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Deep neural networks (DNNs) are a popular machine-learning 
technique and have shown superior performance in many 
scientific problems. Despite their high prediction accuracy, 

DNNs are often criticized for a lack of interpretation of how changes 
of the input variables influence the output. Indeed, for applications 
in many scientific fields such as biology and medicine, under-
standing the statistical models described by the networks can be as 
important as, if not more important than, the prediction accuracy. 
With a DNN, because of its nonlinearity and inherent complexity, 
one should not expect a concise relationship between each input 
variable and the output, such as the conditional monotonicity in lin-
ear regression or logistic regression. A more realistic approach for 
interpreting the DNN model can be selecting a subset of variables, 
among all input variables, that have significant predictive power on 
the output, which is known as ‘variable selection’. This paper consid-
ers the variable selection problem in DNNs.

The variable selection methods for neural networks (including 
but not limited to DNNs), similar to the ones for other machine 
learning techniques, can be broadly classified into three categories: 
filters, wrappers and embedded methods1–3. Filters select variables 
by information theoretic criteria, such as mutual information4 and 
partial mutual information5, and the selection procedure does not 
involve network training. By contrast, both wrappers and embed-
ded methods are based on the training of neural networks. Wrappers 
wrap the training phase with a search strategy, which searches 
through the set, or a subset, of all possible combinations of input 
variables and selects the combination whose corresponding network 
gives the highest prediction accuracy. A number of sequential6 and 
heuristic search strategies7–9 have been used. Embedded methods, 
unlike wrappers, select variables during the training of the network 
of interest. This can be done by gradually removing/pruning weights 
or variables according to their importance measured in various ways 
(a detailed review is given in the Methods section) or by incorporat-
ing a regularization term into the loss function of the neural network 
to impose sparsity on the weights10–13. For a more exhaustive review 
of variable selection methods in neural networks, see refs. 1,14.

While a lot of variable selection methods have been developed 
for neural networks, there are still challenges that hinder them from 
being widely used. First and foremost, most of these methods lack 
a control on the quality of selected variables. When selecting from 
a large number of variables, a standard way of quality control is to 
calculate false discovery rate (FDR)15 and control it at a certain level, 
particularly in biological and medical studies. In the context of vari-
able selection, FDR is the (expected) proportion of false positives 
among all variables called significant; for example, if 20 variables 
are selected (called significant), and two of them are actually null, 
then the FDR is 2/20 = 0.1. Currently, most methods do not provide 
FDR control, but there are notable exceptions: a few methods16,17 
utilize a modern FDR control framework based on ‘knockoffs’18,19 
for controlled variable selection in neural networks. We will later 
study their performance and compare it with that of our method. 
Second, among these methods, many were developed for specific 
types of networks, especially very shallow networks, and they do 
not work, or work inefficiently, for deeper networks. Third, many 
of the methods are not applicable to large datasets, on which their 
computational loads can be prohibitively high.

In this paper, we develop a method called SurvNet for variable 
selection in neural networks that overcomes these limitations. It is 
an embedded method that gradually removes least relevant vari-
ables until the FDR of remaining variables reaches a desired thresh-
old. Figure 1 shows the flowchart of SurvNet. It starts by adding a 
set of simulated input variables called ‘surrogate variables’ that help 
estimate the FDR and train a network with all variables, including 
both original and surrogate variables. Then it calculates the impor-
tance of each variable (original or surrogate) and eliminates the 
variables that are least important. When eliminating a variable, its 
corresponding input neuron and all outgoing connections of this 
neuron are removed from the network. After this, SurvNet estimates 
the FDR of the original variables that remain in the model. If the 
estimated FDR is greater than the pre-set threshold, SurvNet will 
go back to the step of training the (updated) network; otherwise, 
the elimination stops, and all remaining surrogate variables are 
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removed before the final model is trained. Note that each updated 
network is trained using the values of weights in the last trained 
network as initial values for a ‘warm start’.

There are three major novelties in this backward elimination 
procedure of SurvNet. First, it proposes a new measure/score of 
variable importance, which works regardless of the type of problems 
(classification or regression), the number of output neurons (one 
or multiple), and the number of hidden layers (one or multiple) 
in neural networks. In fact, this score can be readily computed for 
networks with arbitrary depths and activation functions. Second, 
SurvNet proposes an easy and quick way of estimating FDRs. 
Statistical estimation of FDRs requires obtaining the null distribu-
tion of the importance scores, that is, the distribution of the scores 
of irrelevant variables20. This is often done by permuting the output 
values of samples and training multiple independent models in par-
allel, each of which corresponding to a permuted dataset, but the 
computational cost is typically unaffordable for neural networks. 
SurvNet proposes a distinct way: it generates a set of null variables, 
typically by random sampling from the original data matrix with or 
without replacement, which serve as surrogates of the (unknown) 
null original variables to obtain the null distribution. The idea of 
surrogate variables is similar to that of knockoffs, but they differ 
in several important aspects (discussed in detail in Supplementary 
Information). With the introduction of surrogate variables, an esti-
mate of FDR can be given by a simple mathematical formula without 
training a large number of networks at each step. Third, at each step, 
instead of eliminating one variable or any pre-specified number of 
variables, SurvNet is able to adaptively determine an appropriate 
number of variables to eliminate. This number, expressed in a con-
cise mathematical formula, makes the elimination highly efficient 
while having the estimated FDR well controlled on the desired level. 

The formula includes a parameter called ‘elimination rate’, which 
is a constant between 0 and 1 and controls the ‘aggressiveness’ of 
elimination. When this parameter is chosen to be 1, the elimination 
is the most aggressive, and the number of steps needed to reach the 
desired FDR level is expected to be the least.

Put together, SurvNet is a computationally efficient mechanism 
for variable selection in neural networks that needs little manual 
intervention. After setting the initial network structure, an FDR 
cutoff η* (0.1 is the most commonly used value), and an elimina-
tion rate ε (1 is often an acceptable choice), the elimination proce-
dure will automatically determine how many and which variables 
to eliminate at each step and stop when the estimated FDR is no 
greater than η*.

Performance of SurvNet on simulated data
We first applied SurvNet to four datasets simulated under differ-
ent schemes (datasets 1–4). Datasets 1–3 were for classification 
and dataset 4 was for regression. For dataset 1, we simulated a 
10,000 × 784 matrix, each element of which followed a uniform dis-
tribution on (0,1), and treated its rows and columns as samples and 
variables respectively. The samples were randomly assigned into 
two classes of equal size, and p′ = 64 variables were chosen at ran-
dom with their values in one class being shifted by a small amount 
between 0.1 and 0.3. In this way, the 784 variables were indepen-
dent from each other, and the 64 chosen variables were significant 
because each of them had different mean values in the two classes. 
This ‘independent-variable differential-mean’ scheme is widely 
used for studying variable selection. For dataset 2, we considered 
correlated variables, since it is well known that variable dependence 
often makes FDR estimation difficult21,22. As the pixel value of image 
data usually highly depends on the values of surrounding pixels, 
here we used all images of digit 0 in the MNIST data23 and randomly 
assigned them into two classes. Then we picked p′ = 64 variables 
and shifted their mean values in one class. Dataset 3 was very chal-
lenging: unlike in the previous two datasets, the significant vari-
ables did not differ in the mean values of two classes; instead, they 
differed only in the variances. In other words, the only difference 
between the two classes was that 64 out of 784 variables were made 
to be ‘noisier’ with their standard deviations being inflated from 
0.29 to 0.95 (see Supplementary Information for calculations). In 
this case, classifiers and tests that detect discrepancies in the mean 
values, such as the t-test, would fail. Dataset 4 was a regression data-
set. It was a 10,000 × 784 matrix whose elements were uniformly 
distributed on (−1,1), and 64 of the 784 variables were randomly 
chosen as significant variables. The response variable depended on 
the main effects and interactions of the significant variables as well 
as their nonlinear transformations. See Methods for details of the 
simulation schemes.

On these simulated data, the performance of SurvNet was evalu-
ated by the number of significant variables selected, the estimated 
and actual FDR of selected variables, as well as the initial and final 
test error, which were the misclassification rate or the mean squared 
error using the network with all original variables and with the 
selected variables only, respectively. See Supplementary Information 
for details about how they were calculated.

To demonstrate how our method works step by step, we ran 
SurvNet on dataset 1 with an FDR cutoff η* = 0.1 and an elimina-
tion rate ε = 1, and Fig. 2a shows, in one instance of simulation, the 
number of original variables and surrogate variables left at each step 
of the selection process as well as the corresponding estimated FDR. 
Also displayed in the figure is the number of variables to be elimi-
nated in the subsequent step, which indicates that our algorithm 
was efficient: it eliminated a large number of variables at the begin-
ning and gradually slowed down the elimination as the number of 
remaining variables decreased and the estimated FDR got closer to 
the desired value. When the estimated FDR became less than 0.1, 
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Fig. 1 | Flowchart of SurvNet. The variable selection procedure of SurvNet 
starts by adding surrogate variables. Then it calculates the importance 
of all variables in a trained network and eliminates a number of least 
important variables. Next, SurvNet estimates the FDR of remaining original 
variables. If the estimated FDR is greater than the pre-set cutoff, the 
elimination proceeds; otherwise, the selection procedure ends.
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the selection process stopped, and the final model turned out to 
contain all 64 truly significant variables. On the same data, we stud-
ied the influence of elimination rates, and the results of using ε = 1 
and ε = 0.5 are shown in Fig. 2b,c. It is found that while a larger 
elimination rate led to a faster selection process with fewer steps, 
the number of variables left at the end of the selection was almost 
the same (Fig. 2b). Moreover, regardless of the elimination rate, our 
method gave an accurate estimate of FDR, and the true value of 
FDR was well controlled throughout the selection process (Fig. 2c).

The overall performance of SurvNet under η* = 0.1 and ε = 1 on dif-
ferent datasets was summarized in Table 1. SurvNet accurately selected 
the significant variables: the FDR of selected variables was always close 
to the cutoff value 0.1, and the estimated FDR was also accurate, that 
is, close to the actual FDR. Except for dataset 3, SurvNet always picked 
out more than 90% of the significant variables. In dataset 3, although 
SurvNet only successfully identified 23/64 ≈ 36% of the significant 
variables, it was still much superior to the t-test, which merely identi-
fied 0.20 (averaged over 25 simulations) significant variables, that is, 
0.20/64 ≈ 0.31% of all significant variables.

We scrutinized the selection process of SurvNet on dataset 3 and 
found the reason why only a proportion of significant variables were 
retained: the initial network, which made almost random guesses on 
the output, could not accurately determine the importance of input 
variables to the output, and thus many significant variables were 
removed at the first elimination step. As the selection proceeded, 
the network gained higher classification accuracy and also stronger 
ability to distinguish the significant variables; as a result, the false 
elimination of significant variables became less likely. Given this 
reason, SurvNet should be able to keep a larger proportion of sig-
nificant variables if a smaller elimination rate, say ε = 0.5, was used. 
We found that this was indeed the case (see Supplementary Table 3 
for details).

On all the simulation datasets, the prediction accuracy of the 
network was improved after variable selection. In particular, there 
was a dramatic improvement of classification accuracy on dataset 3 
(data with variance-inflated variables): while the test error given by 
the network with all 784 variables was 49.42%, it dropped to 0.47% 
after variable selection by SurvNet; that is, from an almost random 
guess to an almost perfect classification. This implies that the vari-
able selection gave back to the DNN the ability to utilize all types 
of information useful for classification, which was masked by the 
overwhelming irrelevant variables.

The results under different elimination rates (ε = 1 and ε = 0.5), 
different FDR cutoffs (η* = 0.1 and η* = 0.05), and different numbers 
of significant variables ( p′ = 64 and p′ = 32) on datasets 1–4 are 
shown in Supplementary Tables 1–4, respectively.

Performance of SurvNet on real data
After four simulation datasets, we then applied SurvNet to digits 4 
and 9 in the MNIST database (dataset 5) and a single-cell RNA-Seq 
dataset (dataset 6).

MNIST contains 70,000 images of ten handwritten digits from 0 
to 9, each of which contains 28 × 28 = 784 pixels, which are treated 
as 784 input variables. Here we only used the images of two digits 
that look alike (4 and 9), as they are similar in most pixels and are 
only different in pixels in certain regions. In the top panel of Fig. 3a, 
we show two representative 9s that differ in the presence of a bot-
tom hook and two representative 4s that differ in the width of top 
opening. The four regions circled in red are likely to be most signifi-
cant in differentiating 4s and 9s, especially the region in the upper 
middle denoting whether the top is closed or open, and the region 
in the lower middle denoting whether there is a hook at the bottom.

From left to right, the bottom panel of Fig. 3a shows the pix-
els that were selected by SurvNet under four combinations of FDR 
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Fig. 2 | Variable selection process on dataset 1. a, The number of original variables (r − r0), surrogate variables (r0), and significant variables (r′) left at 
each step of the selection process, together with the estimated FDR ( η̂) and the number of variables to be eliminated in the next step (m), when p′ = 64, 
η* = 0.1, and ε = 1. b, The number of original and surrogate variables along the selection processes with different elimination rates when p′ = 64 and 
η* = 0.1. c, The estimated and actual value of FDR along the selection processes with different elimination rates when p′ = 64 and η* = 0.1.
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cutoffs (η* = 0.1 or 0.01) and elimination rates (ε = 1 or 0.5). The 
colours display the relative importance, defined by equation (2) (see 
Methods), of the selected pixels, and a darker colour means greater 
importance. We found that different parameter settings gave quite 
consistent results, and they all picked out the four regions that were 
speculated to be significant.

Single-cell RNA-Seq24 is a biological technique for measuring 
gene expression in cells. In single-cell RNA-Seq data, the samples 
are the cells, the inputs are the expression levels of individual genes, 
and the output is the cell type. Chen et al. performed single-cell 
RNA-Seq analysis of the adult mouse hypothalamus and identified 
45 cell types based on clustering analysis25. For dataset 6, we used 
5,282 cells in two non-neuronal clusters, oligodendrocyte precursor 
cell (OPC) and myelinating oligodendrocyte (MO), which reflected 
two distinct stages of oligodendrocyte maturation. After prepro-
cessing (described in Supplementary Information), 1,046 genes 
were left for further analysis.

With η* = 0.01 and ε = 1, SurvNet selected 145 genes in one real-
ization. Figure 3b shows a heatmap of the expression values of these 
genes, in which rows are genes and columns are cells. The top ban-
ner shows the true class labels of the samples. For gene expression 
data, the set of significant genes is typically identified by ‘differential 
expression’ analysis, which finds differences in the mean expression 
levels of genes between classes. Indeed, as the heatmap shows, most 
genes have evidently different mean expression levels in the OPCs 
and MOs. However, among the 145 significant genes identified by 
SurvNet, 16 had log-fold-changes (logFCs) less than 1, meaning 
that their average expression values were not very different in the 
two classes. In Fig. 3b, these genes are marked in purple on the left 
banner, in contrast to green for the other genes. In fact, Bartlett’s 
test, which tests the difference in variance, claimed that 14 of these 
16 genes had unequal variances in the two groups of cells (p < 0.05); 
thus, they were actually instances of variance-inflated variables 
selected by SurvNet, in addition to the ones in dataset 3. Again, 

Table 1 | Summary statistics of results of SurvNet on datasets 1–6

Test error Selected variables (no.) FDR

Initial Final Total Significant Estimated Actual

Dataset 1 0.36% 0.27% 69.36 61.92 0.093 0.105

(0.17%) (0.10%) (5.07) (2.48) (0.004) (0.044)

Dataset 2 0% 0% 66.88 59.36 0.094 0.107

(0%) (0%) (8.73) (5.87) (0.005) (0.057)

Dataset 3 49.42% 0.47% 26.40 23.00 0.076 0.114

(1.69%) (0.48%) (13.68) (11.87) (0.031) (0.089)

Dataset 4a 33.013 8.901 71.16 63.96 0.094 0.097

(27.059) (1.988) (5.02) (0.20) (0.004) (0.061)

Dataset 5b 1.69% 1.71% 69.52 – 0 –

(0.24%) (0.21%) (13.35) – (0.002) –

Dataset 6b 0.083% 0.076% 149.44 – 0.007 –

(0.074%) (0.082%) (49.62) – (0.003) –

The numbers are averaged over 25 simulations/runs, with corresponding standard deviations in parentheses. p′ = 64, η* = 0.1 and ε = 1 are used for the simulated datasets (datasets 1–4); η* = 0.01 and ε = 1 
are used for the real datasets (datasets 5 and 6). aDataset 4 is a regression dataset and thus the test error is measured by the mean squared error. bDatasets 5 and 6 are real datasets, and thus the number 
of significant variables and the actual FDR are unknown.
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Fig. 3 | Results of SurvNet on the two real datasets. a, The top panel shows examples of hand-written digits 4 and 9 (two images for each). The circles 
mark the locations of distinctive pixels of these two digits. The bottom panel shows heatmaps of 28 × 28 pixels under four conditions with different FDR 
cutoffs and elimination rates, which display the relative importance of remaining pixels. The darker the colour of a pixel, the more important it is. The 
corresponding conditions are (from left to right): η* = 0.1, ε = 1; η* = 0.1, ε = 0.5; η* = 0.01, ε = 1; η* = 0.01, ε = 0.5. b, Heatmap showing the expression of 
selected genes in the single-cell RNA-Seq dataset in two groups of cells. Rows represent individual genes and columns are 200 randomly chosen cells. The 
genes whose log fold changes in OPCs and MOs are less than 1 are distinguished from others.
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SurvNet demonstrates its ability to identify various types of signifi-
cant variables, not just variables with different means. Further, the 
functional interpretations of the selected genes match the biological 
characteristics of OPCs and MOs (see Supplementary Information).

Comparisons with regularization and knockoff-based 
methods
We first compared SurvNet with two state-of-the-art embedded 
methods: group lasso and sparse group lasso regularizations for 
DNNs13. In these two methods, which we call GL and SGL for short, 
weights from each neuron are grouped, and the grouped weights 
are regularized towards being simultaneously zero, so that some 
entire neurons (including input neurons) can be removed from  
the network.

GL and SGL do not estimate and control FDR, and thus they 
cannot determine the number of variables to select. This is a crucial 
disadvantage in practice. This inability to determine a proper regu-
larization strength (λ) also makes their comparison with SurvNet 
non-trivial: for the comparison, which λ should we use for GL and 
SGL? We circumvented this difficulty in two ways. First, we manu-
ally set λ so that GL and SGL kept a set of variables of similar size 
as SurvNet, that is, we ‘lent’ them the ability of SurvNet to deter-
mine a proper number of variables to select, and checked whether 
their selected variables were truly significant and whether they pre-
dicted the outcome accurately. Table 2 gives the results of the three 
methods. It is clear that SurvNet performed the best on all the six 
datasets. Note that the total number of selected variables, which 
was determined by the λ value we set, is not a valid criterion for 
the performance. On most datasets, the gaps between the perfor-
mance of SurvNet and the other two methods were quite large. This 
means that the performances of GL and SGL were much inferior to 
SurvNet, even when we equipped them with the ability to determine 
the number of variables to select. Is it possible that they performed 
better under another λ value? To study this, in our second way, we 
tried a series of λ values for GL and SGL. We found, interestingly, 
that a low FDR had never been achieved, no matter what λ value was 
used. The likely reason is discussed in Supplementary Information.

Next, we compared SurvNet with variable selection methods 
based on knockoffs, which are a hot research topic in the field of 
FDR control. Similar to surrogate variables, knockoffs serve as 
negative controls for the original variables, but they are constructed 
to further preserve the correlations between the original variables, 
and thus it is guaranteed, theoretically, that the FDR is controlled 
under arbitrary variable correlation. Knockoff-based methods typi-
cally select variables in a single run, that is, by a one-step procedure 
without re-training of networks. Here, we first compared SurvNet 
with two naive ways of combining SurvNet with knockoff samples, 
which were generated using two representative approaches called 
‘second-order’ knockoffs19 and ‘deep’ knockoffs26, then we compared  

SurvNet with two representative methods that apply knockoffs in 
neural networks: one16 designed a new DNN architecture called 
DeepPINK, and the other17 developed an efficient algorithm to 
sample valid knockoffs for Bayesian models as well as new knock-
off test statistics. The comparisons were done on all our simulation 
datasets and the datasets from16,17. See Supplementary Information 
for more details. Below, the performance is summarized in two 
most important aspects: FDR control and power.

Regarding FDR control, both SurvNet and knockoff-based 
methods successfully controlled FDR in most but not all cases. 
Knockoff-based methods failed on dataset 3 in our paper, that is, 
the data with variance-inflated variables, where the significant vari-
ables were not only sparse but also ‘weak’, in the sense that they 
did not have strong and easy-to-capture effects on the outcome. 
Knockoff-based methods’ failure on such challenging data was 
likely due to the one-step procedure they used to select variables, 
and SurvNet overcame this difficulty by its (multi-step) backward 
elimination procedure. SurvNet failed on a synthetic dataset in 
ref. 17 where the correlations between the variables were exceed-
ingly strong. This was likely due to the use of permutations, which 
sacrificed the correlations between variables, to generate surrogate 
variables in the current version of SurvNet. While its failure on 
the synthetic dataset in ref. 17 implies that a theoretical guarantee 
of SurvNet to control the FDR under arbitrary variable correlation 
may not exist, its control of FDR was flawless on all the other data-
sets where the variables were known to be correlated, including our 
dataset 2 (MNIST data) and the synthetic data in ref. 16, as well as the 
HIV-1 drug resistance data in ref. 16, which was the only real dataset 
where the ground truth was (considered as) known.

As to power, SurvNet usually has higher power than 
knockoff-based methods. This was observed in the comparisons 
on all the simulated datasets and the only real dataset where the 
true answer was (considered as) known. For the other real datasets, 
where the true answers were unknown, SurvNet reported a larger 
number of selected variables. In many cases, the improvement in 
power was substantial.

A systematic description and discussion of our comparisons is 
given in Supplementary Information.

Conclusions and discussion
We have presented a largely automatic procedure for variable selec-
tion in neural networks (SurvNet). It is based on a new measure of 
variable importance that applies to a variety of networks, deep or 
shallow, for regression or classification, and with one or multiple 
output units. More importantly, SurvNet aims to estimate and con-
trol the FDR of selected variables in neural networks, which is essen-
tial for applications where the trustworthiness of variable selection 
is pivotal. By introducing surrogate variables, it avoids training 
multiple networks in parallel. SurvNet also adjusts the number of 

Table 2 | Performance of SurvNet, GL and SGL on datasets 1–6

Total selected variables (no.) Final test error Actual FDR

SurvNet GL SGL SurvNet GL SGL SurvNet GL SGL

Dataset 1 69.36 76.88 60.80 0.27% 8.80% 22.52% 0.105 0.388 0.399

Dataset 2 66.88 23.36 73.92 0% 0% 0% 0.107 0.175 0.501

Dataset 3 26.40 8.80 20.44 0.47% 50.72% 50.49% 0.114 0.899 0.900

Dataset 4a 71.16 58.40 75.88 8.90 83.59 78.66 0.097 0.887 0.714

Dataset 5b 69.52 130.76 62.40 1.71% 17.45% 34.65% – – –

Dataset 6b 149.44 143.28 127.36 0.076% 0.085% 0.112% – – –

The numbers are averaged over 25 simulations/runs. For GL and SGL, since they cannot estimate FDR, proper regularization strength is given in each experiment so that roughly the same number of 
variables are removed when SurvNet is applied (with η* = 0.1 for datasets 1–4, η* = 0.01 for datasets 5 and 6). All simulated datasets (datasets 1–4) have 64 significant variables. aDataset 4 is a regression 
dataset, and thus the test error is measured by the mean squared error. bDatasets 5 and 6 are real datasets, and thus the actual FDR is unknown.
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variables to eliminate at each step, and the ‘warm start’ nature of 
backward elimination facilitates the training of networks. On mul-
tiple simulation datasets and real datasets, SurvNet has effectively 
identified the significant variables. It has given a dependable esti-
mate of FDR as well, in almost all datasets we considered.

SurvNet takes advantages of modern developments of DNNs. 
The importance scores of input variables that are based on deriva-
tives with respect to the inputs can be efficiently computed by func-
tions in deep-learning packages such as TensorFlow, PyTorch, and 
Theano. Moreover, advances in optimization techniques and com-
putation platforms have made the training of DNNs highly scalable. 
In particular, DNNs can accommodate a large number of input vari-
ables, which enables the introduction of surrogate variables.

Methods
Measures of variable importance. Notation. We use a tuple (x,y) to represent 
the input and the output of the network, with y being either one-dimensional or 
multi-dimensional. xj denotes the jth component of x, namely the jth variable, 
and (x(i),y(i)) (i = 1, …, n) is the ith sample, where n is the total number of samples 
(in the training set). Given a proper form of the loss L(⋅,⋅), the loss function 
L∗ =

∑n
i=1 L(y

(i), f(x(i))), where f denotes the output function of the network. 
The most popular choices for L(⋅,⋅) are the squared error loss for regression 
problems and the cross-entropy loss for classification problems.

Existing measures. Many statistics have been proposed to measure the importance 
of variables in neural networks, and they generally fall into two categories27,28.

One category of methods estimate the importance of xj, denoted by Sj, based 
on the magnitudes of the connection weights in the network29–33. A simple example 
is the sum of absolute values of input weights29, but larger values of weights in 
the input layer do not mean greater importance if connections in hidden layers 
have small weights, and a better alternative is to replace the input weights with 
the products of the weights on each path from this input to the output30. These 
measures were developed for networks with only one hidden layer, and they are 
unlikely to work well for deeper networks as the outgoing weights of a neuron does 
not reflect its importance once the neuron is inactive (for example, when the input 
of a sigmoid neuron is far from zero or the input of a ReLU neuron is negative).

The other category of methods estimate Sj by the sum of influences of the 
input weights on the loss function, that is Sj =

∑
k∈Ωj

δL∗k , where Ωj is the set of 
outgoing weights from the jth input neuron, and δL∗k  is the increment of the loss 
function caused by the removal of weight wk (ref. 27). δL∗k  can be approximated by 
a Taylor series of the loss function using first-order34,35 or second-order terms36–38. 
However, it is unclear why Sj equals the (unweighted) sum of δL∗k .

Apart from these two major categories of measures, it was also proposed to 
use Sj = ∂f

∂xj , that is Sj = ∂y
∂xj , when the output y is one-dimensional39,40. But it 

is unclear how Sj should be defined when there are multiple output units. Let 
y1, …, yK be the output values of K output units, and one definition of Sj was given 
by Sj =

∑K
k=1 |

∂yk
∂xj | (ref. 41). However, using this summation seems problematic in 

some cases, especially when y1, …, yK are the outputs of softmax functions.

Our new measure. We propose a simple and direct measure of the importance of 
variable j based on ∂L∂xj , which describes how the loss changes with xj. There are a few 
advantages of using ∂L∂xj . First, regardless of the structure of the network and whether 
the output(s) is continuous or categorical, L is always well defined since it is the 
target for the optimization/training of the network. Thus the proposed measure is 
applicable to a wide variety of networks. Second, no matter how many output units 
there are, L is always a scalar and hence ∂L∂xj  is always a scalar. There is no difficulty 
in combining effects from multiple output units. Third, ∂L∂xj  is easily computable with 
backpropogation, and popular frameworks/libraries for DNN computations (for 
example, TensorFlow, PyTorch and Theano) all use differentiators that efficiently 
compute partial derivatives (gradients) of arbitrary forms.

Note that ∂L∂xj  is a function of the tuple (x,y), and hence it is natural to estimate 
it by its mean over all observations in the training set. To avoid cancellation of 
positive and negative values, we measure the importance of xj by the mean of 
absolute values

Sj =
1
n
∑n

i=1
|
∂L
∂xj

(y(i), f(x(i)))|, (1)

or the mean of squares

Sj =
1
n
∑n

i=1

∂L
∂xj

(y(i), f(x(i)))2, (2)

where ∂L∂xj (y
(i), f(x(i))) is the value of ∂L∂xj  at the ith training sample.

The importance scores given by equations (1) and (2) implicitly assume that 
all the input values have similar range, which is typically the case for DNNs, since 
it is common practice to standardize/scale the variables before supplying them to 

the network for the sake of faster and more stable training of the network42,43. If this 
is not the case, we suggest the score in equation (1) be multiplied by the (sample) 
standard deviation of xj and the score in equation (2) be multiplied by the (sample) 
variance of xj.

Note that in the case of multiple linear regression, 
L =

1
2 (y − ŷ)2 =

1
2 (y −

∑
jβjxj)2, where y is a scalar response and βj is 

the jth regression coefficient, then ∂L∂xj = −(y − ŷ)βj. Thus, Sj is defined as 
|βj| ×

1
n
∑n

i=1 |ei| or βj
2
×

1
n
∑n

i=1 ei
2 by (1) and (2) respectively, where 

ei = y(i) − ŷ(i). Note that Sj is proportional to ∣βj∣ or βj
2 as 1n

∑n
i=1 |ei| and 

1
n
∑n

i=1 ei
2 are constants. Therefore, both of them are reasonable measures of the 

contribution of the jth variable, and they are actually equivalent in this case. The 
meaning of Sj in some other special cases, such as linear regression with multiple 
outputs and logistic regression with one or multiple outputs, is elaborated in 
Supplementary Information.

All results in the main text were obtained using equation (2). Results obtained 
using equation (1) (Supplementary Information) are not notably different.

Elimination procedure with FDR control. In this section, we first introduce how 
we estimate FDR and then talk about how we use this estimate to determine the 
number of variables to eliminate at each step.

Introduction of surrogate variables. The key of estimating FDR20 is to estimate/
generate the null distribution of the test statistic. In our case, it is to obtain the 
distribution of the importance score Sj defined by equation (2) or equation (1) 
for variables that are not significant. Since the network is a complicated and 
highly nonlinear model, a theoretical distribution that applies to various network 
structure and various types of data may not exist. This null distribution needs to be 
obtained for the network and the data in hand.

However, it is usually unknown which variables are truly null. If we construct 
the null distribution by permuting the output values of the data, it seems inevitable 
to train multiple networks from scratch in parallel. For this reason, we propose to 
introduce/add a number of variables that are known/generated to be null. We call 
these variables ‘surrogate null variables’ (or ‘surrogate variables’ for short). These 
variables will be concatenated with the original variables to form a larger data 
matrix.

To be precise, suppose there are p original variables and n training samples 
(including validation samples). Then after we add q surrogate variables, the new 
data matrix will be of size n × (p + q), which binds the original n × p data matrix X 
with an n × q data matrix for surrogate variables Xs. It is assumed that the original 
variables are distributed in similar ranges or have been standardized, which is a 
suggested pre-processing step as it benefits the training of the network, and the 
elements in Xs are sampled with replacement (or without replacement when q ≤ p) 
from the elements in X. As a result, the q surrogate variables are null, and their 
importance scores give the null distribution.

We recommend q to be on the same scale as p (see Supplementary Information 
for a more detailed discussion about the choice of q). For convenience, q takes the 
same value as p in all experiments in this paper. In this case, the elements in Xs can 
be generated by permuting the elements in X.

The selection procedure of SurvNet starts with using all p + q variables as 
inputs. Then at each step, it eliminates a number of least important variables, 
including both original variables and surrogate variables. The remaining variables 
are used to continue training the network, and the elimination stops once the FDR 
falls below the cutoff.

FDR estimation. Then we consider how to estimate FDR at any given time of the 
selection process. Suppose r variables are retained in the network, among which 
there are r0 surrogate variables, then r0/q proportion of surrogate (null) variables 
have not been eliminated yet. Accordingly, one would expect that roughly the same 
proportion of null original variables still exist at this time, that is, approximately 
r0
q × p0 variables among the remaining original variables are falsely called 
significant, where p0 is the number of null variables in the original dataset. Thus, an 
estimate of the FDR of the r − r0 original variables is given by

η̃ =

r0
q × p0
r − r0

. (3)

In practice, however, p0 is unknown, and a common strategy is to replace it with its 
upper bound p (ref. 20). Hence we have the following estimated FDR,

η̂ =

r0
q × p
r − r0

=

r0
r − r0

×

p
q
, (4)

which is greater than η̃, but the difference is negligible when the proportion 
of relevant variables is small. That is, η̂

η̃
=

p
p0 ≈ 1 when p−p0

p  is close to zero. 
Apparently, when η̂ is controlled to be no greater than a pre-specified threshold η*, η̃ 
is guaranteed to be no greater than η* as well. When q = p, η̂ can be simplified as r0

r−r0 .

Determination of the number of variables to eliminate. If the estimated FDR η̂ 
(given by equation (4)) is less than or equal to the FDR cutoff η*, the variable 
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selection procedure stops. Otherwise, the procedure proceeds, and we want to 
decide how many variables to eliminate among the r variables that are still in the 
model. Let this number be m, and the determination of m is based on the following 
considerations. On one hand, we expect that the elimination process is time-saving 
and reaches the FDR threshold quickly; on the other hand, we want to avoid 
eliminating too many variables at each step, in which case the FDR may fall much 
lower than the threshold. We have,

Claim 1. If m variables are further eliminated from the current model, the smallest 
possible estimated FDR after this step of elimination is

min η̂
new

= (1 −

m
r0

) × η̂, (5)

where r0 is the number of surrogate variables that are in the model before this step of 
elimination.

Proof. Suppose there are m0 surrogate variables among the m variables to be 
eliminated, 0 ≤ m0 ≤ m, then according to equation (4), η̂ will be updated to

η̂
new

=

r0 − m0

r − r0 − (m − m0)
×

p
q
. (6)

Note that η̂new is monotonically decreasing with respect to m0 for any fixed m, we 
have

min η̂
new

= η̂
new

|m0=m =

r0 − m
r − r0

×

p
q
. (7)

Equation (4) indicates that 1
r−r0 ×

p
q =

η̂
r0 . Plugging it into equation (7), we have

min η̂
new

= (r0 − m) ×

η̂

r0
= (1 −

m
r0

) × η̂.

It follows from equation (5) that min η̂new = η∗ when m = (1 −

η∗

η̂
) × r0. 

Also, note that min η̂new is a monotonically decreasing function of m. Therefore, 
when m < (1 −

η∗

η̂
) × r0, min η̂new > η∗ and thus η̂new > η∗. That is,

Corollary 1. When m <
(
1 −

η∗

η̂

)
× r0, the estimated FDR after this step of 

elimination η̂new is guaranteed to be still greater than the FDR cutoff η*.
On the other hand, when m ≥ (1 −

η∗

η̂
) × r0, min η̂new ≤ η∗. That is,

Corollary 2. When m ≥ (1 −

η∗

η̂
) × r0, the estimated FDR after this step of 

elimination η̂new may reach the FDR cutoff η*.
Corollary 1 says that m being less than (1 −

η∗

η̂
) × r0 is ‘safe’ but the 

elimination will not stop after this step. Corollary 2 says that m being much larger 
than (1 −

η∗

η̂
) × r0 may not be ‘safe’ anymore. Taking both into consideration, we 

choose the step size to be

m = ⌈(1 −

η∗

η̂
) × r0⌉, (8)

where ⌈⋅⌉ denotes ‘ceiling’, that is the smallest integer that is no less than ⋅. Notice 
that when η̂ > η∗, which is the premise of continuing to eliminate variables, 
1 −

η∗

η̂
> 0, and r0 > 0 as well since η̂ is positive. Thus m is ensured to be no less 

than 1 at each step of variable elimination.
This form of m seems to be reasonable for the following reasons. First, if there 

remain a great number of surrogate variables in the network, clearly more of them 
should be taken out. As r0 decreases, m will be smaller, and this makes sense since 
one should be more careful in further elimination. Second, when η̂ is much higher 
than η*, one will naturally expect a larger m so that the updated estimated FDR will 
approach this cutoff.

Using the m determined by equation (8), there is a chance that the estimated 
FDR will get to the cutoff in only one step. Oftentimes such a fast pace is not 
preferred as removing too many inputs at a time may make our warm start of 
the training not warm any more. Hence we may introduce an ‘elimination rate’ ε, 
which is a constant between 0 and 1, and take

m = ⌈ε × (1 −

η∗

η̂
) × r0⌉. (9)

Experimental setup. Simulation schemes. For dataset 1, we simulated a 
10,000 × 784 matrix X, with xij ~ i.i.d. (independent and identically distributed) 
U(0, 1) for 1 ≤ i ≤ 10,000, 1 ≤ j ≤ 784, where U means uniform distribution. The 
samples were randomly assigned into two classes C1 and C2 of equal size. Then 
p′ = 64 variables were chosen at random and their values in one class were 
shifted: for each of these variables, we generated a shift value δj ~ U(0.1,0.3), with its 
direction having equal probability of being positive and negative. More precisely, 
xij ← xij + (2αj − 1) × δj for i ∈ C1, j ∈ Ωp′, where αj ∼ Bernoulli( 1

2 ) and Ωp′ was the 
set of p′ randomly chosen variables.

For dataset 2, we used all images of digit 0 in the MNIST data and randomly 
assigned them into two classes. Then we picked p′ = 64 variables and shifted their 
mean values in one class in the same way we did in dataset 1.

The third simulation scheme is very challenging. As in dataset 1, we simulated 
a 10,000 × 784 matrix X whose element xij ~ i.i.d. U(0, 1) and divided the samples 
into two equal-size classes C1 and C2. But then, to make p′ = 64 randomly 
chosen variables significant, we let xij ← xij + (2αij − 1) × δij for i ∈ C1, j ∈ Ωp′, 
where αij ∼ Bernoulli( 1

2 ), and δij ~ U(0.8, 1). Note that different from the first two 
simulation schemes, here α and δ depend on both i and j.

For dataset 4, the data matrix was X = (xij)10,000×784, and each xij ~ U(−1,1). 
Of the 784 variables, 64 were randomly chosen as significant variables (denoted 
by xkj , j = 1, …, 64), and y depended on the main effects and interactions of xkj as 
well as their nonlinear transformations:

yi =
∑16

j=1 βjxikj +
∑32

j=17 βj sin xikj +
∑48

j=33 βje
xikj

+

∑64
j=49 βj max(0, xikj )

+β′

1xik15xik16 + β′

2xik31xik32 + β′

3xik47xik48 + β′

4xik63xik64 + εi ,

where βj = (2αj − 1) × bj, αj ∼ Bernoulli( 1
2 ), bj ~ U(1,3), εi ~ N(0,1) for 

i = 1, …, 10,000, j = 1, …, 64, and β′

1, β
′

2, β
′

3, β
′

4 had the same distribution as βj.

Implementation details. Except for the MNIST data, which contain 60,000 training 
images (including 5,000 validation images) and 10,000 testing images, each 
dataset was divided into a training set and a test set, with 80% of the samples in 
the training set and 20% in the test set, and 30% of training samples were further 
separated for validation (used to decide when to stop training, see Supplementary 
Information).

SurvNet was implemented on TensorFlow 1.844. We used a common network 
structure for all datasets, which had two hidden layers consisting of 40 and 20 
nodes respectively. The ReLU activation function was used, together with a batch 
size of 50 and a learning rate of 0.05 (0.01 for the regression problem).

Data availability
The simulated data (datasets 1–4) were generated using the code at https://github.
com/zixuans/SurvNet/tree/master/Data. The MNIST data (dataset 5) is available 
at http://yann.lecun.com/exdb/mnist/. The single-cell RNA-Seq data (dataset 
6) is available at the GEO repository https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE87544. The synthetic data used in the NeurIPS paper16 were 
simulated using the code on https://github.com/zixuans/SurvNet/tree/master/
Comparisons%20with%20knockoffs/Scenario%203, and the real datasets were 
provided by request from its author, Y. Lu. The synthetic data used in the AISTATS 
paper17 were simulated using the code at https://github.com/zixuans/SurvNet/
tree/master/Comparisons%20with%20knockoffs/Scenario%204, and the two real 
datasets are available at https://archive.ics.uci.edu/ml/datasets/Bank+Marketing 
and https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data.

Code availability
The code developed for the study of SurvNet is publicly available at the Github 
repository https://github.com/zixuans/SurvNet. The code for GL and SGL13 is 
publicly available at https://bitbucket.org/ispamm/group-lasso-deep-networks/src/
master/. The code used to construct second-order knockoffs19 and deep knockoffs26 
is available at https://github.com/msesia/knockoff-filter and https://github.com/
msesia/deepknockoffs, respectively. The code of the algorithm proposed in the 
AISTATS paper17 is publicly available at https://github.com/jroquerogimenez/
ConditionallySalientFeatures.
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