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Abstract—Supervised dimensionality reduction for sequence data learns a transformation that maps the observations in sequences
onto a low-dimensional subspace by maximizing the separability of sequences in different classes. It is typically more challenging than
conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures
to manipulate the temporal structures. In this paper, we propose a linear method, called Order-preserving Wasserstein Discriminant
Analysis (OWDA), and its deep extension, namely DeepOWDA, to learn linear and non-linear discriminative subspace for sequence
data, respectively. We construct novel separability measures between sequence classes based on the order-preserving Wasserstein
(OPW) distance to capture the essential differences among their temporal structures. Specifically, for each class, we extract the OPW
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barycenter and construct the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class
distance is measured as the OPW distance between the corresponding barycenters. We learn the linear and non-linear
transformations by maximizing the inter-class distance and minimizing the intra-class scatter. In this way, the proposed OWDA and
DeepOWDA are able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal
constraints. Experiments on four 3D action recognition datasets show the effectiveness of OWDA and DeepOWDA.

Index Terms—Optimal transport, order-preserving Wasserstein distance, barycenter, dimensionality reduction, sequence

classification.

1 INTRODUCTION

HE sequence classification problem arises in a wide
Trange of real-world applications. A sequence is com-
prised of a series of ordered observations, where each
individual observation is generally of no special interest,
but the sequence as a whole represents the target object.
The observations in the same sequence are not independent
and their relationship reveals the temporal structure of the
sequence. For instance, all ordered frames in an action
video as a whole represent the action and these frames
are temporally related. Low-dimensional and discriminative
representations of frame-wide observations in sequences are
crucial to reduce the complexity of the subsequent model-
ing and improve the classification performance. Supervised
dimensionality reduction for sequence data (DRS) attempts
to learn such low-dimensional discriminative representa-
tions by transforming the observations in the noisy high-
dimensional space to a subspace.

In this paper, we propose a linear supervised DRS
method by using the Fisher criterion to maximize the
ratio of the inter-sequence-class separability to the intra-
sequence-class dispersion. For each class, we extract the
order-preserving Wasserstein barycenter and measure the
dispersion of training sequences around the barycenter w.r.t.
the order-preserving Wasserstein (OPW) distance [5], [6]. We
measure the inter-class separability between two classes as
the OPW distance between the corresponding barycenters.
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Fig. 1. The two action sequences “jump” and “run” differ in the boxed
parts and local orders at the beginning stage. Top: the DTW [4] align-
ment. The alignment matrix is shown on the right. The white grid in row
1 and column j; indicates that the i-th and j-th observations in the two
sequences are aligned. Bottom: the OPW [5] alignment. For each pose,
only the alignment with the largest transport probability is shown. Such
aligned pairs reflect the essential difference between “jump” and “run”
because the take-off-landing cycle is dispersedly aligned to a running
cycle. The transport matrix is shown on the right. The grey value of a
grid indicates the probability of aligning the corresponding observations.
The probabilities among the boxed part are scattered and more pairwise
local differences among poses are employed.

In this way, the intra-class and inter-class separabilities are
uniformly measured with the OPW distance. We employ
OPW to perform temporal alignment between sequences
and barycenters with different local durations, lengths, and
temporal distortions. Through alignment, temporal infor-
mation is encoded into the separabilities.
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Most existing DRS methods [1], [2], [3] depend on dy-
namic time warping (DTW) [4] to measure the separabil-
ity. Due to the boundary condition and the strict order-
preserving constraint, DTW cannot tackle local reorder dis-
tortions and may not fully capture the essential differences
of different patterns. As shown in Fig. 1, the two action
sequences “jump” and “run” start from different poses, re-
sulting in reordered poses in the run-up phase, and “jump”
vacates after a run-up. For DTW, some different running
poses are wrongly aligned (shown in blue bold) and the
vacated poses of “jump” are forced to align to a single
pose of “run” (shown in green). Many pairwise differences
among the vacant poses and the running poses in the same
cycle are not included.

Differently, OPW casts the temporal alignment as a trans-
port problem. It encourages transport between temporally
adjacent observations, but allows local reorders or distor-
tions. In Fig. 1, the reordered running poses are correctly
aligned by OPW. For the boxed parts, the vacated poses
of “jump” are dispersedly aligned to different poses in a
periodic cycle of “run” (shown in red). OPW is able to
determine the true distinctive observation pairs that reflect
the essential differences of two sequences or barycenters,
so that the DRS method can focus on discriminating these
distinctions. Since OPW is more robust to local distortions,
our OPW-based intra-class scatter also better encodes the
intra-class variations. In addition, different from the binary
DTW alignment, the transport measures the probabilities
of how different observation pairs contribute to the total
difference. The probabilities among the boxed parts are
scattered and more local relations among all observations
are considered by the proposed DRS method.

The main contributions of this paper are three-fold.
1. We propose novel OPW-based separability measures
among sequence classes to reflect their essential differences.
Especially, we construct unified intra-class and inter-class
scatters based on the learned optimal transports to encode
the temporal relationships and employ more local pair-
wise differences. 2. We provide mathematical derivations
to compute the barycenter for sequence data w.r.t. the OPW
distance, based on which we further derive a discrete and
explicit formulation of the covariance matrix for sequence
data. The OPW barycenter and the derived covariance can
be considered as the first and second order statistics for
sequences, respectively. 3. We learn a discriminative sub-
space in which the sequences from different classes are
maximally separated w.r.t. the OPW distance under the
Fisher’s criterion, which can be extended to other criteria.

This paper is an extension of the conference paper [7],
where the new contributions include 1. the deep extension
of the proposed OWDA, namely DeepOWDA, which learns
nonlinear transformations using deep neural networks; 2.
the evaluation of iterative variants of OWDA and Deep-
OWDA that jointly learn the subspace and the associated
optimal transports in an alternative manner; 3. the evalua-
tion of the variants of OWDA and DeepOWDA with fixed
uniform weights for barycenters; 4. the experimental evalu-
ation on the large scale NTU RGB-D dataset; 5. comparisons
with state-of-the-art results on four 3D action recognition
datasets; 6. comparisons with other sequence distances such
as DTW, Soft-DTW and CTW; 7. the experimental evaluation
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on the effects of different types of frame-wide features; 8.
more in-depth analyses and discussions of the proposed
methods and the related works.

2 RELATED WORK

Discriminant analysis. Supervised linear dimensionality
reduction for static data has been extensively studied in
the literature. The well-known linear discriminant analysis
(LDA) learns the projection by maximizing the ratio of inter-
class distance to the intra-class distance. Various methods
are proposed to improve or extend LDA in specific situa-
tions. The null space LDA [8], generalized ULDA [9] and
orthogonal LDA [10] deal with the small sample size prob-
lem resulting in singular scatter matrices. To handle het-
eroscedastic data, heteroscedastic LDA [11] incorporates the
second-order information into the between-class scatter, and
subclass discriminant analysis [12] divides each class into
several homoscedastic subclasses and then applies LDA to
the subclasses. Max-min distance analysis approaches [13],
[14], [15] maximize the minimum pairwise between-class
distance in the subspace. Marginal Fisher analysis [16] only
uses the neighboring samples and the samples distributed
around the class boundaries to construct the intra-class and
inter-class scatters. Wasserstein discriminant analysis [17]
employs the regularized Wasserstein distance to measure
the distance between the empirical probabilities of class
populations. Kernal-LDA [18] and DeepLDA [19] extend
LDA to learn non-linear transformations by kernel trick
and employing deep neural networks, respectively. These
advances cannot be applied to observations in sequences
directly because the observations do not satisfy the basic
ii.d. assumption.

Dimensionality reduction for sequence data. Far less
attention has been paid to DRS. In [20], a kernel-based
sufficient dimensionality reduction approach is proposed
to improve the performance of sequence labeling, where
each observation in sequences has a label. In this paper, we
learn the projection to improve the performance of sequence
classification that each entire sequence is associated with a
single label. Canonical Time Warping (CTW) [21], general-
ized CTW (GCTW) [22], [23], and Deep CTW (DCTW) [24],
[25] are unsupervised distances between sequences from
different modals where vectors may have different dimen-
sions. They use two separate transformations to map two
sequences into a common subspace in which the sequences
are maximally correlated. The transformation for the same
sequence is different when aligned to different sequences.
In [26], SoftDTW determines a soft alignment between two
sequences that results in the soft-minimum of all feasi-
ble alignments, but each feasible alignment is strict order-
preserving. In [27], [28], kernelized rank pooling (KRP) and
generalized rank pooling (GRP) are pooling methods that
encode different sequences into different subspace repre-
sentations in an unsupervised manner. In contrast, the pro-
posed OWDA and DeepOWDA are supervised DRS meth-
ods that learn a common subspace so that sequences from
different classes are better separated in this subspace. The
transformation remains the same for all sequences. CTW,
GCTW, DCTW, SoftDTW, KPR, and GRP can be applied to
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the low-dimensional sequences transformed by OWDA and
DeepOWDA.

In [29], a Mahalanobis distance for observations in se-
quences is learned to improve the performance of multivari-
ate sequence alignment, where the ground-truth alignments
between sequences are given. In this paper, we learn the
projection without any alignment annotations. In [30], su-
pervised word mover’s distance learns a transformation to
better separate different documents with the optimal trans-
port distance. The order of words in the documents is ig-
nored. The objective is minimizing the stochastic leave-one-
out nearest neighbor classification error on a per-document
level. The gradient-based iterative solution is developed to
optimize it. In this paper, we learn a transformation to better
separate sequences from different classes. The objective is
maximizing the separability among sequence classes. We
build novel separability measures to encode the temporal
information and obtain a closed-form solution. In [31], the
embedding vectors of tree nodes are learned by minimizing
a surrogate of the classification error using the nearest
prototype classifier w.r.t. the tree edit distance, where the
prototypes are selected from the training trees. In this paper,
we minimize the distances between training sequences to
the corresponding barycenters w.r.t. the OPW distance.

In [1], [2], [3], linear sequence discriminant analy-
sis (LSDA) and max-min inter-sequence distance analysis
(MMSDA) are proposed for DRS, respectively. LSDA and
MMSDA extract a representative sequence and a intra-class
variance matrix for each class based on the statistics of a
trained HMM. The DTW distance between the represen-
tative sequences is used as the inter-class distance. The
similarities for measuring the inter-class distance and intra-
class scatter are inconsistent, because the HMM-based intra-
class variance does not measure the dispersion of the DTW
distances among the sequences. In [32], [33], latent temporal
LDA (LT-LDA) divides all observations of sequences from
each class into several vector subclasses by dynamically
aligning the sequences in this class to the DTW barycenter.
All the subclasses are treated as independent to construct
the inter-class separability. Therefore, the temporal informa-
tion among the subclasses of the same sequence class is not
fully explored.

Different from these methods, in this paper, we employ
the OPW distance instead of the DTW distance as the sim-
ilarity measure between sequences, and construct the intra-
class scatter and the inter-class distance consistently w.r.t.
the OPW distance. We extract the OPW barycenter as the
representative sequence, which is non-parametric and has
better scalability without the need of training HMMs with
massive parameters. We use the OPW distance between
the OPW barycenters as the inter-class separability between
two sequence classes, which explicitly encodes the temporal
information among the elements of the OPW barycenters.
MMSDA optimizes the max-min distance criterion, which
is more suited to tackle the class separation problem. Note
that the proposed method can also be extended by applying
the max-min distance criterion to the constructed inter-class
and intra-class scatters. In this paper, we only compare with
the DRS methods optimizing the same Fisher criterion.

Skeleton-based 3D action recognition. Most 3D action
recognition methods either learn a representation of the
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entire sequence or employ sequence models such as LSTM
and HMM. For the first category, many methods obtain
the entire representation from the sequence of frame-wide
features. In [34], the pairwise relative positions or angles of
joints are used as the feature of each frame. Each action
sequence is encoded into a vector by Fourier temporal
pyramid. In [35], [36], the joint positions are used as the
feature of each frame and the covariance-based features are
extracted from the sequence of frame-wide features. In [37],
the histogram of relative joint positions is used as the frame-
wide feature and all frame-wide features are encoded by
rank pooling. In [38], translations and rotations of parts are
extracted as features and each sequence cast as a curve in
the Lie group is encoded by Fourier temporal pyramid. Such
methods can imply a loss of temporal information.

For the second category, each action is represented as a
sequence of frame-wide features and sequences are directly
input to sequence models for classification. In [39], the
histogram of relative joint positions is used as the feature
of each frame and the sequences are modeled by HMM.
In [40], [41], [42], [43], [44], joint positions, relative motions
between successive frames, or the combined or normalized
versions are used as frame-wide features and the sequences
are modeled by recurrent neural networks such as temporal
sliding LSTM (TD-LSTM), Bi-LSTM, spatio-temporal LSTM
with trust gates, global context-aware attention LSTM, and
independently recurrent neural network (IndRNN). Most
recent works such as [45], [46], [47], [48], [49] model the
body skeletons as spatiotemporal graphs by viewing joints
as nodes and bones as edges and employ graph neural
networks for classification.

In this paper, our purpose is not to develop a state-of-the-
art 3D action recognition method. We apply the proposed
DRS method, OWDA, to 3D action sequences to evaluate
its performance. The proposed OWDA benefits both cate-
gories of 3D action recognition methods. After projection
by OWDA, the sequences are more discriminative and the
temporal information is enhanced. As a result, more useful
information is encoded into the entire representation and
sequence models need to learn few parameters. However,
OWDA cannot be combined directly with graph-based
methods because the reduced features cannot be modeled
into a graph according to the structure of the human body
after dimensionality reduction is performed to the frame-
wide features of concatenated joint positions.

3 LINEAR ORDER-PRESERVING WASSERSTEIN
DISCRIMINANT ANALYSIS

The proposed linear OWDA consists of three stages: ex-
tracting the OPW barycenter per class, constructing the
separability scatters based on the barycenters, and learning
the projection by maximizing the separability. In this section,
we first briefly review the OPW distance, and then present
the details of the three stages, respectively.

3.1 Background on OPW

We first briefly review the order-preserving Wasserstein (OPW)
distance [5], [6]. For two sequences X = [x1, -, 2y, ] and
Y = [y1,---,yn,]| with lengths N, and N,, respectively,
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where the dimension of features is ¢, i.e., ¢;,y; € RY, the
OPW distance is defined as:

dopw (X,Y) :=(T*, D)
sit. T*=argmin (T, D)~ \I(T)+ o KL(T||P) , (1)
Te2(v.8)
where D := [d(z;,y;)]ij € RY=*Nv is the matrix of all

the pairwise distances between supporting points, d(-,-) is
set to the squared Euclidean distance in this paper. T' :=
[tijlij € RN=*Nu s the transport matrix, (-, -) is the Frobe-
nius dot product, and ®(v,3) := {T € ]RTXNy T1ly, =
~v,TT1y, = P} is the feasible set of the transport T
I(T)=Y —"' . is the inverse difference moment of
i (e~ w,) 11

the transport matrix T' to encourage the local homogeneity
that large values appear near the diagonal, and K L(T||P)
is the Kullback-Leibler divergence between T and a prior
distribution P:

1 _ 2G5

——e 2%, 2
oV 2T @

where £(i, j) is the vertical distance from the position (i, j)
to the diagonal line. A\; > 0, Ay > 0, and o are hyper-
parameters. It is assumed that the weights of instances in

pij = P(i,j) =

the same sequence are the same, i.e., v = ( A} D 1) and
B= (5", N, L), respectively. In [5], OPW is solved by

the Slnknorn s algorlthm with a complexity of N, Nyq.

3.2 Order-preserving Wasserstein barycenter

For a sequence class with a set of training sequences, we
want to extract a single representative sequence that re-
veals the average temporal structures and general evolution
trends, which can serve as the mean sequence of a set of
sequences similar to the mean vector of a set of vectors. Ex-
tending the averaging operation to sequences is challenging.
As the lengths of different sequences are different, it is not
plausible to perform directly averaging to the observations
at the same time step.

Recall that the mean of a set of vectors can also be viewed
as the barycenter of the vectors with regard to the Euclidean
distance. Similarly, for sequence data, the barycenter of a set
of sequences with regard to a sort of sequence distance can
also act as the mean sequence in some sense. We extract the
barycenter with regard to the OPW distance, which we call
the order-preserving Wasserstein barycenter.

The barycenter U = (u,~) consists of a sequence of
ordered supporting points and a weight sequence asso-
ciating each supporting point with a probability value.
p=[p;,i=1,---, L] € RI*L is the sequence of supporting
points and v = [y,i = 1,---,L] is the sequence of
associated weights. v € R'*L lies in the simplex Oy. L
is a pre-set value, which indicates the maximum allowed
number of supporting points of the barycenter.

Given a set of sequences X,k = 1,---, N, Nj denotes
the length of X}, Dj denotes the matrix of all pairwise
ground distances between any p,; and observations in X},
which depends on p:

Dy (p) = € REXNr, 3)

(i, 25)]is
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T), denotes the transport between U and Xj. The
optimal transport determined by OPW is given by
argmin W(U, Xy, T), where

Tr€®(v.8k)

W (UX, Ti) = (T, De(p))~M (T )+A KL(T|P). (&)
By assuming that these sequences are equally weighted,
the order-preserving Wasserstein barycenter is such that

= —W(U, X, T,
argmmZTke@(ka)NW( 0 Te).  (B)

Both the supporting point sequence p and the weight
sequence v need to be learned. However, the objective
function (5) is not convex w.r.t. them simultaneously. We
employ the alternating updating strategy to minimize (5),
where v, T}, and p are updated alternatively by temporarily
fixing the other. To initialize u, we divide X,k =1,--- | N
uniformly into L segments, respectively, and use the mean
of vectors in the i-th segments in all X}, as the initial p;.

In procedure 1, we first update the weight sequence ~
and the optimal transports T,k = 1,--- , N by fixing pu.
Eq. (4) can be reformulated as follows.

(T, Dip(p)) = M (Th) + Ao K L(T} || P) = Ao K L(T || Ky),

(6)

k . k A1 A1 _

where dj; = d(p;,xj), si} = 7(N77) - and K =
[pije™s 5 ~I).

Dy (p ) k =1,--- N are fixed when p is fixed, hence

K, are also fixed. Problem (5) is thereby reformulated as

N
1

v, Tr k=1, ,N j.— @)
s.t. 37€@L7Tk1Nk v, vVk=1,---,N ~
k=1,---,N

TleL—[N 7...’Nk}

where Oy, := {y € RE|y; > 0,Vi=1,--- | L, Z%—l}

By defining T = (Ty)Y., € (R_IT_XN") and K =
(KN, € (REXNe)N Problem (7) is rewritten as

min KLy (T||K),v € O
~,T

: ; ®)
st. T € NPy
N
where KLy (T||K) := Y. +KL(T}||Kx),
k=1
&)= {T € MY DT, = [ I V),

P, = {T S (RiXNk)N : H'Y € ®L7Tk1Nk = ’Y’Vk}'

In [50], it is shown that the iterative Bregman projection
(IBP) [51], [52] can solve Problem (8) efficiently. Specifically,
as proved in [5], each T} is a rescaled version of K} with
the form of diag(ky1)Kydiag(kkz), and the scaling vectors
can be updated using the Sinkhorn'’s iterations:

R AR ©)
n+1 n
kD [ T () TR (10)
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As given in [50], v(") is the update of the weights:

1
»y(n) « H ( (n) k)TR](JQL))) N

where © is the element-wise product. The iterations con-
tinue until convergence. Given the learned weights and the
fixed supporting points, we perform OPW to obtain the
updates of the optimal transports T}, for k =1,--- | N.

In procedure 2, we update the supporting point sequence
p by fixing the weight sequence v and optimal transports
Ty, k =1,---,N updated in procedure 1. In Eq. (4), only
the first term evolves . By viewing the sequences p and
X, as matrices, we have

(Tyy, Di(p)) = diag(p” p)"y —2 {Ti, HTTXk> '

+ diag(XkTXk)T[Nik, e

)

7]

We follow [53] to optimize the local quadratic ap-
proximation of the following function: diag(pu” )T~y —
2T W Xy) = ||udiag(n?) - XpTy " diagly 3| -
HXka diag(~y %)‘ Given a single sequence Xy, the

Newton update is p < X Ty  diag(v~).
For all N training sequences, p is finally updated by

N
p (1=Op+0> XiTy " diag(y™"),
k=1

(12)

where £ € [0, 1] is a pre-set value.

We cycle the two alternative procedures until the change
in the objective function value Eq. (5) is less than a threshold
or a maximum number of steps is reached. It was shown
in [50], [52], [54] that the iterative Bregman projection for
updating « converges linearly. The convergence rate of
the Newton’s method for updating g is quadratic. It can
be difficult to obtain the global convergence rate of the
overall alternating optimization. In our experiments, it con-
verges in about 10 iterations. The complexity per iteration is
O(NTLgq), where T is the average length of sequences.

3.3 Covariance

For a set of sequences, the barycenter serves as the “mean”
sequence and reflects the average evolution. The dispersion
of the sequences around the barycenter can be straightfor-
wardly measured by accumulating the OPW distances:

N N
dy =Y _dopw(U,Xy) =Y _ (T7, Ds),

k=1 k=1

(13)

where the optimal transports T} between U and X, for
k =1,---,N, are the by-products when determining the
barycenter, so no extra calculations are needed.

To measure the covariance over different dimensions, we
define a covariance matrix I so that ¢r(I"') = d,,. I" can be
constructed by accumulating the weighted outer products
between any p; and observations in X}, as follows:

N L Ni

r=>2> >t

k=11i=1j=1

pi— ¥ (i -2 (14

We can find that I' captures all local relations between
elements of the barycenter and the observations in all
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sequences. All element-observation pairs contribute to the
total covariance with different weights. The weight of a pair
(wa?) is actually the corresponding element ti?j* of the
learned transport T3, so it reflects the probability of match-
ing the pair. In this way, the local pairwise relations or joint
probabilities are encoded. The weights are larger for the
pairs that have high joint probabilities, since the matched
pairs probably correspond to the same temporal structure.
The differences between pairs with low joint probabilities
are also incorporated, but with smaller weights, to consider
soft alignments and compensate possible missing matches.
As a result, the constructed I' better reflects the spatial-
temporal variances in different dimensions.

In [55], the optimal transport based variance for continu-
ous one-dimensional densities is defined as E(d%, (U, Xy)),
which is a scalar, where dyy is the Wasserstein metric. In this
section, we derive an explicit and discrete formulation of
the intra-class scatter I' in Eq. (14) for multi-dimensional se-
quences. It satisfies tr(I') = >, dopw (U, X)), where OPW
can be viewed as the squared 2nd order Wasserstein dis-
tance with temporal constraints. Therefore, the constructed
I" in Eq. (14) is consistent with the definition in [55].

3.4 Learning the projection

Our goal is to learn a transformation that projects the
observations in sequences onto a low-dimensional subspace,
in which the sequences from different classes get better sep-
arated. We employ the Fisher criterion to maximize the sep-
arability, i.e., we maximize the ratio of the inter-sequence-
class distance to the intra-sequence-class dispersion.

For each sequence class w.,c = 1,---,C, we extract
the order-preserving Wasserstein barycenter U¢ and the
covariance matrix I' from the training sequences of the
class. C' is the total number of classes. We define the intra-
sequence-class scatter as the weighted sum of covariances:

c
=> pT,
c=1

where p¢ is the prior probability of class w. and can be
estimated as the ratio of the number of sequences of w,. to
the total number of sequences of all classes.

We measure the distance between two classes w,. and
we by the OPW distance between the corresponding order-
preserving Wasserstein barycenters.
= dopw (U, U) = (T},

cc’

(15)

db(wca wc/) D >a (16)

where D, is the matrix of all pairwise distance between
pi and u?l, and T, is the optimal OPW transport be-
tween the two barycenters. The corresponding between-
class scatter I'y..) is the weighted sum of outer prod-
ucts between elements of the two barycenters, so that
dp(We, wer ) = tr(I‘b(CC,)):

Fb(cc’) = Zzt C

i=1j=1

ps ) (s —pHT. 17)

We define the overall inter-sequence-class scatter as the
weighted sum of all pairwise between-class scatters:

c-1 C ,
Iy = Z Z pcpc Fb(cc/)~

e=1 ¢/=c+1

(18)
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We observe again that all the differences between el-
ements in all barycenters contribute to the overall inter-
class scatter according to different weights. The weight
tfjc/* of a pair (¢, u;-'/) encodes the local relations of the
two elements and indicates their joint probability. I';, con-
centrates more on the differences between the pairs with
large joint probabilities. Such differences reflect the essen-
tial distinctions of two classes, because the matched pairs
represent the homologous temporal structures and thus are
distinctive for discriminating the two classes. Different from
the alignments by DTW, where the weights are 1 for a small
portion of aligned pairs and 0 for other pairs, the weights by
OPW are soft probabilities and hence I'y also incorporates
the differences between the pairs with smaller weights.
This compromises more information and is more robust to
incorrect or ambiguous alignments caused by noises.

When both the features in sequences and their dimen-
sions are not linearly related, the ranks of I',, and T
are min(N*,q) and min(CL,q), respectively, where N* is
the number of all features in all training sequences. When
Nt > q (CL > q), I'y, (I'p) is full-rank. In extreme cases
when there are too few training sequences so that N t<q,
we can use PCA to remove the null space of I';, or add a
identity matrix multiplied by a small scalar to I',,.

The objective of learning the projection W using the
Fisher criterion is formulated as the ratio-trace problem:

max tr(WIT, W) 'WirT,w). (19)
The optimal W* of Problem (19) is the matrix whose
columns are the eigenvectors of I',,'T', w.r.t. the ¢’ largest
eigenvalues, where ¢’ is the reduced dimensionality. The
proposed DRS method is called Order-preserving Wasserstein
Discriminant Analysis (OWDA).

3.5 Discussion

Complexity. Let N, and T denote the average number of
sequences per class and the average length of sequences,
respectively. The complexities for calculating the barycen-
ters for all C' classes, calculating the inter-class and intra-
class scatters, and solving (19) are O(CN, T Lq), O(C?L%*¢?),
O(CN,LTq?), and O(q?), respectively. The overall com-
plexity of linear OWDA is O(C?L%¢*> + CN,LTq*> + ¢*).
It scales linearly with the number of samples, but cubi-
cally with the dimension of features ¢ due to the eigen-
decomposition (19). We simultaneously diagonalize the
intra-class and inter-class scatters [10] to solve (19). Any
advanced methods for large-scale eigen-decomposition can
be applied to accelerate our method.

Subclass extension. Our model can be extended to fit
multiple barycenters for each class. By implementing off-
the-shelf clustering methods on the training sequences for
each class given a sequence distance such as OPW, each
class can be clustered into several subclasses. Therefore, our
method can extract a barycenter for each subclass. How-
ever, whether we need to use one or multiple barycenters
per class depends heavily on the data. If the data exhibit
unimodal distributions, using only one barycenter per class
is enough. On the other hand, if we use multiple barycen-
ters, although we may gain performance improvement, the
computation cost increases.
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4 DEEP ORDER-PRESERVING WASSERSTEIN Dis-
CRIMINANT ANALYSIS

The temporal evolution and distortion of sequences may
be highly non-linear, and sometimes a linear transformation
may not be able to fully distinguish the temporal structures
among sequences of different classes. In this section, we
extend the proposed OWDA to learn non-linear transfor-
mations using a deep neural network. We refer to this deep
extension as DeepOWDA.

Specifically, instead of using a linear projection matrix
W, we employ a deep neural network to perform nonlinear
transformations on the frame-wide features of sequences.
The neural network f(-,0) is parameterized by 6 and the
output for an input feature vector x is denoted by f(x, ).
As a result, the output of a sequence X = [x1, -+ , &N, ] is
transformed into f(X,0) = [f(xz1,0), -, f(zN,,0)].

DeepOWDA trains the network by maximizing the ra-
tio of the OPW-based inter-sequence-class scatter I'; and
the intra-sequence-class scatter I',, in the subspace so that
the transformed sequences from different classes get better
separated w.r.t. the OPW distance. However, to construct
the inter-class and intra-class scatters in the latent subspace,
the barycenters of the transformed sequences for all classes
and the OPW distances among barycenters need first to
be calculated, which require solving minimization problems
over transports and depends on the network to be learned.

Taking a closer look at Eq.(5), Eq.(14), and Eq.(17), we
can find that for given training sequences, the barycenter
sequence p and covariance I' are functions of the opti-
mal transports Ti{*,k = 1,--- ,N¢ between the training
sequences and the corresponding barycenter for each class
c=1,---,C, and the between-class scatter I';, is a function
of the optimal transports T\, ¢, = 1,---,C between
barycenters of different classes. To make the objective tackle,
we first calculate the barycenters as well as the related intra-
class optimal transports T;*,k = 1,--- ,N¢, ¢ =1,---,C
and inter-class optimal transports T}, ,c,d = 1,---,C
from the original sequences. We fix these inter-class and
intra-class optimal transports to construct the barycenters
and scatters in the latent subspace. For the c-th sequence

class, the barycenter sequence pu¢ = [pu§,i = 1,--- L] is
constructed as
N° Ny
IJ'S:ZZTE*(iaj)f(mﬁk’9)7i:1"" , L. (20)
k=1j=1
where :c?k is the j-th observation of the k-th sequence

sample of the c-th class.
The covariance is calculated as:

N¢ L N .
10 =335 E (us - f(@F,0)) (s — f(@F,0)7.

k=1i=1j=1
(21)
The between-class scatter is calculated as:

L L
Ty = DD 155 (§ — p§ ) (s — p$)T. (22)
i=1j—1

The overall intra-class scatter and inter-class scatter are
computed by Eq.(15) and Eq.(18). Here, we use the intra-
class and inter-class optimal transports in the original space
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to approximate those in the subspace. The optimal trans-
ports in the original space reflect the essential correspon-
dences between original sequences. To minimize the intra-
class scatter, the correspondences between feature vectors
with large transport probabilities from sequences of the
same class are further enhanced. Therefore, the optimal
transports in the subspace may not change too much from
those in the original space. In addition, since the transport
matrices build the optimal correspondences between fea-
tures in the original sequences under the OPW distance, dis-
criminating sequences according to such correspondences is
also likely to lead to better separability between different
sequence classes, even if the optimal transports change in
the subspace.

The original Fisher criterion is known to cause the so-
called class separation problem, i.e., it overemphasizes dis-
tant class pairs with large inter-class distances. This achieves
higher rewards because the Fisher criterion maximizes the
sum of pairwise inter-class distance. As a result, in the
learned subspace, the distances between classes that are
already separated become larger, but the neighboring classes
are more difficult to distinguish. This problem is exacer-
bated when using deep neural networks with strong fitting
capabilities.

To alleviate this problem, following [19], we also ap-
ply a reformulated objective to DeepOWDA. Let a;,i =
1,--+,C —1 denote the eigenvalues of ', ' T';, in descending
order, and v;,i = ---,C — 1 denotes the corresponding
eigenvectors. Each «; can be viewed as measuring the
discriminative capacity of the direction of v;. Different from
maximizing the sum of all eigenvalues as in the original
Fisher criterion, which may overemphasis the largest few
a;, we only maximize the sum of the top k eigenvalues that
are smaller than a pre-set threshold €. The loss function of
DeepOWDA is formulated as follows.

k
1
max g - g
0 i=1
st.ajir < €05 > €,
I"L_Ul:[‘bvi = vy, i =1, aC - L

(23)

This formulation forces the network to discriminate
confusing sequence classes and gain more discriminative
power. Each eigenvalue can take the derivative w.r.t. the
parameters and the loss function Eq.(23) is differentiable.
The deep network is trained by back-propagation. During
training, in each mini-batch, sufficient features from all
classes are needed to estimate the scatters. Thus the batch
size should be sufficiently large.

Given training sequences, the barycenter of each class is
calculated in the original space to learn the projection. In
the learned subspace, the barycenters and the correspond-
ing optimal transports between the training sequences to
them may change. Therefore, determining the barycenters
and learning the projection are interlaced, as solving one
depends on the other. Our solution implicitly assumes that
salient temporal correspondences are often preserved after
transformation; thus, the optimal transports in the original
space can be used to approximate those in the reduced
low-dimensional subspace (the barycenters and scatters are
actually based on the optimal transports). After projection,
the sequences of the same class are more concentrated to
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the barycenter and the barycenters of different classes are
further away w.r.t. the OPW distance. Therefore, sequences
from different classes are better separated.

In some cases, such optimal transports may be quite
different in the original space and the subspace, additional
confusions may be introduced due to the change of optimal
transports in the subspace learned with the optimal trans-
ports in the original space. To address this problem, we can
employ an alternating optimization scheme. Specifically, we
learn an initial network using the optimal transports in the
original space, use the network to transform the training
sequences, and then re-infer the barycenters and associated
optimal transports from the transformed sequences. The
updated optimal transports in the subspace are used in
turn to re-train the network. The two procedures repeat
iteratively until the subspace cannot be improved anymore.
We denote such an iterative solution by DeepOWDA-ite.
The iterative process can also be applied to linear OWDA,
which we denote by OWDA-ite. In this case, OWDA and
DeepOWDA can be viewed as the 1-iterations of OWDA-
ite and DeepOWDA-ite. However, the iterative process not
only increases the computational complexity greatly but
also does not necessarily guarantee convergence in theory.

Complexity. Let N, denote the number of training se-
quences per class in each batch. The complexity of Deep-
OWDA per iteration is O(C%L?¢* + CN, LTq* + ¢*). We fix
the number of iterations to 500 in our experiments.

5 EXPERIMENTS

In this section, we evaluate the performances of the pro-
posed linear and deep OWDA methods on four 3D-action
datasets.

5.1 Datasets

The MSR Sports Action3D dataset [34], [56] contains 557
depth sequences captured by Kinect camera from 20 sports
actions. Ten persons performed each action for two or
three times. The skeleton joint positions of humans are also
available in this dataset. In [34], [57], the authors split the
dataset into a training set and a test set, where the training
set includes the sequences performed by about half of the
persons and the test set includes the rest. We follow this
experimental setup and report our results on the test set.
The MSR Daily Activity3D dataset [34] contains 320 daily
activity sequences from 16 activity classes. The sequences
were captured by a Kinect device. Ten subjects performed
each activity in two poses. We follow the split of the dataset
as in [34], [57] again and report our results on the test set.
The ChaLearn Gesture Recognition dataset [58], [59]
contains 955 Italian gesture sequences captured by Kinect
camera from 20 different Italian gestures. Because we focus
on individual sequence classification rather than sequence
detection or segmentation, we follow [37], [60], [61] to
perform experiments on the segmented sequences given
by the ground-truth segments. Each segmented sequence
contains only one gesture instance. 27 persons performed
these gestures. Other annotations of this dataset include the
foreground segmentation and joint skeletons. This dataset
includes training set, validation set, and test set. Follow-
ing [37], [60], [61], we learn the projections and train the

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE Ferr&ﬁsgion. ﬁeel ht2t :/é\gvﬂv.iee%grﬁléaublicationsﬁstandards/ ublications/rights/index.html for more information.
oaded on July 23, at 15:

:47 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3050750, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

classifiers on the training set, and report the results on the
validation set.

The NTU RGB+D dataset [62] contains 56,880 action
samples from 60 action classes. The action videos are per-
formed by different subjects and recorded from different
views. For each sample, the 3D coordinates of 25 major body
joints per subject at all frames are available. The dataset
provides two standard evaluation protocols. In the Cross-
Subject (CS) evaluation, the videos of different subjects are
split into training and testing groups. The training and
testing sets contain 40,320 and 16,560 action sequences,
respectively. In the Cross-View (CV) evaluation, the videos
from different viewpoints are split into training and testing
groups. The training and testing sets contain 37,920 and
18,960 action sequences, respectively.

5.2 Experimental Setup

Implementation details. We perform zero-centralization on
original frame-wide features for OWDA and divide the
frame-wide features by 10 for DeepOWDA unless otherwise
specified. For DeepLDA and DeepOWDA, the neural net-
work for transformation is a three-layer perceptron, each
fully connected layer is followed by a ReLU nonlinear
function, and L, regularization is applied to the outputs.
The number of nodes in all hidden layers is fixed at 1024.

Classification. We extract a feature vector from each
frame as the observation of the frame. In this way, we repre-
sent each video by a sequence of observations. For evalua-
tion, we employ the proposed linear and deep OWDA meth-
ods to project the observations in sequences onto subspaces
with different dimensions. In the learned subspaces, we
employ two sequence classifiers to classify the transformed
sequences: the SVM classifier and the nearest neighbor
(NN) classifier. For the SVM classifier, we first encode each
sequence of observations into a fixed-dimensional vector by
the unsupervised rank pooling [37]. Rank pooling learns
two linear functions to rank the forward and reverse timing
orders of the observations by the support vector regression,
respectively. The parameters of the two linear functions are
concatenated to form the pooling vector. Then, we train
linear SVMs by taking these resulting vectors as input. We
determine the hyper-parameter C' of the linear SVMs by
cross-validation. At the testing phase, we encode the test
sequence of observations into a vector by rank pooling, and
then employ the leaned SVMs to classify the encoded vector.

For the NN classifier, we employ the OPW distance as
the dissimilarity measure between two sequences. Specifi-
cally, for a test sequence, we calculate its OPW distance to all
training sequences. We predict its class label as the label of
the training sequence which has the smallest OPW distance
with it among all training sequences.

Performance measures. We adopt the accuracy and
MAP (mean average precision) as performance measures.
For the SVM classifier, we train a multi-class SVM to eval-
uate the classification accuracy. We train a binary SVM for
each class and use the scores to rank all training encoded
vectors to evaluate the MAP. Additional evaluations by
using the multi-class precision and recall as performance
measures with this classifier are presented in the supple-
mentary file. For the NN classifier, to evaluate the MAP,
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Fig. 2. Performances as functions of L by (a) the SVM classifier
and (b) the NN classifier on the MSR Action3D dataset.

we view each test sequence as a query to rank all training
sequences with the OPW distance.

5.3 Ablation Study

Influence of hyper-parameters. We set the values of the
hyper-parameters A1, A2, and 6 of OPW as suggested in [6]
on the first three datasets when the same frame-wide fea-
tures are used as in [6]. When using the raw-skeleton-
based features, we set A1, Ay, and § of OPW on the MSR
Action3D dataset to 10, 0.1, and 12, respectively, following
the suggested setting on the MSR Activity3D dataset, since
the two datasets are relatively similar. In [6], A2 was fixed to
0.1 for all datasets, and OPW is not sensitive to A1. Since A1,
A2, and 4 influence our method through OPW distance, our
method should share similar sensitivities to them. The NTU
dataset is not evaluated in [6]. We fix A1, A2, and § of OPW
to 10, 0.1, and 1, respectively.

In addition to the reduced dimension ¢/, both linear
OWDA and DeepOWDA only introduce one additional
hyper-parameter, i.e., the length L of the barycenter per
class. Fig. 2 shows the influence of L on linear OWDA on the
MSR Action3D dataset with the 192-dimensional relative-
angles-based features. When L is too small, the barycen-
ter cannot capture enough temporal structures, and hence
some temporal information is lost. When L is too large,
the barycenter may contain some noisy elements, resulting
in overfitting. In most cases, L = 8 achieves satisfactory
results. We simply fix L to 8 in all the following experiments.

Training time. For linear OWDA, in most cases, the
calculation of the barycenter converges in about 10 iter-
ations. The procedures after learning the barycenters are
closed-form calculations. Therefore, the practical training
time is not too long. On the MSR Action3D dataset with
the 192-dimensional relative-angles-based features, the MSR
Activity3D dataset with the 390-dimensional pairwise-joint-
position-based features, and the Chalearn dataset with
the 100-dimensional histogram-based features, the training
times of linear OWDA are 43.1753, 265.7691, 385.8162 (sec),
respectively.

Effects of different frame-wide features. The proposed
OWDA and DeepOWDA can take sequences with any
frame-wide features as input. We compare five different
types of frame-wide features on the MSR Action3D dataset,
including the 60-dimensional raw skeleton-based features
where all joint locations in a frame are concatenated to
form the feature; the 60-dimensional preprocessed motion-
based features used in [40], the 120-dimensional frame-wide
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features based on velocity and acceleration of the joint posi-
tions used in [36], [63], the 192-dimensional pairwise-joint-
angle-based features provided by the authors of [34], which
are the relative angles of all the 3D joints w.r.t. other joints;
and the 390-dimensional pairwise-joint-position-based fea-
tures provided by the authors of [34], [57].

Results by OWDA are shown in Fig. 3 and results
by DeepOWDA are shown in the supplementary file. The
reduced dimension is uniformly sampled according to the
total linearly independent dimensions and the x-axis in
Fig. 3 represents the sampling index. The indexes of 1 to
6 correspond to dimensions of 5 to 55 with an interval of
10 for Skeleton and Motion-based features, 5 to 105 with
an interval of 20 for velocity and acceleration features, 5 to
30 with an interval of 5 for the relative angle-based features,
and 5 to 305 with an interval of 60 for relative position-based
features. The dimensions of the relative position, velocity
and acceleration-based frame-wide features are larger, so
DeepOWDA can retain more dimensions, encode more in-
formation, and achieve better performances. On all datasets,
the number of layers of the neural network and the number
of hidden nodes in the middle layers are fixed to a large
number. Due to the small size of the MSR Action3D dataset,
DeepOWDA may overfit to the original joint positions.
On the other hand, the relation position and motion-based
features reduce the dependence on absolute positions. For
linear OWDA, the raw skeleton-based features with a small
dimension achieve performances comparable to other high-
dimensional features. For different classifiers, the perfor-
mances of different features are also different.

In order to simplify and clarify the process of using
OWDA and DeepOWDA, in the following experiments,
we use the raw skeleton-based frame-wide features on
all datasets except the ChaLearn dataset, unless otherwise
specified. On the ChaLearn data set, we directly employ
the histogram-of-joint-positions-based frame-wide features
provided by the authors of [37]. Specifically, for each frame,
the relative locations of body joints are quantized w.r.t. a
pre-clustered codebook, and the histogram of the quantized
codewords serves as the feature with a dimensionality of
100. On the NTU dataset, some actions involve interactions
between two subjects and all joints of both subjects are
recorded. When only one subject appears in a frame, the
corresponding joint positions of the second subject are set to
0. On this dataset, the dimensionality of the raw skeleton-
based frame-wide feature is 150.

Influence of the weight sequence ~. The barycenter
learning algorithm jointly learns the supporting points and
their weights. Approximately, each supporting point in the
barycenter can be regarded as a stage or state of the se-
quence class and its weight can be viewed as the proportion
of the duration of the stage. If a stage lasts for a long time
in most samples of a class, then this stage may indeed be
relatively important and its weight should be larger than
other stages.

We can also fix the weights to uniform weights and only
learn the supporting points when learning the barycenter.
In this case, the proposed methods are denoted by OWDA-
uni and DeepOWDA-uni, where the optimal transports
are updated in procedure 1 and the supporting points are
updated in procedure 2. Fig. 4 compares the performances of
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OWDA /DeepOWDA with learned weights and fixed uni-
form weights on the MSR Action3D dataset. We observe that
OWDA-uni/DeepOWDA-uni achieves comparable results
with OWDA /DeepOWDA. Since the length of barycenters
is set much smaller than the average length of the training
sequences, only stages with long enough durations can be
captured. Therefore, the weights of all stages may not be
too small and have less impact on performances. However,
learning the weights jointly does not increase the learning
complexity much, while can increase flexibility and may be
useful when the length of barycenters is large.

Effect of the iterative solutions. OWDA and Deep-
OWDA approximate the optimal transports in the subspace
by those in the original space. We compare them with
OWDA-ite and DeepOWDA-ite which iteratively update
the transformation and optimal transports. For OWDA-ite
and DeepOWDA-ite, we iterate 5 times. The comparisons
on the MSR Action3D dataset are shown in Fig. 4. The
performance degradation of DeepOWDA-ite may be caused
by the change in the amplitude of the transformed frame-
wide features during iterations, which affects the inference
of the optimal transports in the subspace by OPW. We
observe that the differences in performances of OWDA-ite
and OWDA are very small for the SVM classifier. Since the
iterative process cannot guarantee the decrease of the objec-
tive function, OWDA-ite cannot improve the performances.

Classification with different sequence distances. Al-
though OWDA and DeepOWDA learn the transformation
based on the OPW distance, other sequence distances can
also be applied in the learned subspace. On the MSR Ac-
tion3D dataset and the MSR Activity3D dataset, we use
the nearest neighbor classifier with the DTW, SoftDTW
(denoted by SDTW), and CTW distances to classify the
original sequences and the transformed sequences, where
CTW preserves 95% of energy. Fig. 5 compares the perfor-
mances of using these distances and the OPW distance. All
sequences are from the same modal, the maximally corre-
lated subspace learned by CTW may not be discriminative
and loses useful information, therefore, CTW performs infe-
rior to other distances. Although OWDA and DeepOWDA
construct separability among sequence classes based on the
OPW distance, they can also greatly improve the DTW and
SoftDTW distances. In some cases, the DTW and Soft DTW
distances even outperform the OPW distance in the learned
subspaces. This may be because the transformed sequences
are more discriminative by enhancing temporal information
and the DTW and SoftDTW distances with stricter temporal
constraints can better separate them.

5.4 Comparison with other DRS methods

We compare the proposed OWDA and DeepOWDA with
other dimensionality reduction methods for sequences.
OWDA employs the Fisher criterion. As discussed in Sec-
tion 2, different criteria are generally suited for different
cases. In addition, OWDA can also be extended by employ-
ing other criteria. Therefore, to obtain a fair comparison, we
only compare with those methods based on Fisher criterion,
including LDA, DeepLDA, and LSDA. For LSDA, we use
the same hyper-parameters as in [1], [2]. For both linear
OWDA and DeepOWDA, the hyper-parameter L is fixed
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the subspace.

to 8 in all our experiments. We adapt the implementations
of IBP in [54] and Newton’s update in [53] to perform
the computation of the OPW barycenter. We implement
DeepOWDA using Keras with the Theano backend.

LDA and DeepLDA are based on the i.i.d. assumption.
To apply them to sequence data, we view the observations
in sequences as independent samples with the same class
label. We employ the drtoolbox [64] to implement LDA.
We employ Vahidoo’s Keras code! to implement DeepLDA.
In addition, we also evaluate the performances using both
classifiers in the original space. Our implementation of
OWDA and DeepOWDA is available?.

Results on the Action3D dataset. On this dataset, the
magnitude of the real-world raw skeleton data is not nor-
malized. To avoid numerical problems when calculating
OPW distances, when using the NN classifier in the sub-
space, we divide the absolute joint location coordinates by
V2 and divide the transformed features by \/2¢/ and 2
for OWDA and DeepOWDA, respectively. The results of
different DRS methods with different reduced dimensions

1. https:/ / github.com/VahidooX/DeepLDA
2. https:/ / github.com/BingSul2/OWDA

ermission. See htt

are shown in Fig. 6. We can observe that the proposed
linear OWDA outperforms other linear DRS methods by
a significant margin with both classifiers. Compared with
the original sequences with 60-dimensional observations,
OWDA achieves better accuracy and MAP with a margin of
more than 5% when more than 25 dimensions are preserved
for the SVM classifier, and achieves comparable accuracy
and MAP using only 15 dimensions for the NN classifier.

DeepOWDA outperforms the non-linear DeepLDA by
a large margin for both classifiers when more than 25
dimensions are preserved. It also achieves much higher
MAPs than linear OWDA and other linear DRS methods.
Compared with the original 60-dimensional observations,
DeepOWDA using only more than 15 dimensions achieves
better performances for the SVM classifier and improves the
MAP by a margin of 10% for the NN classifier.

Results on the Activity3D dataset. To avoid numerical
problems, when using the NN classifier, we divide the
absolute joint location coordinates by 2 and divide the trans-
formed features by /¢’ and 2 for OWDA and DeepOWDA,
respectively. Fig. 7 depicts the performances of different
DRS methods as functions of the reduced dimension by

,2021 at 15:26:47 UTC from IEEE Xplore. Restrictions apply.
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Fig. 6. (a) Accuracies with the SVM classifier (b) MAPs with the SVM classifier (c) Accuracies with the NN classifier and (d) MAPs with the NN
classifier as functions of the dimensionality of the subspace on the MSR Action3D dataset.

both classifiers on the Activity3D dataset. For the SVM
classifier, OWDA and DeepOWDA with more than 35 di-
mensions achieve slightly better accuracies than classifying
the original sequences directly without any DRS methods.
Generally, OWDA and DeepOWDA also outperform other
DRS methods.

For the NN classifier, LSDA generally obtains better
accuracies than linear OWDA, but OWDA achieves much
better MAPs than other linear DRS methods. DeepOWDA
achieves the best accuracy and MAP. Especially, Deep-
OWDA outperforms other methods by a margin of about
20% on MAP. For a test sequence, the NN classifier only
employs its nearest training sequence when calculating the
accuracy, but ranks all training sequences according to the
OPW distances w.r.t. it when calculating the MAP. The objec-
tive of OWDA and DeepOWDA is to minimize the overall
dispersion for sequence classes and maximize the overall
separability among classes. This makes most sequences from
different classes more different, but does not pay special
attention to the margins among classes. For a test sequence,
the nearest training sequence may not belong to the same
class due to noises or variances, but generally, most training
sequences from the same class will be ranked in front of
those from different classes.

Results on the ChaLearn dataset. Fig. 8 presents the
results of different DRS methods as functions of the reduced
dimension by both classifiers on the ChaLearn dataset. For
the SVM classifier, DeepOWDA performs comparable with
DeepLDA, and both outperform linear methods. Linear
OWDA outperforms other linear methods by a margin of
about 5% on most reduced dimensions. OWDA is the only
linear DRS method that is able to improve the original
features. Moreover, OWDA achieves this by preserving only
25 dimensions. This indicates that OWDA enhances the
temporal separability and discards noises successfully.

The performances of LDA and kLDA are far below those
of other methods. The reason is that the observations in
sequences are not independent. Performing LDA and kLDA
forcibly by viewing them as independent samples not only
aggravates the within-class ambiguity, but also may break
their temporal relations. Moreover, LDA and kLDA can
preserve C — 1 = 19 dimensions at most. It is difficult
to separate sequences from different classes with such few
dimensions. In contrast, since the barycenter of each class
has L. = 8 supporting points, OWDA is able to preserve
LC — 1 = 159 dimensions, if d > 159.

For the NN classifier, OWDA, LSDA, DeepOWDA, and
DeepLDA improve the original features greatly. Compared

Authorized licensed use limited to: Northwestern University. Down

with LSDA, OWDA achieves comparable accuracy and
much higher MAP. Specifically, OWDA outperforms the
original features by a margin of 20%. The MAPs of OWDA
are 5% higher than those of LSDA on almost all dimen-
sions. Compared with DeepLDA, DeepOWDA achieves
comparable accuracy and much higher MAP. Specifically,
DeepOWDA outperforms the original features by a margin
of about 40% on MAP. The MAPs of DeepOWDA are 5%
higher than those of DeepLDA on most dimensions.

Results on the NTU dataset. Due to the large number of
sequence samples, calculating the intra-class and inter-class
scatters from all frames in all training sequences to obtain
the linear transformations is prohibitively time-consuming,
and simple SVM and NN classifiers may be less effective.
Therefore, we only evaluate DeepLDA and DeepOWDA
with mini-batch based optimization, and use the deep in-
dependent recurrent neural network (IndRNN) [44], [65]
for classification in the learned subspaces. In [44], [65], a
preprocessing alignment is applied to the original skeleton
data so that the joint locations of the same subject identity
lie in the same data array over time. Since the processed
data are not provided and there is no explanation of how
such alignment is performed, we only use the unaligned
skeleton-based frame-wise features, this leads to degraded
performances. We re-implement IndRNN on the same un-
aligned data for a fair comparison. All the hyper-parameters
of IndRNN and experimental settings on this dataset remain
the same as in [44], [65]. The comparisons are shown in
Fig. 9. DeepOWDA outperforms DeepLDA in both CS and
CV settings.

5.5 Comparison with state-of-the-art methods

Our goal is not to design an end-to-end sequence classi-
fication method, but to develop a DRS method that pro-
duces low-dimensional discriminative temporal representa-
tions. Our method can serve as a ubiquitous component
in different classification pipelines to improve the original
representations and benefit the subsequent classifiers. For
example, recurrent neural networks (RNNs) are seldom
used for feature learning, but often as classifiers by taking
hand-crafted or CNN-learned frame-wide features as input.
Our method can be applied to these features before they
are fed into RNNs. In this way, RNNs can estimate fewer
parameters and better capture the temporal dependencies.
On the Chalearn dataset, we have shown that our
method outperforms other DRS methods and improves
different sequence classification methods. We compare our
results by using the frame-wide features in [37] and the
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Fig. 9. Accuracies with the INndRNN classifier as functions of the dimen-
sionality of the subspace in (a) the CS setting and (b) the CV setting on
the NTU RGB+D dataset.

TABLE 1
Comparison with other methods on the ChalLearn dataset.
Method Precision Recall F-score
Wu et al. [66] 0.599 0.593 0.596
Pfister et al. [61] 0.612 0.623 0.617
Fernando et al. [67] 0.753 0.751 0.752
Cherian et al. [28] 0.753 0.752 0.751
LSDA+SVM [2] 0.768 0.767 0.767
LT-LDA+SVM [33] 0.784 0.783 0.783
OWDA+SVM 0.773 0.773 0.772
DeepOWDA+SVM 0.827 0.826 0.826

SVM-based classifier with some other methods. Multi-class
precision, recall, and F-score are used as performance mea-
sures as in [2], [28], [61], [66], [67]. Comparisons are shown
in Tab. 1. DeepOWDA followed by a relatively simple SVM
classifier with rank pooling outperforms other methods
significantly using only 55 percent of the original dimension.

On the MSR Activity3D dataset, covariance represen-
tations and kernel-SVM based methods such as Ker-RP-
POL [36] and Kernelized-COV [68] achieve superior results.
Kernelized-COV employs the Kernelized covariance of all

ermission. See htt

TABLE 2
Comparison with state-of-the-art methods on the MSR Activity3D

dataset.
Method Accuracy
Actionlet Ensemble [34] 85.8%
Moving Pose [63] 73.8%
COV-J%-SVM [35] 75.5%
Ker-RP-RBF [36] 96.3%
Kernelized-COV [68] 96.3%
LRTS [69] 80.6%
Qiao et al. [70] 75.0%
Baradel et al. [71] 90.0%
Luo et al. [72] 86.9%
Jietal. [73] 81.3%
DSSCA SSLM [74] 97.5%
MDMTL [75] 93.8%
OWDA +Kernelized-COV 98.1%

frame-wide features of a sequence as the representation of
the sequence. Our proposed OWDA can be applied before
Kernelized-COV to enhance the temporal representations.
Specifically, we employ the 120-dimensional velocity-and-
acceleration-based frame-wide features provided in [36]. We
perform the proposed OWDA to reduce the dimension to
80 and then employ Kernelized-COV for classification. As
shown in Tab. 2, the result obtained by the linear OWDA
in this way has already outperformed the state-of-the-art
results, so we did not evaluate DeepOWDA on this dataset.

On the MSR Action3D dataset, we extract the 120-
dimensional velocity-and-acceleration-based frame-wide
features ourselves, reduce the dimension to 80 by OWDA,
and use Kernelized-COV for classification. As in Fig. 5 of the
supplementary file, we also apply different dimensionality
reduction methods to such features and use SVM or NN for
classification. Comparisons are shown in Tab. 3. We observe
that DeepOWDA using a relatively simple classifier obtains
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TABLE 3
Comparison with state-of-the-art methods on the MSR Action3D
dataset.
Method Accuracy
Actionlet Ensemble [34] 88.2%
Moving Pose [63] 91.7%
COV-J4-SVM [35] 80.4%
Ker-RP-RBF [36] 96.9%
Kernelized-COV [68] 96.2%
GRP [28] 81.7%
LT-LDA+Kernelized-COV [33] 91.9%
TS-LSTM-GM [40] 91.2%
LT-LDA+LSTM-GM [33] 92.7%
FTP-SVM [41] 90.0%
Bi-LSTM [41] 86.2%
OWDA+Kernelized-COV 87.6%
LDA+SVM 38.1%
LSDA+SVM 67.8%
DeepLDA+SVM 84.6%
OWDA+SVM 74.7%
DeepOWDA+SVM 92.3%
DeepLDA+NN 78.8%
DeepOWDA+NN 93.8%
TABLE 4
Comparison with state-of-the-art methods on the NTU RGB+D dataset.
Method CS CcvV
PLSTM [62] 62.9%  70.3%
SkeletonNet [76] 75.9% 81.2%
Clips+CNN+MTLN [77] 79.6%  84.8%
Enhanced Visualization+CNN [78] 80.0% 87.2%
HCN [79] 86.5% 91.1%
TCN+TTN [80] 77.6%  84.3%
JL_d+RNN [81] 70.3%  82.4%
STA-LSTM [82] 73.4%  81.2%
Pose conditioned STA-LSTM [71] 771%  84.5%
ST-LSTM [43] 69.2%  77.7%
EleAtt-GRU [83] 79.8%  87.1%
TS-SAN [84] 87.2% 92.7%
SkeleMotion + Yang et al. [85] 76.5%  84.7%
ARRN-LSTM [86] 80.7%  88.8%
IndRNN [44] 84.9%  90.4%
Ori + IndRNN 80.8% 87.1%
DeepOWDA + IndRNN 79.0%  86.6%

comparable results with LSTM-based models.

On the NTU RGB+D dataset, we use the proposed Deep-
OWDA to reduce the 150-dimensional original skeleton
based frame-wise features to 95 and employ the densely
connected IndRNN for classification. Different from the
experiments in Fig. 9, since the dimension is reduced, we
reduce the number of filters in the first dense layer by half
and keep the growth rate unchanged. As a result, the num-
ber of parameters is reduced from 2,314,428 to 1,804,740.
The comparisons with RNN-based methods without data
augmentation are shown in Tab. 4, where “IndRNN" indi-
cates the results reported in [44], where the original skeleton
based frame-wise features are preprocessed by aligning the
subject identities, and “Ori+IndRNN" indicates the results
of IndRNN by directly taking the original skeleton based
frame-wise features as input.

DeepOWDA performs slightly inferior to the original
features. The possible reasons are as follows. 1. All joint
positions contain useful information for distinguishing the
large number of actions. Reducing the dimension by Deep-
OWDA loses some discriminative information. 2. Sequences
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Fig. 10. The frame-level accuracy of INndRNN on the validation set as
a function of the number of iterations by taking the original skeleton
features and the transformed features with DeepOWDA as input on the
NTU dataset for the (a) CS and (b) CV setting.

in this large-scale dataset show large within-class variations
and may not be sufficiently represented by a single barycen-
ter per class. Adding the number of barycenters per class
may further increase the performances of DeepOWDA. 3.
IndRNN and DeepOWDA have different objective functions
and distinguish sequences in different ways. Maximizing
the separability constructed by DeepOWDA will not neces-
sarily preserve or enhance the discriminative information
required by IndRNN. 4. We directly use IndRNN with
hyper-parameters tuned for the original sequences to clas-
sify the transformed sequences by DeepOWDA. Using a
validation set to select appropriate hyper-parameters may
further improve the final performance.

The performance of DeepOWDA is gapped w.r.t state-
of-the-art results. The overall performance may be related
to many factors, such as preprocessing, hyper-parameters,
computing resources, and classifiers. E.g., applying ad-
vanced skeleton-based action classification methods on the
subspace learned by DeepOWDA may further improve the
final performance. However, since our goal is not to achieve
state-of-the-art results on this specific dataset, we did not
perform any pre-processing or tune the hyper-parameters.
We aim at evaluating the effectiveness of the proposed di-
mensionality reduction method. As shown in Tab. 4, Deep-
OWDA using only 63.3% of the original dimensions obtains
results comparable to the original features by the IndRNN
classifier. After transforming the sequences by DeepOWDA,
IndRNN can not only adopt a lighter weight model with
much fewer learnable parameters, but also converge faster
during training, as shown in Fig. 10. This is especially
suitable in resource-constrained situations.

6 CONCLUSION

In this paper, we have presented a linear DRS method,
i.e., OWDA, and its deep extension, ie.,, DeepOWDA, to
map the non-independent observations in sequences onto
a low-dimensional subspace, so that the entire sequences
from different classes are better discriminated with the
OPW distance. To manipulate the structured sequences
with various lengths, we learn the OPW barycenter of the
sequence samples from a class to represent the average
temporal structures and evolutions. We construct the co-
variance of the class in such a way that the trace of the
covariance measures the variability of the OPW distances
between the sequence samples and the barycenter. Similarly,
we construct the pair-wise inter-class scatter so that the
trance of the scatter measures the OPW distance between
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the corresponding barycenters of the two classes. We show
that the intra-class and inter-class scatters are actually the
weighted sums of all the pairwise outer-products between
observations in sequences or elements of barycenters. There-
fore, all local relationships are learned and incorporated.
Experimental results on four 3D action datasets demonstrate
the effectiveness of the proposed OWDA and DeepOWDA.
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