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Standing-wave solutions in twisted multicore fibers
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In the present work, we consider the existence and spectral stability of standing-wave solutions to a model for
light propagation in a twisted multicore fiber with no gain or loss of energy. Numerical parameter continuation
experiments demonstrate the existence of standing-wave solutions for sufficiently small values of the coupling
parameter. Furthermore, standing waves exhibiting optical Aharonov-Bohm suppression, where there is a single
waveguide which remains unexcited, exist when the twist parameter ¢ and the number of waveguides N is related
by ¢ = m/N. Spectral computations and numerical evolution simulations suggest that standing-wave solutions
where the energy is concentrated in a single site are neutrally stable. Solutions with asymmetric coupling and

multipulse solutions are also briefly explored.
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I. INTRODUCTION

There has been much recent theoretical and experimental
interest in light dynamics in twisted multicore optical fibers.
Early work on twisted fibers can be found in [1,2], in which
the coupled mode equations describing light propagation in a
twisted, circular arrangement of waveguides is derived. The
introduction of a fiber twist in a circular array allows for
control of diffraction and light transfer, in a similar manner
to axis bending in linear waveguide arrays [3]. The fiber
twist introduces additional phase terms to the model, which
is known as the Peierls phase [1,4]. In [5], this system is con-
sidered as an optical analog of topological Aharonov-Bohm
suppression of tunneling [6], where the fiber twist plays the
role of the magnetic flux in the quantum-mechanical system.
In the optical setting, what this suppression we believe reveals
is similar to bending of rays in twisted photonic crystals
[7], resulting in the creation of “forbidden” access points
in the transverse profile as rays propagate in the longitu-
dinal direction. Alternatively, the phase accumulation from
the twist, together with that due to the amplitude-dependent
phase differences, accounts for a phase mismatch that inhibits
transfer of energy among waveguides. The unique feature
present here is that the suppression is full, thus instead of
a localized mode with nonzero amplitudes across the array,
a topological state is achieved. This state is both nonlinear
and robust. Fiber arrangements featuring parity-time (P7)
symmetry with balanced gain and loss terms are considered
in [8,9]. More complicated fiber bundle geometries have since
been studied, which include Lieb lattices [10] and honey-
comb lattices [11,12]. Experimental applications of twisted
multicore fibers include the construction of sensors for shape,
strain, and temperature [13,14].

In this paper, we consider a multicore fiber consisting of
N waveguides arranged in a ring (Fig. 1). The entire fiber is
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twisted in a uniform fashion along the propagation direction z
with a twist rate € = 2w /A, where A is the spatial period. For
the system with an optical Kerr nonlinearity, the dynamics are
given by the coupled system of equations

id,cp = k(€™ cpsr + €Pcut) + ivaca +dlcal’c, (1)

forn=1,...,N, where c) = ¢y and ¢y, = ¢; due to the
circular geometry [9,15]. In the discrete approximation, the
assumption is that the energy of electromagnetic field prop-
agating along the optical array is concentrated in the guiding
(silica) cores. As such, the complex amplitudes c,(z) represent
the localized field amplitude in each waveguide. Since the tail
of the transverse field profile at each waveguide extends be-
yond the core, the tail field concentrated at site n overlaps with
its neighbor cores at sites n = 1. In this approximation, k (in
mm~! units) is the strength of the nearest-neighbor-waveguide
coupling, d is the effective (and normalized) Kerr-nonlinear
index of refraction, and y,, is the optical gain (due to dop-
ing) or loss (due to imperfections or scattering) at waveguide
n. Altogether, in the discrete approximation, all coefficients
depend on the wavelength A and ¢ = 4m%en,R*>/NA is the
Peierls phase introduced by the twist, where n; is the refractive
index of the substrate, R is the radius of the circular ring,
and XA is the wavelength of the propagating field [9] (see
also [2,16] for a derivation of this equation). If y,, = 0 for
all n, i.e., there is no gain or loss at each node, the system
is conservative. Furthermore, upon normalizing the fields by

making ¢, nondimensional using the mapping ¢, — ﬁcn,
Eq. (1) becomes
iazcn = k(e_i¢cn+l + ei¢cn71) =+ Icnlzcnv (2)

which is Hamiltonian with conserved energy

N
A Lo
H =" kicnpicie™ + cuch ) §|cn|4. 3)

n=1

In this paper, we will only be concerned with the Hamiltonian
system (2) with conserved quantity (3); we will also only
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FIG. 1. Schematic of twisted, multicore fiber consisting of N
waveguides arranged in a ring.

consider the defocusing (minus) nonlinearity. The case with
symmetric gain-loss terms (P77 symmetry) is considered in
[9]. Asymptotic analysis of the system (2) for N = 6 fibers
where the peak intensity is contained in the first fiber (n = 1)
shows that the opposite fiber in the ring (n = 4) has, to leading
order, zero intensity when the twist parameter is given by
¢ = /6 [9]. This is confirmed by numerical time evolution
simulations (see [9, Figs. 4 and 5]). This phenomenon is
discussed in the context of Aharonov-Bohm (AB) suppression
of optical tunneling in twisted multicore fibers in [15,17].
In particular, this effect is demonstrated analytically for the
case of N = 4 fibers and ¢ = 7 /4 by solving the nonlinear
system (1) analytically [17]. A natural question is whether AB
suppression is present for larger N and whether this state is
robust (stable).

In what follows, we study the existence and stability of
standing-wave solutions (bound states) of Eq. (2). This paper
is organized as follows. In Sec. II, we use numerical parameter
continuation to construct standing-wave solutions to (2) where
the bulk of the energy is confined to a single fiber. In Sec. III,
we demonstrate the existence, both analytically and numer-
ically, of standing-wave solutions which have a single dark
node; this occurs when ¢ = 7 /N, both for N even and N odd.
We then investigate the stability of these solutions in Sec. I'V.
We conclude with a brief discussion of asymmetric variants
and multimodal solutions and suggest some directions for
future research.

II. STANDING-WAVE SOLUTIONS

Standing-wave solutions to (2) are bound states of the form
Cy = anei(a)z-k@n)’ 4

where a, € R, 6, € (—7 /2, /2], and w is the propagation
constant. (Since we allow a, to be negative, we can restrict 6,
to that interval.) We will refer to the a, as the amplitudes and
the 6, as the phases of each node. Standing waves are periodic
in z with period 27 /w, and the intensity at each node |c,| =
|a,| is constant in z. Making this substitution and simplifying,
Eq. (2) becomes

k(an+lei[(9n+1 —6h)—¢]

+ an,le‘i[<9"‘9"*‘)_"’]) + wa, — az =0, (3)

where we have taken the defocusing (minus) nonlinearity.
Equation (5) can be written as the system of 2n equations

klay1cos(0yq1 — 0, — @)

+ ap_1 c08(6y — 0,1 — $)] + wa, —a> =0
Ant18i0(Op11 — 6y — P)

—a,18in(6, — 6,1 —¢)=0 (6)

by separating real and imaginary parts. We note that the the
exponential terms in (5) depend only on the phase differences
6,+1 — 6, between adjacent sites. Due to the gauge invariance
of (2), if ¢, is solution, so is ¢?c,, thus we may without loss
of generality take 6; = 0. If ¢ =0, i.e., the fibers are not
twisted, we can take 6, = O for all n, and so (5) reduces to the
untwisted case with periodic boundary conditions. Similarly,
if we take ¢ = 2w /N and 6, = (n — 1)¢ for all n, the expo-
nential terms do not contribute, and (5) once again reduces
to the untwisted case. The interesting cases, therefore, occur
when 0 < ¢ < 27 /N.

In the anticontinuum (AC) limit (k = 0), the lattice sites
are decoupled. Each a, can take on the values {0, +./w},
the phases 6, are arbitrary, and ¢ does not contribute. The
amplitudes /w are real if @ > 0. We construct solutions to
(6) by parameter continuation from the AC limit with no twist
using the standard continuation software package AUTO [18].
As an initial condition, we choose a single excited site at node
1,ie., a; = /o and a,, = 0 for all other n. (We can start with
more than one excited state, but, in general, these solutions
will not be stable.) In addition, we take 6, = O for all n, and
¢ = 0. We first continue in the coupling parameter k, and then,
for fixed k, we continue in the twist parameter ¢. In doing this,
we observe that the solutions have the following symmetry:

j=2,... M1,
j=2,...,M—1, 7)

aj = daN—j4+2,

0j = —On—j+2,
where M = (N/2)+ 1 for N even and M = (N + 1)/2 for
N odd. For N even, node M is the node directly across the
ring from node 1, and 6y, = 0. For all N, 6; = 0. See Fig. 2

for an illustration of these symmetry relations for N = 6
and N =7.

1 2 3 4 5 6
o—0—O0—0—0—9°
o

1 2 3 4 5 6 7/
*——0 0000

N

FIG. 2. Schematic of symmetry relationship between nodes for
N =6 and N = 7. For nodes connected with arrows, the amplitudes
ay. are the same and the phases 6, are opposite.

053505-2



STANDING-WAVE SOLUTIONS IN TWISTED MULTICORE ...

PHYSICAL REVIEW A 103, 053505 (2021)

1 1
______ - -n=1
05 e n=2
S 0.8 n=>3
0 ) ° ) —n=4
° °
-0.5
1 2 3 4 5 ¢ 06
O
m/3 0.4
/6 °
~ 0 @
S °
o e 02
—m/6 ®
—m/3
1 2 3 4 5 6 0 : :
0 21 47

z (mm)

FIG. 3. Standing-wave solution for N =6, v =1 mm~', k=
0.25mm™', and ¢ = 0.25. Left panel shows amplitudes a, and
phases ¢, for solution at each node. Right panel is intensity of
solution |c,| versus z for nodes 1-4, which is constant in z. Evolution
in z computed using the fourth-order Runge-Kutta method.

Figure 3 shows an example of a standing-wave solution
of the form (4) produced by numerical parameter continua-
tion for N = 6, k = 0.25, and ¢ = 0.25. Since the parameter
continuation was initialized with a single excited site at node
1 in the AC limit, the peak intensity is still contained in
node 1 when k > 0, although the intensity has spread to the
other nodes in the ring. The symmetry relations (7) among
the amplitudes a, and phases 6, can be seen in the left
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FIG. 4. Standing-wave solution for N =7, o = lmm™!, k =
0.25mm™!, and ¢ = 0.25. Left panel shows amplitudes a, and
phases ¢, for solution at each node. Right panel is intensity of
solution |c,| versus z for nodes 1-4, which is constant in z. Evolution
in z computed using the fourth-order Runge-Kutta method.
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FIG. 5. Amplitude of node 4 (minimum intensity) versus ¢ for
standing-wave solution with N = 6 (top), and amplitude of nodes 4
and 5 (minimum intensity) versus ¢ for standing-wave solution with
N =17 (bottom). @ = 1 mm™', coupling constants k are mm~".

panel. The node with minimum intensity is the node directly
across the ring from node 1. The right panel shows the in-
tensity |c,| at each node as a function of z. Since these are
standing-wave solutions, the intensity is constant in z. The
evolution in z is computed with a fourth-order Runge-Kutta
method using Eq. (4) with z =0 and the amplitudes and
phases from the left panel of Fig. 3 as the initial condition.
This initial condition is used for all evolution plots for stand-
ing waves.

Similarly, Fig. 4 shows a standing-wave solution produced
by numerical parameter continuation for N =7, k = 0.25,
and ¢ = 0.25. As with the case of N = 6, the peak intensity
is contained in node 1, and the symmetry relations (7) among
the amplitudes a, and phases 6, can be seen in the left panel.
In contrast with the N = 6 case, there is a pair of nodes with
minimum intensity and the same amplitude directly across the
ring from node 1.

The top panel of Fig. 5 shows the amplitude of the node
with minimum intensity (node 4 in Fig. 3) versus the twist pa-
rameter ¢ for N = 6. For all values of the coupling parameter
k, the amplitude of this node is O when the twist parameter is
given by ¢ = 7 /6, which is an example of optical Aharonov-
Bohm suppression. Since this is a standing-wave solution, this
node will have 0 intensity for all z. This observation of a dark
node opposite the node of maximum intensity agrees with the
results of [9,15]. We show below in Sec. III A that this occurs
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in general when N is even and ¢ = w/N. The bottom panel
of Fig. 5 shows the amplitude of the nodes with minimum
intensity (nodes 4 and 5 in Fig. 4) versus the twist parameter
¢ for N = 7. Since the amplitudes of these nodes are never 0,
optical Aharonov-Bohm suppression does not occur when N
is odd and there is a single excited node. (See Sec. III B below
for a setting in which AB suppression does occur for N odd).

III. OPTICAL AHARONOV-BOHM SUPPRESSION

We now show that optical Aharonov-Bohm suppression
occurs for standing-wave solutions when the twist parameter
is ¢ = w/N. We consider the cases of N even and N odd
separately, since the symmetry patterns are different. In both
cases, we find that we can obtain a single dark node when

¢ =mn/N.
A. N even

Taking ay = 0, where M = (N/2) + 1, we use the sym-
metries (7) to reduce the system (6) to

2kay cos(By — ¢) + wa; —a; =0,

klani1co8(0pp1 — 0, — @)
+a,—1cos(8, — 6,—1 — ¢)]
+wa, — aﬁ =0,
Ap+1 Sin(9n+l - On - ¢)
—ay_1sin(0, — 0,1 —¢) =0
2kap—1 cos(Oy—1 + @) =0,
6y =06y =0.
It follows that a,, = O for all n unless
cos(Oy—1 + ¢) =0,
sin(0, — Op—1 — d)) =0,
sin(6, — ¢) = 0.

n=3,...,M—1,

One solution to this is
Ou—1+ ¢ =m/2,
Op — b1 — ¢ =0,
th—¢ =0,
from which it follows that we can have a single dark node
at site M when ¢ = m/N. If this is the case, the system

of equations above reduces to the simpler system of M — 1
equations

n=3,....M—1,

2kar, + way — a? =0,

k(aps1 + an_1) +wa, —a> =0, n=2,...,M -2,

kay—> + way—1 — ay,_; = 0. (8)

This system is of the form F(a,k)=0, where a=
(ai,...,ay_1). F(@ 0)=0, where a=(J/w,0,...,0).
Since Dr(a,0) = diag(—2w, w, ..., ®), which is invertible
for w # 0, it follows from the implicit function theorem that
there exists ky > 0 such the system (8) has a unique solution
for all k with |k| < ko. The critical value ky can be computed
numerically by parameter continuation with AUTO, and will
depend on both N and w (Fig. 6). These computations suggest
that ko approaches w/2 as N becomes large.

° 1
Z-0.56 T’\
g g

g 0.54 ° g 05
£0.52 '.. g

0.5 evesessen 0

0 20 40 60 0 1 2
N w (mm™1)

FIG. 6. Left panel shows kj versus N for dark node opposite peak
intensity node for N even, @ = 1 mm™!. Right panel shows ky vs @
together with least-squares linear regression line for N = 50.

Figure 7 plots the £? norm of the solution to (8)
1/2

N/2
lalle = <Z |a,|2> ©)
j=1

versus the coupling parameter k. The critical value kg is the
point at which the bifurcation curve touches the horizon-
tal axis. As k approaches k( in the parameter continuation,
the ¢2 norm of the solution approaches 0, thus the solution
approaches the zero solution. Although it is possible that
there are standing-wave solutions for |k| > kg, they cannot
be reached by parameter continuation from this branch of
solutions. At k = 0 (the AC limit), there is only one excited
node with intensity /w, thus the £? norm of that solution is
Jo (in Fig. 7, = 1, thus the £? norm of the solution is 1
when k = 0).

Once (8) has been solved numerically, the full solution to
(6) is given by

ay =0,
ae;=au_j.  j=1,... . M—2,
6o =0,
;=G —1p, j=2...M—1,
O =0,
Omsj=—=Om—j, j=1,....M =2
ol ‘ ‘ ‘
-0.5 -0.25 0 0.25 0.5

k (mm™!)

FIG. 7. ¢* norm of solution vs k for N = 50 with dark node

opposite peak intensity node. @ = 1 mm~'.
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FIG. 8. Standing-wave solution for N = 6 and ¢ = 7 /6. Left
panel shows amplitudes a, and phases ¢, for solution at each node.
Right panel is intensity of solution |c,| versus z for nodes 1-4, which
is constant in z. Evolution in z computed using the fourth-order
Runge-Kutta method. Node 1 has maximum amplitude, and node 4
isadarknode. w = 1 mm~'; k = 0.25 mm™".

Figure 8 shows this solution for N = 6 and k = 7 /6. The
amplitudes a, and phases 6, are qualitatively similar to the
case when ¢ = 0.25 (Fig. 3); however, when ¢ = 7 /6, the
intensity of node 4 is equal to 0, whereas for other values of
¢, the intensity of node 4 is small, but nonzero (Fig. 5).

In [9], a perturbation method is used for the N = 6 case
to show that if the peak intensity is contained in node 1, the
opposite node (node 4) has an intensity of 0, to leading or-
der, when ¢ = 7 /6. Our analysis confirms the result of these
asymptotics, but is much more rigorous in that it demonstrates
that for all N even, when the twist is given by ¢ = 7 /N, a
standing-wave solution exists for which the peak intensity is
contained in a single node, and the opposite node in the ring
has intensity identically equal to O for all z.

B. N odd

When N is odd and the peak intensity is contained in a
single node, we cannot obtain dark nodes for any value of the
twist parameter k (Fig. 5). We can, however, obtain a dark
node when N is odd if we start with two adjacent bright nodes.
For simplicity, we take node 1 to be the dark node; in this case,
the dark node will be opposite a pair of bright nodes at ay; and
ap+1 with the same amplitude, where M = (N + 1)/2. Using
the symmetries (7), when a; = 0, the system (6) reduces to

2kas cos(Br, — ¢) = 0,
kaz cos(603 — 0 — @) + was — a% =0,
azsin(@; — 6, —¢) =0,

k[an-H COS(9n+l - 9}1 - ¢)
+a,—i COS(@n - en—l - ¢)]
—i—wan—ai=0, n=3,...
An+1 sin(9n+1 - en - ¢)
—a,—18in(0, — 6,1 — ¢) =0
klam cos(—=20y — ¢) + ay—1 cos(Oy — Oy—1 — P)]
+ way — ai,, =0,

ay Sil’l(—ng — ¢) — ay—1 sin(@M — 9M71 — ¢) =0.

It follows that a,, = O for all n unless

cos(6r —¢) =0,
sin@, — 6,1 —¢)=0, n=3,...,M—1,
sin(26y; + ¢) = 0.
One solution to this is
b —¢=—m/2,
6p—6,-1—¢=0, n=3,...,M—1,
20u +¢ =0, (10)

from which it follows that we can have a single dark node at
a; when ¢ = m /N. This condition for a single dark node is the
same as when N is even. For this case, the system of equations
above reduces to the simpler system of equations

kas + wa; — ag =0,

k(an_,_l—l—an_l)—l—a)an—az:O, n=3,...,.M—1,

k(ay + ay—1) + way — a3y = 0. (11)
This system of equations is again of the form
F(a,k) =0, where a = (ay,...,ay). Fa,0)=0,
where a=(0,...,0,/—w/d,0). Since Dr(a,0)=
diag(w, ..., w, —2w), which is invertible for w # 0, it

follows from the implicit function theorem that there exists
ko > 0 such that the system (11) has a unique solution for all
k with |k| < ko. As in the case for N even, the critical value
ko, as well as its dependency on N and w, can be computed
numerically. Once (11) has been solved numerically, we
obtain the full solution to (6) using

ar =0,
apm+j = AM—j+1, ]: 1, 7M_ 19
6o =0,
0 =G—Dp—7/2 j=2 ..M,
9M+j:_9M*j+l’ j:l,...,M_l.

Figure 9 shows this solution for N = 7. The peak intensity in
this solution is contained in two adjacent nodes, and there is
a single dark node opposite this pair, which is qualitatively
different from the solution in Fig. 4.

IV. STABILITY

We now look at the stability of the standing-wave so-
lutions we constructed in the previous section. As a first
step in stability analysis, the linearization of Eq. (2) about
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FIG. 9. Standing-wave solution for N =7 and ¢ = 7 /7. Left
panel shows amplitudes a, and phases ¢, for solution at each node.
Right panel is intensity of solution |c,| versus z for nodes 1-4, which
is constant in z. Evolution in z computed using the fourth-order
Runge-Kutta method. Nodes 4 and 5 have equal and maximum
amplitude, and node 1 is a dark node. w = 1 mm~!, k = 0.25 mm~'.

a standing-wave solution ¢, = a,e" % = (v, 4 iw,)e’* is
the 2N x 2N block matrix

s C 0 I
Alen) :k<—c S> +“’<—1 0)
( diag(2v,wy) diag(v% + 3w5)> (12)
—diag(3v? + w?) —diagQu,w,) /)’
where each block is a N x N matrix, C is the periodic banded
matrix with cos ¢ on the first upper and lower diagonals, and

S is the periodic banded matrix with sin ¢ on the first lower
diagonal and — sin ¢ on the first upper diagonal, i.e.,

0 cos ¢ cos ¢
cos ¢ 0 cos ¢
cos ¢ cos ¢ 0
0 —sin¢ sin ¢
sin ¢ 0 —sin¢
—sin¢ sin ¢ 0

Since (12) is a finite-dimensional matrix, the spectrum is
purely point spectrum. Due to the gauge invariance, there is
an eigenvalue at 0 with algebraic multiplicity 2 and geometric
multiplicity 1. Following the analysis in [19, Section 2.1.1.1],
there are plane-wave eigenfunctions which are, to leading
order, of the form ¢*("+*) where ¢ is the discrete wave
number, and satisfy the dispersion relation

A = Zilw + 2k cos(q + ¢)]- (13)

2 2
1 $ 1 l
~< 0 s ~< 0
° °
£ X £
-1 : -1 l
[ ]
-2 -2
-1 0 1 -1 0 1
Re A Re A

FIG. 10. Spectrum of linearization of (2) about solution for even
N with a single dark node opposite a single bright node. N = 6 (left
panel) and N = 50 (right panel). k = 025 mm™~',w = I mm~!, ¢ =
w/N.

The corresponding eigenvalues A are thus purely imaginary
and are contained in the bounded intervals +i[w — 2k, w +
2k]. As N increases, these eigenvalues fill out this interval. For
|k| < ko = w/2, these eigenvalues do not interact with the ker-
nel eigenvalues. Figure 10 illustrates these results numerically
for w = 1 and k = 0.25 for the case of N even and ¢ = 7 /N,
i.e., a single dark node opposite a single bright node. Similar
results are obtained for other values of @ and k in which there
is a single bright node as well as the solutions from Sec. III B
with odd N and a single dark node opposite a pair of bright
nodes.

Since the spectrum of these solutions is purely imaginary,
we expect that they will be neutrally stable, i.e., any small
perturbation will remain close to the unperturbed standing
wave for all z, but will exhibit oscillatory behavior. Figure 11
shows the results of numerical evolution in z for a small
perturbation of the standing-wave solution when N = 6 and
N =7. For the initial condition of the perturbed solution,
a small quantity (0.05) was added to the amplitude of dark
node. (This initial condition was chosen for simplicity. Any
initial condition which is close to the unperturbed solution
in amplitude and phase produces results which are quali-
tatively the same.) Numerical results show small amplitude
oscillations about the unperturbed solutions, but no growth,
which provides numerical evidence for neutral stability. The
amplitude of the oscillations depends on the magnitude of
the initial perturbation. (Compare these evolution plots to the
right panels of Figs. 8 and 9, noting that the evolution in z
in Fig. 11 is over a much greater length.) Similar results are
obtained for other values of N, w, and k.

1
—n=1f | pmee] =1
--n=2 - -n=2
= n=3 s n=3
&0'5 --n=4 =205 --n=4
R B A 0 B P S S S T Y ald
0 107 20m 0 107 20m
z (mm) z (mm)

FIG. 11. Amplitude |c,| for the first four nodes versus z for
solution with N =6, ¢ = /6 (left panel) and N =7, ¢ =n/7
(right panel). Evolution performed using a fourth-order Runge-Kutta
scheme, k = 0.25 mm~'.
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FIG. 12. Amplitude |c,| for the first four nodes versus z for solu-
tion with N = 10 and ¢ = 7 /10. Initial condition is the solution to
(8) with k = 0.45 mm™". Evolution performed with k = 0.35 mm™"
(left) and k = 0.55 mm™! (right) using a fourth-order Runge-Kutta
scheme.

In addition, we can start with a neutrally stable standing-
wave solution and perturb the system by a small change in
k or ¢. Figure 12 shows the results of perturbations in k. In
particular, note that in the right panel of Fig. 12, the system
is evolved using a value of the coupling parameter k which is
greater than kg, where k is defined in Sec, III A. In both cases,
the solutions show oscillations, indicating this to be robust
dynamics. The simulation suggests the period of oscillations
has a strong dependence on k. Additional evolution results
can be found in [9]. In particular, see [9, Fig. 4] for evolution
results when the fiber is initially excited at a single site.

V. ASYMMETRIC COUPLING

As an additional variant, if the strength of the nearest-
neighbor coupling is allowed to differ between pairs of nodes,
Eq. (2) becomes

. —i i 2
lazcn = Kpt1€ l¢cn+1 + kn—lel¢cn—1 + |Cn| Cn,s (14)

where there is a different coupling parameter k, for each pair
of nodes. As in the symmetric case, we will only consider
the defocusing (minus) nonlinearity. An asymmetric config-
uration can be realized by either having a variation in the
separation between waveguides or having a variation of the
core radius, although in the latter case, variations of the prop-
agation constant must be accounted for by adding a term of
the form k,c, to (14). Even in the idealized case of identical
separation, small variations could appear as a consequence
of imperfections in the fiber bundle construction, in which
case the parameters k, would be close, but not identical. This
allows for asymmetric solutions, as shown in Fig. 13. When
compared to the symmetric solution for uniform k in Fig. 3
(which has the same set of parameters except for the cou-
pling parameter k), the phases and amplitudes are similar in
magnitude, but the symmetry relations (7) have been broken.
The asymmetric solution in Fig. 13 is neutrally stable, since
its spectrum is imaginary, and small perturbations result in
oscillatory behavior about the unperturbed solution (Fig. 14;
compare to the right panel of Fig. 13). Although a rigorous
analysis of these asymmetric solutions is beyond the scope of
this work, the results of these numerical simulations suggest
that it is likely that small differences in the coupling coeffi-
cients k, do not affect stability, which would imply that small
imperfections in the physical model would not result in loss
of stability.

1 1
- -n=1
o5 e n=2
S N n=3
S 0 ° . ® 0.8¢ —p—d
°
-0.5—e
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°
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n 0 2T 4
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FIG. 13. Asymmetric standing-wave solution to (14) for N = 6,
ky =0.4mm™', and k, = 0.25 mm~! for all other n. Left panel
shows amplitudes a, and phases ¢, for solution at each node. Right
panel is intensity of solution |c,| versus z for nodes 1-4, which
is constant in z. Evolution in z computed using the fourth-order
Runge-Kutta method. ¢ = 0.25, w = 1 mm™".

VI. MULTIPULSES

Another broad class of solutions is multipulses, which
are solutions in which the energy is concentrated at multiple
nodes which are well separated in the ring (see Fig. 15 for
two examples where the two nodes with peak intensity occupy
opposite positions). In contrast with the solutions in Fig. 9,
where the intensity is concentrated at two adjacent nodes, the
energy in a multipulse is concentrated at sites which are far
apart. The solutions with two adjacent excited sites behave
like a single soliton (see [19] for a discussion of on-site and
intersite solitons in the discrete NLS equation), whereas mul-
tipulses behave like a collection of solitons which can interact
with their neighbors on either side [20].

Multipulses can be generated by parameter continuation
from the AC limit, similar to what was done in Sec. II. Al-
though a systematic study of the existence and stability of
multipulses is beyond the scope of this paper (see, e.g., [20]
for results on multipulses in the discrete NLS equation), we

° —n=1|
1 H - -n=2
=~ : n=3
g 0 . --n=4
1 H
o
. A A e A
) N aVaVaSVAS VoSV aAVaval
1 0 1 0 10w 207
Re A z (mm)

FIG. 14. Spectrum of linearization of (14) about asymmetric
standing-wave solution from Fig. 13 (left panel). Amplitude |c,| for
first four nodes versus z for evolution of perturbation of this solution
using the fourth-order Runge-Kutta scheme (right panel).
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FIG. 15. Amplitudes a, for double pulse solutions with two
bright nodes in opposite positions of the ring. N =8, ¢ = /4
(left panel) and N = 12, ¢ = 7 /6 (right panel). w = 1 mm™', k =
0.25 mm™.

present one example of a symmetric double pulse solution for
even N in which the two excited sites are opposite each other
in the ring. If N is a multiple of 4 and ¢ = 27 /N, there is
a pair of dark nodes halfway between the two bright nodes
(in both directions), as can be seen in Fig. 15. In fact, these
particular solutions are exactly two copies of the solutions
from Sec. III A spliced together.

Numerical spectral computations, as well as numerical
evolution of perturbations of these solutions, suggest that
these double pulse solutions are neutrally stable (Fig. 16).

VII. CONCLUSIONS

In this paper, we have demonstrated the existence of
standing-wave solutions to a system of equations modeling
light propagation in a twisted multicore fiber in the setting
of no gain or loss at the individual sites. Our theoretical
results extend previous work and add understanding on sta-
bility properties. It is both intriguing and fascinating that
the mathematical tool used here (continuation) to build exact
solutions discovers, in a natural way, a physical phenomenon
(AB suppression). The mathematical approach reveals the role
of symmetries, phase relations, and nonlinearity; the last one
is evident in what is used as the starting (k = 0) solution for
the continuation method. We find specifically that if the twist
parameter ¢ and the number of waveguides N are related
by ¢ = /N, then standing-wave solutions exist which are
a manifestation of the optical Aharonov-Bohm suppression,

2
1 $
< ]
g 0 [
H . :
9 e T
-1 0 1 0 107 20m

Re A z (mm)

FIG. 16. Spectrum of linearization of (2) about symmetric dou-
ble pulse solution with N = 12 and ¢ = /6 (left panel). Amplitude
|c,| for the first four nodes versus z for evolution of the perturbation
of this solution using the fourth-order Runge-Kutta scheme (right
panel). o = 1 mm~!, k = 0.25 mm~".

i.e., there is a node which is completely dark for all time.
These solutions exist for both N even and N odd, and are
all neutrally stable. While we emphasize the theory here,
suitable parameters and powers for experimental realizations
suggested in, for example, [17, Fig. 3] should apply for arange
of values shown here (e.g., N = 6-10). For future research,
it would be interesting to investigate whether such standing
waves exist for twisted optical fibers in more complicated ge-
ometries such as multiple concentric rings or Lieb lattices. We
could also systematically study multipulse solutions, as well
as investigate the existence and stability of breathers, which
are localized, periodic structures that are not standing waves.
(See [12] for examples of breather solutions in honeycomb
lattices.) We could also apply the techniques used here to the
PT-symmetric system with symmetric gain and loss, which
is studied in [9]. Finally, since these standing-wave solutions
are neutrally stable, it would be interesting to see if they could
be created experimentally in twisted multicore fibers.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
National Science Foundation under RTG Grants No. DMS-
1840260 (R.P. and A.A.) and No. DMS-1909559 (A.A.). The
authors would also like to thank P. G. Kevrekidis for his
helpful comments and suggestions for numerical simulations.

[1] S. Longhi, J. Phys. B 40, 4477 (2007).

[2] S. Longhi, Phys. Rev. B 76, 195119 (2007).

[3] S. Longhi, Opt. Lett. 30, 2137 (2005).

[4] R. Peierls, Z. Phys. 80, 763 (1933).

[5]1 M. Ornigotti, G. D. Valle, D. Gatti, and S. Longhi, Phys. Rev.
A 76, 023833 (2007).

[6] D. Loss, D. P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett.
69, 3232 (1992).

[7] R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S.
Russell, Sci. Adv. 2,e1601421 (2016).

[8] S. Longhi, Opt. Lett. 41, 1897 (2016).

[9] C. Castro-Castro, Y. Shen, G. Srinivasan, A. B. Aceves, and
P. G. Kevrekidis, J. Nonlinear Opt. Phys. Mater. 25, 1650042
(2016).

[10] J. L. Marzuola, M. Rechtsman, B. Osting, and M. Bandres,
arXiv:1904.10312.

[11] M. J. Ablowitz, C. W. Curtis, and Y.-P. Ma, Phys. Rev. A 90,
023813 (2014).

[12] Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Phys.
Rev. Lett. 111, 243905 (2013).

[13] P. S. Westbrook, K. S. Feder, T. Kremp, T. F. Taunay, E.
Monberg, J. Kelliher, R. Ortiz, K. Bradley, K. S. Abedin, D.
Au, and G. Puc, in Optical Fibers and Sensors for Medical Di-
agnostics and Treatment Applications XIV, edited by 1. Gannot,
International Society for Optics and Photonics (SPIE, 2014),
Vol. 8938, pp. 88-94.

[14] P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E.
Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, Furukawa
Electric Review 48, 26 (2017).

053505-8



STANDING-WAVE SOLUTIONS IN TWISTED MULTICORE ...

PHYSICAL REVIEW A 103, 053505 (2021)

[15] M. Parto, H. Lopez-Aviles, M. Khajavikhan, R. Amezcua-
Correa, and D. N. Christodoulides, Phys. Rev. A 96, 043816
(2017).

[16] I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S.
Kivshar, Phys. Rep. 518, 1 (2012).

[17] M. Parto, H. Lopez-Aviles, J. E. Antonio-Lopez, M.
Khajavikhan, R. Amezcua-Correa, and D. N. Christodoulides,
Sci. Adv. 5, eaau8135 (2019).

[18] E. J. Doedel, T. F. Fairgrieve, B. Sandstede, A. R. Champneys,
Y. A. Kuznetsov, and X. Wang, AUTO-07P: Continuation and
bifurcation software for ordinary differential equations, Techni-
cal Report, Concordia University Montreal, Canada, 2007.

[19] P. G. Kevrekidis, The Discrete Nonlinear Schrodinger Equation
(Springer, Berlin/Heidelberg, 2009).

[20] R. Parker, P. Kevrekidis, and B. Sandstede, Physica D 408,
132414 (2020).

053505-9



