
Proceedings of Machine Learning Research vol xxx:1–14, 2021

Self-Supervised Learning of Long-Horizon Manipulation Tasks with
Finite-State Task Machines

Junchi Liang JL2068@CS.RUTGERS.EDU
Robotics Lab, 1 Spring Street, New Brunswick, NJ 08901

Abdeslam Boularias AB1544@CS.RUTGERS.EDU

Robotics Lab, 1 Spring Street, New Brunswick, NJ 08901

Abstract
We consider the problem of a robot learning to manipulate unknown objects while using them

to perform a complex task that is composed of several sub-tasks. The robot receives 6D poses of
the objects along with their semantic labels, and executes nonprehensile actions on them. The robot
does not receive any feedback regarding the task until the end of an episode, where a binary reward
indicates success or failure in performing the task. Moreover, certain attributes of objects cannot
be always observed, so the robot needs to learn to remember pertinent past actions that it executed.
We propose to solve this problem by simultaneously learning a low-level control policy and a high-
level finite-state task machine that keeps track of the progress made by the robot in solving the
various sub-tasks and guides the low-level policy. Several experiments in simulation clearly show
that the proposed approach is efficient at solving complex robotic tasks without any supervision.

1. INTRODUCTION

The state of the art in robotic manipulation falls short of the capabilities that are needed for perform-
ing various tasks in open worlds. One of these critical capabilities is the use of tools in unstructured
and unknown environments such as those encountered in households and small manufacturing work-
shops. A major source of failure in robotic manipulation is the high variety of the objects and their
configurations and poses in such environments. Consequently, a robot needs to be autonomous and
to adapt to changes. However, developing the software necessary for performing every single new
task autonomously is costly and can be accomplished only by experienced robotics engineers. This
is an issue that is severely limiting the popularization of robots today.

Ideally, robots should be multi-purpose, polyvalent and able to learn new skills in a self-supervised
manner. For example, a robot in a factory setting should be able to learn on its own a new skill such
as replacing a tire, from trial and error. The robot explores various random manipulation actions
on different components of the tire, and receives a reward signal only when the tire is removed.
Eventually, the robot learns the causal link between loosening each lug nut of the wheel and the
long-term effect of receiving a reward at the end of the trial. The robot should not simply memorize
the successful sequence of controls, but it should learn a general policy that maps every possible
new image into a low-level action in a closed-loop control.

Model-based reinforcement learning, in conjunction with manipulation planning, has shown
promise in generalizing learned skills to new setups. However, most existing works in this area
assume that the state of the manipulated objects is fully observable. This is rarely the case in
robotics. In our previous example, for instance, the robot cannot easily observe if the lug nuts

© 2021 J. Liang & A. Boularias.

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

have been loosened. The robot can however learn to remember pertinent past controls/feedbacks
to overcome the partial observability problem. For example, LSTM and GRU architectures are
general-purpose tools for solving problems of partial observability by discovering and remembering
pertinent information. They tend, however, to require exorbitant amounts of training data.

To address these issues, we propose in this work1 to structure the memory of the robot as a
Finite-State Machine (FSM). The finite states of the machine are auxiliary variables that are used in
conjunction with the observations as inputs to the control policy. Intuitively, each state corresponds
to a specific subtask, or stage. For example, state A corresponds to turning on a switch, state B
corresponds to loosening a lug nut, and so on. The FSM transitions from one state to another
whenever a subtask is successfully accomplished, and transitions to a terminal state when the full
task is correctly performed. The robot does not know in advance the number of the FSM states
nor their interpretation as subtasks. No prior information about the task is provided. The only
inputs given to the robot at each time-step are its joint angles, the 6D poses of the objects, and
their semantic labels, such as “lug nut”, “paint container”, “tire”, and so on. Semantic labels are
necessary to generalize across scenes. The robot applies changes to its joint angles at each time-
step. The robot does not receive any external signal except a binary reward at the end of the executed
trajectory that indicates if the full task was performed successfully or not. Based on that alone, the
robot learns the finite-state machine of the desired task and a policy for performing the task.

2. PRELIMINARIES

A Markov Decision Process (MDP) is a tuple (S,A, T,R, γ), where S is a set of states and A is
a set of actions. T is a transition function with T (s′|a, s) = P (St+1 = s′|st = s,At = a) for
s, s′ ∈ S, a ∈ A. R is a reward function where rt = R(st) ∈ R is the reward received in st, and
γ ∈ [0, 1[is a discount factor. A policy πθ is a distribution on the action to be executed in each
state, defined as πθ(s, a) = P (At = a|St = s). The value V πθ of a policy πθ is the expected sum
of rewards that will be received if πθ is followed, i.e., V πθ(s) = E[

∑∞
t=0 γ

trt|S0 = s, πθ, T,R].
In several application domains, such as robotics, states are not fully observable in general. A

robot perceives partial observations ot, in the form of images for example. The resulting process is
a Partially Observable MDP (POMDP). Formally, a POMDP is a tuple (S,A,O, T, Z,R, γ) where
(S,A, T,R, γ) is an MDP, O is a set of observations, and Z is an observation likelihood function.

3. RELATED WORK

POMDPs are traditionally learned by using the expectation-maximization technique known as the
Baum-Welch algorithm (Rabiner, 1990; Kontorovich et al., 2013). This algorithm is however sen-
sitive to the initial values of transition and observation probabilities, it typically gets stuck in local
maxima, and requires the number of hidden variables to be known in advance. Predictive State
Representations (PSRs) (Singh et al., 2004; Boularias and Chaib-Draa, 2009) are an alternative rep-
resentation that can be learned from observations without reasoning about hidden variables. PSRs
are however sensitive to certain parameters, such as the number of core tests. The learning com-
plexity of PSRs is also exponential in the length of history that needs to be remembered to predict
future observations. This problem was later alleviated with spectral techniques (Boots et al., 2011)

1. This work is supported by NSF awards IIS-1734492 and IIS-1846043.

2

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

which generalize PSRs by including features of trajectories, instead of a stream of raw observa-
tions. In (Icarte et al., 2018), a type of finite-state machine that supports the specification of reward
functions was presented and used to accelerate reinforcement learning of structured policies. In
contrast to our proposed approach, the structure of the reward machine in (Icarte et al., 2018) was
assumed to be known. Several techniques for learning partially observable dynamical models are
based on recurrent neural networks (RNN), and LSTM in particular (Downey et al., 2017; Choro-
manski et al., 2018; Hafner et al., 2018; Finn and Levine, 2017; Finn et al., 2016). LSTM typically
requires large numbers of training data and often fails to capture time-delayed causal relations. To
solve this problem, long-term dependencies in temporal models were considered in some recent
works (Neitz et al., 2018; Trinh et al., 2018). Such dependencies are learned, for example, by using
the reconstruction loss in recurrent neural nets as an auxiliary objective (Trinh et al., 2018).

The problem of learning long-term dependencies is also addressed with attention mechanisms,
which are used for selecting specific features dynamically according to the specified task. Attention
weights were defined in (Xu et al., 2015; Jiang et al., 2018; Anderson et al., 2018) as functions of
features of different parts of an image and memory units that allow the agent to focus on pertinent
regions of the image as it generates a corresponding caption. The same mechanism was adopted
in a more recent work (Jiang et al., 2018). Duan et al. (2017) employed an attention mechanism to
compress information from demonstrated trajectories in the context of imitation learning. LSTM
also employs attention mechanisms since the forget and input gate can be interpreted as attention
weights (Duan et al., 2017). We show in our experiments that LSTM’s attention tends to forget old
events, unless colossal numbers of training trajectories are used.

While we assume in the current work that 6D poses and labels of objects are provided from a
vision module, other recent works have shown that complex tasks can be completed by learning
directly from pixels (Kalashnikov et al., 2018; Fox et al., 2018; Xu et al., 2017; Huang et al., 2018;
Nair et al., 2020; Andrychowicz et al., 2017; Nair and Finn, 2019). This objective is typically
accomplished by using compositional policy structures that are learned by imitation (Kalashnikov
et al., 2018; Fox et al., 2018), or that are manually specified (Xu et al., 2017; Huang et al., 2018).
Some of these methods have been used for simulated control tasks (Bacon et al., 2017; Nachum
et al., 2018; Eysenbach et al., 2019). These promising end-to-end techniques still require orders
of magnitude more training trajectories compared to methods like ours that separate the object
detection and planning problems. Long-horizon manipulation tasks have also been solved by using
symbolic representations and Task and Motion Planning (TAMP) (Toussaint et al., 2019; Kaelbling,
1993; Kaelbling and Lozano-Pérez, 2010). However, all the variables of the reward function in
these works are assumed to be known and fully observable. In contrast, our method is fully self-
supervised, with no intermediate rewards and signals besides the configuration of the robot, the 6D
poses of the objects, and a binary reward at the end of a trajectory that indicates success or failure.

4. APPROACH

4.1. Finite-State Task Machines

We focus in this work on a special type of object-oriented POMDPs that is appropriate to robotic
manipulation tasks. A state S is described by visible attributes of the objects in the scene and the
robot, in addition to task states that are hidden and unknown a priori. Specifically, we denote the
configuration of the robot in a given world coordinate frame at time t by ct ∈

(
R3 × SO(3)

)J ,
where J is the number of joints of the robotic manipulator and end-effector. We assume that the

3

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

manipulated objects are rigid, the 6D pose (position and orientation) of the end-effector at time t
in the reference frame of object i is denoted by pit ∈ R3 × SO(3), and a semantic label lit ∈ L
for object i is obtained from a vision module. At each time-step, the robot receives an observation
ot = (ct, 〈p1

t , l
1
t 〉, . . . , 〈pnt , lnt 〉) wherein n is the total number of objects that are present in the scene.

For the sake of simplicity and without loss of generality, we assume that the end-effector is a
tool (e.g., painting brush, wrench, suction cup, etc.) that is already grasped by the robot. Therefore,
manipulation actions are nonprehensile and can be performed by controlling the 6D pose of the end-
effector relative to the objects in the scene. A manipulation action is defined as at = 〈i,∆pit〉, where
i ∈ {1, . . . , n} is a manipulated object, and ∆pit ∈ R3×SO(3) is a desired change in the pose pit of
the end-effector in object i’s coordinates system. Each object i has a fixed anchor (home) 6D pose
ci ∈ R3 × SO(3) that the robot’s end-effector moves to before starting to manipulate it. Anchor
points are chosen arbitrarily, and slightly away from the corresponding objects to avoid collisions
before manipulation starts.

When two consecutive actions at−1 = 〈i,∆pit−1〉 and at = 〈j,∆pjt 〉 aim to manipulate two
different objects, i.e. i 6= j, the RRT motion planner (Kuffner and Lavalle, 2000) is used to move
the robot from its last configuration ct−1 to a configuration ct that places the end-effector at the
anchor pose cj of object j, while avoiding collisions. Once the end-effector is in the anchor pose,
subsequent moves {∆pjt+k}

K
k=0 of the end-effector relative to the object’s frame of reference are

executed by using a PID controller that connects way-points {cj +
∑K

k=0 ∆pjt+k}
K
k=0. Note that the

number of movesK is not constant. This process is repeated until the robot switches to manipulating
a different object. The accuracy of the PID controller is reflected by the transition model of the
observed part of the state, denoted by T o(ot, at, ot+1). Transition function T o(ot, at, ot+1) is the
probability of observing ot+1 at time t+ 1 after observing ot at time t and executing action at. We
define this probability as a Gaussian distribution, where pit+1 = pit+∆pit+ε for action at = 〈i,∆pit〉,
with ε ∼ N (0,Σ). The other attributes of ot+1 are computed based on pit+1. The semantic labels of
the objects remain constant. Noise covariance Σ is estimated from a small number of data points.

Unlike the poses of the robot and the objects, task states are not observable, and their number is
unknown in advance. The robot should infer these abstract states from raw trajectories of actions,
observed poses of objects and terminal binary rewards. Task states are internal, and thus do not play
any role in the transition function T o of the poses. We denote the set of task states by G. Transition
function T g(gt, ot, gt+1) is the probability of transiting from task state gt to task state gt+1 at time
t + 1 after observing ot at time t. A terminal task state g∗ is reached when the task is successfully
accomplished, where T g(g∗, o, g∗) = 1, ∀o and T g(g∗, o, g) = 0,∀o, g 6= g∗.

The state of the system at time t is defined as st = 〈ot, gt〉 ∈ O × G. Only ot is observed
by the robot. The transition function is given as T (st, at, st+1) = T o(ot, at, ot+1)T g(gt, ot, gt+1).
Finally, we assume that the rewards for manipulation tasks are binary. Reward functionR is defined
as R(〈ot, gt〉) = 1 if gt = g∗ and R(〈ot, gt〉) = 0 if gt 6= g∗. Consequently, rewards indicate only
success or failure of a manipulation task. Discount factor γ ∈ [0, 1[ensures that shorter trajectories
are preferred over longer ones. Therefore, the manipulation problem consists in finding a policy π∗θ
that satisfies π∗θ = arg maxπθ∈Π V

πθ(s),∀s ∈ S, given a set D = {τm}Mm=1 of data trajectories
τm = (om0 , a

m
0 , r

m
0 , . . . , o

m
h , a

m
h , r

m
h).

4

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

4.2. Model

Policy Network. We present here a probabilistic model for simultaneously learning a finite-state
task machine and a policy πθ that maximize V πθ with self-supervision and no human input be-
yond terminal rewards. The policy model πθ is implemented as a neural network that estimates
the probability of selecting an action at = 〈i,∆pit〉 for any state st = 〈ot, gt〉. Specifically, the
network returns a distribution on i ∈ {1, . . . , n} that indicates which object needs to be manipu-
lated next, based on the current state st = 〈ot, gt〉. The network also returns the mean and variance
of a Gaussian distribution based on the current st and the previous one st−1, such that ∆pit ∼
N
(
µi(st−1, st; θ),Σi(st−1, st, θ)

)
where θ is the set of weights of the neural network. We found

from our empirical investigation that the addition of history, in the form of st−1, helps capturing the
direction of the motion of the end-effector and yields better results, despite the fact that the task-state
gt part of state st is already a memory of past actions and observations.

at P(at|st, t)

t

(at|st, t)

(at-1|st-1, t-1)

(at-N+1|st-N+1, t-N+1)

...

gt

ot

g^

P(gt+1|ot,gt,zt)

Variable

Neural
Network

gtot
st st =st-1

zt

Distribution

zt

g0 g*
g1

g2

g3

g4

Figure 1: Proposed model

Temporal Modulation. Temporal modulation is needed for
controlling the velocities of the movements. We utilize a
phase variable φt to provide a time signal to policy πθ. There-
fore, we redefine policy πθ as πθ(s, a, φ) = P (at = a|st =
s, φ = φt). But for ease of notation, we drop φ from the in-
puts of πθ in this article. Policy πθ is then a time-dependent
function where time is given as an input implicitly through
phase signal φ. Phase variables are typically used in dy-
namic motor primitive in order to generate faster or slower mo-
tions (Paraschos et al., 2013). They are also used to generate
rhythmic and stroke-based movements. In this work, we de-

fine phase variables as φt =
∑n

i=1 ωi exp
((t−t̂(gt,0)−t̂(gt,i)

)2

h

)
,

where (t̂(gt,0), t̂(gt,1), . . .) is a sequence of time-steps that is
specific to the movement associated with the current task state
gt, and {ωi} are their corresponding weights. Both time-steps
{t̂(gt,i)}ni=1 and weights {ωi}ni=1 are variables, and learned along the other weights in θ of the policy
network πθ. Starting time t̂(gt,0) is obtained during the execution as the time when the movement
associated with the current task state gt has started.

Finite-state Machine Network. A second neural network is used to predict transitions between
task states. Since task states are discrete and finite, the neural network returns a transitions matrix
T̂ gη , where T̂ gη (gt, ot, gt+1, zt) is the probability of switching from gt to gt+1 and η is the set of
weights of the neural network. zt = [log πθ(st, at), log πθ(st−1, at−1), . . . , log πθ(st−N+1, at−N+1)]
is a vector that contains the log-probabilities of the last N executed actions according to the policy
model πθ explained above. These probabilities are computed based on the means and variances re-
turned by the policy network at the corresponding time-steps. zt can be interpreted as an indicator of
the progress in executing a specific sub-task associated with task state gt. For example, zt tracks the
actions executed by the robot as it dips a brush in a paint bucket, and gt is interpreted as the dipping
sub-task. Note that the number of task states as well as their interpretation as sub-tasks, or primitive
skills such as dipping or painting, is unknown to the robot. Progress vectors zt are introduced to
reduce the size of the set of task states G, so that the system can remain in a self-loop at a task state
gt ∈ G for a few time-steps until zt indicates that the underlying sub-task has been successfully
accomplished and the system then switches to a different task state. If we only provide gt and ot to

5

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

Input: A POMDP (S,A,O, T, Z, γ) formulation of the manipulation task, set G of task states, a learned task transition function T̂gη , and a learned policy πθ ;
Output: A sequence of actions (a0, a1, . . . , at) to be executed by the robot;
for i := 1; i ≤ max nb trajectories; i← i + 1 do

Set o0 to the initial configuration of the robot and g0 to initial task state g0;w[i]← 1; r0 ← 0 ; // w[i] is the probability of sampled

trajectory i, and rt is the reward received at time-step t.

for t := 0;
(
t < max horizon ∧ rt < 1

)
; t← t + 1 do

st ← 〈ot, gt〉; Sample at = (j,∆pj) ∼ πθ(st, .) ; // Sample an action at with probability πθ(st, at).

zt[t mod N] = log πθ(st, at) ; // Insert the log-probability of the sampled action into memory vector zt.

Sample gt+1 ∼ T̂gη (gt, ot, zt, .) ; // Sample next task state with probability T̂gη (gt, ot, zt, gt+1).

Sample ot+1 ∼ T̂o(ot, at, .) ; // Sample the next observation conditioned on the simulated action at and previous

observation ot, and using transition function T̂o(ot, at, ot+1).

w[i]← w[i]πθ(at, st)T̂
g
η (gt, ot, zt, gt+1)T̂o(ot, at, ot+1) ; // Update the probability of the trajectory.

if gt+1 6= g∗ then rt+1 ← 0; else rt+1 ← 1 ; // Successful trajectory obtained.

end

T [i]← (a0, a1, . . . , at); h[i]← t ; // Save the length of trajectory i.

end

Select τ ← T [i] by sampling index i from distribution P (i) =
γh[i]w[i]∑
j γ
h[j]w[j]

where i ∈ {1, . . . ,max nb trajectories};

Algorithm 1: Inference

the transition model without memory zt, then the number of task states needed to explain the binary
reward received at the end of a trajectory increases significantly.

We will show in Section 4.4 a simple algorithm that learns the number of task states, a transition
model T̂ gη and a policy πθ. The proposed algorithm iterates between learning these models and
planning to actively sample new trajectories from the learned models. Therefore, we start by first
explaining in the following section the planning procedure.

4.3. Inference

Algorithm 1 receives as inputs a POMDP model (S,A,O, T, Z, γ) without a reward function, a
finite-state task machine, defined by a set G and learned transition function T̂ gη , in addition to a
learned policy πθ. The algorithm returns a sequence of actions to be executed on the robot.

The algorithm samples in simulation a large number of trajectories of states st and actions
at. It then computes a probability distribution on the sampled trajectories that are predicted to be
successful at solving the task according to the learned task machine. The probability of a sampled
trajectory that is predicted to be successful is proportional to its length, so that shorter trajectories
are preferred. At the end, the algorithm returns one trajectory sampled from this distribution.

Specifically, we start by sampling an action at = (i,∆pit) for time-step t from distribution
πθ(st, .). The log-probability of the sampled action is inserted into the N -sized memory vector zt,
which keeps track of the last N selected actions. To simulate next state st+1, which is defined as
st+1 = 〈ot+1, gt+1〉, we first sample a next task state gt+1 with probability T̂ gη (gt, ot, zt, gt+1). We
then sample next physical state ot+1, which is defined as ot+1 = (ct+1, 〈p1

t+1, l
1
t+1〉, . . . , 〈pnt+1, l

n
t+1〉)

wherein n is the total number of objects that are present in the scene. Semantic labels do not change
over time, i.e lit+1 = lit. To obtain ot+1, we first sample a new 6D pose pit+1 ∼ N (pit + ∆pit,Σ)
where i is the index of the manipulated object. The new configuration ct+1 of the robot and the 6D
poses of the other objects relative to the end-effector are all computed from pit+1. The reward rt+1

is defined as 1 if the task state gt+1 is the terminal success state g∗, and 0 otherwise.

6

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

4.4. Learning

Algorithm 2 provides detailed steps of the proposed approach for learning the finite-state task ma-
chine (G, T̂ gη) and policy πθ used by the planning algorithm explained above. In a nutshell, the robot
explores its environment by manipulating randomly selected objects with random movements. The
process is fully self-supervised, but the robot receives a reward of 1 when a trajectory of states and
actions ends up with successfully performing the required task. The robot receives a reward of 0
for all other time-steps. The extreme sparsity of the reward signal makes this process particularly
long. After accidentally discovering a successful sequence τ of actions that solve the task, the robot
enters a second phase of learning. In the second phase, the robot tries to locally improve trajectory
τ by exploring new actions that are not too distant from the actions in τ . At the same time, the
algorithm searches for the most compact task machine (G, T̂ gη). Initially, |G| is set to be equal to the
number of objects that were manipulated in the first successful trajectory τ , wherein each task state
gi corresponds to manipulating a specific object i. The robot then experiments with skipping various
objects, and eliminating their corresponding task states from G. Since the outcome of executing a
trajectory is not deterministic, we formulate the problem of learning the states of G as a multi-armed
bandit problem and utilize the Upper Confidence Bound (UCB) (Auer, 2003) technique to solve it
efficiently. This process is explained in the following.

Set of task states G is initially set as {g0, g1, . . . , gn, g∗}, wherein n is the maximum number of
objects, and g∗ is an abstract terminal state. Initial policy πθ is set such that only object i can be
manipulated in task state gi. When the task machine transitions into state gi, it remains there with a
large probability 1−ε, and switches to any other state (including the terminal state) with probability
ε. These probabilities, used for initial exploration, are updated later in the learning process. The
robot executes initial policy πθ using initial task transition function T̂ gη until a successful trajectory
τ is encountered. Before starting the improvement phase, policy πθ and transition T̂ gη are trained to
“imitate” trajectory τ . To this end, the neural networks corresponding to πθ and T̂ gη are trained to
maximize the likelihood of trajectory τ .

The second phase consists in improving successful trajectory τ by exploring new actions that
reduce the size of task states G, and also shorten the overall length of the trajectory. The robot
performs experiments of the type “what if I re-execute all the actions of trajectory τ except those
related to object i?”. Since the outcome of the open-loop execution of the actions is stochastic, one
cannot immediately conclude that a task state cannot be skipped based on a single failed outcome.
At a high-level, this is an (n + 1)-armed bandit problem, where the (n + 1) arms correspond to
the options of skipping one of the n current states of the task machine, or not skipping any state
(i = 0). We use the UCB technique in Algorithm 2 where V [i] is the empirical average reward
of the experiments that skip task state gi, and C[i] is the number of such experiments. Before
experimenting with skipping a task state gj , the task-machine is temporarily modified by changing
its transition probabilities. Probabilities of transitioning to skipped state gj from any state are all
set to 0. Probabilities of transitioning from skipped state gj to any other state gk are re-distributed
among all other states gi after multiplying them with the probabilities of transitioning from gi to
skipped state gj . Using the modified task machine T g, and current policy πθ, the robot samples and
executes a new sequence of actions and obtains a new trajectory τ = (o0, a0, r0, . . . , oh, ah, rh).
The empirical value of the option of skipping task state gj is updated based on the received terminal
reward rh. If the new trajectory is unsuccessful (i.e., rh = 0), then one cannot yet conclude that
task state gj is unnecessary because the failure could be due to a small noise in the execution or

7

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

Input: List of objects i ∈ {1, . . . , n};
Output: Set G of task states, task transition function T̂gη , and policy πθ ;

Initialize policy network πθ with random weights θ ; // Uniform initial exploration policy

G ← {g0, g1, . . . , gn, g∗} ; // Initial task states: one state per object, an initial sate g0, and a terminal state g∗

For all i ∈ {1, . . . , n}, set πθ(〈., gj〉, 〈i, .〉)← 0 for all j 6= i ; // Only object i can be manipulated in task state gi

For all i ∈ {1, . . . , n}, set T̂gη (gi, ., ., gi)← 1− ε and T̂gη (gi, ., ., gj)← ε
n

for all j 6= i ; // Initial task state transition probabilities

do not depend on observations or memory variables.
repeat

Set o0 to the initial configuration of the robot and g0 to initial task state g0;
Sample a trajectory τ = (o0, a0, o1, a1 . . . , oh, ah, rh) by executing policy πθ with task transition function T̂gη ;

/* Stop when the first successful trajectory is obtained */

until rh = 1;

θ ← arg maxθ
∑h
t=0 log πθ(st, at) ; // Train the policy network by maximizing the likelihood of the actions at in the first

successful trajectory τ

η ← arg maxη
∑h
t=0 log T̂gη (gt, ot, zt, gt+1) ; // Train the task transition function by maximizing the likelihood of the task

states gt in the first successful trajectory τ

For all i ∈ {0, . . . , n}, initialize V [i] ← 0 and C[i] ← 0; /* V [i] is the expected return of policies that skip task state gi, C[i]

counts trajectories sampled from such policies. i = 0 indicates that no task state is skipped. */
repeat

Tg ← T̂gη ; // Copying the transition function of the current task-state machine

j ← arg maxi∈{0,...,n} V [i] + c

√
ln(
∑n
k=0

C[k])

C[i]+1
;C[j]← C[j] + 1 ; // UCB for selecting a task state to skip

if j 6= 0 then
for i := 1; i ≤ n; i← i + 1 do

Tg(gi, ., ., gj) = 0 ; // To skip task state gj in the current experiment

For all gk ∈ G − {gj}: Tg(gi, ., ., gk)← Tg(gi, ., ., gk) + Tg(gi, ., ., gj)Tg(gj , ., ., gk) ; // Transitions into state gj

are rerouted toward following states gk (including the terminal state g∗).
end

end
Set o0 to the initial configuration of the robot and g0 to initial task state g0;

Sample a trajectory τ = (o0, a0, o1, a1 . . . , oh, ah, rh) using πθ and Tg ; // A trajectory that skips state gj.

V [j]← (C[j]−1)V [j]+rh
C[j]

;

if rh = 1 then

G ← G − {gj} ; // The trajectory was successful, so gj is unnecessary and can be removed

η ← arg maxη
∑h
t=0 log T̂gη (gt, ot, zt, gt+1) ; // Train the task transition function by maximizing the likelihood of

the task states gt in the latest successful trajectory τ

θ ← θ + α
∑h
t=0 γ

h−trh∇θ log πθ(st, at) ; // Policy gradient using the actions at of trajectory τ.

end
until timeout;

Algorithm 2: Learning

perception. The confidence in the utility of task state gj , given by the empirical average V [j] and
counter C[j], is however decreased in this case. If the new trajectory is successful (i.e., rh = 1),
then one can conclude immediately that task state gj can be eliminated from set G. In this case, the
neural network that corresponds to transition function T̂ gη is re-trained to maximize the likelihood of
the task states in the new trajectory τ . Parameters θ of the policy network πθ are also updated based
on the reward received at the end of τ and the length h of τ , by using the policy gradient approach.
This process is repeated. The task machine converges to a compact set of states after cutting off all
unnecessary intermediate states. The policy, steered by the task machine, also converges to choosing
the shortest sequence of moves for manipulating each object thanks to the policy gradient updates.

5. EXPERIMENTS

More details, code, and videos of the experiments are available at https://rb.gy/z5a3hc.
Tasks. We thoroughly evaluated the proposed framework and algorithm on two long-horizon

manipulation tasks illustrated in Figure 2, using the realistic Pybullet simulator of a Kuka LBR

8

https://rb.gy/z5a3hc

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

(a) (b)

Figure 2: Tasks considered in the experiments. (a) Learning to paint. (b) Learning to remove a tire.

robot. The first one is a painting experiment. A reward is received at the end of a trajectory if
the robot first successfully dips a brush attached to its end-effector in an object labeled as “paint
bucket”, and then successfully paints a straight stroke on another object labeled as “canvas”. The
entire simulation is physically realistic, except for the fluid (paint liquid) simulation which is sim-
plified. The robot needs to avoid collisions while manipulating the objects. The dipping maneuver
is considered as effective if and only if the brush touches the bottom of the paint bucket for more
than three time-steps, which results in loading the paintbrush with sufficient paint. The painting is
successful if the loaded brush is moved along the surface of the canvas in a straight line. In addition
to the objects labeled as “paint bucket” and “canvas”, there are four other irrelevant objects on the
table that have other labels. The robot does not know anything about the task, and does not know
which types of objects should be manipulated, in which order or how to manipulate them. The four
distracting objects make the learning more challenging because the robot will explore all of them
before eventually learning a task state machine that indicates the types of objects that are relevant
and the manipulation order, in addition to a policy for the low-level motor primitives.

The painting task involves only two sub-tasks (loading the brush, and stroking). To test the
proposed algorithm on problems with more sub-tasks, we designed a second task where the robot
learns to remove a wheel. A wrench is already attached to the end-effector. The task consists in
placing the wrench on every lug nut to loosen it before moving to the center of the wheel to pull
it. The robot transits to the next sub-task by loosening a lug nut: the end-effector should rotate
counterclockwise more than 30◦ along the z-axis on a lug nut. The wheel can be taken off only after
all lug nuts are loose and the end-effector is placed no more than 1cm from the center of the wheel.
Here again, a reward of +1 is given when the task is successfully finished, all other states have a
reward of 0. Results are averaged over five different positions of the nut lugs. We consider two types
of wheels, those with two lug nuts (three sub-tasks in total) and three distracting objects (rubber and
two fixed pieces), and those with four lug nuts (five sub-tasks) and one distracting object (rubber).

Compared Methods. We compare the proposed algorithm with the model-free RL algorithms
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Advantage Actor Critic (A2C) (Mnih

9

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

10K 20K 30K 40K 50K 60k 70k 80k 90k 100k
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e
sc

or
e

Painting - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

50K 100K 150K 200k 250k 300k
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

sc
or

e

Tire Changing (3 sub-tasks) - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

50K 100K 150K 200K 250K 300K
Number of training steps

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

sc
or

e

Tire Changing (5 sub-tasks) - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

10K 20K 30K 40K 50K 60k 70k 80k 90k 100k
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

sc
or

e

Stochastic Painting - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

50K 100K 150K 200k 250k 300k
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

sc
or

e

Stochastic Tire Changing (3 sub-tasks) - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

50K 100K 150K 200K 250K 300K
Number of training steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

sc
or

e

Stochasitc Tire Changing (5 sub-tasks) - Score

Proposed
LSTM
GRU
PPO
A2C
PPO with sub-task rewards
A2C with sub-task rewards

Figure 3: Average reward per test episode as a function of the number of time-steps in training.

et al., 2016), both with an LSTM unit. We also compare with the model-based approach of (Oh et al.,
2015) where a neural network is trained to predict terminal rewards from full trajectories of data,
using LSTM in one variant and GRU (Wahlström et al., 2015) in another. We also test PPO and A2C
in an assisted setup, where extra intermediate rewards of +1 are given to the robot after finishing
each sub-task. All compared methods use the same actions and observations defined in Section 4.1.

Results. The results of the experiments are averaged over 50 independent test episodes and five
different initial positions of the objects in the scene. Figure 3 (top) shows the task success rates in
a setting where the robot’s end-effector moves deterministically. Our algorithm converges to 100%
success rate after a relatively short initial exploration phase. Figure 3 (bottom) shows the average
value functions of the learned policies when a Gaussian noise of standard deviation 0.5cm is added
to the motions of the end-effector and the poses of the objects. Other algorithms fail to learn the
same tasks, mainly because of the sparsity of reward signals. When the robot receives intermediate
sub-task rewards in the assisted setting for PPO and A2C, we notice that it learns to perform two of
these tasks, although it still needed significantly more training data. Notice also how the planners
using LSTM and GRU needed more training data, which indicates that our finite-state machine is
potentially a better memory structure for long-horizon manipulation planning.

6. CONCLUSION

The ability to plan over long horizons to reach distant goals is important in robotic manipulation.
This problem is extremely challenging when there are no intermediate reward signals to guide the
planning, and when certain attributes of the manipulated objects cannot be easily obtained using
existing perception tools, due to occlusions and noise in the sensory input. This work presents a
new solution to this problem, where a low-level control policy is learned simultaneously with a
finite-state task machine. The learned task machine splits the main task into individual sub-tasks,

10

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

and signals to the low-level policy the stage that the robot has reached in performing the task. We
demonstrated through several experiments that the task machine is a better memory structure for
manipulation problems than some existing tools such as LSTM and GRU. The immediate next step
in this work is to demonstrate the learned policies on a real manipulator. We will then investigate
new approaches to further improve data efficiency through skill reusability and transfer learning.
Another interesting future direction is to consider images directly as states instead of the 6D poses,
and to compare to closely related end-to-end techniques such as (Nair and Finn, 2019).

References

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6077–6086, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 5055–5065. Curran Associates Inc., 2017. ISBN 9781510860964.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res.,
3(null):397–422, March 2003. ISSN 1532-4435.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. AAAI’17, page
1726–1734. AAAI Press, 2017.

Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. Closing the learning-planning loop with
predictive state representations. Int. J. Rob. Res., 30(7):954–966, June 2011. ISSN 0278-3649.

A. Boularias and B. Chaib-Draa. Predictive representations for policy gradient in pomdps. In ICML
2009, pages 65–72, New York, NY, USA, June 2009. Max-Planck-Gesellschaft, ACM Press.

Krzysztof Choromanski, Carlton Downey, and Byron Boots. Initialization matters: Orthogonal
predictive state recurrent neural networks. In Proceedings of the Sixth International Conference
on Learning Representations (ICLR), 2018.

Carlton Downey, Ahmed Hefny, Boyue Li, Byron Boots, and Geoffrey J. Gordon. Predictive state
recurrent neural networks. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2017.

Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In NIPS, pages 1087–1098,
2017.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

11

https://openreview.net/forum?id=SJx63jRqFm

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2786–2793, May 2017.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 512–519, 2016.

Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg, Dawn Song, and Ion Stoica. Parametrized
hierarchical procedures for neural programming. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?id=rJl63fZRb.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels, 2018.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video demon-
stration. CoRR, abs/1807.03480, 2018. URL http://arxiv.org/abs/1807.03480.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. volume 80
of Proceedings of Machine Learning Research, pages 2107–2116, Stockholmsmässan, Stock-
holm Sweden, 10–15 Jul 2018. PMLR.

Wenhao Jiang, Lin Ma, Yu-Gang Jiang, Wei Liu, and Tong Zhang. Recurrent fusion network for
image captioning. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 499–515, 2018.

Leslie Pack Kaelbling. Learning to achieve goals. In IN PROC. OF IJCAI-93, pages 1094–1098.
Morgan Kaufmann, 1993.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the
now. In Proceedings of the 1st AAAI Conference on Bridging the Gap Between Task and Motion
Planning, AAAIWS’10-01, page 33–42. AAAI Press, 2010.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable
deep reinforcement learning for vision-based robotic manipulation. volume 87 of Proceedings of
Machine Learning Research, pages 651–673. PMLR, 29–31 Oct 2018.

Aryeh Kontorovich, Boaz Nadler, and Roi Weiss. On learning parametric-output hmms. volume 28
of Proceedings of Machine Learning Research, pages 702–710, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

James J. Kuffner and Steven M. Lavalle. Rrt-connect: An efficient approach to single-query path
planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 995–1001, 2000.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd

12

https://openreview.net/forum?id=rJl63fZRb
http://arxiv.org/abs/1807.03480

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical rein-
forcement learning. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 3307–3317, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. CoRR, abs/1909.05829, 2019. URL http://arxiv.org/
abs/1909.05829.

Suraj Nair, Mohammad Babaeizadeh, Chelsea Finn, Sergey Levine, and Vikash Kumar. TRASS:
time reversal as self-supervision. In 2020 IEEE International Conference on Robotics and Au-
tomation, ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 115–121. IEEE, 2020. doi:
10.1109/ICRA40945.2020.9196862. URL https://doi.org/10.1109/ICRA40945.
2020.9196862.

Alexander Neitz, Giambattista Parascandolo, Stefan Bauer, and Bernhard Schölkopf. Adaptive
skip intervals: Temporal abstraction for recurrent dynamical models. In Advances in Neural
Information Processing Systems, pages 9816–9826, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-
conditional video prediction using deep networks in atari games. In NIPS, pages 2863–2871,
2015.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic move-
ment primitives. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, page 2616–2624, Red Hook, NY, USA, 2013. Curran
Associates Inc.

Lawrence R. Rabiner. Readings in speech recognition. chapter A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition, pages 267–296. Morgan Kaufmann
Publishers Inc., 1990. ISBN 1-55860-124-4. URL http://dl.acm.org/citation.cfm?
id=108235.108253.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state representations: A
new theory for modeling dynamical systems. In Proceedings of the 20th Conference on Un-
certainty in Artificial Intelligence, UAI ’04, pages 512–519, Arlington, Virginia, United States,
2004. AUAI Press. ISBN 0-9749039-0-6. URL http://dl.acm.org/citation.cfm?
id=1036843.1036905.

Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. Differentiable physics
and stable modes for tool-use and manipulation planning. In Sarit Kraus, editor, Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pages 6231–6235. ijcai.org, 2019. doi: 10.24963/ijcai.2019/869.
URL https://doi.org/10.24963/ijcai.2019/869.

13

http://arxiv.org/abs/1909.05829
http://arxiv.org/abs/1909.05829
https://doi.org/10.1109/ICRA40945.2020.9196862
https://doi.org/10.1109/ICRA40945.2020.9196862
http://dl.acm.org/citation.cfm?id=108235.108253
http://dl.acm.org/citation.cfm?id=108235.108253
http://dl.acm.org/citation.cfm?id=1036843.1036905
http://dl.acm.org/citation.cfm?id=1036843.1036905
https://doi.org/10.24963/ijcai.2019/869

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

Trieu H Trinh, Andrew M Dai, Minh-Thang Luong, and Quoc V Le. Learning longer-term depen-
dencies in rnns with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018.

Niklas Wahlström, Thomas B. Schön, and Marc Peter Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. CoRR, abs/1502.02251, 2015.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neu-
ral task programming: Learning to generalize across hierarchical tasks. CoRR, abs/1710.01813,
2017. URL http://dblp.uni-trier.de/db/journals/corr/corr1710.html#
abs-1710-01813.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
2048–2057, Lille, France, 07–09 Jul 2015. PMLR.

14

http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01813
http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01813

	INTRODUCTION
	PRELIMINARIES
	RELATED WORK
	APPROACH
	Finite-State Task Machines
	Model
	Inference
	Learning

	EXPERIMENTS
	CONCLUSION

