
Articles
https://doi.org/10.1038/s42256-021-00308-z

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA. ✉e-mail: jun.li@nd.edu

Deep neural networks (DNNs) are a popular machine-learning
technique and have shown superior performance in many
scientific problems. Despite their high prediction accuracy,

DNNs are often criticized for a lack of interpretation of how changes
of the input variables influence the output. Indeed, for applications
in many scientific fields such as biology and medicine, under-
standing the statistical models described by the networks can be as
important as, if not more important than, the prediction accuracy.
With a DNN, because of its nonlinearity and inherent complexity,
one should not expect a concise relationship between each input
variable and the output, such as the conditional monotonicity in lin-
ear regression or logistic regression. A more realistic approach for
interpreting the DNN model can be selecting a subset of variables,
among all input variables, that have significant predictive power on
the output, which is known as ‘variable selection’. This paper consid-
ers the variable selection problem in DNNs.

The variable selection methods for neural networks (including
but not limited to DNNs), similar to the ones for other machine
learning techniques, can be broadly classified into three categories:
filters, wrappers and embedded methods1–3. Filters select variables
by information theoretic criteria, such as mutual information4 and
partial mutual information5, and the selection procedure does not
involve network training. By contrast, both wrappers and embed-
ded methods are based on the training of neural networks. Wrappers
wrap the training phase with a search strategy, which searches
through the set, or a subset, of all possible combinations of input
variables and selects the combination whose corresponding network
gives the highest prediction accuracy. A number of sequential6 and
heuristic search strategies7–9 have been used. Embedded methods,
unlike wrappers, select variables during the training of the network
of interest. This can be done by gradually removing/pruning weights
or variables according to their importance measured in various ways
(a detailed review is given in the Methods section) or by incorporat-
ing a regularization term into the loss function of the neural network
to impose sparsity on the weights10–13. For a more exhaustive review
of variable selection methods in neural networks, see refs. 1,14.

While a lot of variable selection methods have been developed
for neural networks, there are still challenges that hinder them from
being widely used. First and foremost, most of these methods lack
a control on the quality of selected variables. When selecting from
a large number of variables, a standard way of quality control is to
calculate false discovery rate (FDR)15 and control it at a certain level,
particularly in biological and medical studies. In the context of vari-
able selection, FDR is the (expected) proportion of false positives
among all variables called significant; for example, if 20 variables
are selected (called significant), and two of them are actually null,
then the FDR is 2/20 = 0.1. Currently, most methods do not provide
FDR control, but there are notable exceptions: a few methods16,17
utilize a modern FDR control framework based on ‘knockoffs’18,19
for controlled variable selection in neural networks. We will later
study their performance and compare it with that of our method.
Second, among these methods, many were developed for specific
types of networks, especially very shallow networks, and they do
not work, or work inefficiently, for deeper networks. Third, many
of the methods are not applicable to large datasets, on which their
computational loads can be prohibitively high.

In this paper, we develop a method called SurvNet for variable
selection in neural networks that overcomes these limitations. It is
an embedded method that gradually removes least relevant vari-
ables until the FDR of remaining variables reaches a desired thresh-
old. Figure 1 shows the flowchart of SurvNet. It starts by adding a
set of simulated input variables called ‘surrogate variables’ that help
estimate the FDR and train a network with all variables, including
both original and surrogate variables. Then it calculates the impor-
tance of each variable (original or surrogate) and eliminates the
variables that are least important. When eliminating a variable, its
corresponding input neuron and all outgoing connections of this
neuron are removed from the network. After this, SurvNet estimates
the FDR of the original variables that remain in the model. If the
estimated FDR is greater than the pre-set threshold, SurvNet will
go back to the step of training the (updated) network; otherwise,
the elimination stops, and all remaining surrogate variables are

Variable selection with false discovery rate control
in deep neural networks
Zixuan Song and Jun Li    ✉

Deep neural networks are famous for their high prediction accuracy, but they are also known for their black-box nature and
poor interpretability. We consider the problem of variable selection, that is, selecting the input variables that have signifi-
cant predictive power on the output, in deep neural networks. Most existing variable selection methods for neural networks
are only applicable to shallow networks or are computationally infeasible on large datasets; moreover, they lack a control on
the quality of selected variables. Here we propose a backward elimination procedure called SurvNet, which is based on a new
measure of variable importance that applies to a wide variety of networks. More importantly, SurvNet is able to estimate and
control the false discovery rate of selected variables empirically. Further, SurvNet adaptively determines how many variables to
eliminate at each step in order to maximize the selection efficiency. The validity and efficiency of SurvNet are shown on various
simulated and real datasets, and its performance is compared with other methods. Especially, a systematic comparison with
knockoff-based methods shows that although they have more rigorous false discovery rate control on data with strong variable
correlation, SurvNet usually has higher power.

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell426

mailto:jun.li@nd.edu
http://orcid.org/0000-0003-4353-5761
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00308-z&domain=pdf
http://www.nature.com/natmachintell

ArticlesNaTurE MacHinE InTElligEncE

removed before the final model is trained. Note that each updated
network is trained using the values of weights in the last trained
network as initial values for a ‘warm start’.

There are three major novelties in this backward elimination
procedure of SurvNet. First, it proposes a new measure/score of
variable importance, which works regardless of the type of problems
(classification or regression), the number of output neurons (one
or multiple), and the number of hidden layers (one or multiple)
in neural networks. In fact, this score can be readily computed for
networks with arbitrary depths and activation functions. Second,
SurvNet proposes an easy and quick way of estimating FDRs.
Statistical estimation of FDRs requires obtaining the null distribu-
tion of the importance scores, that is, the distribution of the scores
of irrelevant variables20. This is often done by permuting the output
values of samples and training multiple independent models in par-
allel, each of which corresponding to a permuted dataset, but the
computational cost is typically unaffordable for neural networks.
SurvNet proposes a distinct way: it generates a set of null variables,
typically by random sampling from the original data matrix with or
without replacement, which serve as surrogates of the (unknown)
null original variables to obtain the null distribution. The idea of
surrogate variables is similar to that of knockoffs, but they differ
in several important aspects (discussed in detail in Supplementary
Information). With the introduction of surrogate variables, an esti-
mate of FDR can be given by a simple mathematical formula without
training a large number of networks at each step. Third, at each step,
instead of eliminating one variable or any pre-specified number of
variables, SurvNet is able to adaptively determine an appropriate
number of variables to eliminate. This number, expressed in a con-
cise mathematical formula, makes the elimination highly efficient
while having the estimated FDR well controlled on the desired level.

The formula includes a parameter called ‘elimination rate’, which
is a constant between 0 and 1 and controls the ‘aggressiveness’ of
elimination. When this parameter is chosen to be 1, the elimination
is the most aggressive, and the number of steps needed to reach the
desired FDR level is expected to be the least.

Put together, SurvNet is a computationally efficient mechanism
for variable selection in neural networks that needs little manual
intervention. After setting the initial network structure, an FDR
cutoff η* (0.1 is the most commonly used value), and an elimina-
tion rate ε (1 is often an acceptable choice), the elimination proce-
dure will automatically determine how many and which variables
to eliminate at each step and stop when the estimated FDR is no
greater than η*.

Performance of SurvNet on simulated data
We first applied SurvNet to four datasets simulated under differ-
ent schemes (datasets 1–4). Datasets 1–3 were for classification
and dataset 4 was for regression. For dataset 1, we simulated a
10,000 × 784 matrix, each element of which followed a uniform dis-
tribution on (0,1), and treated its rows and columns as samples and
variables respectively. The samples were randomly assigned into
two classes of equal size, and p′ = 64 variables were chosen at ran-
dom with their values in one class being shifted by a small amount
between 0.1 and 0.3. In this way, the 784 variables were indepen-
dent from each other, and the 64 chosen variables were significant
because each of them had different mean values in the two classes.
This ‘independent-variable differential-mean’ scheme is widely
used for studying variable selection. For dataset 2, we considered
correlated variables, since it is well known that variable dependence
often makes FDR estimation difficult21,22. As the pixel value of image
data usually highly depends on the values of surrounding pixels,
here we used all images of digit 0 in the MNIST data23 and randomly
assigned them into two classes. Then we picked p′ = 64 variables
and shifted their mean values in one class. Dataset 3 was very chal-
lenging: unlike in the previous two datasets, the significant vari-
ables did not differ in the mean values of two classes; instead, they
differed only in the variances. In other words, the only difference
between the two classes was that 64 out of 784 variables were made
to be ‘noisier’ with their standard deviations being inflated from
0.29 to 0.95 (see Supplementary Information for calculations). In
this case, classifiers and tests that detect discrepancies in the mean
values, such as the t-test, would fail. Dataset 4 was a regression data-
set. It was a 10,000 × 784 matrix whose elements were uniformly
distributed on (−1,1), and 64 of the 784 variables were randomly
chosen as significant variables. The response variable depended on
the main effects and interactions of the significant variables as well
as their nonlinear transformations. See Methods for details of the
simulation schemes.

On these simulated data, the performance of SurvNet was evalu-
ated by the number of significant variables selected, the estimated
and actual FDR of selected variables, as well as the initial and final
test error, which were the misclassification rate or the mean squared
error using the network with all original variables and with the
selected variables only, respectively. See Supplementary Information
for details about how they were calculated.

To demonstrate how our method works step by step, we ran
SurvNet on dataset 1 with an FDR cutoff η* = 0.1 and an elimina-
tion rate ε = 1, and Fig. 2a shows, in one instance of simulation, the
number of original variables and surrogate variables left at each step
of the selection process as well as the corresponding estimated FDR.
Also displayed in the figure is the number of variables to be elimi-
nated in the subsequent step, which indicates that our algorithm
was efficient: it eliminated a large number of variables at the begin-
ning and gradually slowed down the elimination as the number of
remaining variables decreased and the estimated FDR got closer to
the desired value. When the estimated FDR became less than 0.1,

Start

Add surrogate variables

Train the neural network

Calculate variable importance

Eliminate variables

Estimate FDR

No

Yes

End

Remove remaining
surrogate variables and

train the final model

FDR ⩽ cutoff?

Fig. 1 | Flowchart of SurvNet. The variable selection procedure of SurvNet
starts by adding surrogate variables. Then it calculates the importance
of all variables in a trained network and eliminates a number of least
important variables. Next, SurvNet estimates the FDR of remaining original
variables. If the estimated FDR is greater than the pre-set cutoff, the
elimination proceeds; otherwise, the selection procedure ends.

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell 427

http://www.nature.com/natmachintell

Articles NaTurE MacHinE InTElligEncE

the selection process stopped, and the final model turned out to
contain all 64 truly significant variables. On the same data, we stud-
ied the influence of elimination rates, and the results of using ε = 1
and ε = 0.5 are shown in Fig. 2b,c. It is found that while a larger
elimination rate led to a faster selection process with fewer steps,
the number of variables left at the end of the selection was almost
the same (Fig. 2b). Moreover, regardless of the elimination rate, our
method gave an accurate estimate of FDR, and the true value of
FDR was well controlled throughout the selection process (Fig. 2c).

The overall performance of SurvNet under η* = 0.1 and ε = 1 on dif-
ferent datasets was summarized in Table 1. SurvNet accurately selected
the significant variables: the FDR of selected variables was always close
to the cutoff value 0.1, and the estimated FDR was also accurate, that
is, close to the actual FDR. Except for dataset 3, SurvNet always picked
out more than 90% of the significant variables. In dataset 3, although
SurvNet only successfully identified 23/64 ≈ 36% of the significant
variables, it was still much superior to the t-test, which merely identi-
fied 0.20 (averaged over 25 simulations) significant variables, that is,
0.20/64 ≈ 0.31% of all significant variables.

We scrutinized the selection process of SurvNet on dataset 3 and
found the reason why only a proportion of significant variables were
retained: the initial network, which made almost random guesses on
the output, could not accurately determine the importance of input
variables to the output, and thus many significant variables were
removed at the first elimination step. As the selection proceeded,
the network gained higher classification accuracy and also stronger
ability to distinguish the significant variables; as a result, the false
elimination of significant variables became less likely. Given this
reason, SurvNet should be able to keep a larger proportion of sig-
nificant variables if a smaller elimination rate, say ε = 0.5, was used.
We found that this was indeed the case (see Supplementary Table 3
for details).

On all the simulation datasets, the prediction accuracy of the
network was improved after variable selection. In particular, there
was a dramatic improvement of classification accuracy on dataset 3
(data with variance-inflated variables): while the test error given by
the network with all 784 variables was 49.42%, it dropped to 0.47%
after variable selection by SurvNet; that is, from an almost random
guess to an almost perfect classification. This implies that the vari-
able selection gave back to the DNN the ability to utilize all types
of information useful for classification, which was masked by the
overwhelming irrelevant variables.

The results under different elimination rates (ε = 1 and ε = 0.5),
different FDR cutoffs (η* = 0.1 and η* = 0.05), and different numbers
of significant variables (p′ = 64 and p′ = 32) on datasets 1–4 are
shown in Supplementary Tables 1–4, respectively.

Performance of SurvNet on real data
After four simulation datasets, we then applied SurvNet to digits 4
and 9 in the MNIST database (dataset 5) and a single-cell RNA-Seq
dataset (dataset 6).

MNIST contains 70,000 images of ten handwritten digits from 0
to 9, each of which contains 28 × 28 = 784 pixels, which are treated
as 784 input variables. Here we only used the images of two digits
that look alike (4 and 9), as they are similar in most pixels and are
only different in pixels in certain regions. In the top panel of Fig. 3a,
we show two representative 9s that differ in the presence of a bot-
tom hook and two representative 4s that differ in the width of top
opening. The four regions circled in red are likely to be most signifi-
cant in differentiating 4s and 9s, especially the region in the upper
middle denoting whether the top is closed or open, and the region
in the lower middle denoting whether there is a hook at the bottom.

From left to right, the bottom panel of Fig. 3a shows the pix-
els that were selected by SurvNet under four combinations of FDR

0 5 10 15 20

2

4

6

8

10

Step

lo
g 2

(n
um

be
r)

Original variables, ε = 1
Surrogate variables, ε = 1
Original variables, ε = 0.5
Surrogate variables, ε = 0.5

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1.0

Step

FD
R

Estimated FDR, ε = 1
Actual FDR, ε = 1
Estimated FDR, ε = 0.5
Actual FDR, ε = 0.5

FDR cutoff = 0.1

Step

0 784 784

r – r0 r0 r ′m

1.000 706 64

1 441 421 0.955 377 64

2 257 228 0.887 203 64

3 165 117 0.709 101 64

4 113 68 0.602 57 64

5 86 38 0.442 30 64

6 77 17 0.221 10 64

7 72 12 0.167 5 64

8 69 10 0.145 4 64

9 68 7 0.103 1 64

10 68 6 0.088 Stop 64

η

a

b

c

Fig. 2 | Variable selection process on dataset 1. a, The number of original variables (r − r0), surrogate variables (r0), and significant variables (r′) left at
each step of the selection process, together with the estimated FDR (η̂) and the number of variables to be eliminated in the next step (m), when p′ = 64,
η* = 0.1, and ε = 1. b, The number of original and surrogate variables along the selection processes with different elimination rates when p′ = 64 and
η* = 0.1. c, The estimated and actual value of FDR along the selection processes with different elimination rates when p′ = 64 and η* = 0.1.

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell428

http://www.nature.com/natmachintell

ArticlesNaTurE MacHinE InTElligEncE

cutoffs (η* = 0.1 or 0.01) and elimination rates (ε = 1 or 0.5). The
colours display the relative importance, defined by equation (2) (see
Methods), of the selected pixels, and a darker colour means greater
importance. We found that different parameter settings gave quite
consistent results, and they all picked out the four regions that were
speculated to be significant.

Single-cell RNA-Seq24 is a biological technique for measuring
gene expression in cells. In single-cell RNA-Seq data, the samples
are the cells, the inputs are the expression levels of individual genes,
and the output is the cell type. Chen et al. performed single-cell
RNA-Seq analysis of the adult mouse hypothalamus and identified
45 cell types based on clustering analysis25. For dataset 6, we used
5,282 cells in two non-neuronal clusters, oligodendrocyte precursor
cell (OPC) and myelinating oligodendrocyte (MO), which reflected
two distinct stages of oligodendrocyte maturation. After prepro-
cessing (described in Supplementary Information), 1,046 genes
were left for further analysis.

With η* = 0.01 and ε = 1, SurvNet selected 145 genes in one real-
ization. Figure 3b shows a heatmap of the expression values of these
genes, in which rows are genes and columns are cells. The top ban-
ner shows the true class labels of the samples. For gene expression
data, the set of significant genes is typically identified by ‘differential
expression’ analysis, which finds differences in the mean expression
levels of genes between classes. Indeed, as the heatmap shows, most
genes have evidently different mean expression levels in the OPCs
and MOs. However, among the 145 significant genes identified by
SurvNet, 16 had log-fold-changes (logFCs) less than 1, meaning
that their average expression values were not very different in the
two classes. In Fig. 3b, these genes are marked in purple on the left
banner, in contrast to green for the other genes. In fact, Bartlett’s
test, which tests the difference in variance, claimed that 14 of these
16 genes had unequal variances in the two groups of cells (p < 0.05);
thus, they were actually instances of variance-inflated variables
selected by SurvNet, in addition to the ones in dataset 3. Again,

Table 1 | Summary statistics of results of SurvNet on datasets 1–6

Test error Selected variables (no.) FDR

Initial Final Total Significant Estimated Actual

Dataset 1 0.36% 0.27% 69.36 61.92 0.093 0.105

(0.17%) (0.10%) (5.07) (2.48) (0.004) (0.044)

Dataset 2 0% 0% 66.88 59.36 0.094 0.107

(0%) (0%) (8.73) (5.87) (0.005) (0.057)

Dataset 3 49.42% 0.47% 26.40 23.00 0.076 0.114

(1.69%) (0.48%) (13.68) (11.87) (0.031) (0.089)

Dataset 4a 33.013 8.901 71.16 63.96 0.094 0.097

(27.059) (1.988) (5.02) (0.20) (0.004) (0.061)

Dataset 5b 1.69% 1.71% 69.52 – 0 –

(0.24%) (0.21%) (13.35) – (0.002) –

Dataset 6b 0.083% 0.076% 149.44 – 0.007 –

(0.074%) (0.082%) (49.62) – (0.003) –

The numbers are averaged over 25 simulations/runs, with corresponding standard deviations in parentheses. p′ = 64, η* = 0.1 and ε = 1 are used for the simulated datasets (datasets 1–4); η* = 0.01 and ε = 1
are used for the real datasets (datasets 5 and 6). aDataset 4 is a regression dataset and thus the test error is measured by the mean squared error. bDatasets 5 and 6 are real datasets, and thus the number
of significant variables and the actual FDR are unknown.

Cell type
OPC MO

Value

logFC

Gene

<1
≥1

0

2

4

6
8

10

12

a b

Fig. 3 | Results of SurvNet on the two real datasets. a, The top panel shows examples of hand-written digits 4 and 9 (two images for each). The circles
mark the locations of distinctive pixels of these two digits. The bottom panel shows heatmaps of 28 × 28 pixels under four conditions with different FDR
cutoffs and elimination rates, which display the relative importance of remaining pixels. The darker the colour of a pixel, the more important it is. The
corresponding conditions are (from left to right): η* = 0.1, ε = 1; η* = 0.1, ε = 0.5; η* = 0.01, ε = 1; η* = 0.01, ε = 0.5. b, Heatmap showing the expression of
selected genes in the single-cell RNA-Seq dataset in two groups of cells. Rows represent individual genes and columns are 200 randomly chosen cells. The
genes whose log fold changes in OPCs and MOs are less than 1 are distinguished from others.

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell 429

http://www.nature.com/natmachintell

Articles NaTurE MacHinE InTElligEncE

SurvNet demonstrates its ability to identify various types of signifi-
cant variables, not just variables with different means. Further, the
functional interpretations of the selected genes match the biological
characteristics of OPCs and MOs (see Supplementary Information).

Comparisons with regularization and knockoff-based
methods
We first compared SurvNet with two state-of-the-art embedded
methods: group lasso and sparse group lasso regularizations for
DNNs13. In these two methods, which we call GL and SGL for short,
weights from each neuron are grouped, and the grouped weights
are regularized towards being simultaneously zero, so that some
entire neurons (including input neurons) can be removed from
the network.

GL and SGL do not estimate and control FDR, and thus they
cannot determine the number of variables to select. This is a crucial
disadvantage in practice. This inability to determine a proper regu-
larization strength (λ) also makes their comparison with SurvNet
non-trivial: for the comparison, which λ should we use for GL and
SGL? We circumvented this difficulty in two ways. First, we manu-
ally set λ so that GL and SGL kept a set of variables of similar size
as SurvNet, that is, we ‘lent’ them the ability of SurvNet to deter-
mine a proper number of variables to select, and checked whether
their selected variables were truly significant and whether they pre-
dicted the outcome accurately. Table 2 gives the results of the three
methods. It is clear that SurvNet performed the best on all the six
datasets. Note that the total number of selected variables, which
was determined by the λ value we set, is not a valid criterion for
the performance. On most datasets, the gaps between the perfor-
mance of SurvNet and the other two methods were quite large. This
means that the performances of GL and SGL were much inferior to
SurvNet, even when we equipped them with the ability to determine
the number of variables to select. Is it possible that they performed
better under another λ value? To study this, in our second way, we
tried a series of λ values for GL and SGL. We found, interestingly,
that a low FDR had never been achieved, no matter what λ value was
used. The likely reason is discussed in Supplementary Information.

Next, we compared SurvNet with variable selection methods
based on knockoffs, which are a hot research topic in the field of
FDR control. Similar to surrogate variables, knockoffs serve as
negative controls for the original variables, but they are constructed
to further preserve the correlations between the original variables,
and thus it is guaranteed, theoretically, that the FDR is controlled
under arbitrary variable correlation. Knockoff-based methods typi-
cally select variables in a single run, that is, by a one-step procedure
without re-training of networks. Here, we first compared SurvNet
with two naive ways of combining SurvNet with knockoff samples,
which were generated using two representative approaches called
‘second-order’ knockoffs19 and ‘deep’ knockoffs26, then we compared

SurvNet with two representative methods that apply knockoffs in
neural networks: one16 designed a new DNN architecture called
DeepPINK, and the other17 developed an efficient algorithm to
sample valid knockoffs for Bayesian models as well as new knock-
off test statistics. The comparisons were done on all our simulation
datasets and the datasets from16,17. See Supplementary Information
for more details. Below, the performance is summarized in two
most important aspects: FDR control and power.

Regarding FDR control, both SurvNet and knockoff-based
methods successfully controlled FDR in most but not all cases.
Knockoff-based methods failed on dataset 3 in our paper, that is,
the data with variance-inflated variables, where the significant vari-
ables were not only sparse but also ‘weak’, in the sense that they
did not have strong and easy-to-capture effects on the outcome.
Knockoff-based methods’ failure on such challenging data was
likely due to the one-step procedure they used to select variables,
and SurvNet overcame this difficulty by its (multi-step) backward
elimination procedure. SurvNet failed on a synthetic dataset in
ref. 17 where the correlations between the variables were exceed-
ingly strong. This was likely due to the use of permutations, which
sacrificed the correlations between variables, to generate surrogate
variables in the current version of SurvNet. While its failure on
the synthetic dataset in ref. 17 implies that a theoretical guarantee
of SurvNet to control the FDR under arbitrary variable correlation
may not exist, its control of FDR was flawless on all the other data-
sets where the variables were known to be correlated, including our
dataset 2 (MNIST data) and the synthetic data in ref. 16, as well as the
HIV-1 drug resistance data in ref. 16, which was the only real dataset
where the ground truth was (considered as) known.

As to power, SurvNet usually has higher power than
knockoff-based methods. This was observed in the comparisons
on all the simulated datasets and the only real dataset where the
true answer was (considered as) known. For the other real datasets,
where the true answers were unknown, SurvNet reported a larger
number of selected variables. In many cases, the improvement in
power was substantial.

A systematic description and discussion of our comparisons is
given in Supplementary Information.

Conclusions and discussion
We have presented a largely automatic procedure for variable selec-
tion in neural networks (SurvNet). It is based on a new measure of
variable importance that applies to a variety of networks, deep or
shallow, for regression or classification, and with one or multiple
output units. More importantly, SurvNet aims to estimate and con-
trol the FDR of selected variables in neural networks, which is essen-
tial for applications where the trustworthiness of variable selection
is pivotal. By introducing surrogate variables, it avoids training
multiple networks in parallel. SurvNet also adjusts the number of

Table 2 | Performance of SurvNet, GL and SGL on datasets 1–6

Total selected variables (no.) Final test error Actual FDR

SurvNet GL SGL SurvNet GL SGL SurvNet GL SGL

Dataset 1 69.36 76.88 60.80 0.27% 8.80% 22.52% 0.105 0.388 0.399

Dataset 2 66.88 23.36 73.92 0% 0% 0% 0.107 0.175 0.501

Dataset 3 26.40 8.80 20.44 0.47% 50.72% 50.49% 0.114 0.899 0.900

Dataset 4a 71.16 58.40 75.88 8.90 83.59 78.66 0.097 0.887 0.714

Dataset 5b 69.52 130.76 62.40 1.71% 17.45% 34.65% – – –

Dataset 6b 149.44 143.28 127.36 0.076% 0.085% 0.112% – – –

The numbers are averaged over 25 simulations/runs. For GL and SGL, since they cannot estimate FDR, proper regularization strength is given in each experiment so that roughly the same number of
variables are removed when SurvNet is applied (with η* = 0.1 for datasets 1–4, η* = 0.01 for datasets 5 and 6). All simulated datasets (datasets 1–4) have 64 significant variables. aDataset 4 is a regression
dataset, and thus the test error is measured by the mean squared error. bDatasets 5 and 6 are real datasets, and thus the actual FDR is unknown.

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell430

http://www.nature.com/natmachintell

ArticlesNaTurE MacHinE InTElligEncE

variables to eliminate at each step, and the ‘warm start’ nature of
backward elimination facilitates the training of networks. On mul-
tiple simulation datasets and real datasets, SurvNet has effectively
identified the significant variables. It has given a dependable esti-
mate of FDR as well, in almost all datasets we considered.

SurvNet takes advantages of modern developments of DNNs.
The importance scores of input variables that are based on deriva-
tives with respect to the inputs can be efficiently computed by func-
tions in deep-learning packages such as TensorFlow, PyTorch, and
Theano. Moreover, advances in optimization techniques and com-
putation platforms have made the training of DNNs highly scalable.
In particular, DNNs can accommodate a large number of input vari-
ables, which enables the introduction of surrogate variables.

Methods
Measures of variable importance. Notation. We use a tuple (x,y) to represent
the input and the output of the network, with y being either one-dimensional or
multi-dimensional. xj denotes the jth component of x, namely the jth variable,
and (x(i),y(i)) (i = 1, …, n) is the ith sample, where n is the total number of samples
(in the training set). Given a proper form of the loss L(⋅,⋅), the loss function
L∗ =

∑n
i=1 L(y

(i), f(x(i))), where f denotes the output function of the network.
The most popular choices for L(⋅,⋅) are the squared error loss for regression
problems and the cross-entropy loss for classification problems.

Existing measures. Many statistics have been proposed to measure the importance
of variables in neural networks, and they generally fall into two categories27,28.

One category of methods estimate the importance of xj, denoted by Sj, based
on the magnitudes of the connection weights in the network29–33. A simple example
is the sum of absolute values of input weights29, but larger values of weights in
the input layer do not mean greater importance if connections in hidden layers
have small weights, and a better alternative is to replace the input weights with
the products of the weights on each path from this input to the output30. These
measures were developed for networks with only one hidden layer, and they are
unlikely to work well for deeper networks as the outgoing weights of a neuron does
not reflect its importance once the neuron is inactive (for example, when the input
of a sigmoid neuron is far from zero or the input of a ReLU neuron is negative).

The other category of methods estimate Sj by the sum of influences of the
input weights on the loss function, that is Sj =

∑
k∈Ωj

δL∗k , where Ωj is the set of
outgoing weights from the jth input neuron, and δL∗k is the increment of the loss
function caused by the removal of weight wk (ref. 27). δL∗k can be approximated by
a Taylor series of the loss function using first-order34,35 or second-order terms36–38.
However, it is unclear why Sj equals the (unweighted) sum of δL∗k .

Apart from these two major categories of measures, it was also proposed to
use Sj = ∂f

∂xj , that is Sj = ∂y
∂xj , when the output y is one-dimensional39,40. But it

is unclear how Sj should be defined when there are multiple output units. Let
y1, …, yK be the output values of K output units, and one definition of Sj was given
by Sj =

∑K
k=1 |

∂yk
∂xj | (ref. 41). However, using this summation seems problematic in

some cases, especially when y1, …, yK are the outputs of softmax functions.

Our new measure. We propose a simple and direct measure of the importance of
variable j based on ∂L∂xj , which describes how the loss changes with xj. There are a few
advantages of using ∂L∂xj . First, regardless of the structure of the network and whether
the output(s) is continuous or categorical, L is always well defined since it is the
target for the optimization/training of the network. Thus the proposed measure is
applicable to a wide variety of networks. Second, no matter how many output units
there are, L is always a scalar and hence ∂L∂xj is always a scalar. There is no difficulty
in combining effects from multiple output units. Third, ∂L∂xj is easily computable with
backpropogation, and popular frameworks/libraries for DNN computations (for
example, TensorFlow, PyTorch and Theano) all use differentiators that efficiently
compute partial derivatives (gradients) of arbitrary forms.

Note that ∂L∂xj is a function of the tuple (x,y), and hence it is natural to estimate
it by its mean over all observations in the training set. To avoid cancellation of
positive and negative values, we measure the importance of xj by the mean of
absolute values

Sj =
1
n
∑n

i=1
|
∂L
∂xj

(y(i), f(x(i)))|, (1)

or the mean of squares

Sj =
1
n
∑n

i=1

∂L
∂xj

(y(i), f(x(i)))2, (2)

where ∂L∂xj (y
(i), f(x(i))) is the value of ∂L∂xj at the ith training sample.

The importance scores given by equations (1) and (2) implicitly assume that
all the input values have similar range, which is typically the case for DNNs, since
it is common practice to standardize/scale the variables before supplying them to

the network for the sake of faster and more stable training of the network42,43. If this
is not the case, we suggest the score in equation (1) be multiplied by the (sample)
standard deviation of xj and the score in equation (2) be multiplied by the (sample)
variance of xj.

Note that in the case of multiple linear regression,
L =

1
2 (y − ŷ)2 =

1
2 (y −

∑
jβjxj)2, where y is a scalar response and βj is

the jth regression coefficient, then ∂L∂xj = −(y − ŷ)βj. Thus, Sj is defined as
|βj| ×

1
n
∑n

i=1 |ei| or βj
2
×

1
n
∑n

i=1 ei
2 by (1) and (2) respectively, where

ei = y(i) − ŷ(i). Note that Sj is proportional to ∣βj∣ or βj
2 as 1n

∑n
i=1 |ei| and

1
n
∑n

i=1 ei
2 are constants. Therefore, both of them are reasonable measures of the

contribution of the jth variable, and they are actually equivalent in this case. The
meaning of Sj in some other special cases, such as linear regression with multiple
outputs and logistic regression with one or multiple outputs, is elaborated in
Supplementary Information.

All results in the main text were obtained using equation (2). Results obtained
using equation (1) (Supplementary Information) are not notably different.

Elimination procedure with FDR control. In this section, we first introduce how
we estimate FDR and then talk about how we use this estimate to determine the
number of variables to eliminate at each step.

Introduction of surrogate variables. The key of estimating FDR20 is to estimate/
generate the null distribution of the test statistic. In our case, it is to obtain the
distribution of the importance score Sj defined by equation (2) or equation (1)
for variables that are not significant. Since the network is a complicated and
highly nonlinear model, a theoretical distribution that applies to various network
structure and various types of data may not exist. This null distribution needs to be
obtained for the network and the data in hand.

However, it is usually unknown which variables are truly null. If we construct
the null distribution by permuting the output values of the data, it seems inevitable
to train multiple networks from scratch in parallel. For this reason, we propose to
introduce/add a number of variables that are known/generated to be null. We call
these variables ‘surrogate null variables’ (or ‘surrogate variables’ for short). These
variables will be concatenated with the original variables to form a larger data
matrix.

To be precise, suppose there are p original variables and n training samples
(including validation samples). Then after we add q surrogate variables, the new
data matrix will be of size n × (p + q), which binds the original n × p data matrix X
with an n × q data matrix for surrogate variables Xs. It is assumed that the original
variables are distributed in similar ranges or have been standardized, which is a
suggested pre-processing step as it benefits the training of the network, and the
elements in Xs are sampled with replacement (or without replacement when q ≤ p)
from the elements in X. As a result, the q surrogate variables are null, and their
importance scores give the null distribution.

We recommend q to be on the same scale as p (see Supplementary Information
for a more detailed discussion about the choice of q). For convenience, q takes the
same value as p in all experiments in this paper. In this case, the elements in Xs can
be generated by permuting the elements in X.

The selection procedure of SurvNet starts with using all p + q variables as
inputs. Then at each step, it eliminates a number of least important variables,
including both original variables and surrogate variables. The remaining variables
are used to continue training the network, and the elimination stops once the FDR
falls below the cutoff.

FDR estimation. Then we consider how to estimate FDR at any given time of the
selection process. Suppose r variables are retained in the network, among which
there are r0 surrogate variables, then r0/q proportion of surrogate (null) variables
have not been eliminated yet. Accordingly, one would expect that roughly the same
proportion of null original variables still exist at this time, that is, approximately
r0
q × p0 variables among the remaining original variables are falsely called
significant, where p0 is the number of null variables in the original dataset. Thus, an
estimate of the FDR of the r − r0 original variables is given by

η̃ =

r0
q × p0
r − r0

. (3)

In practice, however, p0 is unknown, and a common strategy is to replace it with its
upper bound p (ref. 20). Hence we have the following estimated FDR,

η̂ =

r0
q × p
r − r0

=

r0
r − r0

×

p
q
, (4)

which is greater than η̃, but the difference is negligible when the proportion
of relevant variables is small. That is, η̂

η̃
=

p
p0 ≈ 1 when p−p0

p is close to zero.
Apparently, when η̂ is controlled to be no greater than a pre-specified threshold η*, η̃
is guaranteed to be no greater than η* as well. When q = p, η̂ can be simplified as r0

r−r0 .

Determination of the number of variables to eliminate. If the estimated FDR η̂
(given by equation (4)) is less than or equal to the FDR cutoff η*, the variable

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell 431

http://www.nature.com/natmachintell

Articles NaTurE MacHinE InTElligEncE

selection procedure stops. Otherwise, the procedure proceeds, and we want to
decide how many variables to eliminate among the r variables that are still in the
model. Let this number be m, and the determination of m is based on the following
considerations. On one hand, we expect that the elimination process is time-saving
and reaches the FDR threshold quickly; on the other hand, we want to avoid
eliminating too many variables at each step, in which case the FDR may fall much
lower than the threshold. We have,

Claim 1. If m variables are further eliminated from the current model, the smallest
possible estimated FDR after this step of elimination is

min η̂
new

= (1 −

m
r0

) × η̂, (5)

where r0 is the number of surrogate variables that are in the model before this step of
elimination.

Proof. Suppose there are m0 surrogate variables among the m variables to be
eliminated, 0 ≤ m0 ≤ m, then according to equation (4), η̂ will be updated to

η̂
new

=

r0 − m0

r − r0 − (m − m0)
×

p
q
. (6)

Note that η̂new is monotonically decreasing with respect to m0 for any fixed m, we
have

min η̂
new

= η̂
new

|m0=m =

r0 − m
r − r0

×

p
q
. (7)

Equation (4) indicates that 1
r−r0 ×

p
q =

η̂
r0 . Plugging it into equation (7), we have

min η̂
new

= (r0 − m) ×

η̂

r0
= (1 −

m
r0

) × η̂.

It follows from equation (5) that min η̂new = η∗ when m = (1 −

η∗

η̂
) × r0.

Also, note that min η̂new is a monotonically decreasing function of m. Therefore,
when m < (1 −

η∗

η̂
) × r0, min η̂new > η∗ and thus η̂new > η∗. That is,

Corollary 1. When m <
(
1 −

η∗

η̂

)
× r0, the estimated FDR after this step of

elimination η̂new is guaranteed to be still greater than the FDR cutoff η*.
On the other hand, when m ≥ (1 −

η∗

η̂
) × r0, min η̂new ≤ η∗. That is,

Corollary 2. When m ≥ (1 −

η∗

η̂
) × r0, the estimated FDR after this step of

elimination η̂new may reach the FDR cutoff η*.
Corollary 1 says that m being less than (1 −

η∗

η̂
) × r0 is ‘safe’ but the

elimination will not stop after this step. Corollary 2 says that m being much larger
than (1 −

η∗

η̂
) × r0 may not be ‘safe’ anymore. Taking both into consideration, we

choose the step size to be

m = ⌈(1 −

η∗

η̂
) × r0⌉, (8)

where ⌈⋅⌉ denotes ‘ceiling’, that is the smallest integer that is no less than ⋅. Notice
that when η̂ > η∗, which is the premise of continuing to eliminate variables,
1 −

η∗

η̂
> 0, and r0 > 0 as well since η̂ is positive. Thus m is ensured to be no less

than 1 at each step of variable elimination.
This form of m seems to be reasonable for the following reasons. First, if there

remain a great number of surrogate variables in the network, clearly more of them
should be taken out. As r0 decreases, m will be smaller, and this makes sense since
one should be more careful in further elimination. Second, when η̂ is much higher
than η*, one will naturally expect a larger m so that the updated estimated FDR will
approach this cutoff.

Using the m determined by equation (8), there is a chance that the estimated
FDR will get to the cutoff in only one step. Oftentimes such a fast pace is not
preferred as removing too many inputs at a time may make our warm start of
the training not warm any more. Hence we may introduce an ‘elimination rate’ ε,
which is a constant between 0 and 1, and take

m = ⌈ε × (1 −

η∗

η̂
) × r0⌉. (9)

Experimental setup. Simulation schemes. For dataset 1, we simulated a
10,000 × 784 matrix X, with xij ~ i.i.d. (independent and identically distributed)
U(0, 1) for 1 ≤ i ≤ 10,000, 1 ≤ j ≤ 784, where U means uniform distribution. The
samples were randomly assigned into two classes C1 and C2 of equal size. Then
p′ = 64 variables were chosen at random and their values in one class were
shifted: for each of these variables, we generated a shift value δj ~ U(0.1,0.3), with its
direction having equal probability of being positive and negative. More precisely,
xij ← xij + (2αj − 1) × δj for i ∈ C1, j ∈ Ωp′, where αj ∼ Bernoulli(1

2) and Ωp′ was the
set of p′ randomly chosen variables.

For dataset 2, we used all images of digit 0 in the MNIST data and randomly
assigned them into two classes. Then we picked p′ = 64 variables and shifted their
mean values in one class in the same way we did in dataset 1.

The third simulation scheme is very challenging. As in dataset 1, we simulated
a 10,000 × 784 matrix X whose element xij ~ i.i.d. U(0, 1) and divided the samples
into two equal-size classes C1 and C2. But then, to make p′ = 64 randomly
chosen variables significant, we let xij ← xij + (2αij − 1) × δij for i ∈ C1, j ∈ Ωp′,
where αij ∼ Bernoulli(1

2), and δij ~ U(0.8, 1). Note that different from the first two
simulation schemes, here α and δ depend on both i and j.

For dataset 4, the data matrix was X = (xij)10,000×784, and each xij ~ U(−1,1).
Of the 784 variables, 64 were randomly chosen as significant variables (denoted
by xkj , j = 1, …, 64), and y depended on the main effects and interactions of xkj as
well as their nonlinear transformations:

yi =
∑16

j=1 βjxikj +
∑32

j=17 βj sin xikj +
∑48

j=33 βje
xikj

+

∑64
j=49 βj max(0, xikj)

+β′

1xik15xik16 + β′

2xik31xik32 + β′

3xik47xik48 + β′

4xik63xik64 + εi ,

where βj = (2αj − 1) × bj, αj ∼ Bernoulli(1
2), bj ~ U(1,3), εi ~ N(0,1) for

i = 1, …, 10,000, j = 1, …, 64, and β′

1, β
′

2, β
′

3, β
′

4 had the same distribution as βj.

Implementation details. Except for the MNIST data, which contain 60,000 training
images (including 5,000 validation images) and 10,000 testing images, each
dataset was divided into a training set and a test set, with 80% of the samples in
the training set and 20% in the test set, and 30% of training samples were further
separated for validation (used to decide when to stop training, see Supplementary
Information).

SurvNet was implemented on TensorFlow 1.844. We used a common network
structure for all datasets, which had two hidden layers consisting of 40 and 20
nodes respectively. The ReLU activation function was used, together with a batch
size of 50 and a learning rate of 0.05 (0.01 for the regression problem).

Data availability
The simulated data (datasets 1–4) were generated using the code at https://github.
com/zixuans/SurvNet/tree/master/Data. The MNIST data (dataset 5) is available
at http://yann.lecun.com/exdb/mnist/. The single-cell RNA-Seq data (dataset
6) is available at the GEO repository https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE87544. The synthetic data used in the NeurIPS paper16 were
simulated using the code on https://github.com/zixuans/SurvNet/tree/master/
Comparisons%20with%20knockoffs/Scenario%203, and the real datasets were
provided by request from its author, Y. Lu. The synthetic data used in the AISTATS
paper17 were simulated using the code at https://github.com/zixuans/SurvNet/
tree/master/Comparisons%20with%20knockoffs/Scenario%204, and the two real
datasets are available at https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
and https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data.

Code availability
The code developed for the study of SurvNet is publicly available at the Github
repository https://github.com/zixuans/SurvNet. The code for GL and SGL13 is
publicly available at https://bitbucket.org/ispamm/group-lasso-deep-networks/src/
master/. The code used to construct second-order knockoffs19 and deep knockoffs26
is available at https://github.com/msesia/knockoff-filter and https://github.com/
msesia/deepknockoffs, respectively. The code of the algorithm proposed in the
AISTATS paper17 is publicly available at https://github.com/jroquerogimenez/
ConditionallySalientFeatures.

Received: 25 July 2019; Accepted: 26 January 2021;
Published online: 29 March 2021

References
	1.	 May, R., Dandy, G. & Maier, H. Review of input variable selection

methods for artificial neural networks. Artif. Neural Networks 10,
16004 (2011).

	2.	 Guyon, I. & Elisseeff, A. An introduction to variable and feature
selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).

	3.	 Chandrashekar, G. & Sahin, F. A survey on feature selection methods.
Comput. Electr. Eng. 40, 16–28 (2014).

	4.	 Battiti, R. Using mutual information for selecting features in supervised
neural net learning. IEEE Trans. Neural Networks 5, 537–550 (1994).

	5.	 May, R. J., Maier, H. R., Dandy, G. C. & Fernando, T. G. Non-linear variable
selection for artificial neural networks using partial mutual information.
Environ. Model. Software 23, 1312–1326 (2008).

	6.	 Maier, H. R., Dandy, G. C. & Burch, M. D. Use of artificial neural networks
for modelling cyanobacteria Anabaena spp. in the River Murray, South
Australia. Ecol. Model. 105, 257–272 (1998).

	7.	 Brill, F. Z., Brown, D. E. & Martin, W. N. Fast generic selection of
features for neural network classifiers. IEEE Trans. Neural Networks 3,
324–328 (1992).

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell432

https://github.com/zixuans/SurvNet/tree/master/Data
https://github.com/zixuans/SurvNet/tree/master/Data
http://yann.lecun.com/exdb/mnist/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87544
https://github.com/zixuans/SurvNet/tree/master/Comparisons%20with%20knockoffs/Scenario%203
https://github.com/zixuans/SurvNet/tree/master/Comparisons%20with%20knockoffs/Scenario%203
https://github.com/zixuans/SurvNet/tree/master/Comparisons%20with%20knockoffs/Scenario%204
https://github.com/zixuans/SurvNet/tree/master/Comparisons%20with%20knockoffs/Scenario%204
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data
https://github.com/zixuans/SurvNet
https://bitbucket.org/ispamm/group-lasso-deep-networks/src/master/
https://bitbucket.org/ispamm/group-lasso-deep-networks/src/master/
https://github.com/msesia/knockoff-filter
https://github.com/msesia/deepknockoffs
https://github.com/msesia/deepknockoffs
https://github.com/jroquerogimenez/ConditionallySalientFeatures
https://github.com/jroquerogimenez/ConditionallySalientFeatures
http://www.nature.com/natmachintell

ArticlesNaTurE MacHinE InTElligEncE

	8.	 Tong, D. L. & Mintram, R. Genetic Algorithm-Neural Network (GANN):
a study of neural network activation functions and depth of genetic
algorithm search applied to feature selection. Int. J. Mach. Learn. Cybern. 1,
75–87 (2010).

	9.	 Sivagaminathan, R. K. & Ramakrishnan, S. A hybrid approach for feature
subset selection using neural networks and ant colony optimization. Expert
Syst. Appl. 33, 49–60 (2007).

	10.	Grandvalet, Y. & Canu, S. Outcomes of the equivalence of adaptive ridge with
least absolute shrinkage. In Advances in Neural Information Processing Systems
445–451 (1999).

	11.	Chapados, N. & Bengio, Y. Input decay: simple and effective soft variable
selection. In IJCNN’01. International Joint Conference on Neural Networks
Vol. 2, 1233–1237 (IEEE, 2001).

	12.	Similä, T. & Tikka, J. Combined input variable selection and model
complexity control for nonlinear regression. Pattern Recognit. Lett. 30,
231–236 (2009).

	13.	Scardapane, S., Comminiello, D., Hussain, A. & Uncini, A. Group sparse
regularization for deep neural networks. Neurocomputing 241, 81–89 (2017).

	14.	Zhang, G. P. Neural networks for classification: a survey. IEEE Trans. Syst.
Man Cybernet. C 30, 451–462 (2000).

	15.	Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57,
289–300 (1995).

	16.	Lu, Y., Fan, Y., Lv, J. & Noble, W. S. Deeppink: reproducible feature selection
in deep neural networks. In Advances in Neural Information Processing
Systems 8676–8686 (2018).

	17.	Gimenez, J. R., Ghorbani, A. & Zou, J. Knockoffs for the mass: new feature
importance statistics with false discovery guarantees. In 22nd International
Conference on Artificial Intelligence and Statistics 2125–2133 (2019).

	18.	Barber, R. F. & Candès, E. J. Controlling the false discovery rate via
knockoffs. Ann. Stat. 43, 2055–2085 (2015).

	19.	Candès, E., Fan, Y., Janson, L. & Lv, J. Panning for gold: ‘model-X’ knockoffs
for high dimensional controlled variable selection. J. R. Stat. Soc. B 80,
551–577 (2018).

	20.	Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

	21.	Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

	22.	Heesen, P. et al. Inequalities for the false discovery rate (FDR) under
dependence. Electron. J. Stat. 9, 679–716 (2015).

	23.	LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

	24.	Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S.
A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58,
610–620 (2015).

	25.	Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals
hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

	26.	Romano, Y., Sesia, M. & Candès, E. Deep knockoffs. J. Am. Stat. Assoc. 115,
1861–1872 (2019).

	27.	Tetko, I. V., Villa, A. E. & Livingstone, D. J. Neural network studies. 2.
Variable selection. J. Chem. Inf. Comput. Sci. 36, 794–803 (1996).

	28.	Steppe, J. & Bauer, K. Jr Feature saliency measures. Comput. Math. Appl. 33,
109–126 (1997).

	29.	Sen, T. K., Oliver, R. & Sen, N. in Neural networks in the Capital Markets
325–340 (Wiley, 1995).

	30.	Yacoub, M. & Bennani, Y. HVS: A heuristic for variable selection in
multilayer artificial neural network classifier. In Intelligent Engineering
Systems Through Artificial Neural Networks, St. Louis, Missouri Vol. 7,
527–532 (1997).

	31.	Garson, D. G. Interpreting neural network connection weights. AI Expert 6,
47–51 (1991).

	32.	Nath, R., Rajagopalan, B. & Ryker, R. Determining the saliency of input
variables in neural network classifiers. Comput. Oper. Res. 24, 767–773
(1997).

	33.	Gevrey, M., Dimopoulos, I. & Lek, S. Review and comparison of methods to
study the contribution of variables in artificial neural network models. Ecol.
Model. 160, 249–264 (2003).

	34.	Mozer, M. C. & Smolensky, P. Skeletonization: a technique for trimming the
fat from a network via relevance assessment. In Advances in Neural
Information Processing Systems 107–115 (1989).

	35.	Karnin, E. D. A simple procedure for pruning back-propagation trained
neural networks. IEEE Trans. Neural Networks 1, 239–242 (1990).

	36.	LeCun, Y., Denker, J. S. & Solla, S. A. Optimal brain damage. In Advances in
Neural Information Processing Systems 598–605 (1990).

	37.	Cibas, T., Soulié, F. F., Gallinari, P. & Raudys, S. Variable selection with
optimal cell damage. In International Conference on Artificial Neural Networks
727–730 (Springer, 1994).

	38.	Hassibi, B. & Stork, D. G. Second order derivatives for network pruning:
optimal brain surgeon. In Advances in Neural Information Processing Systems
164–171 (1993).

	39.	Dimopoulos, Y., Bourret, P. & Lek, S. Use of some sensitivity criteria for
choosing networks with good generalization ability. Neural Process. Lett. 2,
1–4 (1995).

	40.	Dimopoulos, I., Chronopoulos, J., Chronopoulou-Sereli, A. & Lek, S. Neural
network models to study relationships between lead concentration in grasses
and permanent urban descriptors in Athens city (Greece). Ecol. Model. 120,
157–165 (1999).

	41.	Ruck, D. W., Rogers, S. K. & Kabrisky, M. Feature selection using a multilayer
perceptron. J. Neural Network Comput. 2, 40–48 (1990).

	42.	Bishop, C. M. et al. Neural Networks for Pattern Recognition (Oxford Univ.
Press, 1995).

	43.	LeCun, Y. A., Bottou, L., Orr, G. B. & Müller, K.-R. in Neural Networks:
Tricks of the Trade 9–48 (Springer, 2012).

	44.	Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous
systems (2015); https://www.tensorflow.org/

Acknowledgements
This work was supported by the National Institutes of Health (R01GM120733 to J.L.),
the American Cancer Society (RSG-17-206-01-TBG to J.L.) and the National Science
Foundation (1925645 to J.L.).

Author contributions
J.L. conceived and supervised the study. J.L. and Z.S. proposed the methods. Z.S.
implemented the methods and constructed the data analysis. Z.S. drafted the manuscript
and J.L. substantively revised it.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-021-00308-z.

Correspondence and requests for materials should be addressed to J.L.

Peer review information Nature Machine Intelligence thanks the anonymous reviewers
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature Machine Intelligence | VOL 3 | May 2021 | 426–433 | www.nature.com/natmachintell 433

https://www.tensorflow.org/
https://doi.org/10.1038/s42256-021-00308-z
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Variable selection with false discovery rate control in deep neural networks

	Performance of SurvNet on simulated data

	Performance of SurvNet on real data

	Comparisons with regularization and knockoff-based methods

	Conclusions and discussion

	Methods

	Measures of variable importance
	Notation
	Existing measures
	Our new measure

	Elimination procedure with FDR control
	Introduction of surrogate variables
	FDR estimation
	Determination of the number of variables to eliminate

	Experimental setup
	Simulation schemes
	Implementation details

	Acknowledgements

	Fig. 1 Flowchart of SurvNet.
	Fig. 2 Variable selection process on dataset 1.
	Fig. 3 Results of SurvNet on the two real datasets.
	Table 1 Summary statistics of results of SurvNet on datasets 1–6.
	Table 2 Performance of SurvNet, GL and SGL on datasets 1–6.

