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Abstract
This paper introduces an algorithm for discover-
ing implicit and delayed causal relations between
events observed by a robot at regular or arbi-
trary times, with the objective of improving data-
efficiency and interpretability of model-based rein-
forcement learning (RL) techniques. The proposed
algorithm initially predicts observations with the
Markov assumption, and incrementally introduces
new hidden variables to explain and reduce the
stochasticity of the observations. The hidden vari-
ables are memory units that keep track of pertinent
past events. Such events are systematically iden-
tified by their information gains. A test of inde-
pendence between inputs and mechanisms is per-
formed to identify cases when there is a causal link
between events and those when the information
gain is due to confounding variables. The learned
transition and reward models are then used in a
Monte Carlo tree search for planning. Experiments
on simulated and real robotic tasks, and the chal-
lenging 3D game Doom show that this method sig-
nificantly improves over current RL techniques.

Introduction
Despite the remarkable progress made by deep RL agents in
reaching human-level performance and beyond [Mnih et al.,
2013], they continue to lag behind humans in terms of data
efficiency. Humans can immediately figure out the effects of
their actions on objects displayed on a screen after a few tri-
als, and build a model for reasoning and planning in order to
improve their scores. Model-based RL algorithms arguably
require less data than model-free ones [Hafner et al., 2018;
Finn et al., 2016; Finn and Levine, 2017]. But learning mod-
els that are sufficiently accurate for planning is still a chal-
lenging problem [Battaglia et al., 2016]. Inaccurate predic-
tions generally result in sub-optimal policies.

The difficulty in learning accurate predictive models can
be mostly attributed to the partial observability of the states.
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Figure 1: Overview of the proposed sys-
tem and the robotic setup used in the ex-
periment Learning to Paint

In robotics, for
example, the
Markov condition
is seldom verified.
Future states and
rewards often de-
pend on the entire
history of actions
and observations.

An example of
that is unlocking a
door and opening
it afterwards.
The first action
changes the hid-
den variable that is the state of the door from locked to
unlocked. Without a memory of past locking/unlocking
actions, a robot cannot explain why the door opens some-
times and does not open other times based only on an image
of the door. The robot needs to infer the hidden causal link
between the act of unlocking the door and the ability to
open it later in the future. Other examples include filling or
pouring liquids from containers, turning electric switches and
unscrewing a lid and lifting it later in the future. In general,
sequential object manipulation tasks involve changing states
of objects in ways that cannot be easily perceived through
vision, but their effects can be observed in the later stages
of the task. Figure 1 shows an experiment performed in the
present work, where a robot learns to paint. The causal link
between dunking the paintbrush in a paint container and the
appearance of paint on the surface of the box later when the
brush is pressed against it is non-trivial because the robot
performs a large number of random exploratory actions
between the two events. The brush always looks the same,
even after the paint in it has dried. Thus, it is important to
remember the event of moving the brush into the container in
order to predict future observations.

LSTM and GRU architectures are general-purpose tools
for solving problems of partial observability by discovering
and remembering pertinent information. They tend, however,
to require large amounts of data, and they cannot be easily in-
terpreted. To address these two issues, we present here an ap-



proach that combines the merits of general function approx-
imators such as neural networks with probabilistic graphical
models for representing hidden variables. Given a stream of
actions, observations and rewards, a neural network is trained
to predict future observations and rewards. Simultaneously, a
graphical model of causal relations between observations oc-
curring at different time steps is also gradually constructed.
The values of the variables in the graph are also provided to
the neural network as additional inputs along with the obser-
vations. The learned predictive model is then utilized by the
agent to select actions based on their predicted future rewards.

Background and Notations
Formally, a Markov Decision Process (MDP) is a tuple
(S,A, T,R, γ), where S is a set of states andA is a set of ac-
tions. T is a transition function with T (s′|a, s) = P (St+1 =
s′|St = s,At = a) for s, s′ ∈ S, a ∈ A, and R is a re-
ward function where R(s, a, r) is the probability of receiving
reward r ∈ R for executing a in s. A policy π is a distri-
bution on the action to be executed in each state, defined as
π(s, a) = P (at = a|st = s). The value V π of a policy π
is the expected sum of rewards that will be received if π is
followed, i.e., V π(s) = E[

∑∞
t=0 γ

trt|S0 = s, π, T,R].
In video games and robotics, states generally cannot be

fully observed. Instead, the agent perceives partial obser-
vations zt, in the form of images, for example. The re-
sulting process is a Partially Observable MDP (POMDP).
Formally, a POMDP is a tuple (S,A,Z, T, F,R, γ) where
(S,A, T,R, γ) is an MDP, Z is a set of observations, and F
is an observation likelihood function: F (Z|S) is the proba-
bility of observing Z ∈ Z in state S ∈ S.

We focus in this work on object-oriented POMDPs, where
a state S is described by one or several visible attributes of
objects, in addition to one or several hidden variables. In
other terms, S = (O1, O2, . . . , On,M1,M2, . . . ,Mm) ∈∏n
i=1Oi ×

∏m
i=1Mi, wherein Oi is an attribute of an object

in the scene, and M i is a hidden variable. The list of objects
includes the robot or its end-effector. Oi andMi denote the
domains of visible variable Oi and hidden variable M i, re-
spectively, which can be discrete or continuous. For example,
O1 is the position of a specific object in the image, while O2

is its velocity, O3 is its size, O4 is its numerical label, O5

is a Boolean attribute that indicates if the object still exists
in the scene or not, O5 is the position of a second object in
the image, and so forth. Observations correspond to object
attributes, i.e., Zt = (Oit)

n
i=1. To ease the notation, we also

consider the reward signal Rt as one of the observable at-
tributesOit. Thus, the reward function is modeled and learned
in the same way as the transition function. We focus hereafter
on the general problem of predicting future states.

Hidden variables M1,M2, . . . ,Mm are unknown a
priori and need to be inferred from the observable entities.
Examples of hidden variables M i include past events, or
actions performed on the objects. In the previous example,
a door can be unlocked or locked at a given time t, and the
state of the door cannot be easily inferred from vision alone.
The state of the door is then a hidden variable M i

t of state St.
Its existence can be inferred by discovering the causal link

between the act of inserting and turning a key in a door lock
and the subsequent ability to open the door later in the future,
after executing several possibly unrelated actions. Transition
function T is represented as a Dynamic Bayesian Network
(DBN). We denote by pa(Xt) the list of parents of variable
X at time t. Thus, function T is defined as T (St+1|St, At) =(∏n

i=1 P (Oit+1|pa(Oit+1), At)
)(∏m

i=1 P (M i
t+1|pa(M i

t+1), At)
)
,

wherein the values of Oit+1 and M i
t+1 are contained in St.

Related Works
The Baum-Welch algorithm is an expectation-maximization
technique that is traditionally used to learn hidden Markov
models and POMDPs [Rabiner, 1990]. This algorithm re-
quires knowing the number of hidden variables in advance. It
is sensitive to the initial values of parameters and typically re-
sults in suboptimal solutions. Predictive state representations
(PSRs) [Singh et al., 2004] are an alternative model to rep-
resent partially observable environments without using hid-
den states. While parameters of PSRs can be learned with any
consistent density estimator, discovering the core tests is still
an open problem. Moreover, the learning complexity of these
estimators is exponential in the length of history that needs
to be stacked to predict future observations [Boularias and
Chaib-draa, 2009]. A more efficient spectral approach pro-
posed in [Boots et al., 2011] generalizes PSRs by including
features of test outcomes and histories, instead of a stream of
raw observations. For example, an indicative feature might
be the number of times we saw a specific observation in
the past three steps. The memory variables introduced in the
present work are closely related to the indicative features. In
contrast to [Boots et al., 2011], our algorithm reasons about
the causal relations between different regions of the obser-
vation space and over different time intervals, and returns an
explicit graphical representation of the discovered causal re-
lations. Most recent efforts on learning partially observable
dynamical models rely on recurrent neural networks (RNN)
and LSTM techniques [Downey et al., 2017; Choromanski
et al., 2018; Hafner et al., 2018; Finn and Levine, 2017;
Finn et al., 2016]. While the success of LSTM is not fully
understood, it is frequently attributed to the gating mecha-
nisms that allows information to be retained for a long time,
but also to be forgotten quickly.

In vision-based RL, there is a clear physical structure that
can readily be exploited. Images can be decomposed into
segments of objects. Several models utilizing object-oriented
representations for learning and planning have been pro-
posed in the past [Diuk et al., 2008; Scholz et al., 2014;
Usunier et al., 2016]. Object-sensitive deep RL is a closely
related idea proposed in [Li et al., 2017]. More recent works
focused on learning these models, such as the interaction net-
works [Battaglia et al., 2016; Kansky et al., 2017], which can
reason about how objects in complex systems interact.

Proposed Approach
The proposed approach initially assumes that there are no hid-
den variables, and incrementally creates new ones only when
needed to explain stochasticity of outputs. Algorithm 1 sum-
marizes the main steps of this process.



Identifying highly stochastic variables
We start by setting m, the number of hidden variables,
to 0, and initialize the list of parents pa(Oit+1) with
{O1

t , . . . , O
n
t , At}. In other words, all attributes of objects

in a given state are considered as relevant for predicting the
next state. Next, factors P (Oit|pa(Oit)) of the transition func-
tion are estimated from trajectories D. This can be achieved
through any of the many existing density estimation tech-
niques, such as frequency counts of discretized variables.

The algorithm maintains an open last-in, first-out list that
contains state variables that need further explanation, i.e.,
variables with probability distributions that have an entropy
above a predefined threshold ε. The algorithm is safeguarded
against entering infinite loops by upper bounding the number
of parents per variable by max var. The algorithm processes
the variables, one at a time, until the open list is empty.

Searching for possible causes of uncertainty
For each variable X in the open list, we identify a second
variable Y that yields the highest information gain when uti-
lized along with the current parents of X to predict X (line
9). The question that we want to answer here is: Does know-
ing the value of Y at time t + τ help us predict the value of
X at time t? Here, τ is a shift in time that takes values from
[τ−, τ+], wherein τ− < 0 and τ+ ≥ 0 and the choice of
τ− and τ+ depends on the computational resources that are
available and the amount of data. Notice that τ = −1 can be
excluded from the interval because Yt−1 is already a parent
of Xt (line 3). The interval of time shifts τ includes positive
values as well because we are also interested in finding links
between Xt and future values of variable Y . We will return
to this specific point later.

We found from our experiments that adding together the
information gains of Yt+τ for different values of τ results in
a better detection of relations between X and Y , given that
the delays in these relations can be arbitrary long. In the pre-
vious example, the robot may unlock the door then performs
a large number of unrelated exploratory actions before open-
ing it. The time difference τ between the first event of un-
locking the door and the second one of opening the door is
arbitrary large. The first event is captured by a variable Y that
indicates the position of the key relative to the doorknob, and
the second event is captured by a Boolean variable X . To ex-
plain why Xt takes values from the set {open, closed}
randomly when conditioned on the action and attributes at
time t − 1, the algorithm identifies Y as a potential cause by
noticing the information gain of adding Yt+τ to Xt’s parents,
for τ ∈ [τ−,−1[∪]−1, τ+]. Information gain and conditional
entropy, defined in the algorithm, are approximated empiri-
cally by replacing expectations with averages computed from
the training data.

Creating memories of identified causes
Once a variable Y is selected as a new parent ofX , we search
in the space Y of all possible values that Y can take for the
ones that are affecting X’s distribution the most. Note that
if all values of Y turn out to be relevant to the prediction of
X then they will all eventually be selected, as long as their

number does not exceed the upper boundmax var. For com-
putational efficiency, the space Y of variable Y is recursively
divided into different regions by using the binary space par-
titioning (BSP) technique (line 10). For example, if Y is the
3D position of the robot’s end-effector relative to a door knob,
then Partition(Y) is an octree.

In the next steps (lines 11-14), a memory of visiting a
region Ȳ is created for every possible region in the par-
tition of Y ’s domain. The memory variable is denoted by
MȲ . It is indexed by Ȳ because it serves as a timer that
indicates the time elapsed since the most recent time when
state variable Y took a value from the set Ȳ , i.e., Y ∈ Ȳ .
Thus, the domain of MȲ , denoted byMȲ , is set as [−1,∞[.
Default value MȲ,t = −1 means that, up to time t, the
event Y ∈ Ȳ did not occur yet. The parents of MȲ,t are
MȲ,t−1 and Yt. Memory variable MȲ is simply a timer
that is set to 0 the moment the event Yt ∈ Ȳ occurs,
and that is incremented by 1 every time-step afterwards.
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Figure 2: Causality graph returned
by Algorithm 1.

Instead of retaining all
memory variables MȲ
for all possible regions
Ȳ of Y ’s domain, we
choose in this work to
retain only a specific
memory MȲ that cor-
responds to the region
Ȳ that brings the maxi-
mum information gain to
the prediction of X (line
15). In the painting ex-
ample shown in Figure 1,
X is the appearance of paint on the surface of the target box,
Y is selected by the algorithm in line 9 as the relative pose
(position and orientation) of the brush with respect to the
paint container, and Ȳ is selected in line 15 as a cube cen-
tered around the paint container.

Inferring the directions of causal links
The algorithm identifies the optimal time shift τ∗ at which
visiting Ȳ at time t+ τ leads to a maximum information gain
in predictingXt (line 16), and considers the three cases: when
τ∗ < 0, when τ∗ > 0, and when τ∗ = 0. There are three pos-
sible cause-effect mechanisms that can explain the observed
dependency (i.e., the nonzero information gain) between Xt

and Yt+τ∗ : (1) Yt+τ∗ → Z → Xt, (2) Xt → Z → Yt+τ∗ ,
and (3), Z → Xt and Z → Yt+τ∗ , where Z is a hidden third
variable. Cases (1) and (2) can be distinguished from each
other based on the sign of time shift τ∗, since an event in
the future cannot affect the value of a variable in the past. If
τ∗ > 0 then we are either in case (2) or (3). If τ∗ < 0 then
we are either in case (1) or (3). If τ∗ = 0, then we are in (3).

We start with the case where τ∗ ≤ 0, since this is the most
common and obvious case. This case occurs in the examples
of learning to paint by first dunking the brush in the paint or
to open a door after unlocking it. In both examples, τ∗ should
be negative because the event Yt+τ ∈ Ȳ is a pre-condition
for Xt. Therefore, (Yt+τ ∈ Ȳ) reduces the entropy of Xt if
added to the parents of Xt, regardless of if we are in case (1)



Algorithm 1: Greedy Causal Graph Construction
Input: Set of observable variables {Oi}ni=1, and sampled

data trajectories D = {(zl0, al0, . . . , zlh, alh)}Ll=1;
Output: Set of memory variables {M i}mi=1, and parents of

each variable in {M i}mi=1 ∪ {Oi}ni=1 ;
1 openList← ∅; m← 0;
/* Identifying stochastic variables */

2 for i := 1; i ≤ n; i← i+ 1 do
3 ∀t ≥ 0 : pa(Oit+1)← {O1

t , . . . , O
n
t , At};

4 Estimate P (Oit|pa(Oit)) from data D;
5 if ConditionalEntropy(Oi, pa(Oi),∅)≥ ε then

openList.push(Oi) ;

6 while openList 6= ∅ do
7 X ← openList.pop(); newParents← ∅;

/* Searching causes of uncertainty */
8 repeat

9 Y ← arg max
Y ∈{Mi}mi=1∪{O

i}ni=1

τ+∑
τ=τ−

h∑
t=0

InfoGain(Xt, Yt+τ) ;
10 foreach Ȳ ∈ Partition(Y) do

/* Creating memories */
11 MȲ ← [−1,∞[; pa(MȲ,t+1)← {MȲ,t, Yt};

P (MȲ,0 = −1) = 1;
12 if (Yt ∈ Ȳ) then

P (MȲ,t+1 = 0|pa(MȲ,t+1)) = 1 ;
13 if (Yt /∈ Ȳ) ∧ (MȲ,t ≥ 0) then

P (MȲ,t+1 = MȲ,t + 1|pa(MȲ,t+1)) = 1 ;
14 if (Yt /∈ Ȳ) ∧ (MȲ,t < 0) then

P (MȲ,t+1 = MȲ,t|pa(MȲ,t+1)) = 1 ;

/* Selecting a region */

15 Ȳ ← arg max
Ȳ∈Partition(Y)

τ+∑
τ=τ−

h∑
t=0

InfoGain(Xt,

MȲ,t+τ);
/* Finding the time shift */

16 τ∗ ← arg max
τ∈[τ−,τ+]

h∑
t=0

InfoGain(Xt, MȲ,t+τ);

17 if
(
τ∗ < 0

)
then

18 pa(X)← pa(X) ∪ {MȲ};
19 m← m+ 1; Mm = MȲ ;
20 newParents← newParents ∪ {MȲ};

/* Causality test */
21 if

(
τ∗ ≥ 0

)
∧
(
¬ CausalDirection(X , Y )

)
then

22 openList.push(X); openList.push(Y );
break;

23 until
(
ConditionalEntropy(X , pa(X),∅)< ε

)
∨(

|pa(X)| ≥max var
)
;

24 pa(X)← pa(X) ∪ {Concatinate(newParents)};
25 m← m+ 1; Mm = Concatinate(newParents);

or (3). The memory variable MȲ that keeps track of the last
time Yt ∈ Ȳ is thus added to pa(X) (line 18).

We consider now the scenario where τ∗ > 0, which is less
obvious. Distinguishing between cases (2) or (3) is the pri-
mary question of research on causal inference. While there

are many formulations and postulates regarding this ques-
tion, the independence of input and function principle is one
that was proven to hold in practice. It stipulates that: “if
X → Y , the distribution of X and the function f map-
ping X to Y are independent since they correspond to in-
dependent mechanisms of nature” [Daniušis et al., 2010].
The test proposed in [Daniušis et al., 2010] measures the co-
variance between X and the gradient of mapping function
f , to capture the correlation between variations in the input
X and variations in the mechanism f . Given that function f
here is stochastic, we propose a modified test that captures
how changes in P (Y |X, pa(Y )) (mechanism) correlate to
changes in P (X|pa(X)) (input). If the correlation is smaller
than a threshold η, then we conclude that X is among Y ’s
indirect causes, i.e., we are in case (2). This case is not inter-
esting for reducing the entropy of P (X|pa(X)) because Y ,
being a consequence of X , cannot predict X in advance.

The case when the test fails is more interesting, because
it indicates that there is a third variable Z that is affecting
both X and Y at different times, i.e., we are in case (3) where
Z → Xt and Z → Yt+τ∗ . In this scenario (line 21), the
proposed algorithm simply defers processing variable X un-
til after Y is processed in the LIFO open list. Variable Y is
processed like any other variable in the open list. The algo-
rithm iterates inside the loop 8-23 where X now refers to Y
of the previous round. The algorithm searches for all events
that yield an information gain when included in Y ’s parents,
and adds their memories to the list of state variables and to
Y ’s parents. One of these events could be Z, the third vari-
able that causes both X and Y (Z → Xt and Z → Yt+τ∗ ).
Although, finding Z is not guaranteed by our algorithm be-
cause we set a limit on the maximum number of parents that
a variable can have. When the algorithm returns to processing
X , it selects the memory of Z as a new parent of X .

Once all the past events affecting X are identified and
added to its parents, or the number of such events exceeds
the limit (line 21), we create a single memory variable by
concatenating all the memory variables MȲ that were added
to pa(X), and insert this aggregated variable into pa(X).

Function InfoGain(X , Y ):
return H(X , pa(X)) - ConditionalEntropy(X , Y ,
pa(X))

Function ConditionalEntropy(X , Y , pa):
return −

∑
x∈X

∑
y∈Y

P (X = x, Y = y|pa)H(X , pa ∪ {y})

Function H(X , pa):
return −

∑
x∈X P (X = x|pa) ln

(
P (X = x|pa)

)
Function CausalDirection(X , Y ):

if CovX,Y
(
P (Y |X, pa(Y )), P (X|pa(X)) ≤ η

)
then

return true
return false

Example
To understand why the last scenario (when τ∗ > 0) is im-
portant, let us consider the example of the 3D FPS game
Doom [Kempka et al., 2016]. Our initial failed attempt to
learn a reward model for this game was the main inspira-
tion behind the present work. In this challenging FPS task, an



agent fights against two types of adversaries that have differ-
ent dynamics and that appear randomly in a large open space
around the agent. The agent gets a reward of +1 when it suc-
cessfully shoots an adversary. It gets a reward of −1 when
it dies. The agent does not have access to key information,
such as the ammunition number and its health status. At each
time-step, the agent can execute one of the following four
actions: rotate left, rotate right, do nothing, and shoot. The
agent then receives a reward and the position and dimensions
of each object in the scene. To solve this task, the agent learns
a reward function, and a transition function that maps each
frame into a predicted next frame. The reward estimator is
implemented as a neural network that takes as input current
and a short history of object attributes (position and size) and
a short history of executed actions. It outputs a probability
distribution of possible rewards. A second neural network is
used to predict future frames by forecasting changes in dif-
ferent attributes of objects. These two neural networks are
trained from frames and rewards collected by using a random
policy (i.e., uniform action distribution). After training, the
learned networks are evaluated in test episodes with a looka-
head tree search. At each time-step, the tree search simulates
a large number of possible futures. Every branch of the search
tree is obtained by recursively feeding the outputs of the tran-
sition network into itself and into the reward network, with
different actions. The action with the highest predicted future
rewards is then executed. The transition and reward networks
also take as inputs the hidden memory units M discovered
by the proposed algorithm. Details of the proposed transition
and reward architectures are omitted due to lack of space.

t t+1t-4t-18 ............

............

.........

: action

: reward

: positions of objects

: fire observation

: binary variable (hidden)

: ammunition (hidden)

Figure 3: The causality graph
of rewards in Doom. Algorithm 1
automatically reconstructed from
data this entire structure except for
the ammunition variable.

Surprisingly, pre-
dicting the reward for
shooting was the most
challenging part of
this game. To receive
a positive reward, the
adversary should be
exactly at the center of
the image a few time-
steps after the shooting
takes place. Moreover,
any shooting action that
takes place less than
18 time-steps from a
previous one is inef-
fective. The agent also
runs out of ammunition
after 26 rounds. Figure 3 shows the corresponding causality
graph. The observed variables are: the executed action, the
immediate reward, the positions and sizes of objects, and
the appearance of a new object (fire) after every effective
shooting. The remaining variables are hidden and unknown.
Let Xt be the reward received at time t. Initially, the only
parents of Xt are the executed action and the observed
state of the objects at t − 1. To reduce the entropy of
P (Xt|pa(Xt)), the algorithm searches for a variable Y that
reduces the entropy of P (Xt|pa(Xt)) when it is included
in pa(Xt). That variable turns out to be the appearance of
fire at t + 1. If Xt → Yt+1 or Xt → Z → Yt+, then this

information is useless when it comes to predicting Xt ahead
of time. However, by applying the independence of input and
mechanism test, the agent concludes that Xt is not a cause of
Yt+1, and that we are rather in the case Z → Xt, Z → Yt+1.
The algorithm then defers processing Xt to a later iteration,
and proceeds into searching for past events that may cause
Yt+1. This later observation cannot appear if the agent has
not executed a shooting action at exactly t−4, this past event
is then automatically added to the parents of Yt+1 in the
form of a hidden memory variable M1. The agent then also
finds that the second most important variable for predicting
Yt+1 is the elapsed time since the last appearance of fire,
and adds a memory M2 of that event to the parents of Yt+1.
The entropy of P (Yt+1|pa(Yt+1)) drops to almost zero with
the inclusion of M1 and M2 in pa(Yt+1). Finally, reward
Xt can be accurately predicted from the aggregated variable
Z = (M1,M2) and objects’ positions. This aggregated
hidden variable Z is represented by the middle circle in
Figure 3. It can be interpreted as a flag indicating if all the
conditions for shooting are met. One may question why M1

and M2 were not directly added to the list of Xt’s parents
if they yield high information gain. The answer is that M1

and M2 do not yield noticeable information gains for Xt

when taken individually, because reward Xt is sensitive to
other attributes such as positions and sizes of objects which
are high-dimensional, and instances of positive rewards
Xt = +1 are rare in the data generated by a random
exploratory policy. The observation of fire at the next step,
denoted by Yt+1, is a deterministic outcome of M1 and M2.
Thus, M1 and M2 are more easily detected as parents of
Yt+1. Since all new parents of a variable are concatenated
into a single variable (line 25), (M1,M2) will be selected
in line 9 when Xt is processed again. This structure was
automatically discovered by Algorithm 1. The algorithm
failed, however, to discover the causal relation between
ammunition (another hidden variable) and effectiveness of
shooting actions. But this did not impact the performance of
the planned policy, as we will see in the next section.

Experiments
The proposed approach is evaluated on three tasks. The first
two are robotic experiments using the Gazebo simulator, and
the third one is from the 3D FPS game Doom. The policy
obtained from the learned transition and reward models for
painting is evaluated using the real Kuka robot shown in Fig-
ure 1. The proposed method is compared with the model-free
RL algorithms PPO and A2C, and the model-based RL tech-
niques of [Oh et al., 2015] and [Chiappa et al., 2017]. All
these methods use LSTM units. We also compare against a
version of [Oh et al., 2015] that uses a GRU instead of an
LSTM, and the method of [Vaswani et al., 2017] that uses an
attention mechanism. We finally compare against a variant of
our method that uses the same dynamics and reward architec-
tures, but without including the memory variables.

Painting. We formulate the painting problem illustrated in
Figure 4 as a POMDP, where the state space corresponds to
the position of the paintbrush attached to the robot’s end-
effector, and a hidden binary variable that indicates if the
paintbrush is loaded. It is important to note that the robot ob-



(a) Learning to paint (b) Learning to change a tire (c) Doom Game: Defend The Center
Figure 4: Tasks considered in the experiments
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Figure 5: Average reward per test episode as a function of the number of time-steps in the training data. Stacking History refers to a variant
of our architecture where the hidden variables are replaced with a long history of actions, observations and rewards.

serves only the position of the brush, and not if it is loaded
or unloaded. The action space corresponds to movements of
the end-effector in six directions. We use the Gazebo simu-
lator with the MoveIt! path planner to move the end-effector
between two adjacent cells and generate data. The length of
each episode is 100 time-steps. When the brush goes inside
the paint bucket, the binary variable switches from false to
true and remains so until the end of the episode. This simple
transition is difficult to learn because the binary switch vari-
able can never be observed, there is no immediate evidence
related to it, and the robot is even unaware of its existence a
priori. If the paintbrush was loaded, the robot receives a re-
ward of +1 when the brush touches the canvas. In all other
cases, the received reward is 0. The reward function is also
unknown and needs to be learned from the observed trajec-
tories. Given that the data is collected with a random policy,
the time difference between dipping the brush into the bucket
and touching the canvas can be arbitrarily long. Using the
proposed algorithm, the robot learned a state transition model
and a reward function from data. The learned model was then
used to return a policy. Results reported in Figure 5 show that
our algorithm converges to a nearly 100% success rate. The
results are averaged over 200 test episodes and five different
initial positions of the paint bucket and the canvas.

Tire Removal. The painting experiments involve only one
hidden variable. To test the proposed algorithm on problems
with more variables, we designed a second task in Gazebo
where the robot is tasked with removing a tire. We assume
that the robot is already equipped with an automatic drill on
its end-effector, and the task consists in placing the drill on
the lug nuts to loosen them before moving to the center of the
wheel to take it off. The problem is formulated in the same

Task Proposed LSTM GRU [Chiappa et al.] [Vaswani et al.]
Painting Reward 0 1/0.99 1/0.99 1/0.99 1/0.99 0.99/0.99
Painting Reward 1 0.93/1 0/0 0/0 0/0 0.08/0.152

Tire Reward 0 1/0.99 1/0.99 1/0.99 1/0.99 1/0.99
Tire Reward 1 0.93/1 0/0 0/0 0/0 0/0

VizDoom Reward 0 0.99/0.99 1/0.99 1/0.99 1/0.99 1/0.99
VizDoom Reward 1 0.87/0.86 0/0 0.01/0.20 0/0 0/0

Table 1: Recall / Precision in predicting the two values of rewards

way as in the painting task, except that the hidden variables
now correspond to the status of each of four lug nut (tight
vs. loose). The wheel can be taken off only when the end-
effector is placed at the center of the wheel, after placing it on
four specific points corresponding to the lug nuts. A reward
of 1 is given when the task is successfully finished, all other
states have a reward of 0. Results in Figure 5 and Table 1
confirm that the proposed approach discovers the causal link
between visiting four specific regions of the state space and
receiving a positive reward at the end of the episode. Note
that the positions of the nut lugs are randomly selected at the
beginning of each episode.

Doom Game. This task is presented in the example sec-
tion. The transition and reward networks take as inputs the
hidden memory variables M discovered by the proposed al-
gorithm, in addition to the observations. The memory vari-
ables played a major role in speeding up the learning process.
In Figure 5, we compare against a version of our architecture
(denoted as stacking history) that replaces the hidden variable
inputs with a long history of actions and observations. Here
again, the proposed method significantly outperformed all the
compared methods in terms of average score per episode.

Final remark. A video of the robot experiments and tech-
nical details are included in the supplementary materials.
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