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JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single

543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-

tenth those of the model bacterial organism Escherichia coli’s, and the corresponding

reduction in complexity and scale provides a unique opportunity for whole-cell modeling.

Previous work established genome-scale gene essentiality and proteomics data along with

its essential metabolic network and a kinetic model of genetic information processing. In

addition to that information, whole-cell, spatially-resolved kinetic models require cellular

architecture, including spatial distributions of ribosomes and the circular chromosome’s

configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level

directly from cryo-electron tomograms, including the ribosome distributions. We present a

method of generating self-avoiding circular chromosome configurations in a lattice model

with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the

chromosome configurations are constrained by the ribosomes and geometry

reconstructed from the tomograms and include DNA loops suggested by experimental

chromosome conformation capture (3C) maps. Using ensembles of simulated

chromosome configurations we predict chromosome contact maps for Syn3A cells at

resolutions of 250 bp and greater and compare them to the experimental maps.

Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting

from the individual chromosome configurations can be used to identify macromolecular

structures formed from ribosomes and DNA, such as polysomes and expressomes.

Keywords: cryo-electron tomography, chromosome conformation capture (3C) maps, computational modeling,

whole-cell models, chromosome modeling, ribosome distribution, bacterial minimal cell, JCVI-syn3A

1 INTRODUCTION

JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and a single short 543 kbp
circular chromosome derived from a Gram-positive bacterium, Mycoplasma mycoides. Previous
work established genome-scale gene essentiality and proteomics data along with its essential
metabolic network (Hutchison et al., 2016; Breuer et al., 2019) and a kinetic model of genetic
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information processing (Thornburg et al., 2019). The kinetic
model of genetic information processes of DNA replication,
transcription, and translation requires positions and length of
genes along the chromosome. Spatially resolving and solving
these kinetic models require cellular architecture, including
spatial distributions of ribosomes and the circular
chromosome. The first iteration of a bacterial cell with a
synthetic genome was JCVI-syn1.0, whose synthesized genome
is 1,079 kbp (Gibson et al., 2010). Syn1.0 has a doubling time of
approximately 60 min and shows a spherical morphology with a
radius of ∼ 200 nm (Hutchison et al., 2016). Two additional
cycles of targeted genomic reduction resulted in JCVI-syn3.0, a
cell whose synthetic genome is only 531 kbp but still
autonomously replicates (Hutchison et al., 2016). Syn3.0 has a
slower growth rate than Syn1.0, with a doubling time of
approximately 180 min (Hutchison et al., 2016), and based on
optical and scanning electron microscopy (SEM), Syn3.0 exhibits
a pleomorphic morphology with significant variations
(Hutchison et al., 2016; Pelletier et al., 2021). The organism

that is the subject of this study, Syn3A, was created from
Syn3.0 through the addition of 19 genes present in Syn1.0.
While this addition made a less minimal genome, it resulted
in cells with a robust spherical morphology and an average
doubling time of approximately 110 min (Breuer et al., 2019).
Super-resolution fluorescence microscopy (STORM) imaging
(private communication, Taekjip Ha) reveals that it recovers
the spherical morphology of Syn1.0, with a radius of 200–250 nm.

To create chromosome geometries for our spatial models and
subsequent simulations of gene expression and translation, we
develop a method of generating self-avoiding circular
chromosome configurations with a resolution of 11.8 bp per
monomer on a 4 nm cubic lattice. To place the chromosome
inside the cell volume, we use cryo-electron tomography (cryo-
ET) to define the cell boundaries and ribosome distribution,
which define the regions available to the chromosome. Cryo-
ET data shows that the ribosomes appear to be nearly randomly
distributed throughout the cell. In cryo-ET of bacteria, the
position of the chromosome is typically determined by the

FIGURE 1 | Workflow Diagram: Cryo-ET data is used to reconstruct spherical Syn3A cells, constrained chromosome configurations are generated within the

reconstructed cells and resulting in silico chromosome contact maps are compared to the experimental 3C-Seq map. (A): The left side is a single z-slice of the

tomographic reconstruction. The right side are the ribosomes (yellow) identified using template-matching and the membrane segmentation (orange) superimposed on

the z-slice. (B): The shape of the blotted cells is approximated by an ellipsoid that is manually compared to the tomographicmembrane segmentation (orange). In an

iterative procedure, a series of minimal surface area enclosing ellipsoids (MSAEE) are fit around the ribosome coordinates while extraneous ribosomes assessed to be

outside of the true membrane are removed within each iteration. The final fitted ellipsoid is shown in blue and the extraneous ribosomes in red. (C): As Syn3A cells are

known to have a spherical morphology, the ribosome coordinates and ellipsoidal membrane approximation are then transformed to a sphere with equivalent surface

area. (D): The continuum representation is then converted to an 8 nm cubic lattice representation used for whole-cell simulations with LM. (E): Circular and self-avoiding

chromosome configurations are generated as a lattice polymer on a 4 nm cubic lattice. The 4 nm lattice is coincident with the 8 nm cubic lattice and the chromosomes

are constrained to avoid the ribosomes and remain within the membrane. In the representative DNA configuration, monomers are colored red and blue on opposite arms

of the chromosome. (F): In silico contact maps from ensembles of generated DNA configurations are compared to the experimental 3C-Seq map.
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absence of ribosomes. For example, the cryo-ET studies of slow-
growing Escherichia coli show ribosomes primarily localized at
the poles and along the sides of the nucleoid so that the DNA can
be inferred to be confined within the enclosed nucleoid region
(Roberts et al., 2011). Based on the tomograms for Syn3A
presented in this study, we assume the chromosome is
randomly distributed among the ribosomes. We also present
experimental chromosome conformation capture (3C) maps, a
technique that shows the frequency at which different regions of
the chromosome are in contact with each other (Dekker et al.,
2002). This map shows only a single main diagonal with some
small (< 4 kbp) features along it and has no other significant
features.

Using our knowledge of Syn3A’s proteome data and genome,
along with the experimental cryo-ET and 3C-Seq maps, we have
created a physics-based model of the chromosome to generate
chromosome configurations and predict contact maps. A
diagram of the workflow is presented in Figure 1 that shows
the process of annotating ribosome locations and membrane
from the tomograms and using the ribosome locations as
constraints on chromosome configurations. The configurations
are also influenced by the features present in the experimental
contact map. Hi-C analysis, a variant of the chromosome
conformation capture (3C) method, has been used extensively
to describe the structure of eukaryotic chromatin (Lieberman-
Aiden et al., 2009; van Berkum et al., 2010; Belton et al., 2012).
Those chromosome contact maps are used to generate chromatin
structures based on topologically associated domains (TADs)
observed in the contact maps (Dekker et al., 2013; Rao et al.,
2014; Fudenberg et al., 2016; Di Pierro et al., 2017). While
considerations of the energy functions used in the chromatin
models for eukaryotic studies are helpful in designing a bacterial
study, there are bacteria-specific proteins and related effects that
need to be considered when constructing a bacterial chromosome
model and how the effects would appear in the resulting contact
map (Le et al., 2013; Marbouty et al., 2015; Verma et al., 2019).
The 3D structure of the circular bacterial chromosome at both the
global and local levels is determined by effects of various nucleoid
associated proteins (NAPs) and is also influenced by the
crowding of ribosomes. With its reduced genome, Syn3A lacks
many of the NAPs that cause significant features in the
chromosome structure which leads to considerable variation
from the structures and Hi-C/3C maps observed in other
bacteria such as Mycoplasma pneumoniae, Bacillus subtilis,
Caulobacter crescentus, and Pseudomonas aeruginosa.

The global structure of the chromosome, also known as the
cellular disposition of the chromosome (Lioy et al., 2018, 2020),
describes how regions of the chromosome are organized within the
confines of the cell. Factors affecting the global structure include
possible attachment of the chromosome to the membrane, as inM.
pneumoniae, and loading of SMC proteins near the origin by a
complete parABS system, which causes alignment of the two arms
of the circular chromosome (Wang et al., 2014; Wang and Rudner,
2014; Lioy et al., 2020). The parABS system includes two proteins,
parA and parB, which site-specifically load SMC onto parS sites on
the DNA (Livny et al., 2007). Both of these effects result in a
secondary diagonal, orthogonal to the main diagonal, in

chromosome contact maps as observed in maps for M.
pneumoniae, B. subtilis, C. crescentus, and P. aeruginosa (Le
et al., 2013; Marbouty et al., 2015; Tran et al., 2017; Trussart
et al., 2017; Lioy et al., 2020). However, the experimental contact
map presented in the results section reveals that Syn3A does not
have a secondary diagonal. Syn3A does not have a complete
parABS system because it lacks the parB protein (Breuer et al.,
2019) and the complete signature parS sites, i.e. no sequences
greater than a 10/16 match to the consensus sequence (Livny et al.,
2007) were identified in a BLAST search of the genome. For
comparison, when performing the same search on B. subtilis, we
foundmatches of 14/16 and higher. Livny et al. also identifiedMeso,
Urea and Mycoplasmas as members of the Firmicutes that lack
complete parABS systems (Livny et al., 2007). Therefore, we do not
expect to see alignment of the two arms of the chromosome via the
parABS system and would not expect to see a secondary diagonal
due to this effect. Additionally, Syn3A does not have any annotated
proteins that attach theDNA to themembrane (Breuer et al., 2019),
so we would not expect to see a secondary diagonal due to
attachment of the DNA, unlike M. pneumoniae which has an
attachment organelle (Trussart et al., 2017).

Factors affecting local structure include supercoiling,
plectonemic loops resulting from supercoiling, small loops
formed by SMC bridging distant chromosome segments, and
bending and stiffening by proteins such as histone-like protein
(HU), heat-stable nucleoid structuring protein (H-NS), and
integration host factor (IHF) (Dame, 2005; Ohniwa et al.,
2011; Dame and Tark-Dame, 2016; Dame et al., 2019; Verma
et al., 2019; Birnie and Dekker, 2021). These micro level effects
can strongly affect gene expression as localized crowding affects
the access of the RNA polymerase (RNAP) to genes and
supercoiling and plectonemes affect the RNAP’s ability to
transcribe a gene (Kim et al., 2019). Of the proteins HU, IHF,
and H-NS, Syn3A only has one gene, JCVISYN3A_0350, which is
annotated as a putative histone-like protein with a proteomics
count of 28. The count of 28 for this protein is significantly lower
than the counts seen in other bacteria. For example, fast growing
E. coli contains more than 12,000 HU (Wang et al., 2015), B.
subtilis contains almost 9,000 HU (Wang et al., 2015), and
Mesoplasma florum contains 9,500 HU (Matteau et al., 2020).
Due to its small count, we do not expect any significant
contributions to the stabilizing of chromosome loops by the
protein encoded by gene JCVISYN3A_0350 and do not
include it in our model.

Supercoiling is formed during transcription by the RNAP,
which induces positive supercoiling in the forward direction and
negative supercoiling in the reverse (Chong et al., 2014; Verma
et al., 2019). Supercoiling can be eliminated by topoisomerases,
gyrases, and positive/negative supercoiling annihilating each
other along free DNA (Chong et al., 2014; Dorman, 2019;
Verma et al., 2019). The experimental contact map presented
in the Results is too sparse to distinguish between short
(< 10 kbp) supercoiled domains and loops and we do not see
any larger interaction domains. We do not include supercoiling
because of this, and given the low proteomics count of HU, we
infer the DNA is in a relaxed state. As discussed above, Syn3A
does not have genes that code for proteins that would attach the
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DNA to the cell membrane. Since the chromosome is therefore
most likely not fixed at any location, we assume that, in general,
DNA is mostly free, allowing positive and negative supercoiling to
annihilate each other more easily. Additionally, the genome-wide
proteomics counts show that we have a total of 187 RNAP and
roughly 250 DNA gyrases that can alleviate positive supercoiling,
150 type IV DNA topoisomerases that can alleviate negative
supercoiling, and 175 type I topoisomerases that can alleviate
either (Chong et al., 2014; Breuer et al., 2019). Other bacteria are
observed to have fewer topoisomerases and gyrases than RNAP,
for example, fast-growing E. coli has roughly 3,800 topoisomerase
I, 1,200 topoisomerase IV, and 6,000 to 8,000 gyrases while
having over 10,000 RNAP (Bremer and Dennis, 2008; Wang
et al., 2015). Another Gram-positive bacterium, B. subtilis, has
3,000 RNAP while only having 1,200 gyrases, 900 topoisomerase
I, and 200 topoisomerase IV (Wang et al., 2015). The more closely
related M. pneumoniae has 5,000 topoisomerase I, 200
topoisomerase IV, and 1,800 gyrases while having around
6,000 RNAP (Kühner et al., 2009). It is then more likely in
these systems where larger domains have been observed in their
chromosome contact maps that the proteins removing
supercoiling cannot keep up with the supercoiling induced by
RNAP due to their lower relative counts. Therefore, it is our
assumption that as supercoiling is formed by RNAP in Syn3A,
there are sufficient gyrases, topoisomerases, and negative/positive
supercoiling pair annihilations to keep the DNA in a more
relaxed configuration with no significant supercoiled domains.

While Syn3A does not have a complete parABS system, it does
contain 202 structural maintenance of chromosomes (SMC)
proteins, which can bridge distant loci via loop extrusion
powered by ATP-hydrolysis (Ganji et al., 2018; van Ruiten
and Rowland, 2018). The SMC protein is a long coiled-coil
protein that dimerizes and has head and hinge domains
separated by approximately 50 nm (Diebold-Durand et al.,
2017). The number of SMC in Syn3A is smaller than the 448
observed in B. subtilis (Wang et al., 2015) and 900 observed inM.
pneumoniae (Kühner et al., 2009), but Syn3A also has a smaller
volume and shorter chromosome, which could result in a higher
density of loops. M. florum is not much larger than Syn3A and
only has 85 SMCs (Matteau et al., 2020). With a higher density of
SMC in both volume and chromosome length, we assume the
effects of SMC looping can be significant in the chromosome
structure of Syn3A. We manually annotate any of the observed
regions of contact along the main diagonal in the experimental
3C-Seq map as possible loops (< 4 kbp) and implement them as
looping restraints in our chromosome model.

Finally, based on the cryo-ET images of Syn3A cells presented
in the results, the chromosome in Syn3A is more constrained by
ribosomes than in other bacteria. From the cryo-ET of Syn3A we
infer that the ribosomes are uniformly distributed throughout the
cells and that there is no clearly-defined condensed nucleoid
region. The lack of a condensed nucleoid region is in contrast to
the rod-shaped E. coli where the ribosomes are primarily located
at the poles and along the sides of the nucleoid region (Nevo-
Dinur et al., 2011; Roberts et al., 2011; Bakshi et al., 2012).We saw
this distribution in cryo-ET data of slow-growing E. coli that was
part of a previous Lattice Microbes (LM) simulation of the lac

genetic switch (Roberts et al., 2011). We observe a ribosome
number density of 12,920–19,370 ribosomes/μm3 in Syn3A cells,
which is higher than the density of 4,200 ribosomes/μm3 in M.
pneumoniae (Trussart et al., 2017; O’Reilly et al., 2020). The
density of ribosomes in E. coli was previously found to be 27,000
ribosomes/μm3 (Bakshi et al., 2012), which is greater than the
density in Syn3A, but the inferred ribosome density within the
nucleoid region is 2,000–8,000 ribosomes/μm3. Given this,
relative to other bacterial cells, the crowding of the ribosomes
in Syn3A more strongly constrains the possible chromosome
configurations.

In this paper, we first explain how the cellular architecture and
ribosome distributions are obtained from three-dimensional
cryo-electron tomograms. Using ensembles of constrained
DNA configurations from our circular chromosome model on
a lattice, we predict contact maps for individual cells at
resolutions of 250 bp and greater and compare them to our
experimental 3C-Seq map at 1,000 bp resolution. The DNA
configurations in this study are generated with the intent of
incorporating them into stochastic whole-cell models of Syn3A
simulated using the reaction-diffusion master equation (RDME)
as implemented in LM (Roberts et al., 2013; Hallock et al., 2014;
Earnest et al., 2018). In the whole-cell simulations, the cellular
space is divided into cubic subvolumes, so we chose to model the
DNA as a lattice polymer. The DNA configurations, cell sizes, and
ribosome locations presented here will later be directly
incorporated into cell geometry in the kinetic simulations and
will influence both diffusion and the locations at which genetic
information reactions take place. We also identify potential
complexes formed from ribosomes and DNA in our spatial
model, such as polysomes and expressomes (O’Reilly et al.,
2020), that would affect the reactions within a kinetic model.

2 METHODS

2.1 Reconstructing Cell Geometries From
Cryo-Electron Tomograms
2.1.1 Tomogram Collection and Processing
One of the primary challenges for cellular cryo-ET is to prepare a
specimen such that it is thin enough to be transparent to electrons
and to vitrify thoroughly. Due to the small size of Syn3A, this can
be accomplished by placing cells on a Quantifoil EM grid and
blotting the majority of the liquid away followed by plunge
freezing, leaving a thin layer of ice with cells embedded within it.

Initially, samples were frozen onQuantifoil Cu 200mesh R 1/4
grids (ElectronMicroscopy Sciences), which have patterned holes
1 μm in diameter, with 4 μm spacing between holes (i.e., 5 μm
periodicity). Our rationale was that using smaller holes would
retain more Syn3A cells on the grid after blotting. However, we
found that because the synthetic cells lack a cell wall, they are
supple and get distorted in the direction of the flow of the
medium as it is blotted away from the grid. This issue was
resolved by switching to Quantifoil Cu 200 mesh R 2/1 grids,
which have larger holes. Syn3A cells were grown to mid-log-
phase at 37°C in SP4 medium (Williamson andWhitcomb, 1975)
using KnockOut™ serum replacement (Invitrogen), to a density
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of ∼ 108 cells/ml. 4 μl of sample was deposited on glow-
discharged grid, blotted on the backside of the grid for 6 s
using Whatman No. 1 filter paper, and plunged into a 50/50
mixture of ethane and propane (Airgas) cooled to liquid nitrogen
temperatures using a manual plunger (Max Planck Institute of
Biochemistry).

These Mycoplasma cells with synthetic genomes were more
radiation sensitive than we have encountered for other bacteria.
Imaging conditions were chosen to keep cumulative electron dose
under 120 e/Å2. All data were acquired using a Titan Krios
(ThermoFisher Scientific, TFS) at 300 kV and a Gatan K2
camera with a GIF energy filter, using SerialEM v3.7.4
automated protocols (Mastronarde, 2005; Schorb et al., 2019).
The microscopic parameters were: 1) Pixel size: 0.53 nm (FOV:
2 μm) or 0.43 nm (FOV: 1.6 μm), 2) Target defocus: 6 μm, 3)
Total accumulated dose: 90–120 e/Å2, 4) Tilt scheme: dose
symmetric from 0° to ± 60° every 2°, 5) 70 μm objective
aperture. Individual tilt-series frames were aligned using
MotionCor2 (Zheng et al., 2017). Tomograms were
reconstructed using IMOD v4.10.29 (Kremer et al., 1996;
Mastronarde, 1997; Mastronarde and Held, 2017) and binned
by four for downstream template matching. Additionally, non-
linear anisotropic diffusion (NAD) filtering was applied in IMOD
to enhance contrast for visualization.

At the pixel size and target defocus used for acquisition, the
ribosome distributions are easily discerned and can be seen for
the small and large cells in Supplementary Figures S1,S2,
respectively. The small cell’s dimensions and ribosome count
were in good agreement with those reported previously
(Hutchison et al., 2016; Breuer et al., 2019). However, the cells
were flattened into ellipsoids, and sometimes further elongated.
This well-known effect from blotting seems amplified in these

cells due to the absence of a cell wall. The frozen cells were
flattened to ∼ 160 nm.

To determine the ribosome distribution inside cells, we used
two different approaches based on template matching, with one
of them continuing to 3-D classification. First, one has to identify
all ribosomes within the tomogram. Template matching is
performed by creating a 3-D template of the target structure,
and comparing it to each voxel in the tomogram using a 6-D
search (three spatial and three rotational degrees of freedom) to
identify regions that correlate highly with the template. It is
noteworthy that the contrast difference between ribosomes and
their surroundings in Syn3A was greatly reduced compared to
other bacteria, e.g. E. coli, suggesting that the mass density
(molecular crowding) of Syn3A is higher.

In our first approach, we used Dynamo v1.1.509 (Castaño-
Díez et al., 2012) with a bacterial ribosome structure (PDB:
5MDZ) as the initial template filtered to 20 Å resolution in
UCSF Chimera (Pettersen et al., 2004), resampled to match
the pixel size, and contrast scaled to match that of the target
tomograms. A threshold cross correlation was selected so that it
contained most ribosomes that were clearly inside the cell
boundary. Final particle positions were inspected visually, and
removed if they were membrane segments. Membranes were
segmented using TomoSegMemTV (Martinez-Sanchez et al.,
2014), and ribosomes outside of this segmented membrane
were excluded. Starting with a high-correlation threshold, the
first approach initially identified 547 ribosomes in the small cell
and 849 ribosomes in the large cell. Fitting approximate cell
boundaries in section 2.1.2 reduced these ribosome counts to 503
and 820 for the small cell and large cell, respectively.

In our second approach, tilt-series were preprocessed using
Warp v1.0.9 (Tegunov and Cramer, 2019) for sub-frame motion

FIGURE 2 | (A)—Z-slices from the cryo-ET data of the small and large Syn3A cells. The ribosomes are the objects with higher density than the surrounding

cytoplasm that are distributed throughout the cells. (B)—Cumulative ribosome distributions with 8 nm bins in the reconstructed spherical geometries of a small cell of

radius 201.26 nm with 503 ribosomes and large cell of radius 247.42 nm with 820 ribosomes when the first approach was used, and a small cell of radius 203.52 nm

with 684 ribosomes and large cell of radius 241.20 nm with 1,095 ribosomes when the second approach was used. Also shown are the reconstructed spherical

geometries resulting from the first approach to template matching.
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correction and 3D-CTF estimation. Tilt-series were aligned using
IMOD and the final reconstructions were created in Warp for
subsequent processing. Template matching of ribosomes within
tomograms was performed in Warp, using an initial ribosome
template generated from about 200 manually picked particles
from Syn3A tomograms using IMOD to avoid template bias.
Extracellular particles were initially discarded based on cell
boundaries defined in Dynamo. Obvious false positives (e.g.,
membrane segments, ice particles) were manually removed.
The remaining particles were used for 3D alignment and
classification in Relion v3.1 (Scheres, 2012). For each cell of
interest, particles were subject to successive rounds of binary
classification with a large (500 Å or 83 binned pixels) mask, the
class which contained particles that did not appear as ribosomes
were removed from subsequent rounds. This was done until the
two classes reached about equal population. A schematic of the
overall process is presented in Supplementary Figure S3.
Coordinates and orientations of the remaining particles were
imported into Amira for visualization. While starting with a
lower correlation threshold, this second approach resulted in 718
ribosomes in the small cell and 1,136 ribosomes in the large cell,
as the quality of fit increased. An additonal round of binary
classification, deemed too restrictive, gave counts similar to the
first approach. Fitting approximate cell boundaries in section

2.1.2 reduced these ribosome counts to 684 and 1,095 for the
small cell and large cell, respectively.

The second approach that starts with a lower correlation
threshold and includes subsequent iterative 3-D classification,
is more accurate to find the final true-positive ribosomes and
ribosome distributions (Lasker et al., 2021). However, it requires
considerably more resources and expertise. Thus, we introduce
both approaches. Even though they give slightly different
distributions, both are in agreement with estimates from other
experimental and computational data (Breuer et al., 2019), and
notably do not significantly affect the outcome of the
chromosome geometries generated, as shown in Figure 2. A
summary of the ribosome counts for both approaches at each
stage of our workflow are presented in Table 1.

2.1.2 Determining the Spherical Cell Size and
Ribosome Distribution
Given a set of ribosome coordinates, the bounding membrane
and shape of the deformed cell can be approximated using an
ellipsoid. This was done by calculating an ellipsoid with minimal
surface area that encloses the centers of all the ribosomes. The
solution for the minimal surface area enclosing ellipsoid
(MSAEE) was found using the minimize routine in the SciPy

package with the sequential least-squares programming (SLSQP)
method. To optimize the calculation, only the convex polytope of
the ribosome coordinates was used to constrain the enclosing
ellipsoid. The optimal enclosing ellipsoid is always constrained by
four ribosomes that form a tetrahedral shape bounding the
ellipsoid.

Some ribosomes identified by template matching are
extraneous ribosomes, e.g., ribosomes that are present in the
cell periphery but correspond to a nearby lysed cell. The
extraneous ribosomes were iteratively removed from the set
of coordinates and a series of ellipsoids were iteratively fit after
each extraneous ribosome removal until the relative change in
the ellipsoid surface area between iterations fell below 0.001%.
At the end of each iteration, we choose the ribosome among the
four bounding ribosomes having the greatest projection along
the major axis of the enclosing ellipsoid as the extraneous
ribosome and remove it. The number of extraneous
ribosomes removed are summarized in Table 1 for all cases.
Figure 2A shows z-slices of the cryo-ET data for both the small
and large Syn3A cells. Notably, the spatial distribution of
ribosomes in these cells are largely homogeneous, but small
regions of about 150 nm appear to have fewer ribosomes than
the surrounding cytoplasm.

After an ellipsoid approximating the membrane surface was
calculated, both the ellipsoid and the enclosed ribosome
coordinates were transformed to a spherical cell with
equivalent surface area. A surface-area preserving
transformation was chosen as previous measurements on
bilayer vesicles indicated that the membrane area can only
strain by approximately 5% before lysing (Needham and
Nunn, 1990), thus we assume that there is a small change in
volume during the blotting procedure due to mass transport of
water across the membrane. The equation of an ellipsoid centered
at c is {x ∈ R

3
∣∣∣∣(x − c)TAT

A(x − c)≤ 1}, where A is the matrix
describing the shape of the ellipsoid, and the equation of a sphere
centered at the origin is {x ∈ R

3
∣∣∣∣xTR−2

x ≤ 1}, where R � RI and R
is the radius of the sphere. For ribosome coordinates, {ri}, the
transformed coordinates, {ρi}, are given by transforming all of the
coordinates to a unit sphere centered at the origin by translating
them by the vector c and transforming them with the matrix A.
The coordinates in the unit sphere representation are then scaled
by the matrix R to a sphere with surface area equivalent to the
MSAEE. The overall transformation is given by

ρi � RA(ri − c). (1)

The transformation preserves the relative distances amongst the
ribosomes and the shapes of the voids between the ribosomes. In a

TABLE 1 | Summary of the ribosome distributions and cell geometries resulting from the two template matching methods for both the small and the large cell.

Small cell Large cell

Approach 1 Approach 2 Approach 1 Approach 2

Ribosomes from template matching 547 718 849 1,136

Extraneous ribosomes 44 34 29 41

Remaining ribosomes 503 684 820 1,095

SA-equivalent sphere radius (nm) 201.26 203.52 247.42 241.20

Ribosome density (ribosomes/μm3) 14,730 19,370 12,920 18,630
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final step, the ribosome coordinates are expanded anisotropically
along the semiaxes of the ellipsoid to ensure the ribosomes at the
extremes reach the membrane. Two representative spherical
geometries resulting from this transformation and the radial
distribution of ribosomes are shown in Figure 2B.

After the transformed ribosome coordinates are determined
for the spherical cell, the coordinates are projected onto the 8 nm
cubic lattice used for Lattice Microbes simulations and converted
to a star shape comprised of seven 8 nm cubic sites to
approximate the ribosome diameter of 20 nm. The set of
ribosome coordinates on the 8 nm lattice and the boundary
imposed by the cell membrane then serve as constraints when
generating the ensemble of chromosome configurations.

2.2 Modeling Bacterial Chromosome
Configurations
The three primary objectives of creating a chromosomemodel for
Syn3A are creating realistic spatial heterogeneities due to DNA
crowding that are discernable at the 8 nm resolution used in
spatially-resolved kinetic models of Syn3A, matching the cell
architecture dictated by the cell boundary and ribosome distri-
bution, and reproducing the intra-chromosomal interactions in
chromosome conformation capture experiments through DNA-
looping.

Computational models for chromosomes can be broadly
classified into two groups, direct models and inverse models
(Rosa and Zimmer, 2014). This distinction is not entirely black
and white and it is discussed in the following paragraphs. Direct
models use a minimal set of assumptions about the underlying
physics of DNA or chromatin to create a polymer model, and
the results of simulating the model can then be compared to
experimental data (Rosa and Zimmer, 2014). These models
range on length-scale from 1 bp per monomer models of the
E. coli chromosome (Hacker et al., 2017) to 500–50,000 bp per
monomer models of human chromosomes (Di Pierro et al.,
2016). The models at the smallest length scales often use a
Kratky-Porod model (Kratky and Porod, 1949) or a worm-like
chain model for the polymer, where the persistence length of the
DNA is explicitly incorporated. In contrast, the models at the
largest length scales often use a Rouse model (Rouse, 1953) for
the polymer, in which the monomers are assumed to be
uncorrelated equilibrium globules of DNA. These models
based on Rouse dynamics are well-suited for eukaryotic
chromosomes on the order of 107-108 bp, where the DNA is
organized in nucleosomes comprised of histone octamers and
other higher-order structures. A comprehensive discussion of
possible interactions in the direct models of DNA polymers can
be found in the review by Haddad et al. (Haddad et al. 2017) and
the Minimal Chromatin Model of Di Pierro et al. (Di Pierro et al.
2016). The complexity of interactions in polymer models of
DNA can range from those in homopolymer models to block
copolymer models, and finally heteropolymer models (Haddad
et al., 2017). Additionally, direct chromosome models can
include the influence of NAPs, SMC, or bridging proteins in
strings and binders models (Annunziatella et al., 2018; Ryu et al.,
2021), where other particles diffuse amongst the chromosome

and cause multi-point intrachromosomal interactions. After a
polymer model has been specified and the chromosome of
interest has been mapped to the model, molecular dynamics
or Monte Carlo methods are used to sample configurations of
the direct models.

Inverse models are data-driven and use large sets of
experimental data to create a compatible model (Rosa and
Zimmer, 2014; Oluwadare et al., 2019). The most common
form of experimental data used in inverse models are
chromosome contact maps resulting from 3C methods. The
interaction frequencies in the contact maps are inverted to
produce distance-based restraints for the chromosome models
(Rosa and Zimmer, 2014). In addition to these distance-based
restraints, constraints that are based on the known properties of
the chromosome, such as the topology and excluded-volume
effects, can be incorporated into the inverse models. A single ideal
chromosome configuration that simultaneously satisfies all
restraints and constraints can then be determined using
iterative methods (Duan et al., 2010; Lesne et al., 2014; Hua
and Ma, 2019). However, in reality, no single chromosome
configuration will capture all of the interactions present in the
contact map, as the contact map is an average over a population of
cells. Instead, methods such as simulated annealing are used to
find families of optimal chromosome configurations (Rosa and
Zimmer, 2014; Junier et al., 2015). The chromosome of M.
pneumoniae (Trussart et al., 2017) and that of C. crescentus

(Umbarger et al., 2011) were modeled in this fashion using the
Integrative Modeling Platform (Russel et al., 2012). Inverse
models have also been built using maximum entropy
techniques (Di Pierro et al., 2017; Messelink et al., 2021).

At the start of this study there was no experimental
chromosome contact data for Syn3A, so we chose to create a
direct model of the chromosome and because we intend to
incorporate the chromosome configurations in simulations of
whole-cell models using a lattice-based methodology (Roberts
et al., 2013), we decided to use a lattice polymer model. There is a
rich history of proteins and other polymers being modeled using
discrete lattice models (Verdier and Stockmayer, 1962;
Heilmann and Rotne, 1982; Lau and Dill, 1989; Madras et al.,
1990; Dill et al., 1995). Bacterial chromosome configurations
have previously been directly modeled using lattice models
(Buenemann and Lenz, 2010; Messelink et al., 2021) and
continuous models have been constructed by interpolating
between lattice models and relaxing the system (Goodsell
et al., 2018). However, none of the models satisfied all three
of our requirements of 1) being at the spatial resolution needed
to introduce spatial heterogeneities on the 8 nm lattice, 2) self-
avoidance, and 3) able to be constrained by the cell boundary
and ribosomes. We investigated modifying an existing model,
such as Goodsell et al.‘s (Goodsell et al., 2018), but found that
none were easily extensible.

2.2.1 Growing a Self-Avoiding Polygon Model of
Syn3A’s Chromosome
We model the circular chromosome of Syn3A as a circular
lattice polymer. To account for the volume-exclusion effects, the
circular lattice polymer is required to be strictly self-avoiding.
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These circular and self-avoiding configurations of monomers on
a lattice are known as self-avoiding polygons (SAPs) and have
been previously used to model E. coli and C. crescentus
chromosomes (Buenemann and Lenz, 2010). The SAP model
of Syn3A’s circular chromosome is defined on a 4 nm cubic
lattice and each monomer is represented by a 4 nm × 4 nm ×

4 nm cube. These monomers contain cylindrical segments of
DNA 4 nm in length, which corresponds to approximately
11.8 bp per monomer. The 543 kbp chromosome of Syn3A is
represented by 46,188 of these monomers. The total volume
excluded by monomers in the chromosome is 2,956,032 nm3. At
the two extremes, in the small cell with a radius of 201.26 nm, a
single chromosome occupies nearly 9% of the cytoplasmic
volume, and in the large cell with a radius of 247.42 nm, a
single chromosome occupies just below 4% of the cytoplasmic
volume.

Mathematically, the SAP configurations within the
reconstructed cell geometries are described by the set of
monomer coordinates, {ri}, on the cubic lattice, that satisfy four
different constraints, two SAP constraints, a circularity constraint
(gcirc) and a self-avoidance constraint (gSA), and two cell geometry
constraints, a membrane constraint (hmem) and a ribosome
constraint (hribo). The circularity constraint requires that

consecutive monomers are adjacent in the lattice, the self-
avoidance constraint requires that no monomers share
coordinates, the membrane constraint requires that the
monomers remain within the cell, and the ribosome constraints
require that the monomers do not intersect any ribosomes. The
ribosomes in the 8 nm lattice representation are converted to a
4 nm lattice representation, where they are the same star shape, but
now formed from fifty-six 4 nm cubes. These constraints are
formulated mathematically using constraint functions that are
equal to 1 when the constraints are satisfied and 0 when the
constraints are not satisfied. All four of these constraints must
be satisfied while growing and moving the SAP. While satisfying
the constraints, the configurations are sampled from the canonical
ensemble with a Hamiltonian that specifies intrachromosomal
interactions, including looping, which will be referred to as
restraints. The Hamiltonian is described in section 2.2.3.

A SAP with a greater number of monomers can be grown from
an existing SAP by severing the bond between a pair of
consecutive monomers and adding a closed branch orthogonal
to the vector between that pair of monomers (Buenemann and
Lenz, 2010; Goodsell et al., 2018). This is done in an unbiased
fashion by randomly selecting consecutive pairs of monomers to
serve as a branch-point and then randomly proposing growths in
the orthogonal directions, an example of proposed growths is
depicted in Figure 3A. Each proposed growth is only accepted if
the resulting SAP satisfies all of the constraints. For example,
growth #1 in Figure 3Bmay have been accepted because all of the
other proposed growths violated the ribosome constraints. If a
satisfactory growth can not be found, then the SAP is moved
before searching for growths again. Pseudocode for the SAP
growth algorithm is presented in Algorithm 1.

2.2.2 Circularity-Preserving Moves and Proof of
Ergodicity
If we start with a valid SAP configuration and then only change
the configuration using moves that result in a polymer
configuration still satisfying the circularity constraint, then,
provided that the moves are ergodic and the new
configurations are self-avoiding, we can sample SAP

FIGURE 3 | (A)—SAP with the set of proposed growths orthogonal to branch-point at monomers 4 and 5 shown in red. (B)—SAP after growth #1 with a size of 4

was accepted and incorporated into the SAP, increasing the SAP size from 16 monomers to 20 monomers.

Algorithm 1 | SAP-Growth Algorithm.
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configurations using random sequences of the circularity-
preserving moves. The proof of ergodicity follows the proof
outlined in (Messelink et al., 2021).

A SAP on a lattice may be represented as a series of
displacements along the cubic lattice from a starting location
(Messelink et al., 2021). Displacements in the positive and
negative Cartesian directions are denoted by X

+, Y
+, and

Z
+and X

−, Y−, and Z
−, respectively. To ensure circularity, the

number of positive and negative displacements should be equal for
every direction on the lattice, or symbolically, NA

+ � NA
− , where

A � X,Y, or Z (Messelink et al., 2021). Traveling counter-clockwise
from the origin, the SAP in Figure 4 is described by the sequence -
(origin)Y−

X
+
Y

−
X

+
Y

−
X

+
Y

+
X

+
Y

+
X

+
Y

+
Y

+
Y

+
X

−
X

−
X

−
X

−
X

−
Y

−
Y

−
→ (origin).

There are a variety of circularity-preserving moves that can
transform the sequence while maintaining the circularity. For our
program, we chose an extension of the Verdier-Stockmeyer
moveset (Verdier and Stockmayer, 1962; Sokal, 1995) with kink
moves and 2 to N/2 monomer crankshaft moves. A kink move is
the interchange of two symbols in a subsequence AB→BA

(Messelink et al., 2021). The move labeled kink move in
Figure 4 is equivalent to X

−
Y

−
→Y

−
X

−. A crankshaft
move alters a motif of a specific type. The motif is a
subsequence where the monomers at the start and end of the
subsequence share two Cartesian coordinates (Messelink et al.,
2021). Symbolically, within such a subsequence, NA

+ ≠NA
− , while

NB
+ � NB

− andNC
+ � NC

− . The crankshaft move is then a rotation
of magnitude π/2, π, or 3π/2 about the vector separating the
monomers at the start and end of the subsequence, applied to all of
themonomers between those two. Generally, the transformation of

symbols within the subsequence undergoing a crankshaft move
will be A

±
→A

± , while B
±
→ (C ±

,B
∓
,C

∓ ) and
C

±
→ (B ±

,C
∓
,B

∓ ). The move labeled crankshaft move 1 in
Figure 4 is equivalent to
Y

−
X

+
Y

−
X

+
Y

+
X

+
Y

+
→Z

−
X

+
Z
−
X

+
Z
+
X

+
Z
+.

Starting from a sequence of at least two symbol types
satisifying the condition NA

+ � NA
− , where A � X,Y, or Z,

combining the kink and crankshaft moves can produce any
sequence of symbols that also satisfies the condition
(Messelink et al., 2021). This result allows for ergodic
sampling of sequences, which is equivalent to ergodic
sampling of polymer configurations satisfying the circularity
constraint. However, the Verdier-Stockmeyer moveset is
known to be non-ergodic for self-avoiding walks (SAWs) and
SAPs due to the presence of knotted configurations (Madras and
Sokal, 1987; Madras et al., 1990) and there is the additional
challenge of confinement imposed by the ribosome and the cell
boundary constraints. We attempted to mitigate these issues by
incorporating the extended crankshaft moves and growing the
SAPs to sample configurations that would otherwise be
inaccessible by a single SAP being dynamically sampled using
a Markov chain Monte Carlo method.

The relative frequencies of the kink moves and crankshaft
moves have significant impact on the overall speed of the
algorithm and are linked to the ergodicity (Sokal, 1995). The
speed of the algorithm can be improved by performing multiple
kink or crankshaft moves from a single enumeration of all
possible kink or crankshaft moves in the current
configuration, respectively. However, following the single
enumeration, in addition to satisfying the SAP and spatial
constraints, all kink or crankshaft moves performed must be
compatible.

The list of possible kink moves are stored as an array of three
element vectors of monomer indices, (i − 1, i, i + 1), where the i-th
monomer in the middle will be moved by interchanging two of its
coordinates that match with the coordinates of the i − 1-th and
i + 1-th monomers. After at least one kink move is proposed and
accepted, all following kink moves may not have their i − 1-th or
i + 1-th monomers be one of the middle monomers that was
moved in the previously accepted kink moves. Proposed kink
moves are then rejected based on this condition. The list of
possible crankshaft moves are stored as an array of two element
vectors (i, j) of monomer indices, where i< j and i and j are the
monomers defining the ends of the subset of the SAP which will be
transformed by the crankshaft moves, and an array of two element
vectors (d,ω), describing the length of the SAP subset, d, and the
direction around the SAP in which the SAP subset is defined, ω.
After at least one crankshaft move has been accepted, all following
crankshaft moves must have their (i′, j′) either both belonging to
the SAP subset that was moved by the crankshaft move or both not
belonging to the SAP subset that was moved. Proposed crankshaft
moves are then rejected based on this condition.

Crankshaft moves are the most computationally expensive to
both enumerate and sample; however, they cause the fastest
change in the configuration. The naive solution to this
problem was to assign a frequency at which crankshaft moves
were performed, ηcrankshaft, and multiplicities for the number of

FIGURE 4 |Circularity-preservingmoves on a cubic lattice—An example

kink move is shown in green. Two example crankshaft moves are shown in red

and blue. Following a single enumeration of the set of possible crankshaft

moves, multiple crankshaft moves can be made, provided that they are

compatible with the crankshaft moves previously sampled from that set of

possible crankshaft moves. An example of this is shown by the composition of

crankshaft moves 1 and 2 in the purple.
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kink and crankshaft moves that were performed after a single
enumeration of kink or reflect moves, gkink and gcrankshaft,
respectively. These parameters describing the sampling were then
manually adjusted. Using this methodology prevents ergodic
sampling from ever occurring. This can be illustrated by
considering the fact that as long as crankshaft moves are sampled
in batches of gcrankshaft every ηcrankshaft iterations, then unless only a
single crankshaft move is possible, there will never be an instance in
which a kink move is sampled immediately after a crankshaft move.
The inverse case is also true. An alternative is to randomly select the
iterations at which crankshaft moves will be enumerated and
performed, where the probability is given by pcrankshaft � η−1crankshaft.
Once the move type is determined using this criteria, randomly
sample the number of moves to be performed from a distribution
whose mean is equal to the multiplicity of the respective move type.
For example, in the case of discrete uniform distributions nkink �

u(0, 2gkink) and ncrankshaft � u(0, 2gcrankshaft). Now there exists the
possibility that any sequence of kink and reflect moves may be
sampled. Pseudocode for the SAP movement algorithm is
presented in Algorithm 2.

2.2.3 Energy Functions and Metropolis-Hastings
Sampling
TheHamiltonian for the SAPmodel of the chromosome has three
contributions, a bending energy related to the stiffness of DNA, a
nearest-neighbor interaction, and a harmonic interaction acting
as a restraint to recreate the effect of DNA looping.

H � H
bend +H

n.n. +H
loops (2)

The contribution to the Hamiltonian due to the bending
stiffness of linear DNA is

H
bend

({ri}) � −κ ∑N−1

i�2

(ri+1 − ri) · (ri − ri−1) (3)

and is parameterized by the bending energy per unit length squared,
κ. This Hamiltonian incurs an energy penalty for every bend in the
lattice polymer and can be used to model the stiffness of a polymer,
a quantity often characterized by the persistence length. One
interpretation of the persistence length, lp, is the constant
describing the exponential rate at which the polymer
orientations become decorrelated (Brinkers et al., 2009; Hsu and
Binder, 2012; Zhang et al., 2019)

〈(ri+s+1 − ri+s) · (ri − ri−1)〉mono.

l2
� exp(−sl/lp), (4)

where 〈f (ri)〉mono is the average over the N monomers in the
configuration and l is the lattice size. Consider the case of a
SAW on a cubic lattice, in which the lattice polymer can
become immediately decorrelated, thus consider the case
when s � 1

〈(ri+1 − ri) · (ri − ri−1)〉mono. �
1

N − 2
⎡⎣ ∑N−1

i�2

(ri+1 − ri) · (ri − ri−1)⎤⎦
� −

H
bend

({ri})

(N − 2)κ
(5)

leading to an equation with the bending Hamiltonian
parameterized by κ. Assuming the lattice polymer is in
thermal equilibrium at inverse temperature β � 1/kBT , we can
take a thermal average of this equation

−
〈Hbend

({ri})〉

(N − 2)κl2
� exp(−l/lp) (6)

and κ can be calculated by solving this root-finding problem
through Monte Carlo sampling of SAW configurations using
Wang-Landau sampling (Wang and Landau, 2001). In this study,
the value of κl2 (3.872kBT) was estimated using the exact solution
for a non-reversal random walk and the consensus persistence
length for DNA of 50 nm (Vologodskii et al., 1992; Manning,
2006; Brinkers et al., 2009; Geggier et al., 2010; Mantelli et al.,
2011).

κ � −
1
βl2

log[el/lp − 1
4

] (7)

The contribution to the Hamiltonian due to pairwise nearest-
neighbor interactions is

H
n.n. � ϵ ∑N−1

i�1

∑N
j�i+1

δK(l − ∣∣∣∣ri − rj
∣∣∣∣) (8)

and was used to tune the excluded-volume effects of DNA
(ϵ � kBT). Lastly, the contribution to the Hamiltonian when
looping restraints are imposed is

H
loops

({ri}) � ∑N−1

i�1

∑N
j�i+1

kij
∣∣∣∣ri − rj

2
∣∣∣∣ (9)

These pairwise harmonic interactions were used to create
looping between portions of chromosome bound by SMC
proteins (kijl

2
� 10,000kBT).

A Markov chain Monte Carlo algorithm (Metropolis et al.,
1953; Hastings, 1970) was used to sample configurations governed
by this Hamiltonian from the canonical ensemble. We use the
Metropolis criterion, A({ri′}, {ri}) � min(1, P({ri′})/P({ri})),
(Metropolis et al., 1953), for the acceptance probability of
moving from the current configuration, {ri}, to the proposed
configuration, {ri′}. The probability of a configuration satisfying
the SAP constraints (gcirc and g

SA) and geometric constraints
(hmem and hribo) is

Algorithm 2 | SAP-Move Algorithm.
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P({ri}) �
1
Z
[gcirc({ri})gSA({ri})] × [hmem({ri},R)h

ribo({ri}, {ρi})]
× exp[ − βH({ri})], (10)

where Z is the canonical partition function of the system
found by summing over all possible configurations of N

monomers on a cubic lattice. Assuming the current
configuration, {ri}, and the proposed configuration, {ri′},
always satisfy the circularity constraint because they are
generated from sequences of circularity-preserving moves,
then the ratio of probabilities is

P({ri′})
P({ri})

�
gSA({ri′})hmem({ri′},R)hribo({ri ′}, {ρi})
gSA({ri})hmem({ri},R)hribo({ri}, {ρi})

× exp(− β[H({ri′}) −H({ri})]).
(11)

Additionally, if the proposed configuration satisfies the self-
avoidance and geometric constraints, which can be determined
without evaluating energy changes, then the acceptance probability
given by the Metropolis criterion, A({ri′}, {ri}) � min(1, e− βΔE), is

simply a function of the energy difference,
ΔE � H({ri′}) −H({ri}), and the sampling favors low-energy
configurations that better agree with the stiffness of DNA, the
excluded-volume effects, and the DNA-looping restraints.

2.2.4 Summary of Complete Algorithm for Generating
Chromosome Configurations
The final algorithm generated chromosome configurations by
alternating cycles of growing and moving the SAP configurations
to relax the newly grown portion. Pseudocode for the final
algorithm is presented in Algorithm 3. In an early
implementation, a single relaxation occurred after the growth
was completed, but it was found that the alternating cycles of
growth and relaxation were required because the combined
effects of confinement and the exponentially increasing
attrition rate due to violations of the self-avoidance constraint
became overwhelming as the SAP grew larger. The relative
frequencies and durations of these alternating growth and
relaxation cycles were chosen empirically to maximize the
speed of generating relaxed configurations of the complete
chromosome. An example of how the alternating growth and

FIGURE 5 | (A)—Reconstructed ribosome distribution in the small cell. The 100 monomers on either side of the origin are shown in red and blue. Ribosomes are

depicted as yellow stars in the 8 nm lattice representation. (B)—Complete chromosome configuration generated on the 4 nm lattice within the reconstructed

architecture of the small cell. The circular chromosome is colored starting at the origin as red to grey to blue, before returning to the origin where blue and red meet.

FIGURE 6 | (A)—Centroid of 30 chromosome configurations is shown within the ribosome distribution. The same color scheme for centroid is used as for the

chromosome in Figure 5. (B)—Magnified view of centroid in 6A calculated from 30 configurations, radius of gyration is 24.93 nm. (C)—Magnified view of centroid

calculated from 90 configurations, radius of gyration is 11.99 nm.
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relaxation cycles affect the total energy over the course of a
simulation for a test case with 5,000 monomers is presented in
Supplementary Figure S4. While this procedure more rapidly
relaxes the system, the exponentially increasing attrition rate
of rejected moves prevents us from definitively stating that we
reach equilibrium in the system with 46,188 monomers. The
relative frequencies and durations are described by functions, τ
and σ, both are dependent on the current number of
monomers, N, and separately depend on empirical
parameter vectors, α and γ, respectively. The algorithm was
implemented in Fortran 90 and a single chromosome
configuration of 46,188 monomers can be generated in
approximately 12–14 h on a single CPU core at 3.5 GHz.
The algorithm is embarrassingly parallel and the program
uses OpenMP to generate multiple configurations
simultaneously. An example reconstructed cell architecture
is shown in Figure 5A and the resulting constrained
chromosome configuration is shown in Figure 5B.

Starting with fixed ribosome positions and cell orientation
from the cryo-ET, we initialize the configurations by randomly
placing a circular fragment of the chromosome and then
independently generate hundreds of chromosomes within an
otherwise identical cell. To test if the monomers along the
chromosome are identically distributed within the cell, we
calculate the centroid of the ensemble of chromosome
configurations. The monomer coordinates of the centroid are
the ensemble averages of the monomer coordinates in the
chromosome configurations. The center of mass of a sphere is
at its center, thus we expect the centroid of the ensemble of
chromosome configurations to be approximately located at the
center of the spherical cell. We find the centroid of 30
configurations to be located in the center of the cell, as shown
in Figure 6A. Furthermore, if the number of identically
distributed chromosome configurations is increased, we expect
the centroid to collapse to the center, which we quantify with its
radius of gyration. The centroid of 30 configurations in Figure 6B
has a radius of gyration of 24.93 nm and it is reduced to 11.99 nm
when the centroid is calculated from 90 configurations, as shown
in Figure 6C.

Other bacteria that are not genetically-minimal have additional
regulatory systems used to control their chromosome organization,
such as attachment organelles and parABS systems. Due to these
regulatory systems, their chromosomes show consistent
configurations that correlate the genomic position with the
internal structure of the cell (Umbarger et al., 2011; Marbouty
et al., 2015; Trussart et al., 2017) and this is reflected in their
centroids. For example, in a model of M. pneumoniae’s
chromosome, Trussart et al. saw a consistent alignment and
interweaving of the two chromosome arms of the centroid
(Trussart et al., 2017). As a comparison, we tested fixing the
origin of our chromosome at the membrane and found that the

centroid had a consistent alignment of the two chromosome arms at
the fixed origin and monomers near the origin were found near the
membrane (data not shown). Since there are no interactions
correlating the genomic position and the internal structure of
the cell, we compared the average radius of gyration for
chromosome configurations generated in the small cell with and
without ribosomes present to test the excluded volume effect of
ribosomes. The average radius of gyration without ribosomes was
145.40 nm and was 133.59 nm when ribosomes were present. We
also tested the effect of further increasing the number of ribosomes
by randomly placing 497 ribosomes in addition to the 503 from the
tomogram in the small cell and found that the average radius of
gyration further decreased to 124.29 nm. We attribute this
reduction in the average radius of gyration to the additional
confinement caused by the volume exclusion of the ribosomes.

2.3 3C-Seq Library Preparation
JCVI-syn3A chromosome contact maps were prepared with 3C-
Seq (Lioy and Boccard, 2018), a chromosome conformation
capture technique reminiscent of Hi-C (Crémazy et al., 2018).
The protocols differ in that following the restriction digestion of
the fixed chromosome, restriction fragment ends are not filled-in
with biotin-labelled nucleotides in 3C-Seq (Crémazy et al., 2018;
Lioy and Boccard, 2018). The modification reduces the cost of
chromosome conformation capture in prokaryotes since the
requirement for biotin-labelled nucleotides is alleviated. 3C-
Seq increases the diversity of restriction enzyme options
available for library preparation from only enzymes that
generate 5′-overhangs that can be filled-in by the Klenow
fragment, to include enzymes that generate 3′-overhangs, and
blunt-ends. Furthermore, sticky ends generated by restriction
digestion are not “blunted” in 3C-Seq, increasing ligation
efficiency since sticky-end ligation occurs more efficiently than
blunt-end ligation. In addition, the absence of biotin at restriction
fragment ends eliminates the requirement of removing biotin-
labels from unligated ends, DNA purification following biotin
removal, and enrichment of biotin-labelled ligation junctions,
effectively, reducing the library preparation time by at least 30%.

Syn3A was cultured to stationary phase in 25 ml of SP4-KO
medium in a 50 ml conical tube at 37°C. The cells were fixed with
a final concentration of 1% formaldehyde (Sigma-Aldrich) at
25°C for 30 min and 4°C for a further 30 min. The reaction was
quenched with 0.125 M glycine (Sigma-Aldrich) for 15 min at
4°C. The fixed cells were collected by centrifugation and washed
twice with 1X HE pH 8.0 [10 mMHEPES (Sigma-Aldrich), 1 mM
EDTA (Sigma-Aldrich)]. The cell pellet was flash-frozen with
liquid nitrogen in a 1.5 ml low-binding microfuge tube and stored
at −80°C until use. Fixed Syn3A cells were resuspended in 100 μl
of 1X HE pH 8.0 and mechanically sheared with 0.5 mm glass
beads (Sigma-Aldrich) using a vortex mixer. Membranous
structures in the lysate were solubilised with 0.5% SDS
(Sigma-Aldrich) for 15 min at 37°C in a Thermomixer®
(Eppendorf) with shaking at 1,000 rpm. SDS was quenched
with 1% Triton X-100 (Sigma-Aldrich) in 1X CutSmart buffer
(NEB) for 15 min at 37°C in a Thermomixer® (Eppendorf) with
shaking at 1,000 rpm. The extracted chromatin was digested with
100 U of NlaIII (NEB) for 3 h at 37°C. The reaction was

Algorithm 3 | Complete Algorithm For Generating Chromosome Configurations.
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terminated with 0.5% SDS (Sigma-Aldrich) for 20 min at 37°C.
The digested chromatin was centrifuged at 20,000 xg for 1 h at
4°C. The supernatant was removed and the gel-like pellet was
dissolved in 200 μl of nuclease-free water (ThermoFisher
Scientific). The DNA concentration of the dissolved chromatin
was determined using the Qubit® HS dsDNA assay kit
(ThermoFisher Scientific) and the Qubit® fluorometer
(ThermoFisher Scientific). 3 μg of DNA was used for ligation
in 1X T4 DNA ligase buffer (NEB) supplemented with 100 μg/

ml BSA (NEB) in a final volume of 1,000 μl. The reaction was
carried out with 4000 CEU of T4 DNA ligase (NEB) at 16°C for
16 h and 25°C for 1 h. Ligation was terminated with 10 mM
EDTA pH 8.0 (usb Corporation). Ligated DNA (the 3C library)
was extracted twice with 25:24:1 phenol:chloroform:isoamyl
alcohol (Sigma-Aldrich) and once with chloroform (Sigma-
Aldrich). The library was precipitated with 0.1 × 1.0 M
NaOAc (Sigma-Aldrich) pH 8.0, 0.025 × 5 mg/ml glycogen
(Invitrogen), and 2.5 × 100% ethanol (Sigma-Aldrich) at -20°

FIGURE 7 | (A)—3C-Seq contact map at 1,000 bp resolution with the color-scale adjusted to make weak secondary features along the diagonal more apparent.

The four manually annotated loops listed in Table 2 are indicated with cyan boxes. (B)—Circular chromosome of Syn3A with features shown as arrows and arcs around

the perimeter - constructed using CGview (Petkau et al., 2010). The proteomics of a 400 nm Syn3A cell (Breuer et al., 2019) are plotted in red around the middle ring and

the innermost ring contains the annotated loops in green. (C)—In silico contact map resulting from 150 configurations with looping interactions added at the

positions of the manually annotated loops in Table 2. A locus size of 1,000 bp was used to match the 3C-Seq map. The interactions at the ribosomal RNA operons have

been removed from the map to enhance visual clarity. Cyan squares are again used to indicate regions containing the loops. (D)—Magnified view of the region within the

cyan square containing the fourth loop in the in silico contact map. The map was recalculated at a resolution of 250 bp and the maximum of the color-scale was

increased to better resolve the characteristic signature of a loop.
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C overnight. Precipitated DNA was pelleted by centrifugation
and the pellet washed twice with 70% ethanol (Sigma-Aldrich).
The pellet was air-dried and dissolved in 50.0 μl of 10 mM Tris
(Sigma-Aldrich) pH 8.0. The 3C library was purified with 3X
KAPA HyperPure beads (KAPA Biosystems) and eluted in
20.0 μl of 10 mM Tris (Sigma-Aldrich) pH 8.0.3C-Seq
libraries for next-generation sequencing were prepared using
the KAPA HyperPlus Kit (KAPA Biosystems) according to the
manufacturer’s protocol. 3C-Seq libraries were sequenced on an
Illumina® platform.

3 RESULTS

3.1 3C-Seq and in Silico Contact Maps
The 3C-Seq library prepared using the restriction enzyme
NlaIII had a total of 1,819,715 reads that were mapped at a
resolution of 1,000 bp. A histogram of restriction digestion
fragment sizes and distribution NlaIII cut sites in Syn3A’s
chromosome are presented in Supplementary Figures S5,S6,
respectively. The contact map was normalized to be a doubly-
stochastic matrix using the matrix-balancing procedure of
Knight and Ruiz (Knight and Ruiz, 2012; Rao et al., 2014)
and is shown in Figure 7A. The chromosome contact map
shows a primary diagonal of high interaction frequency that
reflects the physical proximity of loci that lie close to each other
along the primary sequence of the DNA polymer. A secondary
diagonal cannot be detected implying the absence of inter-arm
interactions along the chromosome. The absence of a
secondary diagonal is in contrast to the chromosome
contact maps of M. pneumoniae (Trussart et al., 2017), B.
subtilis (Marbouty et al., 2015), and C. crescentus (Le et al.,
2013; Tran et al., 2017). Notably, there are two regions of the
chromosome that are devoid of interactions, these regions
correspond to the two identical ribosomal RNA operons in
Syn3A and can be seen in Figure 7B. No interactions were
assigned to these regions as sequencing reads arising from
either copy could not be distinguished. There are smaller
secondary features along the diagonal that we interpret to
be regions of high interaction due to looping. However, as
this is a preliminary map with a low read depth and signal-to-
noise ratio, chromosome architecture cannot be reliably
interpreted and standard loop and chromosome interaction
domain (CID) annotation software (Durand et al., 2016b) was

unable to reliably process the map. Upon visual inspection at a
resolution of 250 bp, the map shows four interactions, with
distinct signatures reminiscent of loops (Fudenberg et al.,
2016). Snapshots of the four interactions at 250 bp
resolution in Juicebox (Durand et al., 2016a) are shown in
Supplementary Figure S7. We infer the end points of
these loops to be such that they fully encompass genes in
the corresponding regions of the chromosome. The positions
of these manually annotated loops, the genes they
encompass, and the corresponding proteomics are presented
in Table 2, and the loop locations within the contact map can
be seen in Figure 7A.

By comparing the annotated loops to the proteomics (Breuer
et al., 2019), as shown in Figure 7B, we can investigate
correlations between the relative expression levels and the
locations of the loops. For reference, the average proteomics
count in Syn3A is approximately 180 (Breuer et al., 2019). We
will refer to the loops according to their order along the genome.
The first loop encompasses the genes pdhC and lpdA, which
respectively code for the E2 and E3 subunits of the PDH
complex. These genes have identical proteomics counts and
lower expression levels than the genes surrounding them.
Upstream are genes coding for enzymes in the main pathway
of the central metabolism in Syn3A (Breuer et al., 2019) and
downstream are genes coding for components of the PTS
system, another essential part of the central metabolism. The
second loop encompasses the genes ywjA (0371) and ywjA
(0372), which code for the two subunits of the flippase. This
is the longest loop and the two genes within it have the greatest
disparity in expression levels. The third loop encompasses the
genes lgt and trx, which code for lipoprotein diacylglyceryl
transferase and thioredoxin reductase, respectively. The
proteomics counts of both proteins coded by these genes are
lower than average, as are those of the genes immediately
downstream. However, less than 10 kbp upstream is an
operon for ribosomal proteins, which contains some of the
most highly-expressed genes in Syn3A’s genome (Breuer
et al., 2019). The fourth loop encompasses genes that code
for two uncharacterized proteins, JCVISYN3A_0877 and
JCVISYN3A_0878, both of which have very low proteomics
counts. The expression levels of the nearby genes are similarly
low. Our most consistent findings are twofold. First, the loops
are all between 2 and 4 kbp in length. Second, the loops often
contain genes with common expression levels.

TABLE 2 | Loops inferred from 3C-Seq library of Syn3A. The gene annotations and locus tags are those in the NCBI entry for Syn3A’s genome (https://www.ncbi.nlm.nih.

gov/nuccore/CP016816.2) and the locus tags are abbreviated to only the 4-digit number.

Start (bp) Stop (bp) Length (bp) % in silico Genes encompassed Proteomics

138,324 141,557 3,233 8.7 pdhC 182

— lpdA 182

217,523 221,263 3,740 12.7 ywjA (0371) 175

— ywjA (0372) 65

491,413 493,784 2,371 16.7 lgt 55

— trx 100

526,669 528,859 2,190 20.7 0877 9

— 0878 7
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The chromosome configurations on the 4 nm lattice, with
11.8 bp monomers, enable the calculation for contact matrices at
any resolution greater than 11.8 bp per locus. Equally-sized
contiguous regions of the chromosome can be classified as loci
and the pairwise interactions between the loci counted according
to the relative pairwise distances between monomers belonging to
the loci. In the foreground of Figure 7C is a representative
example of the interaction counting. When counting the total
number of interactions between the red and blue loci using an
arbitrary threshold distance indicated by the dashed line, the
black monomer in the red loci contributes three interactions to
the total interaction count between the loci. Due to a relative
scarcity of chromosome models at a similar resolution in terms of
bp per monomer and uncertainty about what proteins are
involved in protein-DNA formaldehyde cross-linking (Dekker
et al., 2002; van Berkum et al., 2010), the distance for assessing
interactions can be chosen from a minimum of 4 nm
corresponding to lattice spacing to a maximum of 50 nm. The
maximum distance corresponds to the length of SMC proteins,
which is the maximal distance spanned by a nucleoid-associated
protein in Syn3A (Diebold-Durand et al., 2017; Marko et al.,
2019; Ryu et al., 2021). We selected a contact radius of 8 nm
because it is an integer multiple of our lattice spacing and the
resulting maps show the best agreement with 3C-Seq map. This
distance metric can be used alongside any locus size converted to
units of monomers to generate contact matrices for ensembles of
computationally generated chromosome configurations.

Contact maps were calculated for chromosome configurations
within the small cell. A locus size of 1,000 bp was chosen to match
the resolution of the 3C-Seq chromosome contact map. As was
the case for the experimental contact map, the contact map was
normalized to be a doubly-stochastic matrix using a matrix-
balancing procedure. Unfortunately, the precision of the in silico
contact maps is limited by the number of chromosome
configurations used to calculate the ensemble-averaged
interaction frequencies, a number many orders of magnitude
lower than the number of cells in typical 3C-Seq experiments.

In the absence of a sequence-specific system, such as the
parABS system, dictating the global structure of the
chromosome and promoting inter-arm interactions, we
decided to explore a test case of introducing looping
interactions at the positions of the manually annotated loops
to test the efficacy of our model. We consider a loop to be
successfully formed if the monomers at the endpoints are
separated by less than 16 nm, the percentage of configurations
with successful loop formation are shown for each loop in
Table 2. One or more loops were formed in 75 of the 150
configurations. As expected, decreasing the length of the loop
increased the probability that it was successfully formed. The in
silico contact map generated from 150 configurations in the small
cell is presented in Figure 7C. The contact map shows a single
diagonal in Figure 7C, which is consistent with the 3C-Seq
contact map and indicates that the majority of interactions are
self-interactions within loci or interactions between neighboring
loci. The strongest signal characteristic of a loop was observed for
the fourth loop, which is the shortest, and Figure 7D shows a
magnified view of the surrounding region in the contact map.

Using the 3C-Seq map, we plotted the interaction frequency as
a function of genomic distance and observed a plateau after the
initial decrease in interaction frequency. We fit a power law of the
form P(x)∝ xs to two regimes within the strictly-decreasing
region before the plateau, i.e. the region extending from self-
interactions along the diagonal to interactions with loci at
distances less than or equal to 10 kbp away, and found a range
of exponents (s � −0.519 to s � −2.210). We repeated this
calculation for the in silico map and found a narrower range
of exponents than in the 3C-Seq case (s � −0.720 to s � −1.132).

Plots of the two datasets and their contact laws are presented
in Supplementary Figure S8. In both cases, the steepest rate of
change and largest exponent was found in the region whose
lower limit corresponded to interactions of loci separated by
1 kbp. For the in silico case, the calculated values of s are in
closer agreement to the value expected when confined
homopolymers are organized as fractal globules (s � −1),
with clearly defined territories caused by topological
constraints, rather than equilibrium globules (s � −1.5)
(Lua et al., 2004; Lieberman-Aiden et al., 2009; Mirny,
2011; Rosa and Zimmer, 2014; Sanborn et al., 2015). The
organization of the chromosome into territories can be
observed for the in silico case in Figure 5B as the
separation into distinct colored regions.

The plateau is more pronounced in the 3C-Seq case, than the
in silico case, and all interactions in the 3C-Seq dataset are nearly
equally probable at genomic distances greater than 100 kbp.
While the plateau in the 3C-Seq dataset is a characteristic of
equilibrium globules (Lieberman-Aiden et al., 2009; Mirny, 2011)
and some mathematically-predicted fractal globules, such as the
Sierpinski triangle and inside-out Hilbert curves (Sanborn et al.,
2015), we are unable to infer a topological state of the Syn3A
chromosomes sampled using 3C-Seq because of the significant
variations in the exponents of the power law and the sensitivity to
the regime chosen for fitting. It is possible that these variations
and the steep drop off are a consequence of the low coverage in
the preliminary 3C-Seq map or reflect biologically relevant levels
of organization.

3.2 Spatial Model of JCVI-syn3A
Computational modeling of spatially-resolved kinetics in Syn3A
is done by simulating the reaction-diffusion master equation
(RDME) in Lattice Microbes (LM) (Roberts et al., 2013;
Hallock et al., 2014; Earnest et al., 2017, 2018; Bianchi et al.,
2018) using a stochastic simulation algorithm. When using the
RDME, physical space is discretized into a cubic lattice
representation. The size of the cubic lattice dictates both the
resolution of the spatial modeling and the maximum allowable
timestep when modeling the kinetics, smaller lattice sizes reduce
the maximum allowable timestep. A lattice size of 8 nm was
chosen as an acceptable compromise between creating a high-
resolution spatial model of Syn3A, while permitting simulations
over biologically-relevant time scales. Each of these 8 nm lattice
sites can contain a maximum of sixteen particles. Previous work
on combining LM simulations and tomogram data, directly
reconstructed cell architectures in LM (Earnest et al., 2017).
Unfortunately, as discussed earlier, the tomograms do not
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show well-defined DNA strands. Instead, chromosome
configurations consistent with the ribosome distributions
observed in the tomograms are generated using our method,
and those are used for the spatial models.

We have also used the spherical cell architecture reconstructed
from the tomograms to predict the number of ribosomes involved
in polysomes, the number of ribosomes at or near the membrane,
and the number of ribosomes close enough to DNA to form an
expressome. To predict the number of ribosomes involved in
possible polysomes, we calculate the pairwise distances between
all ribosome pairs in the spherical cell. Annotating any pair
within a center-to-center distance of 22 nm to be in a possible
polysome, as was experimentally measured in E. coli (Brandt
et al., 2009), we calculate 194, approximately 39%, of the 503
ribosomes from the first template matching method (approach 1)
are involved in possible polysomes. In the second template
matching method with 3D classification (approach 2), this
number increases to 373, approximately 55%, of the 684
ribosomes in possible polysomes. If we instead use a center-to-
center distance of 18 nm such that the ribosomes are almost in
contact, we find that 125, approximately 25%, of the 503
ribosomes from approach 1 are involved in possible
polysomes. In approach 2, we find that 274, approximately
40%, of the 684 ribosomes are in possible polysomes using the
18 nm distance. In cryo-ET of a closely related organism M.
pneumoniae, sub-tomogram averaging over many cells predicted
that an average of 16.4% of ribosomes are involved in polysomes
(O’Reilly et al., 2020). The discrepancies arise from several
factors: First, M. pneumoniae only has 300 ribosomes per cell
(Seybert et al., 2006; Yus et al., 2009; O’Reilly et al., 2020) and has
a larger volume than Syn3A (Kühner et al., 2009), so it is not
unreasonable that the higher ribosome density in Syn3A results in
a larger fraction ribosomes involved in polysomes. Second, the
method to define polysomes in (O’Reilly et al., 2020) exclusively
looks at ribosomes that are in very close proximity and oriented
so that the mRNA exit channel of one ribosome aligns with the
mRNA entry of the next. In cells, polysomes are likely to be more

relaxed than this configuration. Our predicted fractions of
ribosomes involved in polysomes are all lower than the 70%
observed in fast-growing E. coli using absorption spectroscopy
(Phillips et al., 1969; Forchhammer and Lindahl, 1971).

To estimate the number of ribosomes on or near the
membrane, we calculate the number of ribosomes within a
cytoplasmic shell directly inside the membrane. We annotate a
ribosome as being within the cytoplasmic shell if its center is
within the shell. Using a 10 nm thick shell, the approximate
radius of a ribosome, we find that 53, approximately 10%, of the
503 ribosomes from approach 1 are near the membrane. We find
a similar number of ribosomes within the same distance in
approach 2, 60 (9%) of the 684 ribosomes. If we extend the
shell to 20 nm thick, we find that 122, approximately 24%, of the
503 ribosomes in approach 1 are near the membrane. In approach
2, we found 136, or 20%, of the 684 ribosomes are within 20 nm of
the membrane. The range of our calculated fractions agrees with
the observed 15% of ribosomes being membrane-bound in cryo-
ET of S. melliferum (Ortiz et al., 2006).

Expressomes are macromolecular complexes of RNA
polymerases (RNAPs) and ribosomes that couple transcription
and translation, they were first identified in E. coli (Kohler et al.,
2017). In M. pneumoniae a maximum of 19% of ribosomes have
been identified to be in an expressome complex in which NusA
and NusG help to connect or direct the mRNA from production
by RNAP to the ribosome (O’Reilly et al., 2020). Given the
proteomics counts of RNAP, NusA, and NusG within a
400 nm cell of 187, 238, and 464 respectively (Breuer et al.,
2019), the possibility of expressome complexes emerging in
the whole-cell model is certainly possible. Using the 4 nm
lattice representation, we searched for possible expressomes by
counting chromosome monomers directly adjacent to the star-
shaped ribosomes. We find that on average there are 106 of the
503 ribosomes in approach 1 with a DNA monomer directly
adjacent, a fraction of approximately 21%. From ribosomes
identified in approach 2, we found that 127 of the 684
ribosomes, roughly 19%, were directly adjacent to the DNA on

FIGURE 8 | Coarse-graining, before and after—The coarse graining procedure localizes up to eight effective monomers in the 4 nm chromosome configurations

(same color scheme as Figure 5) within the 8 nm chromosome lattice sites (green). Circled in orange there is an example of genomically-distant regions being localized

within the same chromosome site.
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average. This is in good agreement with the fraction of 2.8–19% of
ribosomes found to be in expressomes in M. pneumoniae by
O’Reilly et al. (O’Reilly et al., 2020).

The computationally-generated chromosome configurations
on the 4 nm lattice are converted to the 8 nm lattice before being
used in RDME simulations. The conversion is done using a
coarse-graining procedure where the 4 nm effective monomers
are localized within the 8 nm lattice site containing them. These
8 nm lattice sites are then identified as chromosome sites. Due to
the self-avoiding nature of the chromosome model, each 8 nm
chromosome site can contain up to a maximum of eight
monomers, where each monomer contains 11.8 bp of DNA.
The number of monomers within the 8 nm lattice site are
directly converted to up to eight of the maximum of sixteen
particles within a lattice site. This coarse-graining procedure

preserves the overall volume exclusion of the chromosome and
the spatial heterogeneities caused by varying chromosome
densities throughout the cell, and allows for genomically
distant pieces of the chromosome to be spatially localized
within the 8 nm chromosome sites. Figure 8 shows the coarse-
graining of a chromosome configuration in the small cell. The
kinetic model of genetic information processing in Syn3A
(Thornburg et al., 2019) can then be extended to include the
effects of RNA polymerases diffusing between the spatial
locations of genes within the chromosome (Weng and Xiao,
2014).

Two means were used to quantify the diffusivity of the coarse-
grained chromosome configurations. First, the average monomer
occupancy of the coarse-grained chromosome sites was
calculated, with the target average occupancy being under 3

FIGURE 9 | (A)—Relative frequencies of chromosome site monomer occupancies in the small cell from 150 configurations with no looping interactions. (B)—

Distribution of connected-component sizes for different monomer occupancy thresholds for the small cell from 150 configurations with no looping interactions.

FIGURE 10 | (A)—First chromosome (green) generated within the large cell architecture of radius 247.42 nm and containing 820 ribosomes (yellow). (B)—An

additional second chromosome (magenta) was generated within the large cell architecture while avoiding the first chromosome (green). (C)—The isolated second

chromosome (magenta) in the large cell architecture after the removal of the first chromosome.
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monomers per coarse-grained chromosome site, as shown in
Figure 9A. Second, connected-component labeling was used to
identify contiguous regions of high monomer occupancy, where
diffusing particles may become trapped for extended periods of
simulation time, as shown in Figure 9B. Maintaining an
acceptable number of particles per lattice site has a significant
impact on the efficiency of the multi-particle diffusion used in the
GPU-accelerated LM (Hallock et al., 2014). The results for the
small cell when the second approach for template-matching was
applied, with the high ribosome packing density, showed that all
150 computationally-generated chromosome configurations were
diffuse enough to be used for RDME simulations of Syn3A. The
configurations satisfy the first criterion and there were no
instances in which connected-components with an occupancy
greater than 8 monomers per coarse-grained chromosome site
could form closed shapes on the 8 nm lattice. The large cell is
presumed to be near the end of the cell cycle, after DNA
replication has been completed, and a second chromosome
can be placed within the cell architecture, as shown in
Figure 10. We assume the small cell and large cell are
representative examples of cells at the start and end of the cell
cycle, respectively, and the combination of the small and large cell
architectures enable whole-cell simulations of Syn3A at the start
and end of the cell cycle.

4 DISCUSSION

We developed a procedure to reconstruct single-cell geometries of
Syn3A cells from cryo-electron tomograms. The procedure has
two parts, the determination of the cell size and subsequent
transformation of the ribosome distribution to a cell with
spherical geometry, and the generation of circular
chromosome configurations constrained by the spherical cell
boundary and the ribosome distribution, and restrained by a
small number of DNA loops observed in the experimental 3C-Seq
map. Cell geometries were reconstructed for the small cell
assumed to be at the start of the cell cycle and a large cell
considered to be near the end of the cycle, when two
chromosomes would be present.

The 3C-Seq chromosome contact map at a resolution of
1,000 bp has no secondary diagonal and confirms our
assumption that Syn3A has no factors affecting the global
structure of the chromosome. We based this assumption on
our knowledge of the genome-scale gene essentiality and
proteomics data, which indicated Syn3A lacked a parABS
system or attachment organelle. Our computational model of
the chromosome reproduced this behavior while constrained by
the reconstructed cell geometry. Furthermore, we generated the
DNA configurations under the assumption that the DNA was in
a relaxed state with limited supercoiling. This was justified due
to the high abundance of proteins that modify the supercoiling
state, topoisomerases and gyrases, relative to the number of
RNAP, and the relatively low abundance of proteins that form
topological constraints and stabilize supercoiled loops, such as
HU. We were able to model local structures, whose signatures
were observed in the 3C-Seq map at a resolution of 250 bp.

Currently, SMC is the only annotated protein in Syn3A that can
form unsupercoiled loops, so it is possible the observed loops are
formed by SMC. Recent studies show that SMC functions
through active loop extrusion rather than static loop
stabilization (van Ruiten and Rowland, 2018), so there are
potentially additional unannotated effects and/or proteins
causing the experimentally observed loops or causing
localization of the actively-extruding loops through
preferential SMC binding at the annotated locations. Our
chromosome model does not include active loop extrusion
and is only capable of reproducing the results of active loop
extrusion in an ensemble average sense. At this time, we wish to
avoid making further definitive statements about the nature of
the local structure of Syn3A’s chromosome until deeper
sequencing is completed. Future experiments with additional
restriction enzymes that cut the DNA at complementary
positions and greater depth of the reads will help to improve
our analysis.

We can speculate that the significant differences in the global
chromosome organization of bacterial cells with natural
genomes, such as B. subtilis, C. crescentus, and M.
pneumoniae, to Syn3A with its synthetic genome are a result
of genome minimization, both natural and targeted. The parent
organism from which all variants (Syn1.0, Syn3.0, and Syn3A)
are descended is M. mycoides, a choice that was made because
Mycoplasma cells have small genomes that have been naturally
reduced over evolutionarily-long time scales. This reduction
likely occurred because they are parasitic organisms that can rely
on a stable environment provided by their host. Mycoplasmas
have dispensed of the genes that code for complex regulatory
systems, such as the parABS system, and the remaining genes
largely code for environment-independent functions essential to
all life (Hutchison et al., 2016). Chromosome organization at the
local level is dictated by NAPs and the supercoiling state of the
DNA. Notably, while there is a significant disparity in the
relative proteomics counts of NAPs in Syn3A and naturally-
occurring bacteria, with the majority of NAPs being wholly
absent from Syn3A’s genome, there is no such disparity in the
counts of proteins that modify the supercoiling state of the
DNA. These proteins are essential to the function of Syn3A,
which is not surprising due to the relationship between
supercoiling and the universal process of transcription
(Chong et al., 2014; Dorman, 2019).

From the reconstructed cell geometries, we estimated
fractions of ribosomes that could be attached to the
membrane or are complexed in possible polysomes and
expressomes. We simply used distances between ribosomes
and the membrane, other ribosomes, and the DNA,
respectively, to predict these numbers. To confirm these
estimates of the polysomes we could use the orientations of
the ribosomes’ entry and exit channels such that the ribosomes
can pass mRNA between each other (O’Reilly et al., 2020). The
membrane-bound ribosomes can be further characterized by
determining which of those ribosomes have their 50S subunit
facing the membrane (Ortiz et al., 2006). Further analysis of
expressomes would require a template involving the RNAP
and the essential transcription factor NusA that was found
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to attach the RNAP to the ribosome in cryo-ET of M.
pneumoniae (O’Reilly et al., 2020). In the same M.
pneumoniae study, subtomogram averaging was used to more
confidently assign expressome structures along with orientation
of the mRNA entry site to help identify ribosomes complexed
with RNAP.

The effects of ribosomes attached to the membrane or
complexed in polysomes and expressomes can all be included
in future whole-cell, spatially-resolved kinetic models. The
configurations resulting from the SAP model of the bacterial
chromosome are directly transferrable to the 8 nm lattice
representation used for LM simulations of whole Syn3A cells
through a coarse-graining procedure. The coarse-grained
chromosome configurations specify the spatial heterogeneities
caused by DNA-crowding in whole-cell kinetic models of Syn3A
and define the spatial locations of genes to investigate spatial and
temporal correlations in gene expression (Weng and Xiao, 2014;
Thornburg et al., 2019). Future work will focus on assigning
chromosomal interactions based on improved experimental 3C-
Seq libraries, improving the model to include dynamic formation
and relaxation of supercoiling and plectonemic loops, and
incorporating dynamic representations of the chromosome
(Miermans and Broedersz, 2020) within the LM simulations,
which will include DNA diffusion and chromosome replication.
The compactness and degree local structure of the DNA
determines the accessibility of its genes to RNAP which is an
important consideration in the whole-cell simulations of all the
cellular networks being developed for the minimal cell JCVI-
syn3A.
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