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Abstract— This paper presents a new self-supervised system
for learning to detect novel and previously unseen categories
of objects in images. The proposed system receives as input
several unlabeled videos of scenes containing various objects.
The frames of the videos are segmented into objects using
depth information, and the segments are tracked along each
video. The system then constructs a weighted graph that
connects sequences based on the similarities between the objects
that they contain. The similarity between two sequences of
objects is measured by using generic visual features, after
automatically re-arranging the frames in the two sequences to
align the viewpoints of the objects. The graph is used to sample
triplets of similar and dissimilar examples by performing
random walks. The triplet examples are finally used to train a
siamese neural network that projects the generic visual features
into a low-dimensional manifold. Experiments on three public
datasets, YCB-Video, CORe50 and RGBD-Object, show that
the projected low-dimensional features improve the accuracy
of clustering unknown objects into novel categories, and out-
perform several recent unsupervised clustering techniques.

I. INTRODUCTION

Robots are increasingly deployed in challenging environ-
ments that contain unknown objects. Examples of such en-
vironments include households, warehouses and workshops,
where robots are tasked with picking specific items from
dense piles of a large variety of objects [1], [2]. Current
robotic systems solve this problem by using a convolutional
neural network (CNN) for detecting objects in images. CNNs
are typically trained by using a large number of manually
labeled images, which is a tedious process [3]-[5]. In this
work, we propose a new self-supervised system that allows
robots to learn novel categories of encountered objects on
their own.

The proposed system receives several videos of piles of
various unknown objects. Consecutive frames in the videos
are obtained by randomly moving the camera or the objects
to expose different viewpoints. The videos can be recorded
at different times or in different locations. Therefore, the
relation between the objects in the different videos is com-
pletely unknown. The frames may also contain various types
of objects that belong to the same category, such as different
types of coffee mugs for example. The goal of the robot is to
autonomously: i) segment each frame into objects, ii) cluster
the objects from all the frames and sequences into categories,
iii) assign a numerical label to each discovered category,
and iv) train a CNN using the automatically labeled data to
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Fig. 1. Overview of the proposed system

recognize the newly discovered categories in future images.
We focus in this work on steps ii and iv, and utilize for step i
the technique presented in [6] for unsupervised segmentation
using depth information. The last step, iv, depends only on
the accuracy of the labels generated by the proposed system.
Therefore, we focus in this paper on assessing the accuracy
of the proposed unsupervised object clustering process.

The proposed approach builds on top of recent self-
supervised techniques that utilize siamese neural networks
with triplet loss functions to learn visual representations [7]—
[14]. The networks are trained to project images, or high-
dimensional features extracted from pre-trained networks
such as ResNet, into low-dimensional feature vectors that can
then be used for various tasks, such as clustering. The triplet
ranking loss is designed such that the projected features of
similar objects, i.e. objects that belong to the same category,
are closer to each other than to the projected features of
dissimilar objects, i.e. objects from other categories. The
key challenge is finding a large number of examples of
similar and dissimilar objects without supervision. While
most existing techniques were designed for static images,
some methods use 2D tracking in videos to automatically
generate a large number of examples of the same object from
different viewpoints [7], [8]. Examples of dissimilar objects
are obtained by randomly selecting frames from different
videos. There are two main issues in this approach. First,
tracking can only provide examples of the same object. Other
objects that belong to the same category typically appear
in different videos. Second, randomly selected frames can
possibly contain objects that belong to the same category and
that cannot thus be used as examples of dissimilar objects.



The main contribution of our work is a new solution to
these two issues that consists in constructing a graph where
the nodes are sequences of object masks in consecutive
frames, and the weights of the edges are the degrees of
similarities between the sequences. The degree of similarity
between two sequences is computed by searching for the
best alignment of the different viewpoints of the objects in
the two sequences. The degrees of similarities are interpreted
as transition probabilities. A random walk on the graph is
then used to generate examples of similar and dissimilar
objects from different videos. Extensive evaluations on three
publicly available video datasets clearly show that the learned
features can effectively be used to cluster without supervision
novel objects according to their unknown semantic labels.
The proposed method also outperforms several clustering and
self-supervised representation learning techniques.

II. RELATED WORK

Self-supervised learning of visual representations in be-
coming increasingly popular due to the colossal manual
labeling efforts required by traditional deep learning tech-
niques [15]-[17]. For example, it has been shown in [7]
that efficient features can be learned from unsupervised
auxiliary tasks, such as context prediction. In a closely
related work [9], a triplet loss function is used to learn
visual representations from videos. Unlike in the proposed
method, negative examples in [9] are selected randomly
while assuming that other videos contain only categories
of objects other than that of the anchor patch. Moreover,
the objective of [9] is learning feature descriptors that are
then used for supervised classification tasks with labeled
examples, which is different from our objective. A triplet-
siamese network was also used for unsupervised visual
representation learning in [8], where the triplet examples
are obtained from simple transitive relations in a similarity
graph. As in our proposed approach, intra-instance variations
are obtained by tracking an object in a video sequence.
While the approach proposed in [8] relies on the prior
work [7] to find inter-instance invariances, our approach uses
a more appropriate measure of similarity that is based on
clustering objects into a large number of viewpoints in each
video sequence, and then solving an assignment problem
that matches viewpoints taken from different sequences.
Moreover, only one-step transitive relations are considered
in [8], while our approach utilizes a long-horizon random
walk in the graph to sample positive examples by interpreting
distances as inverse transition probabilities. Finally, negative
examples are sampled randomly in [8], whereas they are
sampled in our method from the complementary random
walk distribution.

Other works on self-supervised learning from images con-
struct image representations that are semantically meaningful
via pretext tasks that do not require semantic labeling [11],
[18]-[23]. For example, the Pretext-Invariant Representation
Learning (PIRL) [18] approach learns invariant represen-
tations by using pretext task that involves solving jigsaw
puzzles. This approach was designed for static images.

Our approach achieves similar objectives for videos. Earlier
works on unsupervised learning of invariant features from
videos [24]-[26] were proposed prior to [9], but they were
also limited to tracking objects within a single sequence.
Various techniques for clustering image features have been
used in the past for detecting object categories without
labels [27]-[44]. These techniques however rely on pre-
trained features without fine-tuning them to improve the task
of categorizing novel objects in a given small set of images
encountered by a robot, which is our main objective.

I1I. PROPOSED APPROACH
A. Problem Setup

We consider the following problem. There is a set V =
{V1, Va, ..., Vi, } of m video sequences. Each video sequence
has a maximum of n frames. Each one of the frames is
denoted by ft(z) where ¢ is the time of the frame in sequence
i. Therefore, V; = (fl(l)7 féz), o ,(f)). Suppose now that
there are K semantic classes {c1, ¢a, ..., ck } of objects that
appear in different or same frames. Examples of semantic
classes are mugs, bowls, scissors, efc. Suppose that there are
N individual instances of objects that appear in these frames.
The number of instances is larger than or equal to the number
of classes, i.e. N > K. The problem consists in segmenting
each frame into individual objects, and then clustering all
the segments from the different frames and sequences into
K clusters, such that each cluster contains only objects that
have the same semantic label. The challenge for the robot is
to perform this task without any external supervision, so that
the robot can self-label images of new types of objects and
use the automatically labeled images to train object detectors,
in a lifelong learning process that does not require human
assistance. This challenge is exacerbated by the fact that
objects belonging to the same class typically have different
shapes and colors (inter-instance variations), and the same
object appears in different frames with different viewpoints,
illuminations and occlusions (intra-instance variations).

B. Overview

Figure 1 depicts an overview of our proposed system.
It consists in i) segmenting RGB-D frames into individual
objects, ii) tracking the objects along each sequence of
frames, iii) clustering different viewpoints of each tracked
object into a small number to reduce the number of frames,
iv) measuring similarities between different sequences by
solving an optimal assignment problem between viewpoints,
v) performing random walks on the graph of similarities
to generate similar and dissimilar examples, and finally
vi) using the self-generated examples to learn a projection
of visual features into a low-dimensional manifold with a
soft triplet loss function. Features of objects in the low-
dimensional manifold are clustered into K clusters by using
k-means. These steps are explained in the following.

C. Segmentation and Tracking of Individual Instances

1) Segmentation: We follow the unsupervised segmenta-
tion approach that we have previously proposed in [6]. This



Fig. 2. Examples of three sequences of object masks obtained from
segmentation and tracking in the datasets CORe50 [45], [46] (top row)
RGBD-Object [47] (middle row), and YCB-Video [48] (bottom row).

approach transforms the point cloud of a frame ft(z) into a
graph of nearest neighbors, and utilizes the spectral cluster-
ing technique to merge supervoxels in the point cloud into
segments. This method makes one assumption: the surface
of an object is overall approximately convex. Consequently,
certain objects may be over-segmented into convex parts. We
solve this problem by using the color watersheding technique
to merge the over-segmented objects in a post processmg
step. The segmentation module returns a set (9 of object
masks for each frame ft in each video V. ' '

2) Tracking: In each video V;, object masks O,EZJ) S Ot(z)
at different times ¢ that correspond to the same instance are
linked together by tracking the motion of the masks over
time. We start by creating a 2D bounding box around each
object mask Ot(l]) € 0 in each frame f") of video V;.
We assume that the frame rate of the videos is sufficiently
high so that the 2D bounding boxes of the same object
in any two consecutive frames f\" and [y () overlap. We
denote the Intersection over Union (IoU) of the bounding
boxes of masks O(Z). and Ot:}l i by ToU (Oi?, Ogl k) The
following linear matchmg problem is then solved for every
video sequence V; and every frame ft ,

Minimize }; >, M(j, k‘)IoU(O( ) Ot+1 k)

t,g°
S VG Y M(j k) = 1,Vk . 3, M(j,k) =1,

Vi k:0< M(jk) < 1.

When M(j,k) = 1, object masks O - and Ot+1 . are
considered as masks of the same object, taken at consecutive
times ¢ and ¢ 4 1 within video sequence V.

By arranging consecutive masks of the same object into
a sequence, the final result of the segmentation and tracking
process is a set S = {S51,95%,...,5;} of mask sequences,
where S; = (Ogi),Ogi),...,O}(f)) is a sequence of masks
ng) that correspond to the same instance of object within a
video. Note that each frame in a video can contain multiple
objects. Thus, the same video sequence can yield several
mask sequences, one for each tracked object. Examples of
obtained mask sequences S; are illustrated in Figure 2.

In the following, we show how to measure the likelihood

that two sequences S; and S; of masks correspond to the
same class of objects. We then utilize this similarity measure
to construct a graph and exploit the transitive relations
in this graph, through random walks, to construct training
examples for learning the visual features that will be used
for categorizing individual masks OEZ) into K clusters.

D. Similarity Graph Construction

A graph of inter-instance invariances is defined by the set
of vertices S, wherein each vertex S; € S is a sequence
of a tracked individual object in a video sequence. The
weight W (S;, S;) of an edge (5;, S;) measures how likely
are objects tracked in .S; and S; to belong to the same class.
This problem is highly challenging since we do not assume to
have access to the list of semantic classes nor to any labeled
data. Weights W (.S;, S;) are defined as follows,

W (S:, 85) = max (AW (85, 85) = W™ (84, 8)),0),
wherein W (S;,S;) measures the similarity between se-
quence S; and sequence S;, W~ (S;,S;) measures the
dissimilarity between the two sequences, and ) is a constant
hyper-parameter factor. The remainder of this subsection
explains how W (S;,S;) and W~ (S;, S;) are computed.

1) Computing W : We start by extracting genenc visual
feature vectors <I>(O( )) for every object mask O in every
frame-time ¢ and every mask sequence S;. Any standard
feature extractor, such as HOG, SIFT or ResNet pre-trained
offline on different types of objects and images, can be used
for this purpose. We then cluster all the feature vectors from
all the frames and object masks into a large number of global
clusters by using the k-means algorithm. The number of
global clusters is so large (e.g, & = 500 clusters in our
experiments) that each cluster contains only a few objects.
Objects belonging to the same global cluster are thus highly
likely to belong to the same semantic class, and they are often
the same instance seen from different viewpoints. Similarity
weight W(S;, S;) is simply the number of pairs of feature
vectors @(Ogi)) and <I>(O(J )) that appear in the same cluster.

2) Computing W—: W~(S;,S;) measures the distance
between sequences S; and .S;. To obtain this distance, one
cannot simply add together the distances between features
vectors <I>(O( )) and <I>(O( )) of object masks O and O, ()
at the same time-frames ¢ in the two sequences, because the
viewpoints in the two sequences are arbitrary and unaligned.
Thus, a linear optimal assignment problem needs to be solved
here in order to align the two sequences as well as possible
by re-arranging their frames. Note that the two sequences do
not necessarily correspond to the same class of object. For
example, sequence .S; could be tracking a mug, while S;
is tracking scissors. In that case, re-arranging the frames to
align viewpoints in the two sequences is futile. However, the
resulting distance would be higher than the distance between
S; and another sequence Sy that tracks the same category
of object, such as a different mug, as illustrated in Figure 3.
Distance W~ (.S;, S;) is defined as,
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When M (¢,t') = 1, object masks Ot(l) and Ot(/] ) at frame-
times ¢ and t' in sequences .S; and S, respectively are
considered to belong to the same class of objects and to
have the same viewpoint.

Since the frame rate of the videos is typically high, the
viewpoint matching process is computationally expensive. To
address this issue, we do not compare individual feature
vectors directly. Feature vectors are first clustered into a
small number of viewpoint regions. Feature vectors ® in
the objective function of the optimization problem above are
substituted by centroids of their clusters, as illustrated in
Fig. 3. This optional step not only reduces the computational
cost of the viewpoint matching process, but it also ensures
a balance between different viewpoints. For example, the
camera may focus on a certain angle of the scene for a long
period of time before moving to a different angle. Therefore,
features of objects taken from the first angle will be over-
represented in the sequence. Clustering overcomes this issue
and ensures that different angles contribute equally to the
objective function.

After computing W* and W™, we can compute edge
weights W. Figure 4 shows a concrete example of the
resulting similarity graph from our experiments. In the
constructed graph, every node is a tracking sequence S; =
(OY),OS), ...,O,(f)). Two nodes S; and S; are connected
only when their weight w(S;,S;) is strictly positive. Thus,
increasing the value of A results in denser graphs.

(D
i o

Fig. 4. Similarity Graph. This graph was generated by our system for the
dataset CORe50 [45], [46] without using labeled data or supervision. Each
node is a sequence of tracked object masks. The number inside each node
indicates the ground-truth class of the object. The lengths of the edges are
the inverse of their weights. Dashed edges indicate false similarities, notice
how they are longer than the positive similarities (blue lines).

E. Sampling Triplet Examples

The constructed similarity graph loosely indicates which
objects belong to the same class. But the graph typically
contains several inaccuracies due to large inter-instance and
intra-instance variations, and the fact that the relations in the
graph are primarily extracted by using generic visual features
along with temporal information in the viewpoint matching
process. We demonstrated in our experiments that a final step
is necessary for improving the accuracy of the main task of
clustering objects into semantic classes. This step consists in
creating a pool of triplets of examples (O, 0%, O~) where
O and OT are examples of hypothetically similar objects
(same class), and O and O~ are examples of hypothetically
dissimilar objects. The examples are then used to train a
siamese-triplet network to project generic feature vectors ®
into a low-dimensional manifold, as illustrated in Fig. 5.

We first explain in the following how triplet examples are
mined from the graph, then we show how the siamese-triplet
network is trained using the generated examples. Each row in
the weight matrix W of the graph is normalized by dividing
each entry W (S;,S;) by >, W(S;, Sk). The resulting ma-
trix, denoted by 7', is a stochastic transition matrix. In other
terms, T'(.S;, S;) is the probability of selecting an object in
sequence S; as a positive example of objects in sequence
S;. As we can see from Figure 4, vertices corresponding to
sequences of the same class of objects tend to be clustered
together. To take full advantage of this information, we
consider transitive relations between the vertices. We thus
start at a node S; and perform a random walk on the graph
to sample a similar example 5. For efficiency, we compute a
probability distribution of the visitation frequencies, and use
it to select similar and dissimilar examples. This distribution
is given by the matrix T, which is computed recursively
as 7' = T and TH+! = TTH. Examples that are similar
to S; are sampled from 7% (S;,.), dissimilar examples are
sampled from the complementary normalized distribution

(1 —7H(s;, ) (1 - TH(S;, .))1T)7
vector with all elements equal to 1.
The result of the sampling process is a set of several

1
where 1 is a row



triplets (S, S, S™), wherein (S, S™) are similar sequences
and (S,ST) are dissimilar sequences. We sample from
each trajectory several frames, and the result is a set of
triplets (O, 0", 0~), wherein (O,O") are similar objects
and (O,0%) are dissimilar objects. These examples are
used to train a siamese-triplet network that projects features
®(0) of objects into low-dimensional features T'(®(0)). We
propose the following soft loss to train the network,

Lr(0,07,07) = max (|[N(@(0)) — T(2(07))]|2
~[T(@(0)) = D(@(07))]|2 + acon(0,0*,07),0).

where « is a hyper-parameter and conf is defined as

N . W (S,51)—mings W(S,S’)
conf(0,0%,07) = min (maxsx WS, 5) —ming W (5.5 1
W (8,8~ )—mings W(S,5")

e (557 i W(S’S,)>, where S, St, S~ are the se-
quences from which O,0% O~ are respectively taken.
conf(O, 0", 07) is a number between 0 and 1 that indicates
the confidence in O and O™ belonging to the same class, and
O and O~ belonging to different classes.
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IV. EXPERIMENTS
A. Datasets

The proposed method is evaluated on three public datasets
that are designed for robotic tasks: RGBD-Object [47],
CORe50 [45], [46] and YCB-Video [48]. RGBD-Object
dataset contains 300 object instances classified into 51 cate-
gories. CORe50 has 50 object instances from 10 categories.
YCB-Video contains 21 objects from 21 categories.

B. Setting

After training the projection layers of the network
(Fig. 5), we simply apply K -means on the projected features
I'(®(0)), where K is the number of classes. For the YCB-
Video dataset, we set K = 20 because the ‘large clamp’
and ‘extra large clamp’ are the same object with slightly
different sizes. Objects in the YCB-Video dataset are highly
occluded, which makes the segmentation more challenging
than in the two other datasets. Therefore, we also test a
variant of our system on the YCB-Video dataset where

120 Cluster ACCs of Baselines on the 3 Datasets

mmm Clustering with ResNet50 Features [49]
mm Tracking [9]

100 4 — B Transitive invariance [8]

80

60

Cluster ACCs

40

20 A

CORe50 YCB-Video

(ground seg)

YCB-Video
(auto seg)

RGBD Object

Fig. 6. Average Cluster Accuracies (ACC) of the compared techniques

the automatic segmentation of [6] is replaced with ground-
truth segmentation of point clouds into individual objects,
in order to show the potential of the proposed system if
the RGB-D segmentation is improved, since our approach
is independent of the segmentation method. The number of
viewpoint clusters (Fig. 3) is set to 5 in all our experiments.
For CORe50, RGBD-Object and YCB-Video datasets respec-
tively, we use A = 0.1, A =1 and A = 0.1 to construct the
similarity graph and horizons H = 3, H =5, and H = 3
to sample triplets with random walks. We use ResNet50
for extracting the high-dimensional generic features ®(O).
The projection layers that map ®(O) into low-dimensional
features I'(®(0)) are two fully connected layers with 512
and 128 output dimensions. ReLu activation function is used
after the first projection layer. We fix the feature extractor
parameters and only train the projection layers. The learning
rate is set to 0.01, the margin value « is set to 10, and we
use the stochastic gradient descent (SGD) optimizer.

C. Compared methods

We compare our method against the following alternative
techniques: 1) ResNet+k-means [49]: We use k-means
directly on the features returned by ResNet50 pre-trained
on ImageNet, where k is set to the number of categories
in each dataset. 2) Tracking [9]: Projection layers on top
of ResNet50 are trained with positive examples sampled
only from the same video sequence, and negative exam-
ples sampled randomly from other videos. 3) Transitive
Invariance [8]: An alternative graph-based approach for
mining negative and positive examples for training the same
projection layers on top of pre-trained ResNet50. We also
compare against the following deep clustering techniques:
4) Deep Embedded Clustering (DEC) [33], and 5) Deep
Clustering for unsupervised learning of visual features [42].

D. Results

We use three metrics to evaluate the final clustering results:
1) Average Cluster Accuracy (ACC), 2) Adjusted Rand Index
(ARI) score and 3) Normalized Mutual Information (NMI)
score. Results reported in Table I and illustrated in Figure 6
show that the proposed system significantly outperforms the
other baselines. Figure 7 illustrates examples of the clusters



CORe50 RGBD-Object YCB-Video (ground-seg) YCB-Video (auto-seg)

ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI
ResNet+K-Means [49] 70.8%  0.695 0.765 573% 0456 0.726 543% 0499 0.698 50.5%  0.345 0.586
DEC [33] 792%  0.776 0.863 56.5%  0.449 0.754 53.7%  0.559 0.764 45.6%  0.359 0.591
Deep Cluster [42] 51.1%  0.348 0.493 41.4% 0309 0.624 45.8% 0324 0.539 41.6%  0.254 0.464
Tracking [9] 81.0%  0.830 0.898 63.0%  0.551 0.808 71.2%  0.630 0.784 65.0%  0.517 0.692
Transitive Invariant [8]  87.2%  0.822 0.885 66.8%  0.572 0.817 71.6%  0.611 0.775 68.1%  0.579 0.707
Ours (Binary Graph) 93.7% 0914 0.923 71.1%  0.650 0.844 722%  0.631 0.793 70.5%  0.589 0.725
Ours (Weighted Graph)  95.8%  0.927 0.953 77.9%  0.742 0.889 782%  0.682 0.810 75.0%  0.624 0.741

TABLE I
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Examples of clusters returned by the proposed self-supervised system (one per row and per dataset). The system succeeded in discovering the

different categories of objects in the videos, and in assigning each object into a cluster that contains mostly only objects of the same category. Some
objects (shown in red boxes) are misclassified. The discovered categories are named numerically by the system. For example, ‘label 4’ in YCB-Video

dataset refers to ‘power drills’.

returned by our approach. Interestingly, most of the clusters
contain only objects that belong to the same semantic class
when the number of clusters is set to the number of classes.
Similar levels of accuracy are observed even when the objects
are highly occluded, such as in the YCB-video dataset.

E. Ablation Studies

We performed ablation studies to evaluate the impact of
different aspects of our approach. In the first study, we
tested our method against a variant where the weighted
graph is replaced by a binary graph that preserves only the
structure of the original graph but not the weights. Table I
shows that the weights, computed by measuring similarities
between sequences, play a major role in the performance of
the system. In the second study, we trained the projection
network using the standard triplet loss, i.e. without using
the confidence function and with the margin term set to a
constant o = 10. The ACC results are 94.1%, 73.1% and
72.0% for CORe50, RGBD-Object and YCB. These results
are below the ones obtained by our proposed soft triplet loss
using the confidence function (last row in Table I).

Finally, we tested various approaches for measuring simi-
larities between two sequences. The first one simply averages
the feature vectors of all frames in a sequence and returns
its distance from the mean feature vector of the second se-
quence. The second method clusters frames into viewpoints,
like in our method, but does not align viewpoints with the
compared sequence. Instead, it returns the average distance
of the top ten nearest pairs of viewpoints (one from each

Matching Methods [ CORe50 [ RGBD-Object | YCB-Video

Mean Feature Distance 0.75 0.61 0.52

Top Ten Nearest Neighbors | 0.70 0.55 0.53

Cut Sequence Matching 0.79 0.61 0.56

Viewpoint Matching (ours) 0.82 0.65 0.56
TABLE II

sequence). The last method cuts each video evenly into ten
parts, and returns the average distance between the means of
the parts from the two sequences. To evaluate these methods,
we match two sequences if their distance is smaller than
a threshold and evaluate the matching quality with the fg
score defined as fy = (14 %) - el We
set 8 = 0.5. Results reported in Table II clearly show that
the proposed matching technique achieves the best results,
especially in the CORe50 dataset where objects are rotated
by 27 in each video. Results, videos, code, and data are
available at https://github.com/chrisjtan/RWS.

V. CONCLUSION

Self-supervised object detection and recognition is an im-
portant skill that robots need to acquire on the road towards
sustainable full autonomy. We have shown in this paper that
such skills can be acquired by using robust tracking and
matching techniques that take advantage of rich information
contained in videos, along with the transitive nature of object
similarities. In a future work, we plan to utilize the numerical
labels that are automatically generated by our system to train
an FCN for semantic segmentation in order to quickly detect
the same types of objects in future images, without the need
to run our entire pipeline.
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