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Abstract
Protein aggregation on the plasma membrane (PM) is of critical importance to many
cellular processes such as cell adhesion, endocytosis, fibrillar conformation, and vesi-
cle transport. Lateral diffusion of protein aggregates or clusters on the surface of thePM
plays an important role in governing their heterogeneous surface distribution. How-
ever, the stability behavior of the surface distribution of protein aggregates remains
poorly understood. Therefore, understanding the spatial patterns that can emerge on
the PM solely through protein–protein interaction, lateral diffusion, and feedback is
an important step toward a complete description of the mechanisms behind protein
clustering on the cell surface. In this work, we investigate the pattern formation of a
reaction–diffusion model that describes the dynamics of a system of ligand–receptor
complexes. The purely diffusive ligand in the cytosol can bind receptors in the PM and
the resultant ligand–receptor complexes not only diffuse laterally but can also form
clusters resulting in different oligomers. Finally, the largest oligomers recruit ligands
from the cytosol using positive feedback. From a methodological viewpoint, we pro-
vide theoretical estimates for diffusion-driven instabilities of the protein aggregates
based on theTuringmechanism.Ourmain result is a threshold phenomenon, inwhich a
sufficiently high recruitment of ligands promotes the input of newmonomeric compo-
nents and consequently drives the formation of a single-patch spatially heterogeneous
steady state.
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1 Introduction

Biological membranes are unique two-dimensional structures that separate cellular
contents from the extracellular environment and regulate the transport of material
into and out of the cell (Darnell et al. 1990; Stillwell 2013). In addition to lipids and
carbohydrates, these membranes contain a large proportion of proteins, the composi-
tion of which depends on the cell type (Stillwell 2013; Guidotti 1972; Yeagle 2011;
Albersheim and Anderson-Prouty 1975; Jain and Wagner 1988). One of the interest-
ing features of membrane proteins is their ability to form clusters on the cell surface
(Hashimoto and Panchenko 2010; Johannes et al. 2018; Ispolatov 2005). This cluster-
ing of proteins on the plasma membrane (PM) results in a spatial heterogeneity in the
distribution of protein densities. Many factors can induce such a spatial heterogene-
ity, including lateral diffusion, physical barriers from the cytoskeleton (Porat-Shliom
et al. 2013), lipid raft affinity (Lorent et al. 2017), and curvature differences along
the membrane (Johannes et al. 2018). The formation of protein clusters is intimately
related to various cellular phenomena such as polarization, membrane depolarization,
receptor signaling, enzyme activity, and cytoskeletal regulation (Mori et al. 2008; Lao
et al. 2010; Lemmon and Schlessinger 2010; Sleno and Hbert 2018; Baisamy et al.
2005; Chen et al. 2005).

A particular example of proteins forming clusters on the membrane is well eluci-
dated by amyloid-β aggregation/fibrillation in the context of Alzheimer’s disease. It
is thought that amyloid-β can become cytotoxic when it aggregates on the membrane
at high levels (Askarova et al. 2011). Biophysical measurements show that amyloid-
β aggregates become more stable when oligomerized (i.e., when it forms molecular
components from repeating units) on the membrane surface (Sarkar et al. 2013; Zhang
et al. 2012) and can also destabilize certain membrane compositions (Andreasen et al.
2015). It is also thought that membrane components such as cholesterol may ini-
tiate aggregation of amyloid-β, which may then be bolstered by a yet unidentified
secondary feedback mechanism (Habchi et al. 2018). In general, the aggregation of
proteins on themembrane surface appears to be a commonmechanism for fibrillar pro-
tein aggregation and aggregate propagation in a variety of neurodegenerative diseases
(Holmes and Diamond 2012; Rawat et al. 2018). In addition to amyloid-β, surface
receptors such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) (Choquet 2010; Gan et al. 2015) and membrane-bound kinases such as Fyn
(Padmanabhan et al. 2019) are known to cluster on the membrane; these clusters have
been implicated in neuronal functioning in physiology (Lorent et al. 2017; Lao et al.
2010) and disease (Askarova et al. 2011; Andreasen et al. 2015).

One of the open questions in the field of protein aggregations is the role of the
spatial organization of membrane proteins due to bulk–surface reactions and feedback
mechanisms. Mathematical modeling has provided substantial insight into the geo-
metric coupling of bulk–surface reaction–diffusion systems (Rangamani et al. 2013;
Frey et al. 2018; Denk et al. 2018), including wave-pinning formulations (Mori et al.
2008; Cusseddu et al. 2018), spatial patterning (Giese et al. 2015; Diegmiller et al.
2018), and generalized stability analysis (Madzvamuse et al. 2015; Rätz and Röger
2012; Rätz 2015). From a modeling perspective, several authors have proposed the
classical Smoluchowski coagulation model (Smoluchowski 1918; Drake 1972) as a
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suitable candidate for describing protein aggregation. The system of differential equa-
tions in the Smoluchowski model deserves attention as it accounts for the changes in
concentration of interacting molecules with different sizes. These molecules can thus
reversibly aggregate according to a given aggregation kernel. In the recent past, the
use of such kernels (Arosio et al. 2012; Zidar et al. 2018) allowed for a successful
combination of experimental measurements with computational predictions. These
models performed well in terms of comparisons to data and estimation of kinetic
parameters such as the aggregation time and the asymptotic cluster distribution. How-
ever, by using the original Smoluchowski systems of ordinary differential equations
(ODEs), these studies lack descriptions of the spatial protein organization, which can
be crucial for the understanding of many cellular processes. To overcome this lim-
itation, one can explicitly consider molecular diffusion and use systems of partial
differential equations (PDEs), as has been done in the amyloid-β aggregation models
(Achdou et al. 2013; Franchi and Lorenzani 2016; Bertsch et al. 2016). These stud-
ies have provided detailed theoretical estimates in terms of boundary conditions and
homogenization tools. However, they have restricted the spatial scale to a small three-
dimensional region of cerebral tissue and do not describe intracellular phenomena.
There is thus a need for mathematical models of protein aggregation in the PM with
proper spatial description to account for the numerous cellular processes that occur
due to heterogeneous protein distribution.

In this work, our primary goal was to investigate the emergence of spatially hetero-
geneous steady-state profiles ofmembrane protein aggregates to identify how feedback
between cytosolic andmembrane components can drive pattern formation on themem-
brane. To this end, we merged the concept of bulk–surface reaction–diffusion systems
with the Smoluchowski approach to introduce a new bulk–surface model for mem-
brane protein clustering (Fig. 1a). The model equations describe a purely diffusive
ligand in the cytosol, which then undergoes membrane binding without any cytoso-
lic aggregation. The resultant membrane-bound protein can diffuse laterally and also
form clusters with different oligomeric sizes. Finally, the oligomers of maximum size
can further recruit more cytosolic proteins, resulting in a positive feedback for the
membrane protein aggregates and stabilization of the oligomers (Habchi et al. 2018;
Sarkar et al. 2013). Following the approach of Rätz and Röger (2012), Rätz (2015),
we then analyzed the model for diffusion-driven instabilities using the classical Tur-
ing mechanisms. We found these interactions allow diffusion-driven instabilities and
pattern formation in the absence of a sustained localized stimulus.

In what follows, we present the model assumptions and derivation in Sect. 2 and
the mathematical analysis including stability analysis in Sect. 3 and conclude with
numerical simulations (Sect. 4) and a discussion (Sect. 5) about our findings in the
context of amyloid-β and clustering of other membrane proteins.

2 Model Development

Here we present our bulk–surface reaction–diffusion model for protein aggregation,
including feedback. We describe our assumptions (Sect. 2.1) and the governing equa-
tions (Sect. 2.2) in detail. In Sect. 2.3, we prove that the total mass of the system
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Fig. 1 A bulk–surface compartmental model for protein aggregation. a As proteins approach the surface,
they can associate and then oligomerize. This oligomerization then drives further membrane association of
monomers. In this figure, we assume that the maximum oligomer size is three and the arrows represent a
state change of U to A1; the dotted line shows the “catalytic” feedback of A3 to U and A1. b A detailed
diagram of all chemical reactions for an arbitrary maximum oligomer size N (Color figure online)

is conserved over time, and in Sect. 2.4, we non-dimensionalize the model. Finally,
in section Sect. 2.5, we perform the system’s reduction when the cytosolic diffusion
goes to infinity, following the mathematical approach of Rätz and Röger (2012), Rätz
(2015).

2.1 Assumptions

In our system, we assume that U represents the volume component, which can freely
diffuse in the cytoplasm. Upon binding to the plasma membrane, it forms a surface
monomer component A1. The A1 molecules laterally diffuse in the membrane and
form the oligomeric components A j . Here, j denotes the number of A1 molecules in

the oligomer, which is at most N ∈ N. In terms of chemical reactions, U
f

A1
denotes the binding of the cytosolic component to the plasmamembranewith a reaction
flux f . The subsequent oligomerization at the membrane is described by

A j–1 + A1 A j for j = 2, 3, ..., N .

We also assume that the flux term f describes ligand binding/unbinding to the cell
surface, where the binding termwill be linearly proportional to the concentrations of U
in the cytosol and AN in the plasma membrane. In Fig. 1b, we illustrate the reactions
taking place in our system: the exchange between cytosolic and membrane-bound
monomer, the formation of dimers, the general oligomerization reactions, and the
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positive feedback. The oligomerization process is modeled as a particular version of
the reversible Smoluchowski model for aggregation dynamics (Bentz and Nir 1981).
We also assume that the oligomerization process occurs only by monomer attachment
in the mass action regime. Moreover, to keep the analysis tractable, we do not consider
any cooperativity term such as Hill’s function (Changeux et al. 1967): the rate at which
different oligomers are formed is independent of their size.

2.2 Governing Equations

We represent the cellular domain as the bounded region � with smooth boundary
� = ∂�. We define the concentrations u(x, t) : � × (0, T ] → R for the volume
component and a j (x, t) : �× (0, T ] → R for the membrane oligomeric components,
where x and t represent the location and time, respectively. Themolecularmechanisms
underlying membrane protein aggregation and stabilization are quite complex. How-
ever, from a feedback standpoint, the so-called rich gets richer phenomenon seems
to be prevalent in various systems, especially in the context of amyloid fibrillation
(Chatani and Yamamoto 2018; Crespo et al. 2012; Johnson et al. 2012; Jarrett and
Lansbury 1993; Cohen et al. 2012; Arosio et al. 2015; Meisl et al. 2016). There-
fore, we propose a mathematically tractable feedback term to represent this complex
mechanism. The flux term is thus defined as

f (u, a1, aN ) = (k0 + kbaN )u − kda1 (1)

for k0, kb, and kd positive constants, where k0 is the basal binding rate, kb is the rate of
AN -dependent binding rate, and kd is the unbinding rate from the membrane into the
cytosol. Then, the governing equations for the spatiotemporal evolution of different
components are given by

∂t u = Du∇2u (2)

∂t a1 = D1�a1 + (k0 + kbaN )u − kda1 − 2kma
2
1 + 2k2a2

− kga1

(
N−1∑
l=2

al

)
+

N∑
j=3

k ja j (3)

∂t a2 = D2�a2 + kma
2
1 − kga1a2 − k2a2 + k3a3 (4)

∂t a j = Dj�a j + kga1a j−1 − kga1a j − k ja j + k j+1a j+1, j = 3, . . . , N − 1
(5)

∂t aN = DN�aN + kga1aN−1 − kNaN . (6)

Here,∇2 and� represent theLaplace andLaplace–Beltrami operators, respectively.
The parameter km represents the rate at which monomers bind to form dimers. The
rate kg at which the oligomers of size greater than two are formed is assumed to be
the same for all oligomerization reactions. Finally, k j represent the rates at which
the oligomeric components of size j will release a single monomer. The boundary
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condition for a is periodic since the domain is closed and the boundary condition for
u is given by

− Du (n · ∇u)

∣∣∣
x∈�

= (k0 + kbaN )u − kda1 (7)

as a balance of the diffusive flux and the reaction rate at the membrane. All parameters
and variables are nonnegative real numbers.

2.3 Mass Conservation

Let nX denote the number of molecules of the component X . For a closed system, we
know that the total number of single molecules must be given by

nU + nA1 + 2nA2 + . . . + NnAN

since each A j oligomer must have exactly j molecules of A1. From this fact, we
define the total mass of the system, which accounts for spatial compartments (bulk and
surface) and different molecular size distributions. This is the content of the following

Proposition 2.1 Let u, a1, a2, . . . , aN be solutions of (2)–(7). Then, the quantity

M(t) :=
∫

�

u(x, t)dx +
N∑
j=1

{
j ·
∫

�

a j (x, t)ds

}
(8)

represents the total mass of the system and is conserved over time, i.e., M(t) =
M0 ∀t ≥ 0. In this case, M0 denotes the initial mass which is given by M0 =∫
�
u(x, 0)dx +∑N

j=1

{
j · ∫

�
a j (x, 0)ds

}
Proof By taking the time derivative of M(t) and assuming u and a j are C2 solutions
for (2)–(7), we have

d

dt
M =

∫
�

∂t udx +
N∑
j=1

{
j ·
∫

�

∂t a jds

}
.

For the integral
∫
�

∂t udx , we apply the divergence theorem and substitute Eq. (7)
to obtain ∫

�

∂t udx = Du

∫
�

∇2udx

= Du

∫
�

(∇u · n)ds

= −
∫

�

[(k0 + kbaN )u − kda1]ds.
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For the summation of surface integrals
∑N

j=1

{
j · ∫

�
∂t a jds

}
, we substitute the

governing equations to obtain

N∑
j=1

{
j ·
∫

�

∂t a jds

}
=
∫

�

[
D1�a1 + (k0 + kbaN )u − kda1 − 2kma

2
1 + 2k2a2

−kga1

(
N−1∑
l=2

al

)
+

N∑
j=3

k ja j

⎤
⎦ ds

+
∫

�

[
2 · D2�a2 + 2 ·

{
kma

2
1 − kga1a2 − k2a2 + k3a3

}]
ds

+
N−1∑
j=3

∫
�

[
j · Dj�a j + j · {kga1a j−1 − kga1a j − k ja j + k j+1a j+1

}]
ds

+
∫

�

N · [DN�aN ] + N · {kga1aN−1 − kNaN
}]

ds

=
N∑
j=1

j D j ·
∫

�

�a jds +
∫

�

(k0 + kbaN )u − kda1ds

=
∫

�

((k0 + kbaN )u − kda1) ds

where the last equality comes from the fact that
∫
�

�a jds = 0 as a consequence of
the first Green’s theorem (van Oosterom 2006). We therefore have

d

dt
M =

∫
�

∂t udx +
N∑
j=1

{
j ·
∫

�

∂t a jds

}
= 0

from which we conclude that M(t) = M(0) =: M0 for all t ≥ 0 ��
The mass conservation property for bulk–surface reaction–diffusion models has been
established in different contexts (Cusseddu et al. 2018; Rätz and Röger 2012). How-
ever, to the best of our knowledge, it has never been identified in the context of
oligomerization reactions.

2.4 Non-dimensionalization

We introduce a non-dimensional version of the system that allows a convenient quali-
tative interpretation independent of the actual system size, but instead through the ratio
of kinetic parameters to the diffusion contributions. We follow the approach in Rätz
and Röger (2012), Rätz (2015) and defineU , A1, A2, . . . , AN be the dimensional con-
centration quantities where [U ] = mol/μm3 and [A] = mol/μm2 for j = 1, . . . , N .
We also define L and T as the spatial and temporal quantities, where [L] = μm and
[T ] = s. We then introduce the non-dimensional variables
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û = u

U
, â j = a j

A j
( j = 1, . . . , N ), t̂ = t

T
, and x̂ = x

L
,

which lead to the transformed domains �̂ := {ζ ∈ R
3|ζ L ∈ �} and �̂ = ∂�̂. By

denoting ∇̂, ∇̂2, and �̂ as the dimensionless gradient, Laplace, and Laplace–Beltrami
operators, respectively, and using

∇ = 1

L
∇̂, ∇2 = 1

L2 ∇̂2, � = 1

L2 �̂,

we can apply the chain rule and rewrite the system (2)–(6) in the form

U

T

∂ û

∂ t̂
= Du

U

L2 ∇̂2û, x̂ ∈ �̂, (9)

A1

T

∂ â1
∂ t̂

= D1A1

L2 �̂â1 + kd A1

{(
k0U

kd A1
+ kb ANU

kd A1
âN

)
û − â1

− 2
km A1

kd
â21 + 2

k2A2

kd A1
â2

− â1

(
N−1∑
l=2

A jkg
kd

â j

)
+

N∑
j=3

k j A j

kd A1
â j

}
, x̂ ∈ �̂, (10)

A2
T

∂ â2
∂ t̂

= D2A2
L2

�̂â2+kd A1

(
km A1
kd

â21− k2A2
kd A1

â2− kg A2
kd

â1â2+ k3A3
kd A1

â3

)
, x̂ ∈ �̂,

(11)

A j

T

∂ â j

∂ t̂
= Dj A j

L2 �̂â j + kd A1

(
kg A j−1

kd
â1â j−1 − k j A j

kd A1
â j − kg A j

kd
â1â j

+ k j+1A j+1

kd A1
â j+1

)
,

x̂ ∈ �̂, j = 3, . . . , N (12)

AN

T

∂ âN
∂ t̂

= DN AN

L2 �̂âN + kd A1

(
kg AN−1

kd
â1âN−1 − kN AN

kd A1
âN

)
, x̂ ∈ �̂. (13)

The boundary conditions in (7) can be rewritten as

− DuU

L

(
n · ∇û

) ∣∣∣
x∈�

= kd A1

{(
k0U

kd A1
+ kb AN

kd A1
ˆaN
)
û − â1

}
. (14)

Since R > 0, we can define the characteristic concentrations U and A j by divid-
ing the total mass of the system per total volume and surface area, respectively. We
also define the characteristic time with respect to the diffusion D1 of the monomeric
component across the cellular surface. Formally, we define

U = M0

R · |�| , A j = M0

|�| for j = 1, 2, . . . , N , T = R2

D1
, L = R, (15)
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and the dimensionless parameters

k̂0 = k0U

kd A1
, k̂b = kb ANU

kd A1
, k̂m = km A1

kd
, k̂ j = k j A j

kd A1
( j = 2, . . . , N ),

k̂g = kg A j

kd
( j = 2, . . . , N − 1), γ = kd R2

D1
, D̃ = Du

D1
,

d j = Dj

D1
( j = 2, . . . , N ).

As a result, (9) can be written as

∂ û

∂ t̂
= D̃∇̂2û, (16)

for x̂ ∈ �̂ with boundary condition

− D̃
(
n · ∇̂û

) ∣∣∣
x∈�

= γ
{[

k̂0 + k̂bâN
]
û − â1

}
(17)

for x̂ ∈ �̂. Finally, for the surface components, (10)–(13) can be written as

∂ â1
∂ t̂

= �̂â1 + γ

⎧⎨
⎩
[
k̂0 + k̂bâN

]
û − â1 − 2k̂mâ

2
1 + 2k̂2â2

−k̂gâ1

(
N−1∑
l=2

â j

)
+

N∑
j=3

k̂ j â j

⎫⎬
⎭ , (18)

∂ â2
∂ t̂

= d2�̂â2 + γ
(
k̂mâ

2
1 − k̂2â2 − k̂gâ1â2 + k̂2â3

)
, (19)

∂ â j

∂ t̂
= d j �̂â j + γ

(
k̂gâ1â j−1 − k̂ j â j − k̂gâ1â j + k̂ j+1â j+1

)
, j = 3, . . . , N

(20)

∂ âN
∂ t̂

= dN �̂âN + γ
(
k̂gâ1âN−1 − k̂N âN

)
. (21)

2.5 System Reduction when Du → ∞

We further reduce our system by assuming the limit of rapid cytosolic diffusion, which
has been experimentally observed for chemotaxis in amoebae (Postma et al. 2004),
membrane-associated PHδ1 molecules (Goehring et al. 2010), and several other studies
[56] (Christensen et al. 2016; Adam and Delbrück 1968; Berg 1977; McCloskey and
Poo 1986; Haugh and Lauffenburger 1997; Abel et al. 2012) [63]. From a modeling
perspective, this assumption has also been extensively explored, especially in the
context of cell polarization (Mori et al. 2008; Cusseddu et al. 2018; Rätz and Röger
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2012; Trong et al. 2014). The resulting system is uniquely defined on the membrane
surface, and the bulk variable u will be represented by an integral operator also called
a non-local functional. Our approach closely follows the work of Rätz and Röger
(2012), Rätz (2015), though our system can be N -dimensional in principle. Formally,
if we assume Du → ∞ and if the initial concentration of û is constant over �̂, then û
no longer depends on space and u = u(t). Therefore, the mass conservation law given
by (8) implies

û(t)|�̂| +
N∑
j=1

{
j ·
∫

�̂

â jds

}
= M0 (22)

whereM0 = û(0)|�̂| +∑N
j=1

{
j · ∫

�̂
â j (s, 0)ds

}
is the total mass of the dimension-

less system. We then define the non-local functional

U[â1, â2, . . . , âN ](t) := 1

|�̂|

⎡
⎣M0 −

N∑
j=1

{
j ·
∫

�̂

â jds

}⎤⎦

as in Rätz and Röger (2012), Rätz (2015). Finally, we drop all the hats to obtain the
reduced system

∂a1
∂t

= �a1 + γF1(a1, a2 . . . , aN ) (23)

∂a j

∂t
= d j�a j + γF j (a1, a2 . . . , aN ), j = 2, . . . , N (24)

where

F1 = [k0 + kbaN ]U[a1, a2, . . . , aN ] − a1 − 2kma
2
1 + 2k2a2

− kga1

(
N−1∑
l=2

a j

)
+

N∑
j=3

k ja j ,

F2 = kma
2
1 − k2a2 − kga1a2 + k2a3,

F j = kga1a j−1 − k ja j − kga1a j + k j+1a j+1, j = 3, . . . , N

FN = kga1aN−1 − kNaN .

In the next sections, we will provide analytical estimates and numerical simulations
to analyze the stability properties of the reduced system (23)–(24).

3 Mathematical Analysis

Obtaining the mathematical conditions for the existence of diffusion-driven insta-
bilities is a crucial step for understanding the origin of heterogeneous steady-state
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solutions (Turing 1952; Murray 1993). For membrane proteins, it has been experi-
mentally observed that a heterogeneous distribution of protein density accounts for
several processes that ensure proper cell function, such as receptor signaling, mem-
brane polarization/depolarization, and calcium channels activity (Lao et al. 2010;
Sleno and Hbert 2018; Baisamy et al. 2005). For this reason, establishing the precise
role of the lateral diffusion in the generation of such heterogeneity is an important step
toward a comprehensive description of pattern formation in the cellular surface.

In this section, we present the mathematical framework for investigating diffusion-
driven instabilities in the system (23)–(24). We establish conditions that guarantee the
existence and uniqueness of homogeneous steady states, or the conditions for having
multiple steady states.We also present a characterization for the JacobianMatrix in the
case of homogeneous perturbations. For the non-homogeneous case, the linearization
of the non-local functional yields a different Jacobian matrix, and a family of ordinary
differential equations is derived to analyze the stability in terms of the eigenfunctions
of the Laplace–Beltrami operator. We then apply our framework in the case N = 2,
where we obtain a necessary condition for diffusion-driven instabilities. We start with
the characterization of the homogeneous steady states.

3.1 Homogeneous Steady States

The homogeneous solutions of (23)–(24) satisfy the ODE system

da j

dt
= γF j (a1, a2 . . . , aN ) j = 1, . . . , N

and the steady states in this case are given by a∗ = (a∗
1 , a

∗
2 , a

∗
3 , . . . , a

∗
N ) such that

F j (a∗) = 0

for all j = 1, . . . , N . From FN (a∗) = 0, we obtain a∗
N = kga∗

1a
∗
N−1

kN
and, proceeding

recursively, it is easy to show that

a∗
j = kga∗

1a
∗
j−1

k j
for j = 3, . . . , N , and a∗

2 = km(a∗
1)

2

k2
. (25)

Hence, a∗
j = C j (a∗

1)
j where C1 = 1 and

C j =
⎛
⎝ j∏

i=3

kg
ki

⎞
⎠(km

k2

)
for j = 2, . . . , N .

Thus, from F1(a∗) = 0, we must have
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a∗
1 = [k0 + kb a

∗
N

] 1

|�|

⎡
⎣M0 − |�|

N∑
j=1

j · a∗
j

⎤
⎦

=
[
k0 + kb CN (a∗

1)
N
] 1

|�|

⎡
⎣M0 − |�|

N∑
j=1

j · C j (a
∗
1)

j

⎤
⎦ . (26)

By multiplying both sides by |�| and rearranging the (a∗
1)

j terms, we can define
the polynomial

PN (α) = −k0M0 + (|�| + k0|�|) α + k0|�|
⎛
⎝N−1∑

j=2

jC jα
j

⎞
⎠

+ CN (k0|�|N − M0kb) αN + kb|�|CN

⎛
⎝ N∑

j=1

jC jα
N+ j

⎞
⎠ , (27)

where the roots of PN are the steady-state values a∗
1 . We then observe that the

coefficient of αN is a nonnegative number if and only if

k0|�|N − M0kb ≥ 0,

which in this case implies that PN (α) has a unique positive root and therefore that
the system has a unique steady state. This is the case when kb = 0, which means that
the largest oligomers do not promote ligand binding in the plasma membrane. On the
other hand, if k0|�|N − M0kb < 0, then multiple steady states could exist.

3.2 Linear Stability Analysis

Linear stability is a traditional concept from the theory of dynamical systems that
treat the study of the local behavior near a steady-state solution. The term “linear”
stands for the analysis of the linear approximation of a nonlinear system, which can
be sufficient to determine if a steady state is stable or unstable. In the case of a system
of ODEs, the analysis is carried out by evaluating the eigenvalues of the so-called
Jacobian matrix. A similar analysis can be done in the context of reaction–diffusion
systems of PDEswith the analysis of the eigenvectors of the Laplace operator. Amajor
contribution in this field is due toAlan Turing in the classic paper “The Chemical Basis
of Morphogenesis” (Turing 1952). Turing established the notion of diffusion-driven
instabilities and was the first to connect this mathematical idea with the formation of
spatially heterogeneous patterns. In what follows, we first analyze the homogeneous
perturbations of the steady states by describing the Jacobianmatrix of the system. Then
we define the conditions for diffusion-driven instabilities in our system (23)–(24).
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3.2.1 Homogeneous Perturbations

In this section, we investigate the linear stability of the steady states a∗ against spatially
homogeneous perturbations, that is, in the absence of diffusion. Our study is an N-
dimensional version of the approach taken in Rätz and Röger (2012), Rätz (2015) for a
GTPase cycling model. We need to compute the eigenvalues λ of the Jacobian matrix

J [a∗] = γ

[
∂F∗

j

∂ai

]
1≤i, j≤N

forF j defined in (23) and (24). If all the eigenvalues ofJ [a∗] have negative real parts,
then the steady state is called linearly stable (Strogatz 1994). That means that local
perturbations will converge to the steady state.

On the other hand, if at least one of the eigenvalues has a positive real part, then
it is called linearly unstable, in which local perturbations will lead the system away
from the steady state. The next proposition generally characterizes J [a∗] − λI.

Proposition 3.1 The matrix J [a∗] − λI can be written in the form

[
w0 − λ w

v H − λI

]

where w0 and λ are real numbers, w ∈ R
N−1 is a row vector, v ∈ R

N−1 is a column
vector, and H is a (N − 1) × (N − 1) tridiagonal matrix.

Proof We will first calculate
∂F∗

j
∂ai

for i, j = 1, 2, . . . , N . For j = 1, we obtain

∂F∗
1

∂a1
= −|�| (k0 + kba∗

N

)
|�| − 1 − 4kma

∗
1 −

N−1∑
l=2

kga
∗
l ,

∂F∗
1

∂a2
= −2

|�| (k0 + kba∗
N

)
|�| − kga

∗
1 + 2k2,

∂F∗
1

∂ai
= −i

|�| (k0 + kba∗
N

)
|�| − kga

∗
1 + ki for i = 3, 4, . . . , N − 1,

∂F∗
1

∂aN
= −N

|�| (k0 + kba∗
N

)
|�| + kb

|�|

⎛
⎝M0 − |�|

N∑
j=1

j · a∗
j

⎞
⎠+ kN .

Now for j = 2, we have

∂F∗
2

∂a1
= 2kma

∗
1 − kga

∗
2 ,

∂F∗
2

∂a2
= −kga

∗
1 − k2,

∂F∗
2

∂a3
= k3

∂F∗
2

∂ai
= 0, i = 4, 5, . . . , N
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and for j = 3 to j = N − 1, we obtain

∂F∗
j

∂a1
= kga

∗
j−1 − kga

∗
j ,

∂F∗
j

∂a j−1
= kga

∗
1 ,

∂F∗
j

∂a j
= −kga

∗
1 − k j ,

∂F∗
j

∂a j+1
= k j+1,

and

∂F∗
j

∂ai
= 0,

otherwise, and finally for j = N ,

∂F∗
N

∂a1
= kga

∗
N−1,

∂F∗
N

∂a2
= kga

∗
1 ,

∂F∗
N

∂aN
= −kN , and

∂F∗
N

∂ai
= 0 otherwise.

We then define J ∗
i j := γ

∂F∗
j

∂ai
, w0 := J ∗

11 − λ, the vectors v,w ∈ R
N−1 such that

v = (J ∗
21 J ∗

31 · · ·J ∗
N1

)T and w = (J ∗
12 J ∗

13 · · ·J ∗
1N

)
and

H =

⎡
⎢⎢⎢⎢⎢⎣

J ∗
22 − λ J ∗

23 0 · · · 0 0 0
J ∗
32 J ∗

33 − λ J ∗
34 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · J ∗
N−1N−2 J ∗

N−1N−1 − λ J ∗
N−1N

0 0 0 · · · 0 J ∗
NN−1 J ∗

NN − λ

⎤
⎥⎥⎥⎥⎥⎦

(N−1)×(N−1)

which proves the proposition. ��

3.2.2 Non-homogeneous Perturbations

Wenow consider a perturbation of the form as = (as,1, as,2, . . . , as,N ) for s ∈ (−1, 1)
of the homogeneous steady state a∗ in the direction of� = (ϕ1, ϕ2, . . . , ϕN ), for non-
homogeneous ϕ j : � × (0, T ) → R. Thus, for each component, we assume

as, j |s=0 = a∗
j and

∂as, j
∂s

∣∣∣∣
s=0

= ϕ j ,

so we may write the linear approximation as, j ≈ a∗
j + sϕ j for j = 1, . . . , N

as, j = a∗
j + s ϕ j (x, t).
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In particular, the linearization of the non-local functional yields U[as] ≈ U[a∗] +
s( dds

∣∣
s=0 U[as]) where

(
d

ds

∣∣∣∣
s=0

U[as]
)

= −
N∑
j=1

d

ds

∣∣∣∣
s=0

∫
�

as, jds = −
N∑
j=1

∫
�

ϕ jds. (28)

Since we assume that ϕ j ∈ L2(�) are orthogonal to the constant perturbations,
which were analyzed in the previous section, we now consider

∫
�

ϕ jds = 0 for j = 1, . . . , N ,

which leads to a linearized system with a constant input U[as](t) = U[a∗]. For the
approximation of the component a1, we thus have

∂tϕ1 = �ϕ1 +
N∑
j=1

J̃1, j (a∗)ϕ j , (29)

where

J̃1,1 = −γ

{
1 + 4kma

∗
1 + kg

(
N−1∑
l=2

a∗
l

)}
, J̃1,2(a∗) = γ

(
2k2 − kga

∗
1

)
,

J̃1, j (a∗) = γ
(
k j − kga

∗
j

)
, j = 3, . . . , N − 1, and J̃1,N (a∗) = γ

(
kN + kb U[a∗]) .

The other terms of the Jacobian matrix remain the same as in the case of the
homogeneous perturbations, so we omit the explicit calculations. In vector notation,
we can then write the linearized system in the form

∂t� = D�� + J̃ (a∗)�, (30)

whereD is a diagonal matrix such thatD j j = d j where d1 = 1 and J̃ (a∗) is the mod-
ified Jacobian matrix. We then define N0 := N∪ {0} and consider (ωl)l∈N0 ⊂ L2(�),
an orthonormal basis of infinitely smooth eigenfunctions of the Laplace–Beltrami
operator, i.e.,

−�ωl = ηlωl . where 0 = η0 < η1 ≤ η2 ≤ · · · .

In the case where � is the unitary sphere S2 parametrized by the angles φ ∈ [0, 2π)

and θ ∈ [0, π) , the eigenfunctions have the closed form

cos(mφ)Pm
k (cos(θ)) and sin(mφ)Pm

k (cos(θ))
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where k ≥ 0, 0 ≤ m ≤ k and Pm
k (t) are the so-called associated Legendre function

(see references Gallier 2009; Silverman 1972 for details).
Then, for each j = 1, . . . , N we can express each component ϕ j as a linear

combination

ϕ j = α j0 ω0 +
∑
l∈N

α jl ωl

where α jl = α jl(t) for l ∈ N0 . Using vector notation, we can define the quantity
Al = (α1l , α2l , . . . , αNl)

T such that

� = A0 ω0 +
∑
l∈N

Al ωl(x).

By substituting the above expansion in (30), we obtain the linear ODE system

dAl

dt
=
[
−ηlD + γ J̃ (a∗)

]
Al for l = 0, 1, 2, . . . (31)

and diffusion-driven instabilities occur if the above system is unstable for some l ∈ N0.
This is true when at least one eigenvalue λ of the matrix −ηlD+ J̃ (a∗) has a positive
real part. Therefore, our target quantity is the so-called dispersion relation

h(l) := max (Re(λ(ηl))) , (32)

where Re(z) denotes the real part of a complex number z. Finally, the characteristic
polynomials pl(λ) := det(λI − γ J̃ (a∗) + ηlD) can be written in the form

pl(λ) = λN + bl,N−1λ
N−1 + . . . + bl,0

where bl,0 = det(−γ J̃ (a∗) + ηlD). Therefore, if bl,0 < 0 for some l ∈ N, and since
pl(λ̃) > 0 for λ̃ sufficiently large (pl(λ) → ∞ as λ → ∞), the intermediate value
theorem ensures that pl has a positive root in [0, λ̃] and therefore h(l) > 0.

3.3 Special Case N = 2: Necessary Conditions for Diffusion-Driven Instabilities

We now fix N = 2 and analyze the conditions for diffusion-driven instabilities. The
equations are given by

∂t a1 = �a1 + γ

{
(k0 + kba2)

|�|
[
M0 −

∫
�

(a1 + 2a2) ds

]
− a1 − 2kma

2
1 + 2k2a2

}
(33)

∂t a2 = d2�a2 + γ
{
kma

2
1 − k2a2

}
(34)

and describe the simplest casewhere a reversible dimerization (formation of oligomers
of size two) occurs on the plasma membrane. Dimerization in the cellular surface is a
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key factor in regulation and takes place for numerous molecules, such as ion channels
(Marianayagam et al. 2004), receptor tyrosine kinases (RTKs) Lemmon and Sch-
lessinger (2010); Sarabipour and Hristova (2016), and K-ras GTPases (Muratcioglu
et al. 2015). From a mathematical perspective, the case N = 2 is more tractable and
therefore can potentially give some insight into the mechanisms of pattern formation
in our model. On the other hand, even this simple case differs substantially from the
previous work of Rätz and Röger (2012, 2014), Rätz (2015), since we only assume
reversible mass action instead of Michaelis–Menten kinetics, and also because of the
particular positive feedback (Eq. 1) that has not been considered in previous studies.

We provide a necessary condition in a particular case where the system admits a
unique spatially homogeneous steady state. We prove that the system does not exhibit
diffusion-driven instabilities provided that kb is sufficiently small. In biological terms,
the following result states that if the AN -dependent binding rate of monomers to the
membrane is low enough, which can be interpreted as a small influence of the largest
oligomers in the binding process, then diffusive effects will dominate, and no protein
distribution heterogeneity will form on the cellular surface.

Theorem 3.1 Suppose kb ≥ 0 is such that

kb ≤ 2

M0
min

{
k0|�|, d2ηi |�|

γ

}

for all i ∈ N. Then, the system admits a unique steady state and no diffusion-driven
instability exists.

Proof Let a∗ = (
a∗
1 , a

∗
2

)
be the spatially homogeneous steady a∗ = (

a∗
1 , a

∗
2

)
, which

is obtained when a∗
2 = km (a∗

1 )2

k2
and a∗

1 is a solution of P2(α) = 0, where

P2(α) = −k0M0 + (|�| + k0|�|) α + km
k2

(2k0|�| − M0kb) α2

+ kb|�|km
k2

α3 + 2

(
km
k2

)2

kb|�|α4.

Now since kb ≤ 2k0|�|
M0

, we have 2k0|�| − M0kb ≥ 0, and therefore, P2 has only
nonnegative coefficients except −k0M0, which implies that P2(α) strictly increases
for α ≥ 0. On the other hand, P2(α) → ∞, and hence, P2(α̃) > 0 for α̃ sufficiently
large. The intermediate value theorem then ensures that the system admits a unique
positive steady state in [0, α̃]. The Jacobian matrix with respect to homogeneous
perturbations is then given by

J [a∗] = γ

⎡
⎢⎢⎣

−1 − 4a∗
1km − |�|

|�|
(

kbkm (a∗
1 )2

k2
+ k0

)
2a∗

1km

2k2 + kb|�|
[
M0 −

(
2km (a∗

1 )2

k2
+ a∗

1

)
|�|
]

− 2|�|
|�|
(

kbkm (a∗
1 )2

k2
+ k0

)
−k2

⎤
⎥⎥⎦

123



30 Page 18 of 34 L. M. Stolerman et al.

with a second-order characteristic polynomial p(λ) = det(λI − J [a∗]) given by
p(λ) = λ2 + bλ + c, where

b = γ

(
(a∗

1)
2|�|kbkm
k2|�| + 4a∗

1km + |�|k0
|�| + k2 + 1

)
> 0

and

c = γ 2

(
8(a∗

1 )
3|�|kbk2m
k2|�| + 3(a∗

1 )
2|�|kbkm
|�| + 2a∗

1km
|�| (2|�|k0 − kbM0) + |�|k0k2

|�| + k2

)

is also positive because 2k0|�| − M0kb ≥ 0. From that, we conclude that both
eigenvalues

λ = −b ± √
b2 − 4c

2

must have real negative parts, and therefore, the steady states are linearly stable. We
then perform a similar argument for non-homogeneous perturbations. From (29), we
obtain the modified Jacobian matrix J̃ (a∗), and for a given l ∈ N0, we have

J̃ (a∗) − ηlD =
⎡
⎣−γ (1 + 4a∗

1km) − ηl γ

{
2k2 + kb|�|

[
M0 − |�|

(
2km (a∗

1 )2

k2
+ a∗

1

)]}
2γ a∗

1 km −γ k2 − d2ηl

⎤
⎦

with characteristic polynomials pl(λ) := det(λI − γ J̃ (a∗) + ηlD) given by the
quadratics pl(λ) = λ2 + blλ + cl , where

bl = γ (4a∗
1km + k2 + 1) + ηl(d2 + 1) > 0

and

cl =
[
d2η

2
l + γ ηl(d2 + k2) + γ 2k2

]
+ 2 γ km a∗

1

(
2d2ηl − γ kbM0

|�|
)

+ 2γ 2(a∗
1)

2|�|kbkm
|�|

(
1 + 2a∗

1km
k2

)
.

In the case l ∈ N, the cl terms are also positive, since we assume

kb ≤ 2d2ηl |�|
γM0

⇐⇒ 2d2ηl − γ kbM0

|�| ≥ 0 ∀i ∈ N,

and in this case the pl(λ) have no roots with positive real parts. In the case l = 0, we
know that η0 = 0, but the modified matrix J̃ (a∗) yields a different linearized system.
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Thus, we have to analyze the stability of the linear equation given in (31) in the case
where l = 0, i.e.,

dA0

dt
=
[
γ J̃ (a∗)

]
A0

with characteristic polynomial p0(λ) = λ2 + b0λ + c0 where

b0 = γ (4a∗
1km + k2 + 1) > 0

and

c0 = γ 2

{
k2 − 2km a∗

1

(
kbM0

|�|
)

+ 2(a∗
1)

2|�|kbkm
|�|

(
1 + 2a∗

1km
k2

)}

= γ 2

{
k2 − 2kmkba∗

1

|�|

[
M0 − |�|

(
a∗
1 + 2

(a∗
1 )

2km
k2

)]}
. (35)

We now verify that c0 ≥ 0. In fact, from (26) when N = 2, we obtain

1

|�|

[
M0 − |�|

(
a∗
1 + 2

(a∗
1)

2km
k2

)]
= k2a∗

1[
k0k2 + kb(a∗

1)
2km
] ,

and therefore by substituting the above equation on (35) and using that a∗
2 = km

k2
(a∗

1)
2,

we obtain

c0 = γ 2k2

⎧⎨
⎩1 − 2

a∗
2[

k0
kb

+ a∗
2

]
⎫⎬
⎭ .

Finally, the hypothesis gives us k0
kb

≥ M0
2|�| and by using M0 − 2|�|a∗

2 ≥ 0 (total
mass of a2 at steady state does not exceeds the total mass of the system) we obtain
M0
2|�| ≥ a∗

2 and therefore

a∗
2[

k0
kb

+ a∗
2

] ≤ 1

2

from which we conclude that c0 ≥ 0. Therefore, the steady state is stable against
non-constant perturbations. ��

4 Numerical Simulations

We perform numerical simulations to complete our mathematical analysis. In
sect. 3, we established the mathematical framework for investigating the existence
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of diffusion-driven instabilities and obtained a necessary condition in the case N = 2.
However, no sufficient conditions were explored, and no further analysis was done for
N > 2. For this reason, we complete our analysis by searching for linear instabilities
in the parameter space and analyzing the single-patch steady state that forms when the
parameters lie in the instability regions. In terms of biological motivation, our analyt-
ical estimates provided no conditions that guarantee the formation of spatial patterns,
which in turn are known to exist in the plasma membrane in various contexts. There-
fore, we can use numerical simulations to obtain heterogeneous patterns and analyze
their spatial properties.

We start the section by analyzing the parameter regions of bistability (Sect. 4.1).
Then, we investigate whether the stable steady states become linearly unstable under
non-homogeneous perturbations (Sect. 4.2). From the linear instability analysis, we
obtain the single-patch non-homogeneous steady state (Sect. 4.3). Finally,we study the
temporal dynamics of pattern formation (Sect. 4.4) and the single-patch dependence on
the cell radius (Sect. 4.5). The numerical simulations were implemented in MATLAB
R2018a and Comsol Multiphysics 5.4. In subsections 7.1.1 and 7.1.2 in the Electronic
Supplementary Material (ESM), we provide the numerical details of our simulations.

4.1 Bistability Under Homogeneous Perturbations

We begin by computing the homogeneous steady states a∗ and the correspond-
ing eigenvalues of the Jacobian matrix J [a∗] under homogeneous perturbations
(cf. Sect. 3.2.1). We then explore the parameter regions of bistability where the system
admits three steady states, two of them stable and one unstable. In the case N = 2, we
obtain regions of bistability by change the basal binding rate k0 and the A2-dependent
binding rate kb (Fig. 2). For k0 = 0.015, three steady-state values for a∗

1 emerge
depending on kb (Fig. 2a). When k0 also changes, we obtain both a bistability region
(dark gray) and a single steady-state region (light gray) (Fig. 2b). A colored (red, black,
and blue) vertical line represents the region from Fig. 2a. Other parameter choices also
lead to bistability regions (see Figure S1 (A) for N = 2 and Figure S2 (A) for N = 3
in the (ESM)).

4.2 Linear Instability Under Non-homogeneous Perturbations

In this section, we numerically investigate which parameter values promote linear
instability under non-homogeneous perturbations. We fix an eigenmode index l ≥
1 to explore diffusion-driven instabilities, and let a∗ be a stable steady state under
homogeneous perturbations. We can thus compute the dispersion relation h(l) [Eq.
(32)] defined in Sect. 3.2.2 by calculating the roots of the characteristic polynomials
pl(λ). This step was done using the function eig in MATLAB R2018a (see subsection
7.1.1 in the ESM for further details on our MATLAB simulations). If h(l) < 0, the
steady state remains stable in the direction of the chosen eigenmode. In this case,
the analysis is inconclusive, since we would also need to determine the stability for
the other eigenmodes. If h(l) > 0, the steady state becomes unstable for the chosen
eigenmode, and this is sufficient to ensure a diffusion-driven instability (Smith and
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Fig. 2 Steady states and parameter regions for bistability (N = 2). a The value of k0 = 0.015 is fixed,
while kb ranges from 1 to 3.5. We then compute the steady states, which are the solution of (26). The single
steady-state branches are shown in red and blue, respectively, while the bistable branch is shown in black.
The dark gray rectangle illustrates the emergence of bistability, and the dashed black arrows indicate the
stable steady states. bBistability region for k0 ∈ [0.01, 0.03]with k0 = 0.015marked. The dark gray region
contains the kb values for which the system admits a bistability region. The single steady-state regions are
indicated in light gray. The remaining fixed parameters: R = 1, � = 4π , � = 3

4π ,M0 = �, km = 1, and
k2 = 1 (Color figure online)

Dalchau 2018). The case h(l) = 0 usually requires higher-order analysis, so we will
not consider it in the context of linear stability.

Given a fixed eigenmode index l, we can then divide the parameter space into
four regions. We will call them Regions 0, 1, 2, and 3, where the numbers reflect the
exact number of unstable steady states (Fig. 3a) for N = 2 and (b) for N = 3. More
precisely, we define:

• Region 0 The single steady-state region where h(l) < 0, there are no unstable
steady states.

• Region 1 The single steady-state region where h(l) > 0, there is only one unstable
steady state.

• Region 2 The bistability region where h(l) > 0 for only one stable steady state, a
total of two unstable steady states.

• Region 3 The bistability region where h(l) > 0 for both stable steady states, a total
of three unstable steady states.

The stability analysis in Region 0 is more subtle and requires further analysis since
the stability criterion needs to be fulfilled for all eigenmodes. However, at least for
N = 2, Theorem 3.1 ensures that the system remains stable for sufficiently small kb,
which appears to be consistent with the numerical predictions. For higher kb values,
the instabilities emerge in the bistability region (Regions 2 and 3) and also in the single
steady-state Regions 0 and 1. We obtain a similar result for N = 3 (Fig. 3b). However,
it should be noticed that the kb values promoting linear instabilities are higher (see
y-axis ranging from 4 to 14) compared with the case N = 2. Regions 0, 1, 2, and 3 can
be found with other parameter choices (see Figure S1 (B) for N = 2 and Figure S2
(B) for N = 3 in the ESM).

Region 1 is known as a Turing-type instability region (Turing 1952; Murray 1993),
where the system may converge to a spatially non-homogeneous steady state. We
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Fig. 3 Parameter regions of bistability and linear instability (N = 2 and N = 3). We scan the reaction
rates for different parameter values. In the top, the parameter regions in the k0 × kb plane where the system
exhibits bistability under homogeneous perturbations. In the bottom, Regions 0, 1, 2, and 3 divide the
k0 × kb plane according to the number of unstable steady states under non-homogeneous perturbations for
the eigenmode l = 1 (see text for details). a N = 2, d2 = 0.1, γ = 1000. b N = 3, d2 = d3 = 0.1,
γ = 1000. The kb values that promote linear instability are significantly higher for N = 3 compared to
the case N = 2. Remaining fixed parameters: R = 1, � = 4π , � = 3

4π , M0 = �, k2 = k3 = 1, and
km = kg = 1 (Color figure online)

analyze this region when we increase both k0 and kb ranges for different values of the
diffusion coefficient d2 (Fig. 4a). As d2 decreases, Region 1 increases, which illustrates
how the system becomes unstable as the discrepancies between diffusion become
higher. A similar phenomenon occurs as we increase the dimensionless parameter γ ,
also referred to as theDamköhler number (Scott 2005), which is the rate of membrane
dissociation of monomers compared to their diffusivity. Increasing γ allows a higher
dominance of the reaction flux over diffusion effects (Burke and Schumann 1928),
and thus, a larger unstable space tends to occur (Figure S3). On the other hand, as the
eigenmode index l increases, Region 1 significantly decreases (Fig. 4b). We exhibit
the results for l = 2, l = 6, and l = 8. Such a decrease implies that the Region 1 for
the higher eigenmodes (l > 1) is contained in the Region 1 for the first eigenmode
(l = 1). For this reason, to determine the whole instability region in this case (which
is the union of Regions 1 for all eigenmodes), it is sufficient to consider Region 1 for
l = 1.

123



Stability Analysis of a Membrane Protein Clustering Model Page 23 of 34 30

Fig. 4 Changing the diffusion coefficient and the eigenmode of the Laplace–Beltrami operator for N = 2.
a For d2 = 1, we show a zoomed plot of the interface of the Regions 1 and 2. Most of the (k0, kb) in the
rectangle [0.01, 1.4]× [1, 10] belongs to the Region 0, where the system is stable under non-homogeneous
perturbations. However, by decreasing d2 to 0.5 and further to 0.1, the Region 1 (in orange) significantly
increases, which means that the system exhibits a larger instability region for lower d2 values. In this figure,
we fix γ = 10 and l = 1 as the eigenmode index. b Linear instability Region 1 for eigenmode index
values l = 2, 6, and 8. For l = 2, the system is unstable under non-homogeneous perturbations for most
(k0, kb) values above the diagonal of the rectangle [0.01, 2] × [1, 10]. As l increases, Region 1 (in orange)
significantly decreases. Therefore, we can analyze the instability of the system by exploring only the first
eigenmode, since Region 1 does not expand as l increases. In this figure, we fix γ = 100 and d2 = 0.1.
Remaining fixed parameters: R = 1, � = 4π , � = 3

4π , M0 = �, k2 = 1, and km = 1 (Color figure
online)

4.3 The Emergence of the Single-Patch Non-homogeneous Steady State

In this section,we investigate the spatiotemporal behavior of our systembynumerically
integrating the dimensionless equations. We consider a spherical domain of radius
R = 1 and, as in the previous sections, we fix N = 2 or N = 3. We avoid solving the
surface system (23)–(24) due to the numerical complexity of the non-local functional.
Instead,we solve the dimensionless bulk–surface Eqs. (16)–(21) (dropping all the hats)
for an extremely high cytosolic diffusion (D̃ = 108) on (16). In this way, our resulting
system can be seen as an approximation of the reduced system when D̃ → ∞. We
randomly perturbed the homogeneous steady states by considering a small number
ε > 0 as the perturbation magnitude and a family {ξ(x)}x∈� of independent random
variables uniformly distributed between−1 and 1. In the case where N = 2, we define
the surface initial conditions

a1(x, 0) := a∗
1 + ε ξ(x) and a2(x, 0) := a∗

2 − 1

2
ε ξ(x) (36)

for x ∈ �, where the 1
2 accounts for mass conservation [see (22)]. For the volume com-

ponent, we define u(x, 0) := u∗ , for x ∈ �, where u∗ = 1
|�|
[
M0 − |�|(a∗

1 + 2a∗
2)
]

also because of the mass conservation property. For N = 3, we define a∗
1
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as in (36), a j (x, 0) := a∗
j − 1

5ε ξ(x) for j = 2 and j = 3, and u∗ =
1

|�|
[
M0 − |�|(a∗

1 + 2a∗
2 + 3a∗

3 )
]
.

Remark 4.1 The element (a∗
1 , a

∗
2 , . . . , a

∗
N ) is a homogeneous steady state of the system

(23)–(24) if and only if (a∗
1 , a

∗
2 , . . . , a

∗
N , u∗) is a homogeneous steady state of the

system (16)–(21) provided that

u∗ = 1

|�|
[
M0 − |�|(a∗

1 + 2a∗
2 + . . . + Na∗

N )
]
.

From the remark above, we can obtain the steady states of the reduced system (23)–
(24). Then,we can numerically integrate the bulk–surface PDE system (16)–(21) using
the perturbation scheme described above. In order to associate the parameter regions
that lead to instabilities with the formation of spatial patterns, we select four (k0, kb)
values in the four Regions 0, 1, 2, and 3 (Fig. 5). We fix N = 2 and the eigenmode
index l = 1. For each choice of (k0, kb) , we integrate the system (16)–(21) to its
final state by perturbing a homogeneous steady state. We then plot the result for the a1
component and visually inspect the results. For (k0, kb) in Regions 1, 2, and 3, (colored
in orange, red, or black, respectively), a single-patch spatially heterogeneous steady
state emerges.On the other hand,when (k0, kb)belong toRegion 0, inwhich the system
is stable for the eigenmode index l = 1, the system converges to its homogeneous
steady state. This result indicates that the single-patch pattern is consistent across
parameter choices in Regions 1, 2, and 3, once it remains unchanged in its circular
shape and gradient of concentrations. Figure S4 in the ESM shows a similar result in
the case N = 3.

4.4 Temporal Evolution and Pattern Formation

In this section,we further investigate the temporal evolution of the system.We consider
N = 2 and (k0, kb) = (0.025, 2.5) which belongs to Region 1 (see Fig. 5). We then
observe the spatial distribution of a1 for different times (Fig. 6a). At t = 0,We apply a
random perturbation of magnitude ε = 10−10 around the unique homogeneous steady
state that is unstable under non-homogeneous perturbations. The system then smooths
due to diffusion, and the small random peaks continuously coalesce and react, until a
few large domains emerge at t = 0.099. At t = 0.114 and t = 0.119, multiple patches
of higher a1 concentration emerge. The feedback term [Eq. (1)] then plays its role,
once the higher a2 concentration location promotes the recruitment of more cytosolic
component. This leads to the formation of the single-patch profile at t = 0.159. From
that time until the final time (t = 1), the spatial configuration only changes in terms of
concentration gradients. File F1 in the ESM contains a movie of the simulation shown
in Fig. 6a for both monomeric (a1) and dimeric components (a2). In Figure S5 in the
ESM, we show a similar result for N = 3.

In order to quantify the single-patch size, we quantify the surface area of the
high-concentration locations in the spherical domain. For this purpose, we define
the function
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Fig. 5 Linear instability and pattern formation (N = 2). We exhibit the stability analysis colormap for
eigenmode index l = 1 and the final spatial profile of the a1 component. We consider four (k0, kb) values
from Regions 0, 1, 2, and 3, which are colored in light yellow, orange, red, or black, respectively. For
Regions 1, 2, and 3, we observe the emergence of a single-patch spatially heterogeneous steady state which
is consistent across parameter regions in terms of its circular shape and concentration gradient. For Region
0, we do not observe a pattern formation for this particular eigenmode. In this figure, d2 = 0.1, γ = 1000,
km = k2 = 1; steady-state values: Region 0: a∗

1 = 0.0812, a∗
2 = 0.0066, u∗ = 2.7168. Region 1:

a∗
1 = 0.3817, a∗

2 = 0.1457, u∗ = 0.9806. Region 2: a∗
1 = 0.2759, a∗

2 = 0.0761, u∗ = 1.7155. Region

3: a∗
1 = 0.1107, a∗

2 = 0.0123, u∗ = 2.5942. Remaining fixed parameters: R = 1, � = 4π , � = 3
4π ,

M0 = �, k2 = 1, km = 1 (Color figure online)

Iε
a j

(t) =
∫

�

1{a j (x,t)>〈a j 〉(t)+ε}ds (37)

where ε is the perturbation magnitude, j is the index of the oligomeric component,
and 〈a j 〉(t) = ∫

�
a jds is the average concentration of a j across the sphere �. We

then evaluate the evolution of Iε
a j

(t) over time (Fig. 6b). We exhibit the results of a

single simulation for N = 2 and N = 3, and ε = 10−10. At early times, when the
concentrations a j are close to the steady state a∗

j across the domain, Iε
a j

(t) remains
close to 0. Then, the combination of diffusion and the feedback term makes the con-
centration gradients increase in a large portion of the domain, as illustrated in Fig. 6a
for t = 0.099, t = 0.114, and t = 0.119 . Finally, the formation of the single patch
promotes the decrease of Iε

a j
(t), since the area of high concentration tends to be small

in comparison with the total surface area. Moreover, the concentration outside the
patch tends to be small, which makes the average 〈a j 〉(t) assume lower values. There-
fore, in the final times, the locations in the sphere where the concentrations remain
above the average can be associated with the single patch. For this reason, we define
the single-patch area

Sε
a j

:= Iε
a j

(t f ),

where t f is the final simulation time. In this work, we avoid an analytical treatment
for the functions Iε

a j
(t). In particular, we base our definition of the single-patch area

Sε
a j

on visual inspection of the curves in Fig. 6b: for N = 2 and N = 3, the quantities
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Fig. 6 Temporal evolution and pattern formation a Spatial distribution of the monomeric component (a1)
at different non-dimensional times. At t = 0, a random perturbation of magnitude ε = 10−10 is applied
to the unstable homogeneous steady state. At t = 0.099, a small gradient emerges until t = 0.114, and
at t = 0.119, the high-concentration domains begin to coalesce. At t = 0.159, the system converges to
the single-patch profile. Finally, at t = 1, we show the single-patch steady state with a final concentration
gradient from 0.001 to 12 a.u. In this figure, we consider N = 2, k0 = 0.025, and kb = 2.5 such that a
single steady state becomes unstable under non-homogeneous perturbations [(k0, kb) belongs to Region 1
in Figure 5]. The steady state is given by a∗

1 = 0.3817 , a∗
2 = 0.1457, and u∗ = 0.9806. A supplemental

movie for panel (A) can be found in supplemental file F1. Remaining fixed parameters: R = 1, � = 4π ,
� = 3

4π , M0 = �, k2 = 1, km = 1. b Evolution of (Iε
a j )(t) that gives the single-patch area Sε

a j
for N = 2 and N = 3 (see text for details). Inset: a single-patch final configuration. Parameter values:
R = 1, γ = 1000, d2 = d3 = 0.1, k0 = 0.016, km = 1, and k2 = 0.44. Top: N = 2, kb = 1. Bottom:
N = 3, kb = 10, kg = km , k3 = k2. Initial conditions: a1(0) = 0.0918, a2(0) = 0.0191, a3(0) = 0,
u(0) = 2.6099. c For N = 2 and N = 3, we plot the final normalized a j concentrations on a geodesic
curve parametrized by arc-length. As the oligomer index j increases, the distribution and maximum value
of a j becomes tighter and higher (inset), respectively (Color figure online)
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Iε
a1(t) converge to a final value after a transient increase and subsequent decrease in

time. Thus, we assume that this final value gives a good estimate of the single-patch
area as a function ε. In Figure S6 in the ESM, we illustrate how the percentage of
Sε
a j

with respect to the total surface area does not change significantly as ε changes.
We also observe that Iε

a1 > Iε
a2 for all times in the case where N = 2, and also

Iε
a1 > Iε

a2 > Iε
a3 in the case where N = 3. We conclude that Sε

a1 > Sε
a2 (for N = 2)

andSε
a1 > Sε

a2 > Sε
a3 (for N = 3). In order to better visualize this area shrinking as the

oligomer size increases, we plot the final normalized concentration profiles (Fig. 6c).
Given the arc-length parametrization of a geodesic curve crossing the single-patch
region, the concentration distributions become tighter for a2 compared to a1 in the
case N = 2. The inset plot shows the non-normalized concentrations, where we see
that a2 > a1 in the single-patch location. A similar phenomenon occurs for N = 3:
the distribution and maximum value of a j becomes tighter and larger as j increases
from 1 to 3.

4.5 Change of the Cell Radius and Single-Patch Area

We investigate how the single-patch area of a spherical cell depends on its radius
R. From the non-dimensionalization of the bulk–surface system (see Sect. 2.4), we
defined the characteristic quantities (15). In order to move through a dimensional
system, we define the dimensionless parameters as depending on R to preserve a
constant volume concentration. Therefore, we assume a constant U such that M0 ∝
R3, making the dimensionless parameters functions of R. For this reason, each choice
of R will lead to a different solution of the non-dimensional system (16)–(21). In
particular, it will also change the non-dimensional single-patch area Sε

a j
. We show the

results for R ranging from 0.5 to 5 and two different parameters (Fig. 7):

area percentage = Sε
a j

4π
× 100 and dimensional area = Sε

a j
R2.

For N = 2 and N = 3, we provide the same total volume concentration for the
system. For clarity, in this section we will refer to the non-dimensional system with
the hat (∧) notation. We define the initial conditions as a linear ramp of slope ε around
the steady state

â1(x, 0) = â∗
1 + ε x̂1 and â2(x, 0) = â∗

2 − 1

2
ε x̂1,

where x̂ = (x̂1, x̂2, x̂3) ∈ �̂ and x̂1 is the position with the sphere centered in the
origin. In the case N = 3, we assumed a∗

3 = 0. See Fig. 7 caption for details on the
parameter choices.We then observe the same phenomena: the dimensional area (Fig. 7
red; open circles) increases approximately linearly with R. On the other hand, the area
percentage (Fig. 7 black; closed circles) decreases with R. We can then conclude
that although the dimensional area of clusters increases, the additional spherical area
changes at a much faster rate since the area percentage varies with ≈ 1

R . The effect of
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Fig. 7 Change of the cell radius and single-patch area. We quantify the percentage of the total area and
the dimensional area (see text for details), for various radii R ranging from 0.5 to 5. The R value was
changed in the non-dimensional system with a fixed concentration (U ) through variations in �, γ , A, k̂0,
k̂m , and k̂g (see Eqs. 16–21). a We quantify the Patch size for the N = 2 case (red; open circles) and then
normalized against the total area of the sphere (black; closed circles). As the radius increases, the patch size
increases approximately linearly, but the percent area decreases rapidly. b The same simulation for N = 3.
As the radius increases, the patch size increases, but the total percent area still decreases. Between cases,
we observe the same general qualitative properties for single-patch area percentage and dimensional area.
The major differences arise in the absolute values, as N = 3 creates larger patches. In these simulations,
ε = 0.01a∗

2 , a
∗
1 = 0.0981, a∗

2 = 0.0191, a∗
3 = 0, u∗ = 2.6099. Parameter values: d2 = d3 = 0.1,

D̃ = 108, k̂0 = 0.016
R , k̂b = 10, k̂g = k̂m = R, k̂3 = k̂2 = 0.44, γ = 1000R2 (Color figure online)

N on single-patch area shows both dimensional area and area percentage are higher
for N = 3 (Fig. 7b) in comparison with N = 2 (Fig. 7a).

5 Discussion

Protein heterogeneity in the PM is of critical importance to cellular functions. Many
factors influence this heterogeneity, includingmembrane composition, protein–protein
interaction, phase separation, lateral diffusion, and possible feedback, resulting in the
formation of spatial patterns (Hashimoto and Panchenko 2010; Johannes et al. 2018;
Ispolatov 2005). For this reason, understanding the interplay of aggregation kinetics,
lateral diffusion, and feedback in the formation of spatial patterns is an essential step
toward developing a complete description of themechanisms behind protein clustering
on the cell surface. In this work, we developed a bulk–surface model for protein
aggregation with positive feedback that exhibits a spatially heterogeneous single-
patch steady state. To the best of our knowledge, this is the first modeling attempt that
merges the reaction–diffusion version of classical Smoluchowski dynamics with the
modern bulk–surface geometrical setup.

A major result from our model is the role played by the feedback term kb aN in the
boundary conditions (1). If kb is low enough, the steady-state distribution is spatially
uniform, and no protein heterogeneity exists. For N = 2, we formally proved such
a result (Theorem 3.1), and for N = 3, we used numerical simulations to observe
a similar phenomenon. In particular, in the total absence of feedback (kb = 0),
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we observed that spatial heterogeneity is not achievable when we only considered
protein–protein interaction. On the other hand, if kb is sufficiently high, we observed
the emergence of linear instability and therefore patterning on the cellular surface.
Experimental observations have shown that membrane proteins do organize in a spa-
tially heterogeneous fashion (Choquet 2010; Gan et al. 2015; Padmanabhan et al.
2019). However, the molecular mechanisms are still being investigated experimen-
tally. The feedback mechanism we proposed here can also be interpreted in purely
biological terms. The largest oligomers recruit ligands from the cytosol, which form
ligand–receptor monomers. If the rate of recruitment of monomers is low, diffusive
effects dominate, and the configuration of the system is homogeneous in space. On the
other hand, a higher rate promotes a significant influx of newmonomeric components.
Then, continued oligomerization generates higher concentrations of the largest com-
ponents, which closes the positive feedback loop and drives pattern formation. The
largest oligomers can thus be interpreted as self-activators of pattern formation. For
this reason, our mechanism of pattern formation can be related to the classical Turing
framework, where self-activation is required to generate spatial patterns (Turing 1952;
Gierer and Meinhardt 1972). Another interesting aspect of our model is the absence
of an explicit description of cooperative binding. For the wave-pinning model (Mori
et al. 2008, 2011; Cusseddu et al. 2018), cooperativity is included with a Hill function,
which accounts for the positive feedback. In contrast, our oligomerization reactions
assume only mass action kinetics, which seems to be insufficient for pattern formation
without the feedback term.

Bistable systems are well known to promote diffusion-driven instabilities in the
context of cell polarization (Rappel and Edelstein-Keshet 2017; Semplice et al. 2012).
For the wave-pinning model (Mori et al. 2008, 2011; Cusseddu et al. 2018), the struc-
ture of the Hill function is responsible for bistability. Other studies followed a similar
approach, using a particular choice of reaction flux that is naturally associated with
a bistable regime (Beta et al. 2008; Alonso and Baer 2010). In our model, bistabil-
ity emerges by the combination of two key ingredients: positive feedback and mass
conservation. This observation becomes clear as we carefully inspect the steady-state
analysis of the reduced system (cf. Sect. 3.1). First, the equilibrium of the oligomer-
ization reactions (driven only by mass action kinetics) provides the distribution across
different surface components. Then, the input from the non-local functional comes into
play, as a consequence of the boundary conditions and mass conservation. The non-
local functional at steady state provides an extra equation, which gives the equilibrium
solutions for the monomeric component. The particular contribution of the feedback
comes from the coefficient CN (k0|�|N − M0kb) αN of the polynomial PN (α). If
the coefficient is negative, then the existence of three roots, and therefore three steady
states, is achievable. In this case, we can compute their stability under homogeneous
perturbations and verify bistability.

Under non-homogeneous perturbations, one or two stable steady statesmay become
unstable, and the system undergoes a diffusion-driven instability. Even more impres-
sive is the emergence of a linear instability parameter region, called Region 1 in this
study, when the system admits a single steady state that becomes unstable. We note
that in Getz et al. (2018), the authors were able to find a region of linear instability
for the wave-pinning model that is comparable with our Region 1. While the authors
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briefly discussed the changes in that parameter region for different wave numbers,
here we explicitly showed that the leading eigenmode exhibits a region of instability
that shrinks as the eigenmode index increases. Such instability in the lower modes,
which are associated with the smallest positive eigenvalues of the Laplace–Beltrami
operator, has been often related to a single-patch steady-state pattern (Rätz and Röger
2014; Goryachev and Pokhilko 2008), which is confirmed for our system.

The single-patch steady state consistently appears for parameter values correspond-
ing to different instability regions (called as Regions 0, 1,2 and 3). Goryachev and
Pokhilko (2008) found a similar spatial profile for the Cdc42 GTPase cycle, where the
influx of new cytoplasmic componentsmaintained the cluster steady state and compen-
sated for its lateral diffusion. A similar phenomenon seems to happen in our system.
An allegory that explains the stable existence of such heterogeneous steady states is
the so-called rich gets richer competition (Manor and Shnerb 2006). In this case, larger
domains outcompete the smaller until only one stable domain arises. Our hypothesis
about the existence of the single patch is based on the role of the positive feedback term.
We assume that the presence of high concentrations of the largest oligomer promotes
ligand binding onto the PM in a linear fashion, without any saturation mechanism or
steric effects. As in Goryachev and Pokhilko (2008), this assumption seems to account
for a resource competition that excludes the possibility of multiple patches. In cells,
multiple patches of protein aggregates are observed (Han et al. 2017). The number and
size of these aggregates often depend on the particular experimental condition and the
membrane composition. Modeling such observations will require the development of
a more thermodynamically detailed model.

Based on the insights from our model, we identify future research directions that
will enhance studies such as ours. In the current formulation, we lack a formal expla-
nation for the emergence and robustness of the single-patch steady state. The spatial
aspects of the model render such analysis hard, but it may be possible to obtain a
formal proof by considering a one-dimensional version of our system as in Mori et al.
(2008). Another interesting quantity to be computed in future studies is the so-called
amplitude of the pattern, for which a formal calculation was recently developed (Chen
and Buceta 2019). Additionally, the mathematical challenge for a theoretical stability
result lies in the increasing complexity of the system as N increases. In this case, we
have relied on numerical simulations for N = 3 to identify the threshold phenomenon
for diffusion-driven instabilities. However, future efforts in this direction could open
up new mathematical avenues for stability analysis of increasingly complex systems.
Regarding the parameter choices, its important to acknowledge that our parameters
were not informed by data. Instead, in this work we focused on establishing the dimen-
sionless parameter spaces that yield linear instabilities within the Turing approach. In
a different direction, future efforts will be devoted to adapting our system to specific
biological problems. Finally, including the role of curvature and cytosolic diffusion
in the formation of membrane protein aggregates would bring us closer to analyses of
biological and biophysical systems. These are topics of ongoing studies in our group.
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