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1. Introduction

It has been nearly 50 years since the discovery by Zakharov
and Shabat [1] of the integrability of the nonlinear Schrodinger
equation (NLS) and the corresponding soliton solutions, and 40
years since the first experimental demonstration by Mollenauer,
Stolen and Gordon of optical solitons propagating in fibers [2]. At
its most fundamental level, the NLS soliton represents the balance
of chromatic second order dispersion and the Kerr self-focusing
nonlinearity. The robustness of the soliton opened up new direc-
tions in both theoretical and experimental fronts that continue to
this day. Novel fiber designs and technological advances, which
led in particular to the invention of the photonic crystal fiber
(PCF) and waveguides on a chip, have enabled the engineering
of the chromatic dispersion resulting in new discoveries and dy-
namics beyond the NLS regime; most notably is the generation of
supercontinuum in a PCF. In this vein, recent experimental work
in silicon photonic crystal waveguides has produced for the first
time what is now known as pure quartic optical solitons (PQS) on
a chip [3]. The term “quartic” indicates that for this waveguide,
the leading order dispersion is fourth order. Spectral stability of
PQS was shown numerically by Tam et al. [4], as well as evolution
into PQS from Gaussian initial conditions. This is extended to a
more general model in [5] which contains both second and fourth
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order dispersion terms, as it is difficult to obtain either pure
quartic or pure quadratic dispersion experimentally. Our results
presented here provide a more rigorous study of this general
model, including, for the first time, results on the existence and
spectral stability of multi-pulse solutions.

Multi-pulses, which are multi-modal solitary waves resem-
bling multiple, well-separated copies of a single solitary wave,
have been an object of mathematical interest for many years. One
notable early example is the demonstration of stationary multi-
solitons in a generalized KdV equation by Gorshkov et al. [6].
The asymptotic method for constructing these multi-pulses was
further developed in [7], their stability is discussed in [8], and
the specific case of existence and stability of double pulses in
a 5th order KdV equation is studied in [9]. Existence of multi-
pulse solutions to a family of fourth-order, reversible Hamiltonian
equations was shown in [10] using the dynamics on the Smale
horseshoe set, and a spatial dynamics approach to the same
problem is found in [11].

Of particular interest is the stability of these multi-pulse struc-
tures in the case where the primary solitary wave is orbitally
stable. A first step is to study the spectrum of the linearization
of the underlying PDE about these solutions. As a motivating
example, if the underlying PDE admits a single continuous sym-
metry, such as translation or gauge invariance, the spectrum of
the primary pulse will contain an eigenvalue at the origin. The
spectrum of an n-pulse will then contain a finite set of eigen-
values near the origin [12,13], one of which will remain at the
origin due to the symmetry. Since these additional eigenvalues
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result from nonlinear interactions between the tails of neighbor-
ing pulses, we call them interaction eigenvalues. If the system is
non-Hamiltonian, e.g. a reaction-diffusion equation, an n-pulse
will generally have n — 1 interaction eigenvalues [13], whereas if
the system is Hamiltonian, there will typically be n — 1 pairs of
interaction eigenvalues [9,14,15] due to the additional eigenvalue
symmetry [16] (specific examples are considered below). Some
of these interaction eigenvalues may move into the right half
plane and cause the multi-pulse to become unstable. As long as
the essential spectrum does not enter the right half-plane, spec-
tral stability of multi-pulses is determined by these interaction
eigenvalues.

For semilinear parabolic equations with a single eigenvalue
at 0 from translation symmetry, these eigenvalues are com-
puted in [13] using Lin's method [17], an implementation of the
Lyapunov-Schmidt technique, to reduce the problem of finding
the eigenvalues near the origin associated with an n-pulse to
finding nontrivial solutions of an n x n matrix equation. To leading
order, this is equivalent to finding the eigenvalues of an n x n
matrix. Solving this matrix eigenvalue problem yields n eigenval-
ues near the origin, one of which remains at 0 due to translation
invariance. This method is extended in [18] to systems with
two continuous symmetries, translation and phase invariance, for
which the cubic-quintic complex Ginzburg-Landau equation is
a prototypical example. For this system, Lin's method reduces
the eigenvalue problem to a 2n x 2n matrix equation. It follows
that an n pulse has 2n eigenvalues near the origin, two of which
remain at 0 from the two symmetries. In certain Hamiltonian
systems with a single continuous symmetry, such as the discrete
nonlinear Schrodinger equation [15] and a fourth-order beam
equation [14], it has been shown that each additional pulse
in a multi-pulse structure gives rise to a pair of interaction
eigenvalues. In these cases, an n-pulse has 2n eigenvalues near
the origin; in addition to an eigenvalue at 0 with algebraic
multiplicity 2 from the symmetry, there are n — 1 pairs of nearby
interaction eigenvalues which are either real or purely imaginary.
A similar result has been shown for double pulse solutions in the
fifth-order KdV equation [9]. The fourth order nonlinear
Schrodinger model we consider in this paper is Hamiltonian
and has the same two continuous symmetries as in [18]. The
analysis combines the approaches in [18] and [15] to show that
an n-pulse has 4n eigenvalues near the origin; in addition to
an eigenvalue at 0 with algebraic multiplicity 4 from the two
symmetries, there are 2(n — 1) pairs of interaction eigenvalues
near the origin, which are either real or purely imaginary. Under
additional assumptions, which are also used to prove orbital
stability of the primary solitary wave, we show that there are n—1
pairs of real interaction eigenvalues and n — 1 pairs of imaginary
interaction eigenvalues. Since all multi-pulses have an eigenvalue
with positive real part, they are all unstable.

This paper is organized as follows. After a background section
on the equation of interest, we present results on the existence
and stability of the primary soliton solution in the general case
where both second and fourth order dispersion are included. This
includes the particular case of PQS. The second part of the paper
concerns multi-pulses. We first prove their existence, and then
study their spectral stability. We then present numerical exam-
ples, both spectral computations and timestepping simulations,
and this is followed by a brief discussion of conclusions and
directions for future work. The final section contains the proofs
for the spectral stability results.

2. Background

The following fourth-order generalization of the nonlinear
Schrodinger equation (NLS) with cubic nonlinearity

iu[+%”xxxx_%uxx+]/|u|zu:0 (1
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was recently investigated in [5] in a study of the properties
of solitary wave solutions under a combination of second and
fourth-order dispersion. (We use the independent variables (¢, x)
in place of (z, t), which is used in [3-5] and is common in the
optics literature). Classical NLS solitons are solutions when g, <
0 and B4 = 0. Pure quartic solitons (PQS) occur when g; = 0 and
Ba < 0, in which case u(x, t) satisfies the equation

iug + f_:_uxxxx + V|u|2u =0. (2)

Unlike ordinary NLS solitons, PQS have oscillatory, exponen-
tially decaying tails. Fourth-order nonlinear Schrodinger equa-
tions have been an object of interest for many years. Karpman
and Shagalov [19-21] introduced the equation ity + € Uyxxx + Uxx +
[u**u = 0 to account for the role of small fourth-order dispersion
terms in the propagation of intense laser beams in a bulk medium
with Kerr nonlinearity. It has standing wave solutions (known as
waveguide solutions in the nonlinear optics literature) which are
stable when ¢ < 2 and € < 0 and unstable when o > 4. Further
results concerning the existence of standing wave solutions are
presented in [22,23], and some global existence results can be
found in [24-26]. Exact solutions for specific parameters are given
in [27,28], and orbital stability of one of these solutions is proved
in [29]. There has been much recent interest in PQS due to the
their discovery in experimental media by Blanco-Redondo et al.
in 2016 [3]. The existence and spectral stability of PQS solutions
was shown numerically in [4], and the existence of solitary wave
solutions to the more general equation (1) in terms of the pa-
rameters S, and B, is discussed in [5]. We consider only the case
Ba < 0, which is the regime for which PQS exist [4] and which is
considered in [5].

~ Real-valued, standing wave solutions, L.e. solutions of the form
et y(x) with w > 0, satisfy the ODE

Pa B2

g oo — ?uxx+yu3—wu:0. (3)
which is a rescaling of [30]. For PQS, Eq. (3) can be written in
parameter free form by using the rescaling

0] ) 174
ux; w)= [—1 (—) X
Y [Bal

to obtain the equation

1. . -
- ﬁumx+u3 -0 =0. (4)

We observe that the power or photon number of PQS scales as
w?* compared to the »'/? scaling of classical NLS solitons. For
Ba < 0, the more general rescaling [5, Section VI|

1/4
U= (ZU, X:(M_w) X (5)
w [Bal

transforms equation (3) into the one-parameter equation
U™ +20U0"+U—-U?=0, (6)

where U’ denotes differentiation with respect to X, and

o= [ 4, ™)
\ 2aipa]

is a non-dimensional parameter characterizing the relative
strengths of the quadratic and quartic dispersion terms. In par-
ticular, o = 0 for PQS.

For ordinary NLS, an analytic solution can be obtained by the
inverse scattering transform [1]. For 84 < 0 and 8, < 0, an
analytic solution has been obtained by Karlsson and H&0k [28]
when o = 24ﬁ22/25|ﬂ4|, which corresponds to ¢ = —5/4 in
(6). The stability of the Karlsson-H&6k solution for 84 = —24,
B> = —2,and w = 4/25 is discussed in [29].
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Remark 1. In a recent conference presentation [31], it was
shown that by incorporating an intracavity programmable
pulse-shaper in a mode-locked fiber laser, one can manipulate the
net cavity dispersion by applying a phase to the pulse so that, to
leading order, the stationary pulse generated is modeled by the
higher-order NLS equation

d*u

_(!)ka +U.)H—}/u3 :O, (8)

where k > 6 is a positive, even integer, and the pulse profile
satisfies the scaling relation u(x; @) = \/gﬂ(w”kx).

3. Mathematical setup

Our analysis follows [32] and [16, Section 5.2]. Separating
real and imaginary parts, Eq. (1) can be written in standard
Hamiltonian form as

ou

— =& (u(t)), 9
ar JE(u(r) (9)
where u = (v, w)T, ] is the symplectic matrix

J= (_01 é) (10)

with J?2 = —I, and the energy € is given by

] o0
E(u) = E[OQ (f—:luxxlz+%lux|2+%lu\4) dx. (11)
The energy £ is invariant under the unitary rotation group T;(6¢),
given by
__(cos(@) —sin(f)
Ti(0) = (sin(ﬁ) cos(8) /° (12)

and the unitary translation group Ty(s), given by [T5(s)]u(-) =
u(-—s). These symmetries commute with J and have infinitesimal
generators

! O _1 ’ .
T{(0) = (] 0 ) =), TH0)=d. (13)
The corresponding conserved quantities are

1 [ 1 [
Q= _Ef ludx, Q= 5[ (vew — wyv) dx, (14)
which are the charge and momentum, respectively. We make the
following hypothesis regarding the well-posedness of (9), which
is the same as [32, Assumption 1].

Hypothesis 1. For each initial condition ug, there exists T > 0
depending only on K, where ||ug|| < K, such that the PDE (9) has
a solution u(t) on [0, T with u(0) = u.

Standing waves are solutions of the form T(wt )u(x), where u is
independent of t. A standing wave solution satisfies the equation
&'u) — w9i(u) = 0, which reduces to &'(u) + wu = 0 since
Q)(u) = —u. For real-valued standing waves, this is equivalent
to Eq. (3). For the remainder of this paper, we will be concerned
with solitary waves, which in this context are localized standing
waves. The following theorem gives a criterion for the existence
of real-valued, solitary wave solutions.

Theorem 1. There exists a real-valued, symmetric, exponentially
localized solitary wave solution ¢(x; w) € H*(R) N C3(R) to (3) if
either (i) B2 <0 and @ > 0, or (ii) f2 > 0 and @ > w,, where

_3B

we = . 15
2 |Bal 13)
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The linearization H = —% Ohoxx + %a,a +w — 3y ¢? of (3) about ¢
has exactly one negative eigenvalue with an even eigenfunction and
a simple kernel with the odd eigenfunction dy¢p(x; w).

Proof. The existence result is similar to [9, Theorem 2.1(i)]
(see in addition [22, Theorem 1.1] and [23, Theorem 1.2]). It
follows from [33] that a homoclinic orbit solution to the 4th
order nonlinear ODE r” + ur” — cr = f(r,r’,r") exists when
¢ < 0and p < 2/—c. (The required form of f is given in [33]).
The homoclinic orbit is a critical point of an energy functional
J(u), and the proof uses the mountain pass lemma and the
concentration-compactness principle. Changing variables using
(5), Eq. (6) is of this form with ¢ = —1 and & = 2o, thus
a solution Up(x) exists for ¢ < 1. It follows from the proof of
[9, Theorem 2.1(ii)] that the linearization dy + 2092 + 1 — 3UZ of
(6) about Uy has exactly one negative eigenvalue with an even
eigenfunction and a simple kernel with the odd eigenfunction
Ug. Exponential localization follows from the stable manifold
theorem. The result, and the specific value of w., follow upon
reversing the change of variables (5). O

Remark 2. The set of (w, B;) for which solutions to (3) exist can
be divided into two disjoint regions. For 8; < 0and 0 < @ < w,
the primary solitary wave solutions have exponentially decaying,
non-oscillatory tails. For @ > @, and all B,, the primary solitary
wave solutions have tails which are exponentially decaying and
oscillatory. See [5, Figure 2(a)] (the frequency @ is denoted by u
in that paper). In addition, we note that . = 0 for PQS, thus PQS
exist for all v > 0.

We make the following standard smoothness assumption (see, for
example, [34, Assumption 2]) concerning the solutions ¢(x; w) to

(3).

Hypothesis 2. The map o — ¢(x; @) from 7 to H3(R) is C!,
where Z is the interval for which the primary pulse solution
¢(x; w) exists.

Let B4 < 0 and B, € R, and choose @ > 0 such that the
primary pulse solution ¢(x) = ¢(x; w) exists by Theorem 1. From
this point forward, we will suppress the dependence on w for
simplicity of notation. The linearization of the PDE (1) about ¢ is
the linear operator J£(¢), where £(¢) : HX(R) C [*(R) — L*(R)
is given by

+
£(9) = (ﬁ 0 ¢)) . (16)
and

L£(¢) = _f_zaxxxx + %axx +ow— V(bz

£ (g) = _s_:axxxx + %axx +w— 3V¢2~

Both £ (¢) and £*(¢) are self-adjoint, thus their spectrum
is real. Since £1(¢) is the same as the linear operator # from
Theorem 1, £7(¢) has a single negative eigenvalue and a simple
kernel with eigenfunction dy¢. It is also straightforward to verify
that £ (¢)¢p = 0. We make the following hypothesis concerning
the spectrum of £7(¢).

Hypothesis 3. The operator £ (¢) has no negative eigenvalue
and has a simple kernel with eigenfunction ¢.

This hypothesis is proved in [29] for the specific case of one
of the Karlsson-Hé6k solitons [28]. It follows from Theorem 1,
Hypothesis 3, and the fact that £(¢) is diagonal and J is invert-
ible that the kernel of J£(¢) has geometric multiplicity 2. We
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can additionally verify that £"(¢)(—d,¢) = ¢. Since £ (¢) is
self-adjoint and ¢ L ker £~ (¢) by Hypothesis 3, there exists a
function z such that £ (¢)z = 9¢¢ by the Fredholm alternative.
For the classical NLS equation, z = 2—;2)«;’). We then have

0 dutp 0
o) (g) =0 sz () = (5):
I£(@) (3’5@5) —0.  Je(@) (2) - (f’;;b) .

thus the kernel of [£(¢) has algebraic multiplicity at least 4. To
show that there are no more generalized eigenfunctions in the
kernel of J£(¢), we will need one additional hypothesis.

(17)

Hypothesis 4. For each w such that a primary pulse solution

P(x; w) exists
1 [e.9)
M = 30 1B Irq) = f $)p(x)dx > 0, (18)

M = (3up, 2) 2 :f 2(x)dyp(x)dx > 0. (19)

The condition (18) is the Vakhitov-Kolokolov stability crite-
rion [35]. The two conditions in Hypothesis 4, together with
Hypothesis 3, are sufficient to prove orbital stability of the solitary
wave solution ¢, as shown in the following lemma.

Lemma 1. Assume Hypotheses 2, 3, and 4. Then the primary
solitary wave solution ¢(x; w) is orbitally stable.

Proof. This follows from [16, Section 5.2.2], which is an extension
of the techniques in [32]. Since £1(¢) has a single negative
eigenvalue by Theorem 1, £ (¢) has no negative eigenvalues by
Hypothesis 3, ] is invertible, and £(¢) = diag(£*(¢), £ (p)), L(¢p)
has a single negative eigenvalue. Next, we form the symmetric
matrix D [16, (5.2.53)], defined by Dy = (2(¢)'s;, s;), where
si = J'T/(0)¢ for j = 1,2. Using (13), s; = (—¢,0)" and
s2 = (0, 3x¢), thus L£(¢) 's1 = (3¢, 0)" and L(¢) 'sz = (0,2)".
It follows that D = diag(—M, M). By Hypothesis 4, D has a single
negative eigenvalue. Since n(Z(¢)) = n(D), i.e. £(¢) and D have
the same number of negative eigenvalues, the primary solitary
wave solution ¢ is orbitally stable by [16, Theorem 5.2.11]. O

Remark 3. We can equivalently assume Hypothesis 3, the
Vakhitov-Kolokolov stability criterion M > 0, M_# 0, and the
orbital stability of the primary solitary wave. If M < 0, then it
then follows from the Jones-Grillakis instability index [36], an
extension of Hamiltionian-Krein index theory [16, Section 7.1],
that there is an eigenvalue with positive real part [16, Theorem
7.1.16], which contradicts orbital stability. Thus we must have
M = 0.

It follows from Hypothesis 4 that the algebraic multiplicity of
the kernel of J£(¢) is exactly 4.

Lemma 2. Assume Hypotheses 3 and 4. Then the kernel of | £(¢)
has geometric multiplicity 2 and algebraic multiplicity 4.

Proof. We showed above that ker/Z(¢) has geometric multi-
plicity 2 and algebraic multiplicity at least 4. All that remains is
to show that there can be no other generalized eigenfunctions.
If Je(ou = (9,¢.0)7 has a solution, then £~w = d,¢ has
a solution, which implies 3,¢ L ker(£ (¢)) = span{¢} by
the Fredholm alternative and Hypothesis 3, contradicting (18). If
Je(pu = (0, 2)" has a solution, then £7v = —z has a solution,
which implies z L ker(£"(¢)) = span{d,¢} by the Fredholm
alternative and Theorem 1, contradicting (19). O
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We now discuss the spectrum of J £(¢). The spectrum of | £(¢)
can be divided into two disjoint sets: the essential spectrum
is the set of x € C for which J£(¢) — AT is not Fredholm
[16, Section 3.1], and the point spectrum is the set of L € C for
which ker(J £(¢)—AT) is nontrivial. To find the essential spectrum,
which depends only on the background state and is independent
of the solution ¢ we are linearizing about, [ £(¢) is exponentially
asymptotic to the linear operator J£(0), given by

0 L
jﬁ(o) - (_LD 00) s Lo= —%axxxx + %axx + w. (20)

The eigenvalue problem J£(0)v = Av is equivalent to (ﬁ%—l—kz)p =
0. By [16, Theorem 3.1.13], the essential spectrum is given by the
curves

—é(ik)“ - @(ik)z +w 2 +22=0
24 2
from which it follows that
Oess — {if (—f;—:k4 — %kz +w) ke R} .
If B4 < 0 and B2 < 0, the essential spectrum is given by

Ouss = (ki 1 k € R, k] > w}, 21

keR,

which is purely imaginary, bounded away from the origin, and
independent of 84 and S,. In particular, this is the case for PQS.
If B4 <0, By = 0, and o > a, the essential spectrum is given by

Oess = {ki 1 kK €R, |k] > w — wc}, (22)

which is also purely imaginary and bounded away from the
origin, but does depend on B4 and 5, via o.

We now turn to the point spectrum of JZ(¢). By Lemma 2,
the kernel of JZ(¢) is given by (17). Since the primary solitary
wave is orbitally stable by Lemma 1, no element of the spec-
trum of J£(¢) can have positive real part. Since the PDE (1) is
Hamiltonian, all elements of the spectrum of J£(¢) must come
in quartets +« £ Bi [16, Proposition 7.0.1], thus the spectrum
of J£(¢) is contained in the imaginary axis. For PQS, there is
an additional pair of imaginary eigenvalues located right before
the essential spectrum boundary (approximately £0.9972wi for
Ba = —1), which corresponds to an internal mode of the solitary
wave [4]. For B, # 0, there can be multiple pairs of internal
mode eigenvalues (an example of two pairs of internal mode
eigenvalues is shown in [5, Figure 9]). By Lemma 1, these internal
mode eigenvalues must be purely imaginary.

4. Existence of multi-pulse solitary waves

A multi-pulse is a multi-modal solitary wave resembling mul-
tiple, well-separated copies of the primary solitary wave. To prove
the existence of multi-pulse solutions to (3), we will reframe the
problem using a spatial dynamics approach. From this perspec-
tive, the primary solitary wave is a homoclinic orbit connecting
the unstable and stable manifolds of a saddle equilibrium at
the origin. A multi-pulse is a multi-loop homoclinic orbit which
remains close to the primary homoclinic orbit. Letting U =
(U, Uz, Uz, ta) = (u, dyu, 97u, %Hfu), we rewrite Eq. (3) as the
first order system

5]
U’ = F(U) i
= = 24
Bl
ol — yu3

This system has a conserved quantity

1 1
—us+ &uz - Zu‘} + -oul,  (24)

H(uq, us, us, Ug) = —Uglly —
(U1, uz, us, ug) R 3
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which we obtain by multiplying (3) by uy and integrating once.
F(0) = 0, and the characteristic polynomial of DF(0) is

24
p(t) = t* — 12@52 S
Ba Ba
which has a quartet of complex eigenvalues *=athi when w > w,
where . is defined in Theorem 1. For @ = w,, U = 0 is

a hyperbolic saddle equilibrium of (23) with two-dimensional
stable and unstable manifolds which intersect to form a homo-
clinic orbit. The exponentially localized primary pulse solution
corresponding to this homoclinic orbit will have oscillatory tails,
with the frequency of oscillations approximately equal to b. We
have the following result concerning the existence of multi-pulse
solutions, which follows immediately from [11, Theorem 3.6].

Theorem 2. Assume Hypotheses 1 and 2, and fix B4 < 0 and
w > we Where w. is defined in Theorem 1. Let ¢(x) be the real-
valued, symmetric, exponentially localized primary pulse solution to
(3) from Theorem 1, and let U(x) = ((x), dqxd(x), 87 p(x), 3;h(x))
be the corresponding homoclinic orbit solution to (23). Let +a = bi
be the eigenvalues of DF(0), with a > 0 and b > 0. Then for any

(i)n>2
(ii) Sequence of nonnegative integers {kq, . ...
one of the k; € {0, 1}
(iii) Sequence of phase parameters {01, ...
0 =1

ky_1}, with at least

0.} € {—1, 1", with

there exists a nonnegative integer mg such that for any integer m
with m > my, there exists a unique n—modal solution U,(x) to (23)
which is defined piecewise via

i—1 ~
_JeUX) + U (x) x € [=Xi1. 0]
Un (X 2 ;X") - {GiU(x) +0(x) xe[0,X] (25)

fori = 1,...,n, where Xo = X, = oo. Uniqueness is up
to translation and multiplication by T(6). The distances between
consecutive peaks are given by 2X;, where

X~ %(zm+ki)+5<. (26)

and X is a constant. In addition, we have the estimates

10l < Ce™Fmin
U7 (%) = 641U (=X;) + O 2%mn) (27)
Upiy(—Xi) = 6U(X;) + O *Pmin),

where X, = min{Xy, ...X,_1}, which hold as well for all deriva-
tives with respect to x.

Proof. Since the spectrum of DF(0) is a quartet of eigenvalues
+a=+bifor w > w., Eq. (23) has a conserved quantity (24), and the
Melnikov integral M = [ ¢Zdx is positive, the result follows
from [11, Theorem 3.6], with the straightforward modification
that the multi-pulse is constructed from copies of U(x) and —U(x).
The estimates (27) follow from [13,37]. O

5. Spectrum of multi-pulse solitary waves

Let U(x) = (p(x), dp(x), 32(x), %ajqb(x)) be the primary
homoclinic orbit corresponding to the primary pulse ¢(x), and let
Un = (Pn(X), Bxpn(x), d2¢pn(x), g—jafcpn(x)) be a multi-loop homo-
clinic orbit solution to (23) constructed according to Theorem 2.
The first component ¢, of U, is a multi-pulse solitary wave
solution to (3). As in [13,18], we will locate the eigenvalues near
the origin of the linearized operator J£(¢,). As shown above in
(17), J£(¢) has two eigenfunctions in the kernel from the gauge
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symmetry and translational invariance, as well as two additional
generalized eigenfunctions. [ £(¢,) will also have two eigenvalues
in the kernel from the same symmetries. It remains to locate the
interaction eigenvalues, which arise from nonlinear interactions
between the tails of neighboring pulses in the multi-pulse struc-
ture. Once again using a spatial dynamics approach, we rewrite
the eigenvalue problem JZ(¢,)v = Av as the first order system

V'(x) = K(¢n)V(x) + 1B V(). (28)

where

K*(¢,) O 0 B
K(d)n) - ( 0 I<7(¢n)) . Bi= (_B 0) s

( 0 1 0 O
B 0 0 1 0
K~ (¢n) = 0 0 0 ili_4 )
4
w—yp; 0 % 0
( 0 1 0 0 00 0 0
0 0 1 0 00 0 0
4
w—3ygl 0 2 0 1000
The associated variational equation
V(x) = K(¢)V(x) (29)

has two linearly independent, exponentially decaying solutions
Q(x) = (U'(x),0)" and Q(x) = (0, U(x))". The corresponding
adjoint variational equation

W'(x) = —K(¢)*'W(x) (30)

has two linearly independent, exponentially decaying solutions
Q*(x) = (¥'(x),0)" and Q*(x) = (0, ¥(x))", where
o Bas B2 Ba o B2
v(x) —( T2 MO0 + S ib(x), S2320(x) — Sp(0)
_Pa
24

The following theorem, which is analogous to the results
in [18, Section 3.4] and involves the same tri-diagonal matrix as
in [13, Theorem 2], reduces the problem of locating the eigenval-
ues of [ £(¢y,) in a ball around the origin in the complex plane to
finding the determinant of a 2n x 2n matrix which is, to leading
order, block diagonal. The proof is given in Section 8.1.

dxp(x). ¢(X}) . (31)

Theorem 3. Assume Hypotheses 1, 2, 3, and 4. Let U(x) be the pri-
mary homoclinic orbit from Theorem 1, and let U,(x) be an n-pulse
solution constructed according to Theorem 2 with phase parameters
{61, ....0,}) and pulse distances X;, ..., X,_;. Let £=a & bi be the
eigenvalues of DF(0), with a > 0 and b > Q. Then there exists § > 0
with the following property. There exists a bounded, nonzero solution
V(x) of (28) for |i| < & if and only if

E(A) =detS(A) =0, (32)
where S(A) is the 2n x 2n block matrix
A+ AZMI 0
S(A) = ~ R(A). 33
@) ( 0 (a2+b2)A—A2MI)+ () (33)
The tri-diagonal matrix A is defined by
—aq aq
a; —ay — dap az
A— az —@z —dz a3

Un—1  —0Un-1
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Fig. 1. Pure quartic solitary wave solution ¢(x) to (3) with 8, = 0, By = —1, @ = 1, and y = 1. (left panel). Plot of loge¢(x) vs. x (right panel) showing

exponentially-decaying oscillatory tails. Spatial discretization is a uniform grid with N = 1024 grid points, and we use periodic boundary conditions.

where
a;i = Bifi 1 (¥ (Xi), U(—=Xi)),

W(x) is defined by (31), and the constants M and M are defined
in Hypothesis 4. The remainder term R(A) is analytic in A and has
uniform bound

RO < € (AI(12] + e7min)? - g~ CertrVnin)
where y > 0.

The interaction eigenvalues can be computed using the eigen-
values of the matrix A from Theorem 3. It follows that all multi-
pulse solutions have a positive, real eigenvalue and thus are
unstable.

Corollary 1. Assume the same hypotheses as in Theorem 3. Let
Un(x) be a n-pulse constructed using Theorem 2. Then there are 2(n—
1) pairs of interaction eigenvalues iy, ...Ap_1 and iq,...hnp 1,
given by

[ 14 - -
li: MI+O(E (2(1+}’1Xrnln)

where {1, ..., un—1. 0} are the real, distinct eigenvalues of A. One
of each pair {X\i, A;} is real and the other is purely imaginary, thus
there are n — 1 positive real eigenvalues. There is also an eigenvalue
with algebraic multiplicity 4 and geometric multiplicity 2 at the
origin.

i=1,....n—1

(34)

Intuitively, the instability result is a consequence of the op-
posite signs of the A% terms on the diagonal in (33). This follows
directly from the Hamiltonian structure of the PDE (9), in particu-
lar the opposite signs of the off-diagonal terms in the symplectic
matrix J. Finally, we compute the interaction eigenvalues of a
2-pulse solution U,(x) explicitly.

Corollary 2. Assume the same hypotheses as in Theorem 3. Let
U, (x) be a 2-pulse constructed using Theorem 2 with pulse distance
Xy and phase parameters 01, ,. Then there are four interaction
eigenvalues associated with U(x), which are, to leading order, given

by
2 5 | —2(a? + b2
=4/ i M
M M

(35)

———e— : ° @S
-3 2 -1 0 1
‘ - ' ° @O
-3 -2 -1 0 1

Fig. 2. Point spectrum (red dots) and essential spectrum (blue open circles) of
£'(¢) (top) and £ (¢) (bottom) for PQS solution to (3). B2 = 0, By = —1,
w =1, and y = 1. For these parameters, the point spectrum of £'(¢) contains
an additional internal mode eigenvalue just to the left of the essential spectrum
border, which is not shown.

where ay = 6162{¥(X1), U(—X1)). One pair is real and one pair
is purely imaginary. There is also an eigenvalue with algebraic
multiplicity 4 and geometric multiplicity 2 at the origin.

Remark 4. In addition, the internal mode eigenvalues of the
primary pulse will duplicate as pulses are added to the multi-
pulse structure. For example, for the pure quartic solitary wave,
the 2-pulse will have two pairs of internal mode eigenvalues.
Since the 2-pulse is unstable, these internal mode eigenvalues
have no additional effect on stability.

6. Numerical results
6.1. Primary pulse

To construct the primary pulse solution ¢(x), we start with
the known solitary wave solution for NLS and gradually modify
the parameters f; and f4, solving for the new solitary wave
solution at each step using a Newton conjugate-gradient method
[38, Chapter 7.2.4] implemented in MATLAB. To obtain the pure
quartic solitary wave for 84 = —1 (Fig. 1), we perform this
procedure along the line segment connecting (S, B4) = (—2,0)
and (B2, fa) = (0, —1).

The spectrum of the linear operators £*(¢) and £ (¢) is
shown in Fig. 2, which confirms the results of Theorem 1 and
validates Hypothesis 3. The point spectrum of £~ (¢) contains an
additional positive eigenvalue which does not affect the results
above. In addition, we can verify that M > 0 and M > 0 from
Hypothesis 4, from which it follows by Lemma 1 that the primary
solitary wave ¢ is orbitally stable.

To determine the spectrum of the linearization about the pri-
mary pulse, we construct the linear operator | £(¢) using Fourier
spectral differentiation matrices with periodic boundary condi-
tions and compute the eigenvalues using Matlab's eigenvalue
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Fig. 4. First four double pulse solutions (k; = 0, 1, 2, 3) constructed from two pure quartic solitary wave solutions ¢(x) to (3). In-phase double pulses (left panel),
opposite phase double pulses (right panel). Dashed blue lines correspond to k; even, solid red lines correspond to ky odd. B =0, f4s = -1, @w=1,and y = 1.

solver eig (Fig. 3, left panel). Since the spectral problem is posed
on a periodic domain, the essential spectrum is discrete. It is a
finite set of points in this case since spatial discretization ap-
proximates the eigenvalue problem (28) with an 2N x 2N matrix
equation, where N is the number of grid points. We also note the
presence of a pair of internal mode eigenvalues on the imaginary
axis.

6.2. Construction of multi-pulses

To construct double pulses, we glue together two copies of
the primary pulse at the pulse distances predicted by Theorem 2
and solve for the double pulse solution using the same Newton
conjugate-gradient method we used above. The first four double
pulse solutions are shown in Fig. 4.

Arbitrary multi-pulses can similarly be constructed (Fig. 5).
Although the distances between consecutive peaks is constrained
by Theorem 2, these distances do not have to be equal (Fig. 5,
right panel).

6.3. Spectrum of double pulses

For both in-phase and out-of-phase double pulses, the spec-
trum of ] £(¢-), the linearization about the double pulse solution
¢-, contains a pair of purely imaginary interaction eigenvalues
and a pair of real interaction eigenvalues (Fig. 6), which verifies

the result of Corollary 2. The essential spectrum eigenvalues, as
expected, are on the imaginary axis and have magnitude 1| >
. There is also a duplication of the internal mode eigenvalues
(Fig. 7); these appear to be purely imaginary, but they do not
affect stability since there is always an interaction eigenvalue
with positive real part (see Fig. 6).

For a double pulse solution ¢, let i and +i be the inter-
action eigenvalues from Corollary 2, and let v(x) and v(x) be the
corresponding eigenfunctions. The eigenfunction v(x) resembles a
linear combination of translates of (0, ¢)", and the eigenfunction
9(x) resembles a linear combination of translates of (dy¢, 0)"
(Fig. 8). (See Section 8 for the construction of these eigenfunctions
using Lin's method). For in-phase double pulses, A is real and X is
imaginary when kg is even, and A is imaginary and  is real when
ko is odd. These are reversed for out-of-phase double pulses.

Finally, we verify the formulas for the interaction eigenvalues
% and i from Corollary 2 by plotting the log of the relative
error between the leading order term in (35) and the eigenval-
ues computed by Matlab versus the pulse separation distance X
(Fig. 9).

6.4. Timestepping

We perform numerical timestepping experiments to charac-
terize the nature of the instability for multi-pulse solutions to (1).
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Since the multi-pulses we constructed above are standing waves
with frequency w, we rewrite (1) in a co-rotating frame as

Uy zi(éuxxxx_ ﬁuxx_mu‘i']/“ﬂz“)a (36)

24 2
so that the multi-pulses are equilibrium solutions to (36). For the
timestepping scheme, we use a split-step Fourier method [39,40]

ux.t+h)=F i (B2 (2120 —0) (eih\u(x,rllzu(x, t))] ,

(37)

where h is the time step size, k is the frequency in Fourier space,
and the Fourier transform 7 is implemented using the fast Fourier
transform.

For double pulse solutions ¢, based on the eigenfunctions we
computed in the previous section, we expect to see perturbations
evolve either in the distance between the two peaks, correspond-
ing to the eigenfunction v(x), or in the phase difference between
the two peaks, corresponding to the eigenfunction v(x). (See
[9, Figure 9] for timestepping results for double pulses in the
5th order KdV equation; in that case, there is a single continuous
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symmetry in the underlying system, and perturbations evolve in
the distance between the two peaks).

Fig. 10 shows timestepping results for the first and second in-
phase double pulses. For ko = 0 (Fig. 10, left column), 4 is real
and A is imaginary. When the two peaks are pulled apart (Fig. 10,
top left), they oscillate briefly about the equilibrium position
before the structure loses stability. The angular frequency of these
oscillations (approximately 0.1067) is within 2% of the imaginary
part of the small, purely imaginary eigenvalue (0.1098i), which
indicates that these oscillations are the result of this interaction
eigenvalue rather than the internal mode eigenvalue of the base
pulse. When the two peaks are rotated in opposite directions
(Fig. 10, middle and bottom left), the phase difference between
the peaks continues to grow. _

For kg = 1 (Fig. 10, right column), A is imaginary and A is
real. When the two peaks are pulled apart (Fig. 10, top right),
they repel each other and travel in opposite directions with
equal speeds. This behavior resembles that of a pair of solitons.
(See the top left and bottom panels of [9, Figure 9] for similar
behavior in the 5th order KdV equation). When the two peaks
are rotated in opposite directions (Fig. 10, middle and bottom
right), the phase difference between peaks briefly oscillates about
0 before the structure loses stability. The angular frequency of
these phase oscillations (approximately 0.0180) is also within 2%
of the imaginary part of the small, purely imaginary eigenvalue
(0.0183i), which indicates that these oscillations are the result

of this interaction eigenvalue. For in-phase double pulses with
k even, the timestepping results are similar to those in the left
column of Fig. 10, and for in-phase double pulses with k odd, the
timestepping results are similar to those in the right column of
Fig. 10. This is reversed for out-of-phase double pulses.

7. Conclusions and future directions

In this paper, we studied single and multi-pulse solitary wave
solutions to a general nonlinear Schrédinger equation with both
second and fourth-order dispersion terms. We first gave crite-
ria for the existence of a primary soliton solution in terms of
the parameters of the system, and provided numerical verifica-
tion for hypotheses leading to orbital stability of the primary
pulse. For the classical NLS equation, Hypothesis 3 follows from
Sturm-Liouville theory. It may be possible to use a tool such
as the Maslov index to prove this result for the fourth-order
equation (see, for example, [41-43]). The Maslov index could also
be used as an alternative technique for characterizing the spectra
of multi-pulses [44]. Our theoretical results compare well with
experimental pulses reported in [3] in two key aspects. From
[3, Figure 2b] (for power 0.7 W), the flat phase across the pulse
is consistent with the theoretical ansatz leading to Eq. (3), and
oscillations observed in the experimental frequency domain are
consistent with the theoretical proof of oscillatory tails. To extend
the model to more accurately capture experimental results would
require adding linear and nonlinear loss terms. More recent ex-
perimental work in the setting of laser optics [45] overcomes
these losses. Here, the authors demonstrate that the energy of
these pulses is proportional to the third power of the inverse
pulse duration, which is consistent to the scaling we use leading
to Eq. (6).

We then constructed n-pulse solutions by splicing together
multiple copies of the primary pulse, and reduced the problem of
finding the small eigenvalues resulting from interaction between
neighboring pulses to that of computing the determinant of a
2n x 2n block matrix. Under the same assumptions which lead
to orbital stability of the primary pulse, we showed that all
multi-pulse solutions are unstable. To our knowledge, there are
no experimental results on n-solitons. It would be interesting
to see if future work on lasers [45] could produce n-solitons
with cavity round-trip separation that would allow our instability
predictions to be verified. It would also be interesting to see
experimental results on the propagation of pulse trains where the
distance between subsequent pulses is small. In future research
we could investigate solitons and multi-pulses in higher order
NLS equations, as discussed in [31]. We expect that these results
would hold for these higher order variants, and that all multi-
pulse solutions would similarly be unstable. We could also study
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with time step h =0.001. f =0, fa= -1, w=1,and y = 1.

generalizations to other nonlinearities. Finally, this equation rep-
resents an idealization of the experimental situation since energy
is always conserved. A more realistic model might incorporate
gains and losses of energy in the laser cavity, and it is possible
that stable multi-pulses could exist in such a scenario.

8. Proof of stability results
8.1. Proof of Theorem 3

The proof is adapted from [18, Section 3.4] and the proof
of [13, Theorem 2], and uses an implementation of the
Lyapunov-Schmidt reduction known as Lin’s method. It follows

10

from (17) that

YOOI = K(en)Y (%), [Z(X)]" = K(¢n)Z(x) + B1Y(x)

-~ ~ - - ~ 38
[Y(X) = K(@a)Y(x),  [Z(x)]" = K(¢n)Z(x) + B1Y(x), G8)
where

_ T _ T
Y(x) = (0, Up(x))", Z(x) = (8,Un(x), 0) (39)

Y(x) = (8,Un(x), 0)T,  Z(x) = (0, Z,(x)),

Zy(x) = (2p(x), Dgzn(X), DZ24(X), g—jafzn(x)), and the first compo-
nent z,(x) solves £ (¢n)za = ¢;. The analysis is identical to that

of [18], except the piecewise ansatz for the eigenfunction also
involves Z(x) and Z(x) as in [15]. Writing the functions (38) in
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piecewise form as with (25), we take the ansatz

VEX) = di(YE(x) + AZE(x) + di Y5 (x) + 2Z5(x) + WiE
i=1,...,n, (40)

where V" € C°([—X;_4.0],C®) and V;* € C°(J0. X;]. C®). Substi-

tuting (40) into (28) and simplifying using (38), the remainder
functions Wi.i(x) solve the equation

WE(x) = K(dn)WS(x) 4+ A2diBZ (%) + 12diBZ(x)

; i=1,....n.

(41)
Following [13,18], we obtain a unique piecewise solution Wfi(x)
which generically has n jumps at x = 0 in the direction of
Q*(0) b Q*(0). Using the definitions of Q*(x) and Q *(x) together
with (27) and [18, (3.19)], these jumps are given by
& = Oi (W(Xi), U(—=Xi))(dit1 — di)
+ i1 (W(—Xi1), UXi—1))(di — di-1)

+ 3264 f (W), Ba,U))dy + O((A] + e mn)?)

oo

B - - 42
£ = By (), U'(=X)(digs — ) (42)
+ 0 (W (—Xi0), U (X)) (di — diy)
226 f (W), BZ(y))dy + O(([1] + e~ “nin)3),
where Z(x) = (z(x), 8yz(x), 92z(x), gj 82z(x)). By symmetry,
Y(—x)= —R¥(x), U(—x)=RU(x), (43)

where R is the standard reversor operator

R(uy, Uz, us, ug) = (U1, —Uz, U3, —Uy),
thus
(W (—Xi-1), UXi1)) = —(¥(Xi1), U(—Xi-1))

) , (44)
(W(=Xi), U'(Xi1)) = —(&'(Xio1), U'(—Xi-1)).

Finally, we relate (¥(X;), U(—=X;)) and (¥'(X;), U'(—=X;)). Since
DF(¢) K*(¢), w(x) is the unique bounded solution to the
adjoint equation W’(x) = —DF(¢)*W(x). Thus by [ 13, Lemma 6.1],
with ¥/'(x) in place of ¥(x), p in place of ¢, and no parameter L,

{(W'(x), U(—x)) = (¥'(—x), U(x)) = se *®sin(2bx + p)

+ O(ef(zwy)x) (45)
(W'(x), U'(—x)) = ('(x), U'(—x)) = —se ™ (b cos(2bx + p)
—asin(2bx + p)) + O(e~ etk (46)

where s > 0 and y > 0. Differentiating (¥ (—x), U(x)) with
respect to x, since the operator dy is skew symmetric,

d

(W0, U(=x) U(—x)).
X

thus we can integrate (45) by parts to get

= 2(¥'(x),

(W(x), U(—x)) = — se 2% (b cos(2bx + p)

2 + bZ
+asin(2bx + p)) + Oe™

In the proof of [13, Theorem 3], the distances X; are chosen to
solve se?%isin(2bX; 4+ p) = O(e ety thus for x = X; we
have
(W'(X0), U'(=X)) = (® + D)W (X:), U(=X)) + Ofe™ P tr ). (47)
Using (47) and (44), multiplying by 6;, and using the definition of
B, equations (42) simplify to the jump conditions
& = 06 1 (W (Xi), U(=X))(diy1 — di)

— O 10i{(¥ (Xi—1), U(—=Xi—1))(d; — di-1)

2a+yJXJ

11
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+A2f¢ Dy

+ O |A‘|(|A“ +e llxmm) +e (2‘1+71Xmm)
&= (a +b2)6,-6f+1< (X0, U(=X) (i g — )
— (@ 4 ") a8 (¥ (Xin), U(=Xi))(di — ;1)

e f By0(y)2(y)dy

+ O (II(12] + e Xnin)? g Gty

which we write in matrix form as in the statement of the theo-
rem.

8.2. Proof of Corollaries 1 and 2

For Corollary 1, let {1, ..., ttn—1, 0} be the eigenvalues of A,
which are real and distinct as in the proof of [15, Theorem 5].
Following the steps in that proof and using the rescaling in
[13, Theorem 3], there are 2(n — 1) pairs of interaction eigenval-
ues, given by (34), which are either real or purely imaginary by
Hamiltonian symmetry. There is also an eigenvalue with algebraic
multiplicity 4 at the origin. Since M > 0 and M > 0 by
Hypothesis 4, one of each pair A;, 4; is real and the other is purely
imaginary. Corollary 2 is the specific case n = 2, where the
nonzero eigenvalue of A can be computed directly.
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