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Deformation and orientational order of chiral
membranes with free edges

Lijie Ding, *a Robert A. Pelcovits ab and Thomas R. Powers abcd

Motivated by experiments on colloidal membranes composed of chiral rod-like viruses, we use Monte

Carlo methods to simulate these systems and determine the phase diagram for the liquid crystalline

order of the rods and the membrane shape. We generalize the Lebwohl–Lasher model for a nematic

with a chiral coupling to a curved surface with edge tension and a resistance to bending, and include an

energy cost for tilting of the rods relative to the local membrane normal. The membrane is represented

by a triangular mesh of hard beads joined by bonds, where each bead is decorated by a director. The

beads can move, the bonds can reconnect and the directors can rotate at each Monte Carlo step. When

the cost of tilt is small, the membrane tends to be flat, with the rods only twisting near the edge for

low chiral coupling, and remaining parallel to the normal in the interior of the membrane. At high chiral

coupling, the rods twist everywhere, forming a cholesteric state. When the cost of tilt is large, the

emergence of the cholesteric state at high values of the chiral coupling is accompanied by the bending

of the membrane into a saddle shape. Increasing the edge tension tends to flatten the membrane. These

results illustrate the geometric frustration arising from the inability of a surface normal to have twist.

1 Introduction

Chirality arises at various length scales of soft matter systems,1–3

and can play a central role in determining the internal order of
the system, as in the transitions between the various phases of
cholesteric liquid crystals, namely the isotropic phase, the blue
phase and the helical phase.4

Fluid membranes are also ubiquitous in soft matter systems
and exhibit various topologies and shapes. For a closed mem-
brane, vesicles, pears, discocytes, stomatocytes and toroids5 are
all possible shapes. As for membranes with open edges, they
can also form various shapes including disks, scallops, ribbons
and starfish.6 Membranes made of rod-like chiral particles that
tend to align with the surface normal experience geometric
frustration: it is impossible for the rods to follow the preferred
cholesteric twist and remain normal to the membrane surface.
This frustration is analogous to the frustration experienced by
cholesteric phases confined between two parallel plates with
hometropic boundary conditions, or subject to external electric
or magnetic fields.7–9 In this paper, we explore the shapes
and liquid crystalline phases displayed by a model colloidal
membrane system with chiral rod-like constituents.

A two dimensional colloidal membrane with free edges and
composed of chiral rod-like viruses10 is an example where both
chirality and membrane deformability are key components
of the system. The interplay of chirality and deformability
leads to changes in the membrane’s mechanical properties11

and shapes,12 including the formation of three dimensional
structures.13,14 Although many theoretical models have been
developed for the chiral membranes with free edges, including
phenomenological theories,15–17 entropically-motivated theories18,19

and effective energy theories,11,12 theoretical analyses usually
require an a priori assumption of the shape of the membrane.
Numerical simulations should be able to avoid this assumption
and predict a shape phase diagram. However, computational
studies of two-dimensional colloidal membranes including the
depletion effect have been limited primarily to hard body
simulations of flat membranes.20,21 Accounting for these deple-
tion effects for curved colloidal membranes is computationally
costly. The only Monte Carlo simulations of membranes with
orientational order and curved shapes have been of lipid bilayer
vesicles with in-plane orientational order.22–25 These and other
theoretical studies26,27 typically consider a constant angle of tilt
between the nematic director and the surface normal. Colloidal
membranes, on the other hand, exhibit smectic order with
variable director tilt, with zero tilt in most of the membrane
interior and nonzero tilt near the membrane edges or at interior
p walls28 or the boundaries of rafts of short virus rods in a
background of long virus rods.29 In our previous work,30 we took
a step towards developing a more general computational
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approach that allows for director tilt and arbitrary membrane
shapes. We developed a Monte Carlo simulation scheme for a
chiral membrane with free edges using a discretized effective
energy. In this model we did not treat the liquid crystal
director degrees of freedom directly; rather, we employed
an effective energy12 where chirality and Frank elasticity are
modeled by suitable edge geometric quantities. Such an
approach is reasonable if the chiral twist is confined to the
edge as it is in large flat membranes but not more generally.
A more comprehensive model should include the full liquid
crystalline degrees of freedom on the entire membrane and
study the coupling between the orientational order and
membrane surface shape.

In this paper, we introduce such a model where the shape
of the membrane is modeled by a triangular mesh as in our
previous work, and the orientational degrees of freedom are
introduced by decorating each vertex of the mesh with a
unit-vector director. The energy for the membrane is inspired
by a phenomenological model:16 we use the discretized
Canham–Helfrich bending energy and a line tension energy
for the membrane shape, the Lebwohl–Lasher interaction for
the directors, a pseudoscalar proportional to the twist of the
neighboring directors, and finally, a tilt coupling energy which
favors the alignment of the director and the local surface
normal. For the purposes of the present study, the bending
moduli and line tension are tuned such that the membranes
have the topology of a disk rather than that of a closed vesicle or
the shape of a branched polymer. We start by investigating the
director field, and find three phases: isotropic, smectic-A and
cholesteric, depending on chirality and the strength of the
Lebwohl–Lasher coupling. Detailed studies are then carried
out for the smectic-A and cholesteric phases. We find that in
the cholesteric phase the membrane does not remain flat but
bends into a saddle-like shape instead. We develop a simple
model to understand this phenomenon.

The rest of this paper is organized as follows. In Section 2,
we define our discrete model and explain the Monte Carlo
method we use for the simulations. We present the results of
our simulations in Section 3. Finally, we conclude our paper in
Section 4.

2 Model and method
2.1 Membrane with director field

We model the membrane using a bond-and-bead triangular
mesh M for self-avoiding membranes,31 with a bead located at
each vertex i of the mesh and decorated with a unit-vector
director ûi (Fig. 1). The beads are hard spheres of diameter s0

connected by bonds of maximum length l0. The directors are
free to rotate in three-dimensional space.

The total energy E of the membrane is a sum of a surface
energy Es, dependent only on the shape represented by the
triangular mesh, and a liquid-crystalline energy Elc arising
from the director field and its coupling with the membrane
shape. The surface energy Es is a sum of the discretized

Canham–Helfrich bending energy30,32,33 and a membrane edge
energy:

Es ¼
k
2

X
i2M

�
ð2HiÞ2si þ l

X
i2@M

dsi; (1)

where k is the membrane bending modulus, and Hi and si are
the mean curvature and the area of the cell on the virtual dual
lattice at bead i, respectively. Complete expressions for these
quantities can be found elsewhere.30,31,34 The modulus l is the
line tension and dsi is the differential edge length at bead i. The
summation in the first term on the right hand side of eqn (1) is

over all interior beads M
�

of the mesh, while the summation in
the last term is over the edge @M of the mesh. We assume
that the Gaussian curvature modulus of the Canham–Helrich
model is zero and limit our study to the interplay of the
chirality and the coupling of liquid crystalline order of the rods
with the shape.

The liquid-crystalline energy Elc is given by the sum of three
contributions: Elc = ELL + Ec + Et, where ELL is a Lebwohl–Lasher
interaction35 that favors the alignment of neighboring directors,
Ec is a discrete chiral energy favoring twist of neighboring directors
and Et is an effective tilt energy favoring alignment of the
director and local surface normal. The Lebwohl–Lasher energy
ELL is given by

ELL ¼ �eLL
X
ði; jÞ2B

3

2
ðûi � ûjÞ2 �

1

2

� �
; (2)

where eLL denotes the interaction constant and the summation
is over all bonds B joining neighboring directors in the
triangular mesh. The effective chiral energy Ec is constructed
from a chiral pseudoscalar used in the chiral Lebwohl–Lasher
model36 and is given by

Ec ¼ �ec
X
ði; jÞ2B

ðûi � ûjÞ � r̂ijðûi � ûjÞ; (3)

where ec is the chiral interaction parameter and r̂ij is the unit
vector parallel to the bond (i, j). The Lebwohl–Lasher and chiral
interactions lead to a preferred angle of twist for a single pair of
directors of arctan (2kc/3)/2, where kc = ec/eLL. Finally, the tilt

Fig. 1 A configuration of the discretized membrane with directors. (a) The
membrane shape is modeled by a triangular mesh of bonds with hard
sphere beads (not shown) located at the vertices of the mesh. (b) Here
the directors ûi on the beads are shown; the color of the director is
determined by the tilt relative to the local surface normal n̂i, as indicated by
the color bar on the right.
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energy Et is given by

Et ¼
1

2
C
X
i2M

1� ðûi � n̂iÞ2
� �

; (4)

where C is the tilt coupling constant and n̂i is the surface
normal at bead i. When C 4 0, as in our study, alignment
between the director and local surface normal is favored. The
total energy E of the membrane is then given by the sum of
eqn (1)–(4).

2.2 Monte Carlo method

To sample the configuration space of the model, the beads,
bonds and directors on the triangular mesh are all subject to
updates. The bead and bond updates follow the same proce-
dure described in our previous paper30 and other studies.31,37

For the bead position update, a bead is chosen at random, then
moved with uniform probability to a new position in a cube of
side 2t centered at the bead’s previous position. Bonds not on
the membrane edge are subject to a flip update, where a bond
is chosen at random and flipped to connect the two beads on
vertices initially opposite the chosen bond. For bonds on the
edge, we allow the edge to extend or shrink with equal prob-
ability. In the extension update, an edge bond is chosen at
random and removed thus leaving the remaining two bonds of
the triangle as new edge bonds. In the shrinkage update a new
edge bond is added between two beads initially separated by
two bonds. Finally, to update the director field, we follow the
algorithm described by Baker et al.,38 which consists of the
following steps: (i) choose a director at random, (ii) choose a
rotation axis at random from the global coordinate axes (x,y,z)
with equal probability, (iii) rotate the director about the chosen
axis by an angle selected from the uniform probability distribu-
tion [�df,df].

For a system of N beads, each Monte Carlo (MC) step is
composed of N/t2 attempts to move a bead chosen at random,

2N/t2 attempts to flip a bond chosen at random and
ffiffiffiffi
N
p

=t2

attempts to shrink or extend the edge of the membrane. The
parameter t is set to 0.1, with all lengths measured in units of
the bead diameter s0. The initial membrane configuration is a
circular disk in the xy plane with all directors pointing the z
direction. In our simulation, 6 � 103 MC steps were performed.
Starting from the initial configuration, the system energy
approaches a plateau in about 100 MC steps which indicates
that the system has reached equilibrium. We first equilibrate
the system for 2 � 103 MC steps, then record the data for every
subsequent MC step. All observables are measured for 4 �
103 MC steps. The uncertainty in the observables is estimated
using Sokal’s method.39 The director rotation parameter is
df = 0.5 rad and, to ensure the fluidity of the membrane,40

the maximum bond length is set to l0 = 1.73. We choose the
number of beads N = 439 and bending modulus k = 100
(all energies are measured in units of kBT). These latter choices
guarantee that we avoid transitions to either a branched poly-
mer shape or closed vesicle.30,37 We also note that while the
experiments on colloidal membranes composed of rod-like

viruses10,41 suggest k = 15 000kBT, we found that values of k
larger than 100 did not significantly change our results but did
lengthen the number of MC steps needed to equilibrate the
system.

3 Results
3.1 Director field patterns

We first explore the phase diagram associated with the orienta-
tional order of the director field. We find that director field
can form three different patterns—isotropic, smectic-A and
cholesteric—as we vary the liquid-crystalline energy parameters,
eLL, kc and C. As shown in Fig. 2, an isotropic, (orientationally
disordered) phase appears, not surprisingly, when the
Lebwohl–Lasher interaction eLL is relatively weak. The critical
value of eLL below which the isotropic phase forms decreases as
the tilt coupling constant C increases, which is due to the
flatness of the membrane shape and the alignment between the
director and the membrane surface normal C encourages.
Above this critical value of eLL and for sufficiently small twist
constant kc, a chiral smectic-A phase forms with the directors
aligned in the interior of the membrane, while the twist of the
directors is expelled to the edge of the membrane, as first
predicted by de Gennes.42 As kc increases, the twist penetrates
into the interior of the membrane leading to the formation
of p walls. We consider this state to be a cholesteric phase,
although the p walls are not exactly parallel. In the phase
diagram, we defined the isotropic phase to be the region with

Fig. 2 Phase diagram for the director field on a membrane with N = 439,
k = 100 and l = 6. Isotropic, smectic-A and cholesteric phases are
represented by , and , respectively. Sample configurations on the
left side, from bottom to top, have (eLL,C,kc) equal to (0,0,0), (3.2,3.0,0.9)
and (3.2,3.0,1.5), for isotropic, smectic-A and cholesteric, respectively. The
color of the directors is a measure of the tilt angle, i.e. the angle between
the director and the local normal to the membrane. See Fig. 1 for the
color bar.
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3

2
ðûi � ûjÞ2 �

1

2

� �
ði; jÞ

o 0:5; where h. . .i(i, j) denotes the average

over all bonds. We determined the boundary between the
smectic-A phase and the cholesteric phase using h(ûi � ûj)�
r̂ij(ûi�ûj)i(i, j) = 0.1.

A similar phase diagram was found by Duzgun et al.9 in their
theoretical and computational studies of a flat two-dimensional
model of chiral liquid crystals with no boundary. Our model is
distinguished from that of Duzgun et al. by its finite size and
edge energy and, more importantly, by the deformability of the
membrane. In the model studied by Duzgun et al., our tilt
coupling is analogous to an interaction with an electric field.
For a positive dielectric anisotropy, the tilt and electric field
interactions are mathematically identical. The case of nega-
tive dielectric anisotropy is equivalent to a tendency for the
directors to lie in the local tangent plane of the membrane. This
case has no counterpart in the virus membranes of interest to
us, and is therefore disregarded in the present study. Similar
to our results, Duzgun et al. found isotropic, vertical nematic
(our smectic-A) and cholesteric phases. They also found meron
phases and metastable skyrmion phases.43 The meron phase
has regions of double twist separated by p walls that meet in
three-fold junctions at a disclination. The skyrmion phase has
double twist with no singularities. We also find a stable meron
phase (Fig. 3) for values of kc larger than those shown in Fig. 2.
Duzgun et al. studied the cholesteric to meron lattice phase
transition by calculating the free energy of the two phases.
Because we have found that the cholesteric to meron lattice
transition is not accompanied by a discernible membrane
shape change, we do not consider the cholesteric to meron
lattice transition in detail.

3.2 Twist penetration

In a chiral smectic-A membrane the director twist is expelled to
the edge and, as shown by de Gennes,42 the twist penetration
depth lp is proportional to the square root of the ratio of
the twist Frank elastic constant (in the present case, the
Lebwohl–Lasher interaction eLL) and the tilt modulus C.
Fig. 4(a) shows a view of a portion of the membrane edge for
three values of C. As C decreases, the twist penetrates further into
the membrane bulk, as expected from de Gennes’ prediction.

By measuring the tilt angle y = arccos(|û�n̂|) between the director
and local surface normal at each bead, and the distance r to the
center-of-mass of the membrane, we can quantify the decay of tilt
from the edge to the bulk [Fig. 4(b)]. In Fig. 4(b) we normalize the
radius r with %r, the average distance from the center-of-mass to the
membrane perimeter. For sufficiently large membranes it is
expected on theoretical and experimental grounds44,45 that tan(y/2)
grows exponentially near the edge: tan(y/2) = tan(y0/2)exp[(r/%r �
1)/lp] + const, where y0 is the value of the tilt angle at the
membrane edge. The fit of our simulation data to this latter
expression is shown in Fig. 4(c) for three different values of kc.
There is good agreement with de Gennes’ prediction that

lp /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eLL=C

p
.

3.3 Smectic-A to cholesteric transition

We now examine the smectic-A to cholesteric transition of
the director field. Fig. 5(a) shows typical configurations of the
membrane in the smectic-A and cholesteric phases. The nor-
malized distribution p(y) of the tilt of the director with respect

Fig. 3 Top view of the configurations of a membrane with N = 439,
k = 100, l = 6 and eLL = C = 3, for kc = 2, 3 and 5 (from left to right). The
three configurations shown are the cholesteric phase (kc = 2), the for-
mation of a meron lattice (kc = 3) and a meron lattice (kc = 5). The color of
the directors is a measure of the tilt angle of the director with respect to
the local normal to the membrane; see Fig. 1 for the color bar.

Fig. 4 Penetration of the director twist in the smectic-A phase of mem-
branes with N = 439, k = 100 and l = 6. (a) Bead, bond and director
configurations near the membrane edge for three different values of C
with eLL = 10 and kc = 0.7. The color scheme for the tilt angle is the same as
in Fig. 1. Note the greater penetration depth for smaller C. (b) A plot of
tan(y/2), (y is the director tilt angle) versus distance from the center of mass
of membrane, normalized to the average distance %r from the center, for
three values of C. Here, eLL = 10 and kc = 0.7. (c) Penetration depth
calculated by fitting to the expression tan(y/2) = tan(y0/2)exp[(r/%r � 1)/lp] +
const. as the ratio eLL/C is varied. Data is shown for kc = 0.3(+), 0.5(J) and
0.7(&) with corresponding coefficient of determination values R2 of 0.90,
0.96 and 0.96, respectively,.
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to the local layer normal [see Fig. 5(b)] clearly shows the
difference in the orientational order of the two phases. The
distribution in the smectic-A phase has a strong peak near
y B 0. The deviation from y = 0 is due to thermal fluctuations.
The distribution in the cholesteric phase has a weaker peak for
y B 0 and a longer tail not reaching zero. These features are
associated with the formation of p walls (twist walls) where the
directors rotate through 1801. While the Lebwohl–Lasher inter-
action eLL and the tilt modulus C are the two main competing
factors for the tilt of director field, the smectic-A to cholesteric
transition is mainly driven by the twist constant kc. This can be
seen in Fig. 5(c) where the average twist Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i, j)

between directors joined by bonds is plotted versus the reduced

twist constant k�c ¼ kc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eLL=C

p
. In these expressions the average

h. . .i(i, j) is taken over all bonds on the membrane, i.e., ði; jÞ 2 B.
The average twist data collapses to a single line when the

membrane is in the smectic-A phase. Furthermore, the value of
k�c at the transition is not very sensitive to the value of eLL. The data
ceases to collapse in the cholesteric phase. Of greater interest is
that the membrane shape changes at the smectic-A to cholesteric
transition as can be seen in Fig. 5(d) where the integral of the
negative Gaussian curvature is plotted as a function of k�c . As can
be seen from Fig. 5(a) and (d), the smectic-A to cholesteric
transition is accompanied by a change in the shape of the
membrane, in particular to a shape with negative Gaussian
curvature. We computed the Gaussian curvature on the triangular
mesh using methods found elsewhere.30,46 We explore this shape
change in the next section.

3.4 Membrane shape change at the smectic-A to cholesteric
transition

From Fig. 5(c) we see that the transition from smectic-A
to cholesteric is controlled by the reduced twist constant

k�c ¼ kc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eLL=C

p
. Thus, to explore the shape of the membrane

in the cholesteric phase, we keep the value of k�c fixed by setting
kc = 2 and eLL/C = 1. In Fig. 6(a) examples of membrane
configurations in the cholesteric phase for k�c ¼ 2 are shown
with and without the director field (for clarity). The arrows in
the figure indicate the value of l and the common value of C
and eLL corresponding to the shape shown. Fig. 6(b) shows the

Fig. 5 Orientational and geometric properties of the membrane in the
smectic-A and cholesteric phases with N = 439, k = 100 and l = 6.
(a) Typical configurations of the membrane in the smectic-A (top) and
cholesteric (bottom) phases for eLL = C = 3 for kc = 1.1 and 1.4 with director
field colored according to the tilt angle same as in Fig. 1. (b) Normalized
distribution p(y) of the tilt angle y = arccos|û�n̂| on a membrane with eLL =
C = 3 for kc = 1.1 (dashed line) and kc = 1.4 (solid line). (c) Average twist per
bonded pair of beads Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j) versus reduced twist
constant k�c ¼ kc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eLL=C

p
for various combinations of eLL and C. The

smectic-A and cholesteric phases are indicated by filled and hollow
symbols, respectively. (d) Integral of the negative Gaussian curvature
versus k�c . The color coding and symbol are the same as in (c). The integral

has been normalized to the its value for a sphere.

Fig. 6 Membrane shape changes accompanying the formation of the
cholesteric phase. Here, N = 439, k = 100, kc = 2.0 and eLL = C. Thus, the
value of the reduced twist constant k�c ¼ kc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eLL=C

p
¼ 2 for all data shown

in this figure. (a) Configuration of the membrane for values of (l,C = eLL)
corresponding to points indicated with arrows in part (b). The top row
shows the membrane with the director field colored according to the tilt
angle (see Fig. 1 for the color bar). The bottom row shows the same
membrane with the directors removed. (b) Heat map of the integral of the
normalized negative Gaussian curvature as a function of the line tension l,
Lebwohl–Lasher coupling eLL and tilt coupling C with eLL = C. The integral
has been normalized to its value for a sphere.
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normalized integral of the negative Gaussian curvature
�
Ð
KdA=ð4pÞ for different values of the tilt coupling C (= eLL)

and the line tension l. As indicated by the color bar, the
integral of the negative Gaussian curvature decreases from
the upper left to the lower right of the plot, whereas ratio/C
increases as we move in the same direction.

Our interpretation of Fig. 6 is as follows. When l/C is small,
the membrane energy is dominated by the tilt interaction,
which favors alignment between the surface normal and direc-
tor. In the cholesteric phase, there is twist everywhere in the
interior of the membrane, instead of only at the edge as in the
smectic-A phase. Thus, the membrane surface tends to deform
into a saddle shape to lower the tilt energy by making the
normal vector align more closely with the directors over part of
the membrane area. On the other hand, bending a flat disk at
fixed area into to a saddle shape increases the perimeter,
leading to an energy cost proportional to the line tension l.
Thus, increasing the line tension favors a disk shape. Although
we study the case with eLL = C, it is important to note that
increasing eLL can have the opposite effect of increasing C. For a
fixed total number of beads, our mesh has more bonds if the
shape is a disk than if the shape is saddle-like, since the disk
configuration has fewer beads on the edge. Therefore, increas-
ing the Lebwohl–Lasher parameter can lead to a preference for
disks as it favors more bonds. Apparently, this tendency dom-
inates at the lower values of l in Fig. 6(b), where the tendency to
be more disk-like is indicated by the drop in the magnitude of
the integral of Gaussian curvature.

From Fig. 6 and 7 we see that the number of ripples is
related to the number of p walls intersecting the membrane
edge. The top figure of Fig. 7(a) shows the membrane shape
becomes saddle-like when there are two p walls intersecting the
edge. The p walls tend to align along directions making
an angle of approximately 451 with respect to the principal
directions of the saddle. The p walls are thus oriented along
relatively flat portions of the saddle which is favored by the

liquid crystalline bending energy. We have found similar behavior
using a simplified analytic model of a saddle shape [see Fig. 9(b)].
As k�c increases, more p walls intersect the membrane edge and the
saddle shapes become more rippled. Further increasing the value
of kc will lead to the formation of the meron lattice phase with
more intersections between p walls and the membrane edge,
resulting in more ripples on the edge. However, the interior of
the membrane stays relatively flat despite the appearance of the
meron phase.

Because we have chosen a large value of the membrane
bending modulus k = 100, the shapes we find are nearly
minimal surfaces with

Ð
ð2HÞ2dA=ð16pÞ ¼ 0:074� 0:002; allow-

ing us the construct a simple model to better understand the
shape changes associated with the smectic-A to cholesteric
transition. We model the membrane as an Enneper surface,
which is a minimal surface (necessarily with negative Gaussian
curvature) and resembles the saddle-shaped structures we see
in our simulations. The mth order Enneper surface of area A is
parameterized by the coordinates (r,f) as47

x=R ¼ r cosðfÞ � r2mþ1

2mþ 1
cos½ð2mþ 1Þf�

y=R ¼ � r sinðfÞ � r2mþ1

2mþ 1
sin½ð2mþ 1Þf�

z=R ¼ 2rmþ1

mþ 1
cos½ðmþ 1Þf�

(5)

where r A [0,r1], f A [0,2p) and

1

R
¼ r1

ffiffiffiffi
p
A

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2m1

mþ 1
þ r4m1
2mþ 1

s
(6)

is the normalization factor which keeps the area equal to A.
The parameter r1 controls the amplitude of the ripples, and
m controls the number of ripples. Examples of the Enneper
surface for m = 1, 2 and 3 are shown in Fig. 8.

We embed the surface in a three-dimensional cholesteric
phase. For simplicity we assume that the director field on the
membrane û(x,y,z) is determined by a twist wavevector -q = qq̂
lying in the xy plane:

û(x,y,z) = (ẑ � q̂)sin(-q�-r) + ẑ cos(-q�-r). (7)

We now compare the energies of a flat disk and an Enneper
surface, each having an embedded director field given by
eqn (7). Because we embed the membrane surface in a fixed
director field, the liquid crystalline twist energy is the same for
both shapes; thus, the relative energy of these two surfaces is

Fig. 7 Membrane rippling associated with p walls intersecting the
membrane edge. Here N = 439, k = 100 and eLL = C = 5. (a) Membrane
configurations for kc = 1.5 (top), 1.9 (middle) and 2.3 (bottom), with l = 6.
The left column shows the director fields colored by the local tilt angle as
in Fig. 1. The right column shows the same membrane but with directors
removed. (b) The negative integrated Gaussian curvature decreases as line
tension l increases, with a rate depending on k�c .

Fig. 8 Enneper’s surface with r1 = 1 for m = 1 (left), m = 2 (middle) and m =
3 (right). The wire frames are a guide to the eye.
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determined by the tilt and edge energies, i.e.,

E0 ¼ C

2

ð
½1� ðû � n̂Þ2�dAþ l

þ
ds: (8)

For a disk of area A lying in the xy plane, the perimeter is

given by
Þ
ds ¼ 2

ffiffiffiffiffiffiffi
pA
p

and the tilt is given byð
½1� ðû � n̂Þ2�dA ¼ A�

ððA=pÞ1=2
0

ð2p
0

cos2ðqr cosfÞrdrdf

¼ ½1� J1ð2qR0Þ=ðqR0Þ�A=2;

(9)

where J1(x) is the first order Bessel function of the first kind and

R0 ¼
ffiffiffiffiffiffiffiffiffi
A=p

p
is the radius of the disk. Thus, we find

E
0
disk ¼ 2l

ffiffiffiffiffiffiffi
pA
p

þ C

4
A½1� J1ð2qR0Þ=ðqR0Þ�: (10)

For Enneper’s surface, the perimeter isþ
ds ¼ 2p 1þ r1

2m
	 


Rr1; (11)

and the surface normal is given by

n̂ ¼ 2rm cosðmfÞ
1þ r2m

;
2rm sinðmfÞ

1þ r2m
;
r2m � 1

1þ r2m

� �
: (12)

Writing the tilt in the (r,f) coordinates,ð
½1� ðû � n̂Þ2�dA ¼ A�

ðr1
0

ð2p
0

ðû � n̂Þ2rð1þ r2mÞ2R2drdf; (13)

we find

E0Enneper ¼ CA� C

ðr1
0

ð2p
0

ðû � n̂Þ2rð1þ r2mÞ2R2drdf

þ l2pð1þ r2m1 ÞRr1:
(14)

Although our simple model yields an analytic formula for
the energy, it is not easy to analytically minimize the energy due
to the lack of axisymmetry and its complicated dependence on
r1 through eqn (6). Therefore, we minimize the energy over r1

and q̂ numerically using Powell’s method.48 To avoid large
numerical errors when calculating the tilt energy as r1 - 0, we
enforce r1 4 0.2 in the minimization process. Likewise, we

demand that r1 o
ffiffiffi
3
p

so that the (m = 1) Enneper surface does
not intersect itself.47

By comparing the energies of the disk and the Enneper
surface, we find the shape phase diagram shown in Fig. 9(a).
Since a full turn of the directors in the cholesteric phase
appears in a disk once the diameter of the disk exceeds the
pitch, we only consider qR0 4 p/2. Also, we see in Fig. 7(a)
that when more than two p walls are present, the walls are
not parallel and cannot be described by eqn (7). Thus, to
restrict our analysis to no more than two p walls, we require
that qR0 r p. For sufficiently large qR0 and small enough l,
Enneper’s surface has lower energy than the flat disk. The
critical value of qR0 at which Enneper’s surface is energetically
favorable increases as l/(R0C) increases until reaching a critical
point, beyond which a disk shape is always of lower energy.

When 0.029 t l/(R0C) t 0.044, the state of minimum energy is
a disk at small qR0, then an m = 1 Enneper’s surface at larger
qR0, and then a disk again as qR0 is further increased. This
reentrance arises from the oscillation of the tilt energy with the
cholesteric pitch, as represented by the term J1(2qR0)/(qR0) in

E
0
disk; eqn (10). Fig. 9(d) illustrates this reentrance with the

energies of the disk and Enneper surface at l/(R0C) = 0.035.
The tilt configuration predicted by the simple model

[Fig. 9(b)] is similar to the tilt configuration found by the Monte
Carlo simulations [Fig. 7(a)]. In both cases, the rotation of the
directors due to the cholesteric twist is the same as the rotation
of the normals along a line that is at 45 degrees from the
direction of steepest descent of the saddle. Although the
normal vectors to a surface have no twist, the tilt interaction
energy is lowered in the region where the directors are aligned
with the normals.

We also need to recognize the limitations of this simple
analytical model. The single-twist director field eqn (7) is
independent of the shape of the membrane surface. Thus,
the twist of the director near the membrane edge is neglected,
which would contribute to an effective edge bending
energy that favors the disk shape. Nevertheless, this model still

Fig. 9 The transition from a disk to an Enneper surface in the simplified
model. (a) A disk in the director field û of eqn (7). The color indicates the tilt
angle between the local surface normal and û, as in Fig. 1. The wire frame is
a guide to the eye. (b) Enneper surface of order m = 1 embedded
embedded in the same director field as in (a). The shape is obtained by
minimizing the energy with respect to r1 and q̂ with qR0 = 2.5 and l/(R0C) =
0.03, yielding the optimized values r1 = 1.2 and q̂�x̂ = 0.71. (c) Shape phase
diagram for the simplified model. (d) Energies of the optimal m = 1 Enneper
surface (dashed) and a disk (solid) vs. dimensionless wavenumber qR0 for
l/(R0C) = 0.035.
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embodies the main idea that a cholesteric director field can
drive the rippling of the membrane surface.

4 Conclusion

In this paper we studied, using Monte Carlo simulations, a
discrete model of chiral membranes composed of rod-like
viruses. Our model allows us to consider the interplay of
chirality, free edges and membrane shape with no a priori
assumptions of shape or director orientation. We found three
phases of the orientational order: isotropic, smectic-A and
cholesteric. In the smectic-A phase, the twist of directors is
expelled to the membrane edge which is in agreement with
experiment45 and theory.44 The transition to a cholesteric phase
leads to a rippling of the membrane with a saddle-like shape
similar to what has been observed experimentally.13 Using an
analytic model of a saddle (an Enneper surface of order one),
we showed how this shape has lower energy than a flat disk for
sufficiently large chirality and small edge line tension.

Our model is general enough to allow future study of a
myriad of remarkable shapes that have been observed experi-
mentally,49 including higher-order saddles, catenoids and
shapes with more openings. Many of these shapes occur when
long and short viruses are mixed together. Natural general-
izations of our model would be to include a Lebwohl–Lasher
interaction with multiple values corresponding to the different
pairs of species of rods, to add a nonzero Gaussian curvature
modulus and to account for the depletion interaction.
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