, Pαβ) with β 6= 0. Then applying
Lemma 2 with the points P∞ and Pαβ and with ε = β−q yields an automorphism σ of
H satisfying σ(P00) = P∞, σ(P∞) = Pαβ , and σ(Pαβ) = P00.

Lemma 4. There are 1 + dq/2e automorphism classes of Fq2-rational triangles on the
Hermitian curve. These classes are in correspondence with Galois-conjugacy classes of
roots α of the polynomial tq+1−tq−t over Fq. In particular, the class corresponding to the
root α = 0 consists of all collinear Hermitian triangles, and the class corresponding to the
conjugates of a nonzero root α is represented by the noncollinear triangle {P∞, P00, Pαα}.

Proof. Since each automorphism class is represented by a triangle in standard form T =
{P∞, P00, Pαβ}, it suffices to determine when two such triangles are in the same class.

If α = 0, then βq + β = 0 and β 6= 0, so that βq−1 = −1. We claim that all such
triangles are in the same automorphism class. As ε runs over F×q2 , the powers of εq+1

run over F×q , and βεq+1 runs over all (q − 1)st roots of −1. Therefore, each of the q − 1
points of H of the form P0β′ with β′ 6= 0 is realized as φε(P0β) for some ε.

Triangles with α = β 6= 0 are noncollinear; hence, they do not share an automorphism
class with those with α = 0. We claim that triangles T = {P∞, P00, Pαα} and T ′ =
{P∞, P00, Pα′α′} are in the same classs if and only if α′ ∈ {α, αq}.

Suppose that σ ∈ Aut(H) satisfies σ(T ′) = T . By Lemma 3, we may assume that σ
fixes P∞. Then σ sends P00 either to P00 or Pαα. If σ(P00) = P00, then σ = φε for some
ε ∈ F×q2 . But then α = εα′ = εq+1α′, so that εq = 1. Since ε has order coprime to q, this

means that ε = 1, so that α′ = α. On the other hand, if σ(P00) = Pαα, then Lemma 2
implies that σ is of the form

σ(X : Y : Z) = (εX + αZ : εαqX + εq+1Y + αZ : Z)

for some ε ∈ F×q2 . Then from σ(Pα′α′) = P00, we have

εα′ + α = 0 and εαqα′ + εq+1α′ + α = 0.

Solving these equations over Fq2 yields α′ = αq, as desired.

Although Hermitian triangles in the same automorphism class have the same Weier-
strass semigroup, there are generally strictly fewer distinct three-point semigroups than
automorphism classes of Hermitian triangles [20]. We now define an invariant which will
allow us to distinguish triangles with different semigroups.

By Lemma 4, the automorphism class of any Hermitian triangle T is represented by
a triangle in standard form {P∞, P00, Pαβ}, with α a root of the polynomial

tq+1 − tq − t = (t− 1)q+1 − (−1)q+1.

Such α are precisely those of the form α = 1 − ζ with ζq+1 = 1. For any such α, the
multiplicative order of ζ = 1− α is a divisor d of q + 1.

Definition. Let T be a Hermitian triangle. Then T is of type d if there is σ ∈ Aut(H)
such that σ(T ) = {P∞, P00, Pαβ} is in standard form, and ord(1 − α) = d.
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By Lemma 4, two triangles {P∞, P00, Pαβ} and {P∞, P00, Pα′β′} in standard form are
in the same automorphism class only if α and α′ are Galois conjugates, in which case
ord(1− α) = ord(1− α′). Thus, the type of a triangle is well-defined.

Note that triangles of type d = 1 are precisely those triangles which are collinear.
We will use the notation Td throughout to denote triangles of type d. Since there is a
triangle of type d for every divisor d of q+ 1, to prove Theorem 1 for q > 3 it will suffice
to show that the type d of a Hermitian triangle characterizes its Weierstrass semigroup.

3. Discrepancies and basepoints

The main tool we will use to study three-point semigroups is the notion of two-point
discrepancies introduced by Duursma and Park [12, §2–3]. Here we recall the definition
of discrepancies and their relevant properties. All results in this section apply to any
absolutely irreducible, smooth, projective algebraic curve X .

Fix two distinct points P and Q on X , and let K be a canonical divisor of X .

Definition. Let ∆(P,Q) be the set of all divisors D on X such that L(D) 6= L(D − P )
and L(D −Q) = L(D − P −Q). A divisor in ∆(P,Q) is called a discrepancy for P and
Q.

This definition is symmetric in P and Q, as can be seen by examining the following
diagram.

L(D)

L(D − P ) L(D −Q)

L(D − P −Q)

6=

=

As it is often easier to demonstrate an inequality of two spaces than an equality, the
following criterion for identifying discrepancies will prove useful.

Lemma 5. A divisor D is in ∆(P,Q) if and only if

L(D − P ) 6= L(D) and L(K −D +Q) 6= L(K −D + P +Q).

Proof. It follows directly from the Riemann-Roch theorem that the condition L(D−Q) =
L(D − P −Q) is equivalent to L(K −D +Q) 6= L(K −D + P +Q).

The following dimension formula is the main reason that we care about discrepancies,
as it will allow us to compare the dimensions of various function spaces in order to identify
Weierstrass gaps.

Lemma 6. [12, Theorem 3.4] For a given divisor B,

dimL(B + aP + bQ) = #{B + iP + jQ ∈ ∆(P,Q) : i ≤ a, j ≤ b}. (5)

Let ∆B(P,Q) = ∆(P,Q) ∩ {B + iP + jQ : i, j ∈ Z} denote the set of discrepancies
counted in (5).
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Lemma 7. [12, Theorem 3.5] For a given divisor B, there is a bijective function σB : Z→
Z such that

∆B(P,Q) = {B + iP + σB(i)Q : i ∈ Z}.

For m such that mP ∼ mQ, the function i+σB(i) depends only on i modulo m. Moreover,
σB is determined by its image on a full set of representatives modulo m, and for m
minimal such that mP ∼ mQ, the set ∆B(P,Q) consists of m distinct divisor classes.

We emphasize that the function σB depends not only on B, but on the points P and
Q which respect to which discrepancies are being considered. In situations where the
two points are not clear from context, we write σB = σB,P,Q.

Let us take a moment to reformulate the dimension formula from Lemma 6 in terms
of the function σB . For 0 ≤ i ≤ m−1, the divisors in the divisor class of B+ iP +σB(i)Q
which contribute to the count in (5) correspond to integer solutions k of the system of
linear inequalities

i− km ≤ a
σB(i) + km ≤ b.

Counting these solutions and summing over each divisor class yields the closed-form
formula

dimL(B + aP + bQ) =
∑

i mod m
i+σB(i)≤a+b

(⌊
a− i
m

⌋
+

⌊
b− σB(i)

m

⌋
+ 1

)
. (6)

Proposition 8. A divisor B + aP + bQ has a basepoint at P if and only if σB(a) > b.

Proof. The divisor D = B + aP + bQ has a basepoint at P if and only if dim(D) =
dim(D − P ). By (6), this may be written as

∑
i mod m

i+σB(i)≤a+b

(⌊
a− i
m

⌋
+

⌊
b− σB(i)

m

⌋
+ 1

)

=
∑

i mod m
i+σB(i)≤(a−1)+b

(⌊
(a− 1)− i

m

⌋
+

⌊
b− σB(i)

m

⌋
+ 1

)
. (7)

Note that the slightly stronger condition on i on the right hand side excludes those
indices i with i + σB(i) = a + b. Suppose that i satisfies i + σB(i) = a + b. Then the
corresponding term on the left hand side of (7) is⌊

a− i
m

⌋
+

⌊
i− a
m

⌋
+ 1 =

{
1, i ≡ a mod m

0, i 6≡ a mod m.

If i ≡ a mod m, then (7) cannot hold, because each of the remaining terms on the left
hand side of (7) is at least as large as the correpsponding term on the right hand side.
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On the other hand, if i 6≡ a mod m, the extra term on the left hand side does not effect
the sum. Upon excluding these terms, (7) becomes∑

i mod m
i+σB(i)<a+b

⌊
a− i
m

⌋
=

∑
i mod m

i+σB(i)<a+b

⌊
(a− 1)− i

m

⌋
.

There is only a single index i mod m for which the terms on each side differ, namely
i ≡ a mod m. Thus, equality holds exactly when this term does not appear, which is
when a+ σB(a) > a+ b, or σB(a) > b.

Noting that (a, b, c) ∈ N3 is in the Weierstrass gap set G(P,Q,R) if and only if the
divisor aP + bQ+ cR has a basepoint at one of P,Q,R yields the following.

Corollary 9. The following are equivalent:

1. The triple (a, b, c) ∈ N3 is in the Weierstrass gap set G(P,Q,R).

2. The divisor aP + bQ+ cR has a basepoint at one of P , Q, or R.

3. Given points P , Q, and R, and (a, b, c) ∈ N3, σcR,P,Q(a) > b, σaP,Q,R(b) > c, or
σbQ,R,P (c) > a.

4. Discrepancies for Hermitian triangles

In this section, we study discrepancies on the Hermitian curve which are supported
on a Hermitian triangle.

Definition. Let T = {P,Q,R} be a Hermitian triangle. For any integers i and j, let
σij = σij(P,Q,R) be the unique integer satisfying

iP + jQ+ σijR ∈ ∆(Q,R).

Note that this definition depends, a priori, on the particular ordering of the points P ,
Q, and R. We will see in Theorem 10, however, that it is independent of this ordering,
and that the function (i, j) 7→ σij(T ) depends only on the type d of the triangle T .

The σij are related to the function σB from Lemma 7 as follows. Since we are dealing
with discrepancies for the points Q and R, these two points take the roles of P and Q
in the discussion in Section 3. Moreover, with B = iP , we have σB(j) = σij as defined
above.

By Lemma 7, the σij are determined by their values on any complete set of represen-
tatives (i, j) modulo m. In particular, for any integers s and t, we have

σi+sm,j+tm = σij − sm− tm. (8)

The function (i, j) 7→ σij admits a particularly simple description on the domain

Λ = {(i, j) : 1 ≤ j, i− j + 1 ≤ q + 1},

which we describe in the following theorem.

9



Theorem 10. Let T be a Hermitian triangle. Then the function (i, j) 7→ σij(T ) is
well-defined, and depends only on the type of T . In particular,

(a) If T = T1 is collinear, then for all (i, j) ∈ Λ, we have

σij(T1) = 2g − 2− jq. (9)

(b) If T = Td is of type d, then

σij(Td) =


σij(T1) + 1, i 6≡ 0 mod d and j ≡ i mod m,

σij(T1)− 1, i 6≡ 0 mod d and j ≡ i+ 1 mod m,

σij(T1), otherwise.

(10)

Before proving Theorem 10, we provide two lemmas along with the following discus-
sion as preparation. We first resolve the question of well-definedness of σij(T ), under the
assumption that parts (a) and (b) of Theorem 10 hold for a particular ordering (P,Q,R)
of the triangle T . By Lemma 3, it will be enough to show that σij is invariant under a
transposition of two of the points of T , e.g., that

σij(P,Q,R) = σij(P,R,Q).

Since ∆iP (Q,R) is a union of divisor classes, it will suffice to show that

jQ+ σijR ∼ σijQ+ jR, (11)

with σij as given by the theorem.
Suppose first that T is collinear, so that σij = 2g − 2− jq for (i, j) ∈ Λ. Then since

2g− 2 = (q− 2)m, we have 2g− 2− jq ≡ j mod m, and the two divisors in (11) differ by
a multiple of m(Q−R) ∼ 0.

Now suppose that T is of type d. If i ≡ 0 mod d or j is neither i nor i+ 1 modulo m,
then we have the same formula for σij , and the same argument applies. Otherwise, we
have

iQ+ σii(T )R = iQ+ (σii(T1) + 1)R

∼ σii(T1)Q+ (i+ 1)R

= (σi,i+1(T1)− 1)Q+ (i+ 1)R = σi,i+1(T )Q+ (i+ 1)R,

which deals with both the cases j ≡ i mod m and j ≡ i+ 1 mod m.
Thus, to prove the theorem, we may assume without loss of generality that T =

{P,Q,R} is of standard form, i.e., that P = P∞, Q = P00, and R = Pαβ with either
α = 0 or α = β. We now pause to present two lemmas that will be of use in the proof of
Theorem 10.

Lemma 11. Let T = {P,Q,R} be a Hermitian triangle of type d. Then there is wd ∈
Fq2(H) with divisor

div(wd) = −qdP + dQ+ dR+ E,

where E ≥ 0 has support disjoint from T .

10



Proof. If d = q + 1, then let S be any point of H(Fq2) \ T . Then the function wq+1 =

yPQyPRy
q−2
PS has the desired divisor.

Now assume that d < q+ 1. With the conventions on P,Q,R described above, we set

wd = (x− y)d − (x− y − 1)d + (x− 1)d.

If d = 1, then the function wd = x is as desired. Assume that 1 < d < q + 1. The
function wd is a polynomial in x and y of degree d, hence is regular away from P = P∞.
Since d < q + 1, the pole orders iq + j(q + 1) at P of the monomials xiyj appearing in
wd are distinct. Moreover, the yd and xyd−1 terms of wd are zero, so that

vP (wd) = min(vP (xd), vP (yd−1)) = min(−dq,−dq + q + 1− d) = −dq.

To check the valuations of wd at the points Q and R, we note that

wd = (x− y)d +
∏
ζd=1

(
(x− 1)− ζ(x− y − 1)

)
= (x− y)d +

∏
ζd=1

ζ(y − (1− ζ−1)(x− 1))

= (x− y)d +
∏

ord(1−η)|d

(1− ηq)−1yη.

For each η with ord(1− η) dividing d, the product on the right hand side is divisible
by yη, so it vanishes at Pηη to order at least q + 1 > d. Therefore,

vPηη (wd) = vPηη ((x− y)d) = d.

Since Q = P00 and R = Pαα are both of this form, vQ(wd) = vR(wd) = d.

To prove the rest of Theorem 10, it will suffice by Lemma 5 to show for each (i, j) ∈ Λ
that

L(D −R) 6= L(D) and L(K −D +Q) 6= L(K −D +Q+R),

where D = iP + jQ+ σijR and K = (2g − 2)R.
That said, we may actually choose a single one of these conditions to verify for all

(i, j) ∈ Λ. This is because the spaces involved exhibit a duality with respect to the
involution I : Λ→ Λ defined by

I(i, j) = (2m− i,m+ 1− j).

The map I interchanges the two subsets

Λ+
d = {(i, j) ∈ Λ: i 6≡ 0 mod d and j ≡ i mod m},

Λ−d = {(i, j) ∈ Λ: i 6≡ 0 mod d and j ≡ i+ 1 mod m},

on which σij(T ) differs from σij(T1), and leaves the complement Λd = Λ \ (Λ+
d ∪ Λ−d )

invariant.

11



Lemma 12. Let T = {P,Q,R} be a Hermitian triangle. Let (i, j) ∈ Λ, and write
I(i, j) = (i∗, j∗). Let D = iP + jQ+ σijR and D∗ = i∗P + j∗Q+ σi∗j∗R, with σij as in
the statement of Theorem 10. Then there is an isomorphism of vector spaces

L(D)/L(D −R) −→ L(K −D∗ +Q+R)/L(K −D∗ +Q).

Proof. With σij as in Theorem 10, it follows that

σij(T ) + σi∗j∗(T ) = 2g − 1− 3m. (12)

for all triangles T and all (i, j) ∈ Λ.
The desired isomorphism is induced by multiplication by the function yPQ/y

3
PR, which

has divisor 2mP + mQ − 3mR. Indeed, for f ∈ L(D), we find, with the help of (12),
that

div(f · yPQ/y3PR) ≥ −D + 2mP +mQ− 3mR

= (2m− i)P + (m− j)Q− (σij + 3m)R

= i∗P + (j∗ − 1)Q+ (2g − 1− σi∗j∗)R
= −(K −D∗ +Q+R),

so f ·yPQ/y3PR ∈ L(K−D∗+Q+R). The same argument shows that L(D−R) consists
of those functions mapped to L(K −D∗ +Q).

Proof of Theorem 10. By Lemmas 5 and 12, it will suffice to produce, for each (i, j) ∈ Λ,
a function fij in L(K −D +Q+R) \ L(K −D +Q), where D = iP + jQ+ σijR. Now

K −D +Q+R = −iP − (j − 1)Q− (σij − (2g − 1))R,

so we are looking for fij to satisfy

vP (fij) ≥ i, vQ(fij) ≥ j − 1, vR(fij) = σij − (2g − 1),

and to be regular elsewhere. With σij as in the statement of the theorem,

σij − (2g − 1) = −1− jq + εij ,

where εij = 0 if (i, j) ∈ Λd and εij = ±1 if (i, j) ∈ Λ±d . As it will be more convenient to

work in OH,P = Fq[x, y], instead of fij itself we look for gij = fijy
j
PR satisfying

vP (gij) ≥ (i− j)− jq, vQ(gij) ≥ j − 1, vR(gij) = j − 1 + εij . (13)

Let wd be as in Lemma 11. Given gij as desired, the function gijw
k
d satisfies the

conditions in (13) but with (i, j) replaced with (i + kd, j + kd). It follows that we only
need to find gij for (i, j) ∈ Λ with j ≤ d. If T is collinear, i.e., if d = 1, then the function
gi1 = 1 is as desired. This completes the proof of part (a) of the theorem. We now
assume that d > 1, so that R = Pαα.

We divide the remainder of the proof into three cases corresponding to the value of
εij , i.e., whether (i, j) in Λd, Λ+

d , or Λ−d . See Figure 1 for a visual representation of these
subsets of Λ for (q, d) = (5, 3).
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Figure 1: The set Λ = Λd ∪ Λ+
d ∪ Λ−

d for (q, d) = (5, 3), with elements of Λ±
d represented by ±, and

elements of Λd by •. The dotted border surrounds the set of (i, j) ∈ Λ with j ≤ d.

Case 1. Suppose that (i, j) ∈ Λd and j ≤ d. Then either i+1 ≤ j ≤ j+q−1, or (i, j)
is one of the two points (d, d) or (q + 1, 1). For the two isolated cases, one can quickly
check that gij = (x−y)j−1 satisfies (13). Now suppose that j+1 ≤ i ≤ j+q−1. By (13),
it will suffice to produce gij ∈ L((1 + (j − 1)q)P ) satisfying vQ(gij) = vR(gij) = j − 1.
Since yyα = y2 − αqxy + αqy, there is a polynomial h(x) of degree ≤ j − 2 such that

(x− y)j−1 ≡ xj−1 + yh(x) mod yyα.

Let gij be the function on the right hand side of this congruence. Then

v∞(gij) ≥ min(v∞(xj−1), v∞(yh(x))) = −1− (j − 1)q.

Moreover, since yyα vanishes to order q+1 > j−1 at each of Q and R, and (x−y)j−1

vanishes with order j − 1 at these two points, we have vQ(gij) = vR(gij) = j − 1.
Case 2. Suppose that (i, j) ∈ Λ+

d with j ≤ d. Then i = j and 1 ≤ j ≤ d − 1. We
want to find gij satisfying

vP (gij) ≥ −jq, vQ(gij) ≥ j − 1, vR(gij) = j.

Since ord(1 − α) = d > j, the polynomial a(t) = (t − α)j − tj satisfies a(1) 6= 0.
Furthermore, the polynomial b(t) = a(t) − a(1)tj−1 is nonzero and satisfies b(1) = 0, so
that there is c(t) of degree deg b(t)− 1 ≤ j − 2 such that

(t− α)j − tj − a(1)tj−1 = (t− 1)c(t).

We now substitute t = x and recall from (4) that x− 1 = α−q(y − yα) to obtain

(x− α)j = xj + a(1)xj−1 + α−q(y − yα)c(x)

≡ xj + a(1)xj−1 + α−qyc(x) mod yα.

Let gij be the function on the right hand side of this congruence. Then

vP (gij) ≥ min(−jq,−(q + 1)− q deg(c)) = −jq.
13



Moreover, vQ(gij) = vQ(xj−1) = j − 1 since vQ(yc(x)) ≥ vQ(y) = q + 1, and vR(gij) =
vR((x− α)j) = j since j < q + 1 = vR(yα).

Case 3. Suppose that (i, j) ∈ Λ−d with j ≤ d, so that i = j + q and 2 ≤ j ≤ d. We
want to find gij satisfying

vP (gij) ≥ −(j − 1)q, vQ(gij) ≥ j − 1, vR(gij) = j − 2.

The proof for this case is similar to the previous one.
Since ord(1−α) = d > j−1, the polynomial a(t) = tj−1−(t−α)j−1 satisfies a(1) 6= 0.

Moreover, the polynomial

b(t) = a(t)− a(1)

(1− α)j−2
(t− α)j−2

is nonzero and has a root at 1, so there is c(t) of degree deg b(t)− 1 ≤ j − 3 such that

b(t) = tj−1 − (t− α)j−1 − a(1)

(1− α)j−2
(t− α)j−2 = (t− 1)c(t).

By taking t = x and using (4) to replace x− 1 by α−q(y − yα), it follows that

xj−1 ≡ (x− α)j−1 +
a(1)

(1− α)j−2
(x− α)j−2 + α−qyαc(x) mod y.

Let gij be the right hand side of this congruence. Then

vP (gij) ≥ min(−(j − 1)q,−(q + 1) + q deg(c)) = −(j − 1)q.

Moreover, vQ(gij) = j − 1 and vR(gij) = j − 2.

Corollary 13. Let T = {P,Q,R} be a Hermitian triangle. Then the dimension of a
divisor aP + bQ + cR is invariant under any permutation of (a, b, c). In particular, the
semigroup H(P,Q,R) ⊆ N3 is invariant under the action of the symmetric group S3.

Proof. This follows from Lemma 6 and the fact that σij(T ) is independent of the ordering
of P,Q,R.

Since the dimensions of all divisors supported on T are determined by the function
(i, j) 7→ σij(T ), and this function is determined by the type of the triangle T , we have
the following additional corollary of Theorem 10.

Corollary 14. Two Hermitian triangles of the same type have the same Weierstrass
semigroup.

5. Counting Weierstrass gaps

The goal of this section is to determine the cardinality of the Weierstrass gap set
G(P,Q,R) = N3 \H(P,Q,R) for any Hermitian triangle T = {P,Q,R}. For q > 3 we
will see that this distinguishes triangles of different types, thereby yielding a proof for
Theorem 1. As a byproduct of our approach, we also obtain the cardinality of the pure
gap set of any triple of rational points on the Hermitian curve.
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Let T be of type d, and let N(T ) denote the size of the gap set G(P,Q,R). The
set G(P,Q,R) consists of all nonnegative integer triple (a, b, c) such that the divisor
D = aP + bQ + cR has a basepoint at one of the points P,Q,R. To determine when
this occurs, we can use the criterion given in Proposition 8, which states that D has a
basepoint at Q if and only if σab(T ) > c, with σab defined as in Section 4.

Writing a = i+a1m, b = j+b1m, and c = k+c1m with 0 ≤ i, j, k < m, the inequality
σab(T ) > c may be reexpressed using (8) as

a1 + b1 + c1 <
1

m
(σij(T )− k).

The number of nonnegative solutions (a1, b1, c1) of this inequality is
(
s(i,j,k)+3

3

)
, where

sd(i, j, k) =

⌊
σij(T )− k − 1

m

⌋
, (14)

and these solutions correspond to effective divisors D = aP + bQ + cR with (a, b, c) ≡
(i, j, k) mod m, and which have a basepoint at Q.

Since cyclically permuting (a, b, c) in the criterion above replaces the basepoint Q by
P or R, we conclude that the divisor D realizes a Weierstrass gap if and only if

a1 + b1 + c1 <
1

m
max (σij(T )− k, σki(T )− j, σjk(T )− i) . (15)

Therefore, for each (i, j, k) with 0 ≤ i, j, k < m, the nonnegative integer solutions
(a1, b1, c1) of (15) correspond to Weierstrass gaps D = aP + bQ + cR with (a, b, c) ≡
(i, j, k) mod m. Counting these solutions and summing over (i, j, k) yields

N(T ) =
∑

i,j,k mod m

max
τ

(
sτd(i, j, k) + 3

3

)
,

where τ runs over cyclic permutations of the three inputs of sd.

Proposition 15. Let T1 = {P,Q,R} be a collinear triangle. Then the cardinality of its
Weierstrass gap set is

#G(P,Q,R) = N(T1) =
1

24
(2q6 − 6q5 + 9q4 + 12q3 − 35q2 + 18q).

Proof. We compute N(T1) as the sum of contributions corresponding to triples (i, j, k)
with 0 ≤ i, j, k < m, as described above. Because the Weierstrass semigroup is invariant
under the action of S3, we work under the assumption that i ≤ j ≤ k, and weight the
resulting contributions by the number of distinct permutations of each triple (i, j, k).

We begin by simplifying the expression

s1(i, j, k) =

⌊
σij(T1)− k − 1

m

⌋
.

By (8) and (9), the values values of σij(T1) for 0 ≤ i, j ≤ m− 1 are given by

σij(T1) =

{
0, j = 0,

2g − 2− jq +mδj>i, 0 < j ≤ q,
(16)
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where δj>i = 1 if j > i and is δj>i = 0 otherwise. If j = 0, then σij(T1) = 0, so that
s1(i, j, k) = −1. A negative value here means that (i, j, k) makes no contribution to
N(T1). If j > 0, then by (16) and the fact that −m < j − k − 1 ≤ m− 2, we have

s1(i, j, k) = q − 2− j + δj>i +

⌊
j − k − 1

m

⌋
= q − 3− j + δj>i + δj>k.

We break the remainder of the proof into four cases, depending on whether or not the
the inequalities i ≤ j and j ≤ k are strict.

First assume that i = j = k. Then either j = 0 and s1(j, j, j) = −1, or j > 0 and
s1(j, j, j) = q − 3− j. The total contribution of triples of this form is therefore

q∑
j=0

(
s1(j, j, j) + 3

3

)
=

q∑
j=1

(
q − j

3

)
=

(
q

4

)
.

Now assume that i = j < k. Then

s1(j, j, k) = s1(k, j, j) =

{
−1, j = 0,

q − 3− j, j > 0,

while in in either case, s1(j, k, j) = q − 1− k. It follows that

max
τ

sτ1(j, j, k) =

{
q − 1− k, j = 0 or k = j + 1,

q − 3− j, j > 0 and k > j + 1.

These triples have three distinct permutations, so their total weighted contribution is 3
times

q∑
k=1

(
q + 2− k

3

)
+

q∑
k=2

(
q + 2− k

3

)
+

q−2∑
j=1

(q − j − 1)

(
q − j

3

)
=

1

30
(q5 − 5q4 + 20q3 − 25q2 + 9q).

Now assume that i < j = k. Then s1(j, i, j) = −1 if i = 0 and otherwise

s1(j, i, j) = q − 3− i ≥ q − 2− j = s1(i, j, j) = s1(j, j, i).

It follows that

max
τ

sτ1(i, j, j) =

{
max(−1, q − 2− j), i = 0,

q − 3− i, i > 0.

These triples have three distinct permutations, so their total weighted contribution is 3
times

q∑
j=1

(
q + 1− j

3

)
+

q−1∑
i=1

(q − i)
(
q − i

3

)
=

1

30
(q5 − 5q4 + 15q3 − 10q2 − q).
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Finally, assume that i < j < k. If i = 0, then s1(k, i, j) = −1, and

max
τ

sτ1(i, j, k) = max(q − 1− k, q − 2− j,−1) = q − 2− j.

On the other hand, if i > 0, then

max
τ

sτ1(i, j, k) = max(q − 1− k, q − 2− j, q − 3− i) = q − 3− i.

These triples have six distinct permutations, so their total weighted contribution is 6
times

q−1∑
j=1

(q − j)
(
q + 1− j

3

)
+

q−2∑
i=1

(
q − i

2

)(
q − i

3

)
=

1

360
(5q6 − 27q5 + 80q4 − 135q3 + 95q2 − 18q).

Adding up these weighted contributions gives the desired formula for N(T1).

Before we count the Weierstrass gaps for a triangle Td of type d 6= 1, we examine the
situations in which the quantities s1(i, j, k) and sd(i, j, k) may differ for a given triple
(i, j, k).

Lemma 16. Let 0 ≤ i, j, k < m and let d be a divisor of q+1. Then s1(i, j, k) 6= sd(i, j, k)
only in one of the following three cases:

1. (i, j, k) = (q, 0, q), in which case s1(q, 0, q) = −1 and sd(q, 0, q) = −2;

2. (i, j, k) = (i, i+ 1, i) with i 6≡ 0 mod d, in which case sd(i, j, k) = s1(i, j, k)− 1;

3. (i, j, k) = (i, i, i) with i 6≡ 0 mod d, in which case sd(i, j, k) = s1(i, j, k) + 1.

Proof. Recall from Theorem 10 that σij(Td) = σij(T1) + εij , where

εij =


1 i 6≡ 0 mod d and j ≡ i mod m,

−1 i 6≡ 0 mod d and j ≡ i+ 1 mod m,

0 otherwise.

If j = 0, then σij(T1) = 0, and

σij(Td) = εij =

{
−1, i = q and d > 1,

0, otherwise.

It follows that s1(i, 0, k) and sd(i, 0, k) are both negative. In particular, s1(i, 0, k) = −1
and

sd(i, 0, k) =

{
−2, (i, j, k) = (q, 0, q),

−1, otherwise.

Assume now that j 6= 0, so that σij(Td) = 2g − 2− jq +mδj>i + εij . Then

sd(i, j, k) = q − 2− j + δj>i +

⌊
j − k − 1 + εij

m

⌋
.
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Therefore, sd(i, j, k) 6= s1(i, j, k) only if⌊
j − k − 1

m

⌋
6=
⌊
j − k − 1 + εij

m

⌋
.

Because 0 ≤ i, j, k < m and j 6= 0, there are only two scenarios in which this last
condition occurs, namely when j = k + 1 and εij = −1, and when j = k and εij = +1.
In the first case, we have (i, j, k) = (i, i + 1, i) with i 6≡ 0 mod d, and sd(i, j, k) =
s1(i, j, k) − 1. In the second case, we have (i, j, k) = (i, i, i), with i 6≡ 0 mod d, and
sd(i, j, k) = s1(i, j, k) + 1.

Lemma 17. Let d be a divisor of q + 1, and let 0 ≤ i, j, k < m. Then there is a
cyclic permutation of (i, j, k) which simultaneously maximizes the quantities s1(i, j, k)
and sd(i, j, k).

Proof. We assume, without loss of generality, that (i, j, k) satisfies s1(i, j, k) ≥ s1(i′, j′, k′)
for any any cyclic permutation (i′, j′, k′) of (i, j, k), and furthermore that sd(i, j, k) ≥
sd(i

′, j′, k′) whenever s1(i, j, k) = s1(i′, j′, k′). Unless (i, j, k) = (0, 0, 0), this implies that
j 6= 0.

Suppose that (i′, j′, k′) is a cyclic permutation of (i, j, k) satisfying sd(i
′, j′, k′) >

sd(i, j, k). Then according to the assumption on (i, j, k), we must have s1(i′, j′, k′) <
s1(i, j, k). Since s1(i, j, k) and sd(i, j, k) may differ by at most 1, it follows that sd(i, j, k) =
s1(i, j, k) − 1 and sd(i

′, j′, k′) = s1(i′, j′, k′) + 1. However, by Lemma 16, this implies
that (i, j, k) = (i, i+ 1, i) and (i′, j′, k′) = (i′, i′, i′), a contradiction.

Proposition 18. Let Td = {P,Q,R} be a triangle of type d. Then the cardinality of its
Weierstrass gap set is

#G(P,Q,R) = N(Td) = N(T1)− d− 1

6d
(q + 1)(2q2 − 5q + 5− d).

Proof. For any divisor t of q + 1, let

ct(i, j, k) = max
τ

(
sτt (i, j, k) + 3

3

)
.

To obtain N(Td)−N(T1), it will suffice to sum the differences cd(i, j, k)− c1(i, j, k). We
will sum these differences over orbits of triples (i, j, k) under cyclic permutation, weighted
by orbit size.

Let (i, j, k) satisfy 0 ≤ i, j, k < m. By Lemma 17, we assume that (i, j, k) simultane-
ously maximizes s1(i, j, k) and sd(i, j, k) with respect to cyclic permutations, so that

ct(i, j, k) =

(
st(i, j, k) + 3

3

)
, t = 1, d.

Then by Lemma 16, we have cd(i, j, k) − c1(i, j, k) = 0 unless (i, j, k) = (i, i + 1, i) or
(i, j, k) = (i, i, i) with i 6≡ 0 mod d. In the first case, we have

cd(i, i+ 1, i)− c1(i, i+ 1, i) =

(
q − i

3

)
−
(
q + 1− i

3

)
= −

(
q − i

2

)
.
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For each 1 ≤ i ≤ q− 1 with i 6≡ 0 mod d, there three triples in each of these orbits which
yield this same contribution.

In the second case, we have

cd(i, i, i)− c1(i, i, i) =

(
q + 1− i

3

)
−
(
q − i

3

)
=

(
q − i

2

)
.

There is a single contribution of this type for each 1 ≤ i ≤ q with i 6≡ 0 mod d.
It follows that

N(Td)−N(T1) =
∑

0≤i≤q
i6≡0 mod d

{(
q − i

2

)
− 3

(
q − i

2

)}
= −2

∑
0≤i≤q

i6≡0 mod d

(
q − i

2

)
.

To complete the proof, we calculate

∑
0≤i≤q

i6≡0 mod d

(
q − i

2

)
=

q∑
i=0

(
q − i

2

)
−

(q+1)/d−1∑
j=0

(
q − jd

2

)

=
1

6
(q3 − q)− 1

12d
(q + 1)(2q2 − 5q + 5 + 3dq − 6d+ d2)

=
d− 1

12d
(q + 1)(2q2 − 5q + 5− d).

We now restate and prove the main theorem.

Theorem 1. For q > 3, the number of distinct Weierstrass semigroups of triples of
rational points on the Hermitian curve over Fq2 is equal to the number of positive divisors
of q+ 1. For q = 2, there is a single three-point semigroup, and for q = 3, there are two.

Proof. Let d and e be distinct divisors of q+1. Then the Weierstrass gap sets of triangles
of types d and e have the same size if and only if hd(q) = he(q), where

hd(q) =
d− 1

12d
(q + 1)(2q2 − 5q + 5− d).

Elementary simplification reveals that this is equivalent to saying that de = 2q2−5q+ 5.
But since d and e are distinct divisors of q + 1, we have

de ≤ 1

2
(q + 1) · (q + 1) < 2q2 − 5q + 5,

provided that q > 3. Therefore, for q > 3, triangles of distinct types have different
Weierstrass semigroups. The first part of theorem now follows from Corollary 14.

For q = 2, we have N(T1) = N(T3) = 3. It follows that

H(P,Q,R) = N3 \ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

for any P,Q,R ∈ H(F4).
For q = 3, we have N(T1) = 33 and N(T2) = N(T4) = 31. Moreover, one may check

directly that the gap sets coincide for triangles of types 2 and 4.
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For any Hermitian triangle T = {P,Q,R}, the proof of Proposition 18 may be adapted
to provide formulas for the number Nr(T ) of effective divisors D = aP + bQ+ cR which
have basepoints at r specified points of T , for r = 1, 2, 3. In particular, N3(T ) =
#G0(P,Q,R) is the number of pure gaps for (P,Q,R), i.e., the number of divisors D =
aP + bQ+ cR with basepoints at all three of the points P , Q, and R.

Proposition 19. Let T = {P,Q,R} be a Hermitian triangle of type d, and let

hd(q) =
d− 1

12d
(q + 1)(2q2 − 5q + 5− d).

(a) The number of effective divisors of the form aP+bQ+cR with one specified basepoint
in T is

N1(T ) =
1

24
(q6 − 2q5 + 4q3 − q2 − 2q).

(b) The number of effective divisors of the form aP+bQ+cR with two specified basepoints
in T is

N2(T ) =
1

120
(2q6 + q5 − 20q4 − 25q3 + 138q2 − 96q) + hd(q).

(c) The number N3(T ) = #G0(P,Q,R) of pure gaps for (P,Q,R) is

#G0(P,Q,R) =
1

120
(q6 + 3q5 − 15q4 − 75q3 + 254q2 − 168q) + hd(q).

Proof. As the proof is similar to that of Propositions 15 and 18, we give only a sketch.
The setup for counting Nr(T ) is like that for N(T ), except that (15) is replaced by

a1 + b1 + c1 <
1

m
min
τ

(στ(i)τ(j)(T )− τ(k)),

where τ runs over r distinct cyclic permutations of (i, j, k) corresponding to the r specified
points of T . In particular, we have

Nr(T ) =
∑

i,j,k mod m

min
τ

(
sτd(i, j, k) + 3

3

)
,

where sd(i, j, k) as defined as in (14). These minimums may be determined on a case-wise
basis.

Note that these values of Nr(T ) in Proposition 19 satisfy the inclusion-exclusion
relationship

N(T ) = 3N1(T )− 3N2(T ) +N3(T ),

with N(T ) as in Propositions 15 and 18, so they could be used to provide an alternate,
albeit longer, proof of the formula for N(T ).
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6. Minimal generating sets

In [22], the first author introduced the idea of minimal generating sets as a way of
describing the Weierstrass semigroup of an n-tuple of points on a curve over a field F.
These sets generate the Weierstrass semigroup with respect to the operation of taking
coordinate-wise maximimums. We recount the relevant definitions and results here before
using them to describe the semigroups of triples of rational points on the Hermitian curve.

Consider the partial order on Nn given by (u1, . . . , un) ≤ (v1, . . . , vn) if ui ≤ vi for
all i.

Definition. Let u(1), . . . , u(t) ∈ Nn, and write u(k) = (u
(k)
1 , . . . , u

(k)
n ). The least upper

bound of u(1), . . . , u(t) is given by

lub(u(1), . . . , u(t)) = (max{u(1)1 , . . . , u
(t)
1 }, . . . ,max{u(1)n , . . . , u(t)n }).

Let P1, . . . , Pn be distinct rational points on an absolutely irreducible, smooth, pro-
jective algebraic curve X over a finite field F with n < |F|. Then the semigroup
H(P1, . . . , Pn) is closed under addition as well as under the operation lub [9]. Indeed,
the requirement that |F| > n ensures that given functions f1, . . . , ft ∈ F(X ) with pole
divisors (fk)∞ = u(k), there is a linear combination f =

∑t
k=1 akfk with ak ∈ F and

(f)∞ = lub(u(1), . . . , u(t)).
We now define a subset Γ+(Pi1 , . . . , Pi`) of H(P1, . . . , Pn) for each {i1, . . . , i`} ⊆

{1, . . . , n} as follows. Let Z>0 denote the set of positive integers. For ` = 1 and i ∈
{1, . . . , n}, let Γ+(Pi) = H(Pi), and for ` ≥ 2, let

Γ+(Pi1 , . . . , Pi`) =

u ∈ Z`>0 :
u is a minimal element of
{v ∈ H(Pi1 , . . . , Pi`) : vi = ui}

for some i ∈ {1, . . . , `}

 .

We note that although the one-point semigroups Γ+(Pi) are infinite, each set Γ+(Pi1 , . . . , Pi`)
with ` ≥ 2 is a subset of the product G(Pi1)× · · · ×G(Pi`) of gap sets, hence is finite.

Example. For any two rational points P,Q on the Hermitian curve, we have

Γ+(P ) = {iq + j(q + 1) : i, j ∈ N},
Γ+(P,Q) = {(−i+ jm, iq − jm) : 0 ≤ i ≤ q, i < jm < iq}.

For each I ⊆ {1, . . . , n} let ιI denote the natural inclusion N` → Nn into the coordi-
nates indexed by I.

Definition. The minimal generating set of H(P1, . . . , Pn) is

Γ(P1, . . . , Pn) =
n⋃
`=1

⋃
I={i1,...,i`}
i1<···<i`

ιI(Γ
+(Pi1 , . . . , Pi`)).

The Weierstrass semigroup H(P1, . . . , Pn) is completely determined by the minimal
generating set Γ(P1, . . . , Pn) on those same points, as described below.
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Theorem 20. [22, Theorem 7] If 1 ≤ n < |F|, then

H(P1, . . . , Pn) = {lub(u(1), . . . , u(n)) : u(1), . . . , u(n) ∈ Γ(P1, . . . , Pn)}.

To characterize the minimal generating set for Weierstrass semigroups of Hermitian
triangles, we use the following lemma of Castellanos and Tizziotti.

Lemma 21. [11, Lemma 2.6] Let α = (α1, . . . , αn) ∈ Zn>0. Then α ∈ Γ+(P1, . . . , Pn) if
and only if the divisor α1P1 + · · · + αnPn is a discrepancy with respect to P and Q for
all pairs of points P,Q ∈ {P1, . . . , Pn}.

We note that the condition that α have all positive entries is not explicitly stated in
the original version of the lemma, but it is necessary. Indeed, it is possible for α to have
a zero entry yet correspond to a divisor which is a discrepancy for any pair of points in
{P1, . . . , Pn}.

For P,Q two rational points on H, it is shown in [12, Section 4] that the set of
discrepancies for P and Q of the form aP + bQ is

∆0(P,Q) = {i(qQ− P ) + j(mP −mQ) : 0 ≤ i ≤ q, j ∈ Z}.

It follows that the description of Γ+(P,Q) in the example above, which was originally
derived in [21, Theorem 3.7] by other means, may be obtained by an application of
Lemma 21.

Proposition 22. Let T = {P,Q,R} be a Hermitian triangle of type d. Let (a, b, c) ∈
Z3
>0, and write a = i + a1m, b = j + b1m, and c = k + c1m with 0 ≤ i, j, k < m. Then

(a, b, c) ∈ Γ+(P,Q,R) if and only if a1 + b1 + c1 = q − 2− ` for some ` ∈ {0, . . . , q − 2},
and

� (i, j, k) = (`, `, `) if ` ≡ 0 mod d, or

� (i, j, k) is a permutation of (`+ 1, `, `) if ` 6≡ 0 mod d.

Proof. Lemma 21 implies that (a, b, c) ∈ Γ+(P,Q,R) exactly when aP + bQ + cR is a
discrepancy for all pairs of points of T = {P,Q,R}. In the notation introduced in Section
4, this means that (a, b, c) ∈ Γ+(P,Q,R) if and only if

σab(T ) = c, σbc(T ) = a, and σca(T ) = b.

By (8), this is equivalent to

σij(T )− k = σjk(T )− i = σki(T )− j = m(a1 + b1 + c1). (17)

By Theorem 10 and (16), we have

σij(T )− k ≡ j − k + εij(T ) mod m (18)

for all 0 ≤ i, j, k < m. Using this, one may check directly that (17) is satisfied when
(a, b, c) is of one of the two forms described in the statement of the proposition.

Now assume that (i, j, k) satisfies (17). Then the congruence (18) holds for any cyclic
permutation of (i, j, k). If i = j = k, then σii(T ) − i ≡ εii mod m, so that i ≡ 0 mod d.
Then setting ` = i, we are in the first case in the statement of the proposition.
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Now assume that i, j, k are not all equal. Then by permuting (i, j, k) if necessary, we
may assume that j < i. Then in particular, j is congruent to neither i nor i+ 1 modulo
m, so that εij = 0. But then (18) implies that j = k. Now consider the fact that

σjk(T )− i ≡ i− j + εji ≡ 0 mod m.

Since i 6= j, it follows that εji 6≡ 0 mod m and εji 6= +1. Thus, εji = −1, and so
i ≡ j + 1 mod m with j 6≡ 0 mod d. Setting ` = j, we are in the second case in the
statement of the proposition.

In either case, σij(T )− k = m(a1 + b1 + c1) yields a1 + b1 + c1 = q − 2− `.
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[25] H. Stichtenoth. Über die Automorphismengruppe eines algebraischen Funktionenkörpers von
Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe. Arch. Math.
(Basel), 24:527–544, 1973. 3, 4
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