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Abstract

We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg
atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the
optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from
noticeable to highly dominant when compared with natural decay. The PI behavior is governed by
the generally rapid decrease of the PI cross sections as a function of angular-momentum (¢),
lattice-induced ¢-mixing across the optical-lattice PECs, and interference of PI transition
amplitudes from the lattice-mixed into free-electron states. In GHz-deep lattices, /-mixing leads to
a rich PEC structure, and the significant low-¢ PI cross sections are distributed over many
lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-¢ PECs
are essentially /-mixing-free and maintain large PI rates, while atoms on high-¢ PECs trend
towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial
for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in
shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing
applications of lattice-confined Rydberg atoms.

1. Introduction

Rydberg atoms in optical lattices and traps have gained interest in the fields of quantum computing and
simulations [1-4], quantum control [5], and high-precision spectroscopy [6—8], as the lattice confines the
atoms and extends interaction times. However, the binding energy of Rydberg atoms is several orders of
magnitude below the photon energy hw of commonly used optical-lattice fields. Optical photoionization
(PI) of the Rydberg valence electron leads to lifetime reduction and decoherence. Lattice-induced PI can
broaden radio-frequency (RF) transitions between Rydberg states and limit the fidelity of Rydberg-atom
quantum-control and -simulation schemes that involve coherences in the RF domain. The PI can also
degrade optical coherences between ground and Rydberg states that can be induced by <1 kHz-linewidth
lasers. Such lasers are becoming more widely used in metrology [9—11] and may become useful in research
involving long-lived, lattice-trapped Rydberg atoms. A characterization of PI in Rydberg-atom optical
lattices will be helpful for ongoing and emerging Rydberg-atom applications.

A Rydberg atom in a laser field is subject to the ponderomotive, e?A*(r)/(2m.), and the eA(r) - p/m.
interactions, with e, m,, 1, p, and A(r) denoting the magnitude of the fundamental charge, electron mass,
electron position and momentum in the laboratory frame, and the position-dependent vector potential of
the field, respectively [12]. Interplay between these two interactions has previously been discussed in
references [13—15] in the context of above-threshold ionization. In an inhomogeneous light field, such as
an optical lattice, the ponderomotive A” term generates an optical force on the Rydberg electron that
depends on the intensity gradient of the optical-lattice interference pattern and its overlap with the spatial
distribution of the Rydberg-electron wavefunction. Effects of the ponderomotive force on free electrons in a
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standing-wave laser field were studied before in references [16, 17]. The Rydberg electron is quasi-free,
allowing the ponderomotive force to enable optical-lattice traps for Rydberg atoms [18, 19]. The spatial
period of Rydberg-atom optical lattices, which is on the order of the laser wavelength ), is similar to the
diameter of the trapped atoms, a situation that differs from most optical lattices, in which the atoms are
point-like relative to A\. A ponderomotive optical lattice couples Rydberg states over a wide range of
electronic angular momenta, ¢, [20, 21], affording capabilities in high-¢ Rydberg-state initialization [5, 21]
and Rydberg-atom spectroscopy free of selection rules for ¢ [20, 22]. In the present analysis, we expand
upon earlier work by including lattice-induced Rydberg-atom PI in ponderomotive optical lattices with
strong /- and j-mixing. Our model describes PI-induced decay in the lattice, as required, for instance, in the
aforementioned quantum-control and computing applications.

Optical and black-body-radiation-induced PI result from the A - p-term [12]. Here we investigate
laser-induced PI of Rydberg atoms trapped in an optical lattice. In section 2, we derive PI cross sections and
rates for Rydberg atoms in plane-wave light fields and extend the results to Rydberg atoms in optical
lattices. In section 3, we obtain equations for the potential energy curves (PECs), the adiabatic Rydberg
states, and their PI-induced decay rates in the lattice. In the examples in section 4, we focus on rubidium
Rydberg atoms in a one-dimensional lattice formed by counter-propagating laser beams of 1064 nm
wavelength. The lattice strength is characterized by the magnitude of the ponderomotive interaction relative
to the unperturbed Rydberg-level separations. We present results for PECs and lattice-induced PI of
¢-mixed Rydberg atoms in a strong optical lattice, and of Rb 50F atoms in a weaker, /-mixing-free optical
lattice. In the appendix, we discuss fundamental aspects of optical PI of Rydberg atoms.

2. PI of Rydberg atoms

2.1. Basic PI cross sections
The lowest-order transition rate between atomic states due to an interaction Hiy is given by Fermi’s golden
{f|Hint|i)|*p(€), with final-state energy € and density of final states p(¢) [12]. For Pl in a

27
rule, I' = %

plane-wave field, it is Hi,, = eA - p/m., and the final state | f) is a free-electron state. We normalize the
free-electron states per unit energy, i.e. ( f |f) = 6(¢' — €)d,y,,, with  denoting the angular-momentum
quantum numbers (£, my) and p(e) being equal to 1 per unit energy. The PI cross section op; is determined
by dividing the PI rate by the photon flux density, I/(/iw), where I is the field intensity and w its angular
frequency. In SI units, for a linearly polarized field (polarization unit vector nn) with wave vector k, the PI

cross section is (see appendix A)
2
1
> 1
(EHa%> W

where r. denotes the relative Rydberg-electron coordinate, Ey; the atomic energy unit, ¢; and v; are the
initial- and final-state wavefunctions, respectively, and ay is the Bohr radius. The last term converts the
squared matrix element, which is in atomic units, into SI units. For PI of Rydberg atoms the electric-dipole
approximation (EDA) typically is valid, as shown in [23] in the context of a shallow optical lattice with no
¢-mixing. The validity of the EDA is discussed in greater detail in appendix B. The EDA is implemented by
setting e = 1 in equation (1). The resultant expression for the matrix element is referred to as ‘velocity
form’, used throughout this paper to compute the PI cross sections.
For p-independent atomic potentials, the matrix element in equation (1), with the EDA applied, can be
transformed into ‘length form’, leading to
2 2
(“—°> : 2)
En

This length-form expression for the PI cross section is not accurate if the atomic potential is /-dependent, as
in the present work on Rb.

In the following, we first consider PI of spinless Rydberg basis states |1, {, m,) into free states |¢’, £/, m}).
There, n denotes the bound-state principal quantum number, €’ the free-electron energy, and ¢~ the larger
of the bound- and free-electron angular momenta, ¢ and ¢'. The shell-averaged PI cross section, given by
the average of the PI cross sections of the m,-sublevels of the Rydberg state, is
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Figure 1. Total shell-averaged PI cross sections &, for Rydberg n and ¢ states of Rb for A = 1064 nm, obtained by summing
equation (3) over (. For each £, the n values range from 20 to 90 in steps of 5. The dashed line represents the Thomson cross
section, o = 0.665 b.

where M is the radial part of the matrix element from equation (1) in atomic units, which is, with the EDA

applied,

Uny (re)
Te

o0
M= /O e (re) [u;,g(re) F L | dre. (4)
There, the upper sign is for /- = 7', the lower sign for ¢~ =/, and ¢/ = ¢ £ 1. The functions wu, ,(r.) are
given by u. ¢(re) = reR. ¢(re), where R, y(r.) is the usual radial wavefunction, and % = n or ¢ for bound- and
free-electron states, respectively.
To illustrate the general behavior of PI cross sections of Rydberg states, we calculate 61’;(, for a wide
range of bound states (1, £) and both PI channels ¢ = ¢ + 1. The free-electron energy in atomic units is

a\ 2n+2’

with the laser wavelength A in meters, the fine-structure constant ¢, and the effective quantum number of
the Rydberg state, n*. For the calculation of the bound-state and free-electron wavefunctions [24], we use
model potentials from [25], which have previously been employed to compute polarizabilities [26] and
two-photon excitation rates [27] in Rb. A table of the calculated 5;/)’;,, for A\ = 1064 nm, is provided as
supplementary material (https://stacks.iop.org/NJP/23/063074/mmedia).

In figure 1 we show results for Rb in a A = 1064 nm field as a function of n and £. The cross sections are
generally quite large for low /¢, with an exception for the S-states that is caused by a Cooper minimum
[28, 29]. The calculated PI cross sections decrease rapidly as ¢ increases. For £ 2 10, they drop below the
elastic photon scattering cross section, given by the Thomson cross section, o = 0.665 b. PI cross sections
Sor are likely too small to cause observable effects in applications.

Since the lattice light has well-defined linear polarization, we note that for z-polarized light the PI cross
section for an atom in magnetic sublevel 11, is

iy 302 —m?)  (20+1)_uy
> pr— — > N 5
Tembme = Q0.+ 1)(20 — 1) €5 ™ (5)

with & from equation (3), while for x-polarized light it is

e 3 (00 +1)+ m/%) 20+1) i
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2.2. PIcross sections and rates of lattice-mixed states
Due to lattice-induced Rydberg state mixing, lattice-trapped Rydberg atoms are coherent superpositions of
numerous basis states. Also, the fine structure must be included, because it can be on the order of or larger
than the optical-lattice trap depth. Equation (1) then has to be evaluated for the lattice-mixed states
i) = an)j’mj Cntjmi| 1> £ > mj), with the total-angular-momentum quantum numbers j and m; = m, + ms,
and electron-spin magnetic quantum number ;.

Here we adopt a geometry in which a pair of counter-aligned lattice beams propagate along z, and the
linear lattice polarization is along x. The PI then has matrix elements in the (1, m;)-basis given by

! pl ! !
a4 NS

Y R ITTN
1,y = <€ 5 14 > My, ms‘lpx,e|n) é; my, m5>5m2,m£:tl5m§,m56f’jil) (7)

in atomic units and with the x-component of the electron momentum, py... We have added Kronecker §’s to
exhibit the PI selection rules. The matrix elements have a radial part given by equation (4) and angular
parts that follow from ([30], p 254). The PI cross section for the lattice-mixed states then is

2

252
me R e 0 m! m! . 1
opr = E E Mn’[’mgfms Scn,[,j,m]‘ <], mj"”ﬂ”s) ( ) . (8)
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Note M is in atomic units, and the term in () converts the matrix-element-square into SI units. Due to
symmetry m; is fixed. Since the lattice induces /- and j-mixing, the PI cross sections exhibit quantum
interference in the inner sum, caused by the fact that several PI channels can lead from multiple basis states
|n, £, j, mj) into the same free state |€', ¢', m), m.).

For given opj, the atom PI rate follows from

opI

=1 T 9)
Since in the optical lattice the intensity I varies within the volume of the Rydberg atom, it is not
immediately obvious what to use for I in equation (9). In fact, the atomic volume can extend over several
nodes and anti-nodes of the light field [1, 18, 31]. The lattice-intensity variation within the atomic volume
is important for the PECs and state-mixing in the lattice, as discussed in the next section. Our analysis given
in the appendix shows that the PI rates of Rydberg states are determined by the intensity at the exact
center-of-mass (CM) location of the Rydberg atom, I(Ry). We enter I(Ry) into equation (9) to obtain the PI
rates of the lattice-mixed Rydberg atoms. It is irrelevant how the field varies over the atomic volume.
Especially noteworthy is the fact that the light intensity within the main lobes of the Rydberg electron
wavefunction is not important. This finding is a consequence of the validity of the EDA for PI of Rydberg
atoms, which is discussed in the appendix. Laser-induced Rydberg-atom PI was previously measured in
plane waves [32] and, in a spatially-sensitive manner, in an optical lattice [23].

3. Potential energy curves

3.1. Strong optical-lattice regime

Rydberg atoms in an optical lattice are subject to both the A - p and the ponderomotive (A?) interactions,
giving rise to lattice-induced PI and PECs at the same time. In the following we describe our comprehensive
formalism for both PI and PECs. In a one-dimensional optical lattice along the z-direction, the PECs are
calculated by first finding the Hamiltonian

Hyy = Ho + Ve(ze + Zo) (10)

on a grid of fixed CM positions Z; of the atoms in the lattice. There, H, is the field-free atomic
Hamiltonian, and the operator z. represents the relative z-coordinate of the Rydberg electron. Further,
Vp(z) = €*E*(2)/(4mew?) is the free-electron ponderomotive potential that follows from the A’-interaction,
E(z) the total lattice electric-field amplitude, and z = z. + Z; the z-coordinate of the Rydberg electron in
the laboratory frame. Classically, the A?-term may be thought of as the time-averaged kinetic energy of the
electron quiver in the lattice electric field at the optical frequency [31]. In a one-dimensional lattice along z,

Vp(z) = V(1 + cos(2kz)), (11)

with the full free-electron potential depth 2V} and k = 27/ = w/c. For a pair of lattice beams with equal
single-beam electric-field amplitude E, and equal linear polarization, it is 2V, = €*E3/(mew?). The
potential Vp(z) introduces couplings that are free of selection rules for £ [21, 33]. From a
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perturbation-theory viewpoint, the Rydberg-atom lattice is strong if the lattice depth approaches the
characteristic energy scale of the unperturbed Rydberg atom, i.e. if 2V 2 sEy; /n®, with scaling parameter
s ~ 0.1 that depends on the quantum defects of the atom. In a strong lattice, the lattice-induced couplings
approach or exceed the quantum-defect-induced energy gaps between low- and high-/ states, causing
mixing among such states.

The PECs, Wi(Z), and the lattice-mixed adiabatic Rydberg states |¢;(Z)) are found by solving

Hyao(Z0) [90(Z0)) = Wi(Zo)|vhx(Z0)), (12)

with an index k labeling the PECs and their adiabatic states. We use representations of the |1,(Zy)) in the
basis of the field-free states |n, £, j, m;) in equation (8) in order to yield the PI cross sections, 0x(Z), and the
PI rates, I'x(Zy), from equation (9). It is observed that the PI rates I'y, which trace back to the A - p
interaction, and the free-electron ponderomotive lattice shift, which arises from the A? interaction, both
scale with the intensity at the atom’s CM location,

or(Z,
Fuz) = 1z) %)
w
&2
Vo(Zo) = 1(Zg)——. (13)
2c€0Mew
We note that the PECs W (Z,) satisty
Wz = [ Vit 20) o (0 20) P & (14)

which represents a spatial average of Vp, weighted by the wavefunction densities | (re; Zo) |* of the
adiabatic states |1;(Zy)). The wavefunction density is traced over the electron spin. Since the [¢,(Z,)) are
not known before diagonalization of the Hamiltonian in equations (10) and (14) generally cannot be used
to calculate PECs (exceptions are discussed in the next section 3.2). Instead, the Hamiltonian in

equation (10) must be diagonalized to simultaneously yield both the PECs, Wi(Z), and the |1(Z)). The
latter then allows computation of o (Z).

3.2. Weak optical-lattice regime

If the Rydberg-atom lattice is weak, 2V, < sEy/n’, there are cases in which the ponderomotive potential
Vp(z) does not cause lattice-induced state mixing of the unperturbed Rydberg levels. These cases include
1S/, Rydberg levels, and nP; and nD; levels if 2Vj is also less than the fine-structure splitting. For Rydberg
states that are known to be mixing-free, the PECs can be obtained from first-order non-degenerate
perturbation theory,

Wi(Zo) = / Vo (ze + Z0) o (r0) |2 Pre. (15)

This expression amounts to a spatial average of Vp, weighted by the wavefunction density of the
unperturbed, Zy-independent state |t o) = |1, £, j, m;),

1/2 i+1/2
[ro@P = Rugir) P [ley ¥/ 0 0P + 1, v,

(0es @) 5

with Clebsch—Gordon coefficients ¢; and ¢| for m; = 1/2 and —1/2, respectively, and spherical
Rydberg-electron coordinates (7e, fe, ¢.). The PEC index k now merely is a shorthand label for the
mixing-free state |n, ¢, j, m;). PECs in weak lattices have been investigated in references [34, 35]. Also, the PI
cross section of |n, £, j, m;) according to equation (8) greatly simplifies and there is no quantum interference
of PI channels (as the inner sum has only one term for each |¢’, ¢/, m), m.)).

In certain scenarios, one can force applicability of non-degenerate perturbation theory by lifting
degeneracies via application of an auxiliary DC electric or magnetic field, or a microwave field. If the
auxiliary field suppresses lattice-induced state mixing, the adiabatic Rydberg states in the lattice become
independent of Zy, allowing a perturbative calculation of the PECs as in equation (15) [7, 31]. In some of
the cases, the fine-structure coupling can be lifted by the DC field, and the time- and Z;-independent
states become |1, £, my, ms). In those cases, the wavefunctions to be used in equation (15) are
Vro(re) = (re|n, ¢, my), and their PI rates are directly given by equations (3), (4), (6) and (9), and by
(incoherently) summing the rates over £'. One such example is the weak one-dimensional lattice of Rb
50F-states with an external DC electric field, discussed in section 4.2.
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Figure 2. PECs in a one-dimensional ponderomotive optical lattice of Rb Rydberg atoms for n = 50 and m; = 1/2, A = 1064
nm, and lattice depth 2V, = h x 3 GHz = 1.48 x 10°E,... PEC energies are in cm™! relative to the ionization threshold, and CM
positions Z; in units A. The boxed regions in (a) correspond to the full regions displayed in panels (b) and (c), while the boxed
region in (c) corresponds to the full region displayed in panel (d). The color of the dots on the PECs shows PI rate I'y(Z,), on the
color scales provided, and the dot diameter is proportional to I'y(Zy). For clarity, the dot diameters in (b) are enhanced by a
factor of 50 relative to those in (a), and those in (c) and (d) by a factor of 10. The close-up view in (d) shows ~10 nm-period
structures and a small fine-structure splitting of the PECs.

4. Results

4.1. An implementation of a strong optical lattice

In strong Rydberg-atom optical lattices, lattice-induced state mixing gives rise to a rich structure of PECs.
This is illustrated in figure 2 for n = 50, m; = 1/2, and lattice depth 2V, = h x 3 GHz, equivalent to

1.48 X 10°E,e., with the single-photon recoil energy of Rb for A\ = 1064 nm, E,ec = h x 2.027 kHz. For this
lattice it is 2V ~ 0.1Ey/n’, placing it in the strong-lattice regime as defined in section 3. Fine structure and
quantum defects [36] are included in the calculation. The diameters and colors of the dots on the PECs in
figure 2 indicate the PI rates, ['1(Zp), of the PECs.

The lattice primarily mixes states of small quantum defects, which covers the vast majority of Rydberg
states. The adiabatic states of the PECs, |1),(Z)), are coherent superpositions of a wide range of low-¢ and
high-/ states, including circular Rydberg states. The lowest-energy curves in figure 2(a) are substantially
perturbed 50F-states, which are lowered in energy due to their quantum defect and are not entirely mixed
into the manifold of high-/ states, which have near-zero quantum defect (states with ¢ > 4 in Rb). The
lattice-induced mixing of F-character into the high-/ states is efficient enough to make the latter
laser-excitable from a low-lying D-level. For instance, the three-step excitation sequence
5812 = 5Py, — 5D3, — nFs); using 795 nm, 762 nm, and ~1260 nm laser light would be suited for a
spectroscopic study of these PECs.

Several prominent features of the PECs in figure 2 can be interpreted based on analogies with the Stark
and diamagnetic effects in Rydberg atoms [12, 36]. Near the inflection points of the lattice (Zy = +\/8 in
figure 2(a)), the PECs include sets of about 50 straight, parallel lines that resemble the level structure of the
linear DC Stark effect. Since the ponderomotive potential Vp(z) is linear in these regions, the analogy with
the DC Stark effect is expected [21]. Near the nodes and anti-nodes of the lattice (Zy = 0, £\/4 in
figure 2(a)), the levels resemble the rotational and vibrational diamagnetic energy-level structure of Rydberg
atoms [37—-40]. This similarity also is expected, because the ponderomotive potential near the nodes and
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anti-nodes and the diamagnetic potential share a quadratic dependence on position [21]. Spectroscopic
studies in high-intensity lattices are yet to reveal the PEC structures shown in figure 2.

The PI rates on the PECs, I'y(Z)), overall scale with the lattice intensity at the atomic CM location,
which is proportional to (1 + cos(2kZ)). The maximum [';-values in figure 2(a) are [y ~ 1.6 x 10° s~! for
the 50F-like states at Z, = 0, where the lattice intensity is maximal. For the high-/¢ states within the range
displayed in figure 2(b), which is near a lattice-intensity minimum, the T’y range between 2.4 x 10* s~! and
zero (at the exact anti-node positions). For the high-/ states within the range of figure 2(c), near an
intensity maximum, the I'y-values peak at about ~10° s™!. Since radiative decay rates and black-body-
radiation-induced transition rates of Rydberg levels around n = 50 are only on the order of 10* s,
PI-induced decay in the lattice will be quite noticeable even for the high-¢ states. For the 50F-like states, it
will greatly exceed natural decay, for conditions as in figure 2.

Due to the strong dependence of the PI cross sections on 4, seen in figure 1, it is not obvious how much
quantum interference of PI amplitudes from lattice-mixed states (inner sum in equation (8)) matters. The
importance of interference can be assessed by taking an incoherent sum, in which the left vertical bar in
equation (8) is moved to the inside of the inner sum, and by comparing coherent with incoherent-sum
results. The relative error in cross sections incurred by taking incoherent sums, averaged over all states
[11(Zo)) in figure 2, is 0.05, with a standard deviation of 0.04. While this error is too small to matter in
cases where the lattice-induced PI rate simply has to be below an application-specific tolerance limit, it may
be large enough to be noticeable in PI rate measurements.

In possible future experimental work, an ultra-deep Rydberg-atom lattice with a depth of 2V
= h x 3 GHz, as considered in this section, could be achieved by focusing two counter-propagating laser
beams, each with a power of 200 W, into a confocal spot with wy = 20 pm. Such a lattice can be prepared,
for instance, by using a near-concentric field enhancement cavity [41], with the Rydberg atoms loaded into
the focal spot of the cavity.

The PI-induced spectroscopic level widths in figure 2, which are I'y/(27) < 250 kHz, should be large
enough to become visible in spectroscopic measurement of PECs with narrow-linewidth lasers (linewidth
<100 kHz). Another possible measurement method for PEC curves and level widths would be microwave
spectroscopy from a suitable low-£ launch Rydberg state. This method would essentially be
Doppler-effect-free and benefit from the Hz-level linewidth of typical microwave sources, resulting in
higher spectral resolution. However, it would add experimental complexity due to the need to account for
the PI and level shifts of the Rydberg launch state within the optical lattice.

We note that near Zy = 0 and £\ /4 in figure 2, and within certain energy regions, the PECs feature
series of periodic wells with a periodicity of =10 nm and a depth in the range of & x 10 to 100 MHz. The
periodicity is about a factor of 50 smaller than the fundamental A\ /2-periodicity of the optical lattice, while
the depth allows about one to three quantum states of the CM motion in each well, with tunneling-induced
well-to-well coupling. On a single PEC there are as many as about 20 small periodic wells, making the
system conducive to studies of tunneling-induced quantum transport. Further, since CM momentum
exchange between CM wavefunctions and periodic gratings scales with the inverse of the spatial period, the
10 nm-period PECs in figure 2 may also serve well as large-angle Bragg reflectors and beam splitters for
Rydberg-atom CM wavefunctions, which could potentially become useful in atom-interferometry
applications [42].

4.2. An implementation of a weak optical lattice
In weak Rydberg-atom lattices, where 2V, < 0.1Ey/n’, (-mixing plays no significant role for states with
¢ < 4, and PI is concentrated within a small number of non-mixed low-¢ PECs that have large PI cross
sections (see figure 1). Hence, while the PI rate averaged over all PECs drops in proportion with lattice
intensity, atoms on low-¢ PECs may still photoionize at high rates.

Examples of PECs for 50F; in a weak lattice with a depth of 2Vj) = h x 20 MHz = 9867E;.. are shown in
figure 3. The 50F-levels split into seven resolved components of conserved ;. With the exception of
|m;| = 7/2, there are two fine-structure states, j = 5/2 and 7/2, that have a field-free splitting of 1.3 MHz
and that become mixed by the lattice. Solving equations (10)—(13) in sub-spaces {|50F;,, m;), |50Fs 5, m;) }
yields the PECs and their PI rates. As seen in figure 3(a), the modulation depth of the PECs varies from
strongly modulated at |m;| = 7/2 to barely modulated at |;| = 1/2. The variation in PEC modulation
depth arises from the differing extent of the Rydberg-electron wavefunctions along the axis of the lattice,
which results in varying amounts of averaging in equation (14) [35]. Generally, the sublevels with lesser
values of |m;| have wavefunctions that extend more in the direction of the lattice axis, resulting in weakly
modulated PECs. Lattice-induced j-mixing is illustrated in figure 3(b), where the expectation value
j on some PECs varies considerably as a function of Zj, while maintaining an average of 3 over pairs of
coupled PECs with same ;. The fine structure coupling causes pairs of states of same m; to repel each other
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Figure 3. (a) and (b) PECs of Rb 50F in an optical lattice with A = 1064 nm and a depth 2V, = h x 20 MHz = 9867E,... The
deviations of the PECs from the field-free Rb 50F;, state, AW, in GHz are plotted vs CM position, Z, in units A. The PEC labels
show |m;|. Symbol sizes and colors in (a) and (b) show PI rate and expectation value of j, respectively, on the given color scales.
(c) Magnified view of a |m;| = 5/2 PEC-pair near the lattice inflection point, showing j-mixing and level repulsion. (d) PECs for
the same conditions as in (a)—(c), but with an added longitudinal DC electric field of 0.1 V.cm~!. The DC field breaks the
fine-structure coupling, and the PECs correspond with position-independent adiabatic states |50F, 11, ). Symbol size and
color show PI rate on the given color scale.

near the lattice inflection points at Zy = +\/8. The level repulsion is seen best in figure 3(c), where we
show a detailed view of the level pair with [mj| = 5/2 near a lattice inflection point.

As in section 4.1, the PI rates I'x(Z)) generally scale with the lattice intensity, which is
o (1 + cos(2kZy)). Further, according to equation (6), the I'x-values at fixed Z, should increase with my,
and by continuation, with ;. This trend is obvious in figure 3(a). The relative cross-section differences
between taking coherent inner sums, as in equation (8), and taking incoherent sums are 0.03, averaged over
all |(Zy)) in figure 3(a), with a standard deviation of 0.03.

To exhibit the n1,-dependence of cross sections and rates more clearly, in figure 3(d) we show PECs and
PI rates, Iy, with an additional longitudinal electric field along the z-direction. The field is sufficiently
strong to decouple the fine structure, but weak enough to not cause significant /-mixing with nearby D and
G Rydberg states. The adiabatic states |1} associated with the PECs then approximately are |50F, my, ).
With orbital degeneracies lifted, the PECs follow from equation (15) with ¢ (r.) = (r.|50F, m). There still is
a small fine-structure splitting between PECs with same 1, and different m;, with the exception of m, = 0,
where the spin-up and -down states are exactly degenerate. The PI rates and their ratios between the PECs
in figure 3(d), at a fixed Zy, are now governed by equation (6), with ¢/ = 3 and / =2o0r 4, and the
shell-averaged PI cross sections. The latter are 5?6? =650 b for ¢ = 2 and 3494 b for ¢ = 4. Factoring in all
dependencies in equation (6) and (incoherently) summing the PI rates over ¢, the rates at the lattice
intensity maxima, for conditions as in figure 3(d), vary between 21 x 10* s™! for m; = 3 and 13 x 10°> s~
for m, = 0, with no noticeable dependence on ;. In comparison, for the rates of black-body-
radiation-induced bound—bound (Bbb) transitions and black-body photoionization (Bpi) [43, 44] we
calculate I'pyp,s0r = 10.60 x 10° s ! and ['pyisor = 0.77 x 107 s, respectively, for a radiation temperature
of 300 K and for all #,. The lattice-induced PI should therefore be dominant over black-body-induced
transitions.

In potential experimental work, a lattice as in figure 3 could be achieved, for instance, by focusing two
counter-propagating 1064 nm laser beams, with a power of 1 W each, into a confocal spot with
wy = 20 pm. The PECs of Rb nF states could then be studied via three-photon laser excitation from Rb
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551 /2. A laser-spectroscopic measurement of PI-limited PEC widths of 50F states in lattices as in figure 3
would require a laser linewidth <1 kHz.

5. Conclusion

We have studied PI of Rb Rydberg atoms in an optical lattice formed by 1064 nm laser beams. The strong
Rydberg-atom lattices discussed in section 4.1 are suitable, for instance, for all-optical quantum
initialization of high-angular-momentum states [5] and other quantum-control applications. Weak
Rydberg-atom lattices, as discussed in section 4.2, are attractive for applications that include quantum
computing, quantum simulation [1-3], and high-precision spectroscopy [7, 8, 22]. Weak Rydberg-atom
lattices at magic wavelengths [45] can minimize trap-induced shifts of certain transitions [6, 7]. Further, the
nF; Rydberg states we have considered in our examples can serve as launch states for circular-state
production [5, 7]. Some of these and other applications of Rydberg-atom optical lattices are subject to
limitations from spectroscopic line broadening and decoherence caused lattice-induced PI. The PI rates as
calculated in our paper will be useful in detailed feasibility estimates for these efforts.
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Appendix A. Atom-field interaction

In the appendices we validate the EDA in optical transitions and PI of ym-sized Rydberg atoms with light.
Expressions are extended to PI in an optical lattice. In the following, the ‘e’-subscript on the relative
electron coordinates, used in the main text, is dropped, and all lowercase coordinates are relative electron
coordinates.

The non-relativistic Hamiltonian for an N-electron atom with nuclear charge Z is given by

H= Al
Z <2me 471'607’,) 47r60Z \rl—r]| (AD

The first sum includes the kinetic and potential energy of each electron in the Coulomb field of the nucleus,
and the second the electrostatic repulsion between pairs of electrons. The interaction of the atom with an
electromagnetic field can be taken into account by replacing p; with p; + eA(t;, t), where A(t;, t) is the
vector potential. The resulting interaction added to equation (A1) is

N
Hl — Z [Pz A(rl) +A(1‘1 A)}

The A%(t;) term gives rise to the ponderomotive potential that is responsible for the trapping of Rydberg
atoms in an optical lattice [1, 31]. In a QED treatment, the Feynman diagram of the A*(%;) term is a vertex
with two instantaneous photons [46]. The A- p-term causes a wide range of atom-field interactions,
including light-induced and black-body-radiation-induced PI. In the Coulomb gauge, V - A = 0, the
operators p; and A(t;) commute, and the A- p interaction writes

. e
Hipe = —A(r) - pi ) -
S
In the present work we consider a Rydberg atom with one active electron. In this case, the sum can be
dropped, and the position and momentum operators r and p are just for the Rydberg electron. In a
source-free field, the electric field and vector potential are related by E = —(9A/0¢) [47]. We consider a
linearly polarized plane wave with electric-field amplitude Ey, and choose the x-axis in propagation and the
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.. . . Eq ~
z-axis in field direction, A(r,t) = ﬁze‘(
wavenumber.

The matrix element ( f|Hiy|i) is, in the rotating frame [12, 30],

kx—wt

) 4 c.c. There, w is the angular frequency and k the

eﬁEo / ¢;<eikx£wi d3r, (AZ)
oW 0z

(f|Hineli) = —

2m

where |i) and |f) are the initial and final states with wavefunctions ¢; and ;. Using Fermi’s golden rule,
the transition rate is

= 2E 11 o) (43)

with the density of states p(e€) at the final-state energy. The rates are proportional to the intensity, regardless
of whether the EDA, which amounts to setting e** = 1, can be made or not.

To compute the matrix elements My = [ 9} eikxé%wi d’r for unperturbed, fine-structure-free Rydberg
states we use the usual notations ¢, (1, 0, ¢) = Rn,g(r)Yf[(H, @) [30], and R, ¢(r) = up(r)/r. The
quantum numbers (1, ¢, my) and (', £, m}) are for the initial and final states, respectively. The radial
wavefunctions are calculated according to reference [24], using model potentials from reference [25]. The
Jacobi—Anger relation [48],

o0
eia cos ¢ _ Z i%]ﬁ,(ﬂl)ei%qb,
m=—o00
expresses e/ as an azimuthal Fourier series. The matrix element My, including both angular and radial
factors, then becomes

gL 2041 — ) (L= my)! ;o (D)
Ma=r lz\/2£+1 €+ m €+ mo)! {/“"”‘”(” {”’“(” : (“1)}

X [/ ]m;—m[(kf sin H)PZQ(COS H)Pﬁl(cos 0)( —mp+ 1)sin 0 dﬁ] dr

+/“n’,z’(7) {u;)g(r) + u"’i(r) 4

X [/]mé_m[(kr sin G)PZZ(COS G)P;”fl(cos 0)(¢ + my) sin 0 d@] dr} . (A4)

For PI the transitions are from a bound to a free state. In this case, the radial wavefunction u,, ; is replaced
by a free radial wavefunction u. . The free radial wavefunctions are normalized in energy,
fue/,[/(r)ueﬂ(r)dr = §(e — ¢'), and the density of states p(e) = 1.

Appendix B. General behavior of the matrix elements

The range of relevant PI channels, i.e. the range of the ¢’ and m, quantum numbers for which the matrix
elements M, for a given initial state are large, largely depends on the magnitude of the Bessel-function
arguments. The EDA, e** = 1, corresponds with Tt —m ,(kr sin 0) = 5m2 ,m,- Here we assess how well the
EDA applies to Rydberg-atom PI with light. At first glance, one may suspect the EDA to be invalid because
kr ~ 1.

B.1. Before making the EDA
Equation (A4) yields a selection rule that arises from the three functions within the 6 integrals (one Bessel
function and two associated Legendre functions), which all have well-defined parity about 7 /2. Considering
the parity behavior of the associated Legendre functions with ¢ and #1,, and noting that the Bessel function
terms are always even, we find the selection rule that £ + m, + ¢’ + mj, + 1 must be even (meaning that
about half of the transitions out of a state with given ¢ and my are allowed).

In the limit kr — 0 (as when the EDA is valid), L”}‘"’ ,(kr sin 0) = 5m2,m .- The orthogonality of the
Legendre functions then yields the usual (very restrictive) electric-dipole selection rules m), — m,
= Amy = 0 (for z-polarized light) and ¢' — ¢ = Al = +1.

The cross section o, the rate I, and the light intensity I follow

o= hwl/I,

10
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Figure4. (a) Cross sections for PI of the Rb |n = 15,¢ = 3, m = 0) state with z-polarized 532 nm light for transitions into the
continuum states |’ = 0.083 42, ¢/, m,), plotted for a range of values of final ¢ and ). In the calculations the EDA is not
applied. The only transitions with matrix elements of non-negligible amplitude are the electric-dipole-allowed transitions. (b) PI
cross sections for the same transitions as in (a), but with the wavelength of the field artificially reduced by a factor of £ = 1000.
Transitions that violate the electric-dipole selection rules now have larger values, often exceeding those of the two
electric-dipole-allowed transitions.

which after insertion of equations (A2) and (A3) yields

212

&0 ml, me h 2 1

[ A ]\1

azném/ - P ‘ A| 2] (Bl)
s €oMmzwce Eyag

The result is in SI units, 72, the matrix element M, in atomic units, according to equation (A4), and the
term in () converts |M,|? from atomic into SI units. To illustrate the typical PI behavior of Rydberg atoms
in light fields, we calculate matrix elements and cross sections following equations (A4) and (B1) for PI of a
Rb Rydberg atom by 532 nm light. In figure 4(a), we display O’jn[;’:i for PLof Rb |n = 15,0 = 3,m = 0) to
the continuum states |¢/ = 0.083 42, ¢, m}). We choose the n = 15 Rydberg state instead of n = 50 because
it requires less computing power while still allowing us to explain the validity of the EDA. It is seen that the
only transitions that have a non-negligible PI cross section are the electric-dipole-allowed transitions in the
assumed z-polarized light, Am; = 0 and A¢ = +1. The weaker of the two electric-dipole-allowed PI
channels is into ¢ = 0.083 42, ¢’ = 2, m}, = 0) and has a cross section of 4483 b. The strongest electric-
dipole-violating channel is into |¢’ = 0.08342,¢' = 5, m, = £1) and has a calculated cross section of 0.18 b,
which is smaller than that of the weaker electric-dipole-allowed channel by a factor of 4 x 107°. It thus
appears the EDA applies exquisitely well to Rydberg-atom PI by light.

The strong validity of the EDA for Rydberg-atom PI may appear somewhat unexpected, because both
initial and final states have sizes on the order of or exceeding the optical wavelength, and the usual
argument made when invoking the EDA, namely that e* = 1 within the atomic volume, is actually not
valid. To expose conditions under which electric-dipole-violating transitions would be important, we
increase the wavenumber k in the e** phase factor (and in the Bessel function argument in equation (A4))
by an artificial factor k, so as to artificially enhance EDA-violation, while holding everything else fixed
(including the energy of the continuum state). While this is physically not possible, the numerical exercise
allows us to explore where the unexpected validity of the EDA arises from when performing the integration
in equation (A4). By increasing the argument of the Bessel functions by «, we artificially increase the
variation of the Bessel functions in the matrix-element integration. Cross sections for PI of
|n =15, = 3,m = 0) to the continuum states |¢' = 0.083 42, ¢, m}) calculated with x = 1000 are shown
in figure 4(b). The EDA is evidently not valid any more, as a large number of electric-dipole-forbidden
transitions occur. The strongest electric-dipole-allowed channel now is to ¢’ = 0.083 42, ¢ = 4,m, = 0),
with a cross section of 5451 b, while the strongest EDA-violating channel is to |¢' = 0.083 42, ¢ = 3,
my = +1), with a cross section of 17 850 b figure 4(b) also shows a ‘checker board” pattern, which reflects
the selection rule that ¢ + m; + ¢’ + m, + 1 must be even (which still holds for EDA-violating transitions).

For more insight, in figure 5 we plot the cross sections for a few cases of PI of |n = 15,¢ = 3, m; = 0)
with 532 nm light and the indicated values of x as a function of cut-off radius of the radial integration in
equation (A4). Considering the physical case first, for which x = 1, we find that the matrix element of the
EDA-allowed transition integrates close to its final value already within a radius of about 504, and then
oscillates around the final value, with the oscillations damping away in the outer reaches of the atomic
volume. The oscillations originate from the structure of bound- and free-state wavefunctions. The effective

11
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Figure5. Cross sections in units oy = 15220 b for PI of the Rb |n = 15, ¢ = 3, m = 0) state with z-polarized 532 nm light for
the electric-dipole-allowed transition into the continuum state [’ = 0.083 42, ' = 4, m), = 0) (left), and for the
electric-dipole-violating transition into the continuum state |¢' = 0.083 42, ¢’ = 3,m, = 1) (right), as a function of the upper
integration limit in the matrix-element calculation, r, and for the indicated parameters « (see text).

range of the atom-field interaction appears to be confined to r < 50ay. One may say that the Rydberg atom
tends to photoionize close to its center, a finding that is in accordance with calculations performed
elsewhere [49]. Since the matrix element integrates close to its final value within a volume that is indeed
much smaller than the physical wavelength, the phase variation of the field in the outer regions of the atom,
r 2 5049, becomes irrelevant, making the EDA applicable even though the atom diameter is on the order of
the optical wavelength.

The results in figure 5 for artificially reduced wavelength, i.e. with the wavenumber k in the ¢’ phase
factor multiplied with a & > 1, show that substantial changes of the cross sections from their physical values
require x-values approaching 1000, corresponding to effective wavelengths in the phase factor (and the
Bessel-function arguments in equation (A4)) as low as several tens on ay. In that case, the phase of the field
does vary substantially over the volume within which the physical, x = 1-matrix element integrates to near
its asymptotic value. For s approaching 1000, the EDA breaks down, leading to substantial changes of the
cross sections of electric-dipole-allowed PI channels, as well as to the emergence of large cross sections in
dipole-forbidden PI channels. We conclude that the validity of the EDA is linked to the behavior that the
physical matrix elements integrate to near their asymptotic values within a small volume of only several tens
of ay in radius around the atomic center. The oscillations in the integrals in figure 5 that occur outside that
volume are inconsequential, as they damp out. Hence, it is sufficient for the field phase in e!** to be flat over
a volume of just several tens of aq in radius, regardless of how large the atom is, for the EDA to be valid.
This very relaxed condition reflects the somewhat surprising validity of the EDA for PI of Rydberg atoms
with light.

ikx

B.2. With the electric dipole approximation
Making the EDA by setting kr = 0 in equation (A4), one finds for the matrix elements relevant to the main
text of this paper

(Us 4+ my)(ls — my) /Mnf,z/(r) {u;)l(r) -
" Ves e -y ” (1)
(20~ > /un/)g/(r) {M;,l(f) + ”’i€>] dr if to=0=0+1

””";(r)zg] dr if =0 =(+1

, (B2)

with the usual electric-dipole selection rules for the changes in angular-momentum quantum numbers for
z-polarized light, A¢ = +1 and Amy = 0. The full interaction matrix element then is

ehEo
2mew

(f | Hinli) =

A>

with expressions for the resultant PI rates still given by equation (A3). For linearly polarized light with
arbitrary polarization direction 1,

h
MA:fl'/w? 7V’l/}id31’,

These forms of the matrix elements are known as the ‘velocity’ form. With the EDA valid, the matrix
elements can be expressed in other forms using commutation relations between operators. The relation

12
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(£, Hy| = %f), which applies to systems with field-free Hamiltonians H that have momentum-independent
potentials [30], allows the matrix elements to be written in terms of the position operator. In this form,
known as ‘length’ form, it is

<f‘H1nt‘ 70 /¢f ry; dr, (B3)

with the commonly used dipole matrix element M, = n - f L2 N &Er (see, for instance, [30] equation
(60.71)).

Finally, if the potential in Hj is a Coulomb potential, the matrix elements may be expressed in
‘acceleration’ form, in which the commutation relation [p, Hy] = —ihVV, with atomic potential V, is used
to express the matrix elements in terms of the Coulomb acceleration (Zt)/r* [30]. In the length, velocity,
and acceleration forms, the matrix elements accumulate to their asymptotic values at large, intermediate,
and small values of r, respectively [30, 49, 50]. In the present work, the velocity form, the most-generally
valid form, must be used because it allows for {-dependent model potentials with non-Coulombic
corrections [25], which is what we use in the computation of the wavefunctions. We have checked that
length- and velocity forms yield identical results for high ¢/, where the model potential becomes
{-independent. Even at ¢ = 0, the worst case, the length- and velocity forms yield PI cross sections that
differ by less than 15%. For completeness it is further noted that for bound—bound microwave transitions
of Rydberg atoms the length form is generally acceptable, because in that case the matrix elements are
dominated by the outer reaches of the Rydberg wavefunctions, where the model potentials are essentially
{-independent.

Appendix C. PIin an optical lattice

In a one-dimensional optical lattice formed by two counter-propagating beams with equal field amplitude
Ey, polarization along the z-axis, and with beams propagating (anti)parallel with the x-axis, the electric field
is

E = zE, [cos {k(x — Xo) — wt} + cos {—k(x — Xp) — wt}] ,
where X, denotes the CM displacement of the atom from an intensity anti-node of the lattice. It is then
found that the matrix element to be used in place of equation (A4), with the EDA not being made, is

_em L [20A 1 = )l (€~ my)! b un/( )
My =1 \/2£+1 0+ m)! (L + my)! {/Mn/,z/(f) [unj(r) 0+ 1)}

X [/]ﬂém[(kr sin H)PZTQ(cos H)P;"_ﬁl(cos (4 —my+1)sin 0 dﬂ} dr

+/an(f) { o unc(r) }

X [/]mz_m[(kr sin H)PZQ(COS 6)P," (cos ) (¢ + my) sin 6 dG} dr}

2 cos(kXp), my, —m; even
X . (C1)
21 sin(kXy), my —my odd

The PI rates scale with [M|?. For even m) — my, the rates are proportional to the lattice-field intensity,
which is 4I[cos(kX,)]?, with I denoting the intensity of a single lattice beam, while for odd m) — m, the
rates scale with the derivative-square of the lattice electric field along the x-direction.

In the analysis performed in this appendix, we have assumed a light polarization pointing along z and a
field propagating along x, because this allows for a transparent evaluation of the matrix elements in the
general case that the EDA does not apply. Now we have established that the EDA applies for the physics
presented here. It follows that only the electric-dipole-allowed case mj, — m; = 0 in equation (C1) is
relevant. The equation greatly simplifies and takes the form of equation (B2), with an X;-dependent term
2 cos(kXp) multiplied on it. In essence this means that, if the EDA applies, as in our case, the PI cross
section in an optical lattice is the same as in a plane wave, and that the field intensity to be used for
computing the PI rate from this cross section is the field intensity at the CM location of the atom. If the
EDA were substantially violated (which is not the case), electric-dipole-forbidden transitions with odd
mj, — my would, in principle, become allowed, and the PI rates following from M, would not generally be
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proportional to intensity at the atomic CM location. In that case, the usual concept of a PI cross section
would become, fundamentally, invalid.

In the main text of this paper, it is more convenient to assume an atomic quantization axis along z,
one-dimensional optical-lattice laser beams propagating along z, and laser polarization along x. This allows
us to take advantage of azimuthal symmetry in the calculation of the PECs of the lattice, substantially
reducing the computational effort. The Rydberg-atom CM position, denoted Xj in the appendix, turns into
Zy in the main text of the manuscript.
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