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ABSTRACT2

In this perspective, we examine three key aspects of an end-to-end pipeline for realistic cellular3
simulations: reconstruction and segmentation of cellular structures; generation of cellular4
structures; and mesh generation, simulation, and data analysis. We highlight some of the5
relevant prior work in these distinct but overlapping areas, with a particular emphasis on current6
use of machine learning technologies, as well as on future opportunities.7
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1 INTRODUCTION

Machine learning (ML) approaches, including both traditional and deep learning methods, are9
revolutionizing biology. Owing to major advances in experimental and computational methodologies,10
the amount of data available for training is rapidly increasing. The timely convergence of data availability,11
computational capability, and new algorithms is a boon for biophysical modeling of subcellular and cellular12
scale processes such as biochemical signal transduction and mechanics [1]. To date, many simulations are13
performed using idealized geometries that allow for the use of commonly used techniques and software14
[2, 3, 4, 5, 6]. This is historically due to the lack of high-resolution structural data as well as the theoretical15
and computational challenges for simulations in realistic cellular shapes, due to the complexity of generating16
high-quality, high-resolution meshes for simulation, and the need to develop specialized fast numerical17
solvers that can be used with very large unstructured mesh representations of the physical domain.18

As biophysical methods have improved, the complexity of our mathematical and computational models19
is steadily increasing [7, 8, 9]. A major frontier for physics-based study of cellular processes will be20
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to simulate biological processes in realistic cell shapes derived from various structural determination21
modalities [10, 11]. For biological problems ranging from cognition to cancer, it has long been understood22
that cell shapes are often correlated with mechanism [12, 13, 14, 15, 16]. Despite such clear correlations,23
there remain gaps in our understanding of how cellular ultrastructure contributes to cellular processes24
and the feedback between cellular structure and function. Challenges such as the diffraction limit of light25
and difficulties in manipulation of intracellular ultrastructure constrain the potential scope of what can be26
achieved experiments. Much like the partnership between biophysics and molecular dynamics simulations27
have enabled the modeling of invisible protein motions to shed insights on experimental observations,28
simulations of cellular processes can also aid in the validation and generation of hypothesis currently29
inaccessible by experimental methods. Recently, we and others have shown that, for example, cell shape30
and localization of proteins can impact cell signaling [4, 12, 17, 5, 18].31

The major bottleneck for the widespread use of cell scale simulations with realistic geometries is not32
the availability of structural data. Indeed, there exist many three-dimensional imaging modalities such as33
confocal microscopy, multiphoton microscopy, super-resolution fluorescence and electron tomography34
[19, 20]. For example, automation of modalities such as Serial Block-Face Scanning Electron Microscopy35
is already enabling the production of data at rapid rates. The bottleneck lies in the fact that much of36
the data generated from these imaging modalities need to be manually curated before it can be used for37
physics-based simulations. This current status quo of manually processing and curating these datasets for38
simulations is a major obstacle to our progress. In order to bridge the gap between abundance of cellular39
ultrastructure data generated by 3D electron microscopy (EM) techniques and simulations in these realistic40
geometries, innovations in machine learning (ML) methods will be necessary to reduce the time it takes to41
go from structural datasets to initial models. There are already many similar efforts at the organ/tissue and42
connectomics length scales [21, 22, 23]. In this work, we summarize the main steps necessary to construct43
simulations with realistic cellular geometries (Fig. 1) and highlight where innovation in ML efforts are44
needed and will have significant impacts. We further discuss some of the challenges and limitations in the45
existing methods, setting the stage for new innovations for ML in physics-based cellular simulations.46

2 SOURCES OF ERROR IN IMAGING MODALITIES

Images generated by the various microscopy modalities must undergo pre-processing to correct for errors47
such as uneven illumination or background noise [25, 26]. The choice of suitable algorithms for error48
correction depends on multiple factors, some of which are listed here – the length scale of the experiment49
being conducted, scalability and reproducibility of the experiment, optical resolution of the microscope,50
sensitivity of the detector, specificity of the staining procedure, imaging mode (2D, 3D, 3D time-series),51
imaging modality (fluorescence, EM, ET etc.,) and other imaging artifacts like electronic noise, lens52
astigmatism, mechanical tilting/vibration, sample temperature, and discontinuous staining [27, 25, 26, 28].53
These sources of error are an important consideration for model implementation further downstream [6].54

Electron tomography (ET) remains one of the most popular methods of cell imaging for modeling55
purposes [29, 30, 31], as it retains the highest resolution of all the 3D cell imaging techniques [26] by56
reconstructing a 3D object from a series of 2D images collected at different tilt angles [32]. However,57
images from ET also have a low signal to noise ratio (SNR) and have anisotropic resolution (for example,58
1 nm resolution in x, y and 10 nm resolution in z) [25]. This is partly because biological samples can59
withstand only a limited dose of electron beam radiation (SNR is proportional to the square root of the60
electron beam current) before the specimen is damaged [33]. Other sources of error such as misalignment of61
projections and missing wedges from an incomplete tilt angular range can significantly affect the quality of62
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the reconstruction. To work with data such as these, image processing steps are required for high resolution63
3D reconstruction [25, 34]. Commonly used software packages for image processing such as IMOD [35]64
and TomoJ [36] use reconstruction algorithms such as Weighted Backprojection (WBP) and Simultaneous65
Iterative Reconstruction Technique (SIRT). While these have been very effective at reconstruction, sources66
of error can still accumulate, leading to further manual adjustment [37].67

3 APPLICATIONS OF ML FOR THE SEGMENTATION AND RECONSTRUCTION
OF CELLULAR STRUCTURES

Given a noisy 3D reconstruction, how can we segment cellular structures of interest? One approach is to68
employ manual segmentation tools applied to 3D tomograms such as XVOXTRACE [32, 38], and more69
generally, manual contouring, interpolation, and contour stacking (Fig. 1). The advantage of such methods70
is that the human eye performs exceptionally well at detecting objects in an image [27, 39]. Consequently,71
semi-manual and manual segmentation are widely adopted, favoring accuracy over efficiency. However,72
such methods can be extremely tedious and not always reproducible. Alternatively, numerous semi-73
automatic segmentation algorithms such as interpolation, watershed, thresholding, and clustering are74
available as plugins in software packages like IMOD [35] and ImageJ [40] (Fig. 1, classical). However,75
the accuracy of open platform algorithms is debatable [41] because of two main reasons – (i) Even with a76
‘perfect’ ET reconstruction (no tilt misalignment, no missing wedge, no noise), the application of filtering77
algorithms like Gaussian blur or non-linear anisotropic diffusion (NAD) [42] can cause artefacts that lead78
to misclassifications, rendering the image unsuitable for downstream quantitative simulations and analysis.79
(ii) Segmentation workflows are often designed for a specific structure and/or imaging modality, limiting80
their generalizability and applicability.81

Annual cell segmentation challenges are evidence of the demand for automatic segmentation [43, 44],82
with many of its past winners responding with ML-based programs [45, 46]. Training labels for ML83
techniques requires a relatively small percentage (as small as 10%) of manually segmented labels, allowing84
for very large data sets to be processed significantly faster than previously implemented semi-automatic85
segmentation methods. The most successful teams utilized ML techniques such as random forest classifiers,86
support vector machines, or a combination of these to get segmentations comparable or often even better87
than their human counterparts [45, 43, 46, 44] (Fig. 1, machine learning). These techniques function88
by imputing several image features such as noise reduction, and texture and edge detection filters [47].89
These filters are then used to train a classification algorithm in an interactive manner, achieving better90
classification accuracy at the cost of increased training time compared to the direct application of a filter.91
However, because the algorithm is interactive, it still requires manual input and both the training time and92
accuracy can depend on the user.93

More recently, deep learning-based ML algorithms (Fig. 1, deep learning), and more specifically,94
convolutional neural networks (CNNs) have surged in popularity due to the success of AlexNet in the95
ImageNet classification challenge [48]. CNNs are complex learnable non-linear functions that do not96
require the imputation of data-specific features. Indeed, CNNs learn the feature mapping directly from97
the image. The U-Net convolutional neural network architecture [46] further generalized deep learning,98
winning the ISBI neuronal structure segmentation challenge in 2015 with a quicker speed and with fewer99
training images. It functions by using the feature mapping imputed by a CNN to map the classification100
vector back into a segmented image. Such is the achievement of the U-Net that its variants are now the101
state-of-the-art in tasks like calling genetic variation from gene-sequencing data [49], brain tumor detection102
[50] and segmentation of medical image datasets [51]. However, such deep learning based methods have103
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their own challenges. They require both quality and quantity of annotated training data, significant amount104
of training time, graphics processing unit computing, and can generalize poorly to a different dataset.105

Both the difficulty and cost of generating annotated training data increases exponentially when dealing106
with Volumetric (3D) images compared with 2D, which are the desired inputs for biophysical simulations.107
Since the U-Net is a 2D architecture [46], it cannot be applied directly to 3D images without modifications.108
To this end, 3D U-net used sparsely annotated 2D slices to generate volumetric segmentations of brain109
tumors [52]. Similarly, VoxRestNet [53] introduced residual learning using ResNet [54], a deep residual110
network capable of training hundreds to thousands of layers without a performance drop, to a voxelwise111
representation of 3D magnetic resonance (MR) images of the brain, paving the way for scalable 3D112
segmentation.113

Excitingly, such algorithms are being made openly accessible and easy-to-use. For example, iLastik114
[45, 55] and Trainable Weka Segmentation [47] are both available as plugins in software packages like115
ImageJ. These tools provide an interactive platform for segmentation, employing supervised classification116
techniques like random forests as well as unsupervised clustering such as K-means [47]. Similarly, deep117
learning tools such as DeepCell [56] and U-Net [57, 46] are also available in various bioimage software118
packages. Other stand-alone tools like the Allen Cell Structure Segmenter provide a lookup table of119
20 segmentation workflows that feed into an iterative deep learning model [58]. Cloud compute based120
segmentation plugins like CDeep3M [59] leverage Amazon Web Services (AWS) images to provide an121
efficient and compute-scalable tool for both 2D and 3D biomedical images.122

Generating well-organized and annotated training data continues to be the major challenge for most ML123
segmentation methods. Crowdsourced annotation tools like Amazon’s Mechanical Turk can be useful in124
this context, but are still limited by the difficulty of training naive users on tracing specific structural images.125
Alternatively, many ML algorithms leverage transfer learning approaches using pre-trained networks126
such as VGG-net [60, 61, 62], AlexNet [48] and GoogleNet [63]. In fact, popular semantic segmentation127
and clustering networks like Fully Convolutional Networks (FCN) [64] and DECAF [65] are themselves128
implemented using transfer learning approaches. Such transfer learning can also be used to generalize129
models trained on biological data to a different cell type or experimental condition, significantly reducing130
the time for training and accompanying computing resources required. More recently, label-free approaches131
employing a U-net variant have been applied to predict cellular structure from unlabeled brightfield images132
[66, 67]. These methods can serve as a platform for building low cost, scalable, and efficient segmentation133
of 3D cellular structure.134

4 APPLICATIONS OF ML FOR THE GENERATION OF SYNTHETIC CELLULAR
STRUCTURES

There are two main aspects involved in the development of comprehensive biophysical models – (1) what is135
the process being modeled? and (2) what is the geometry in which this process is being modeled? Answers136
to the first question are based on experimental observations and specific biology. Answering the latter is137
significantly more challenging because of the difficulties in – (i) obtaining accurate segmentations, (ii)138
discovering new structure from experiments, and (iii) simultaneously visualizing multiple structures. The139
use of synthetically generated geometries, which can probe different arrangements of organelles within140
cells could be relevant for generating biologically relevant hypotheses.141

A subset of ML models, called generative models, deal with the task of generating new synthetic but142
realistic images that match the training set distribution. For our purposes, such methods are relevant in the143

This is a provisional file, not the final typeset article 4



Sample et al. Machine Learning to Enable Realistic Cellular Simulations

context of generating (i) noise-free images, (ii) images representative of a different cell type, structure, or144
time-point, and (iii) unlikely images that represent the most unique shapes of the structure being imaged.145
For example, by capturing the unlikely and likely shapes in our dataset, we could generate sequences146
of synthetic images that transition from one shape to the next. These synthetic images can be used in147
biophysical simulations to generate biologically relevant hypotheses.148

In recent years, there has been rapid progress in applying deep generative models to natural images, text,149
and even medical images. Popular classes of deep generative models like Variational Autoencoders [68],150
Generative Adversarial Networks [69], and Autoregressive models such as PixelRNN [70] and PixelCNN151
[71] have achieved state of the art performance on popular image datasets such as MNIST [72], CIFAR152
[73] and ImageNet [74]. Each class of models has numerous modified implementations. For example,153
GANs alone include models like deep convolutional GAN (DCGAN) [75], conditional GAN (cGAN)154
[76], StackGAN [77], InfoGAN [78] and Wasserstein GAN [79] to name a few. Each model has its own155
distinct set of advantages and disadvantages. GANs can produce photo-realistic images at the cost of156
tricky training and no dimensionality reduction. VAEs allow for both generation and inference, but their157
naive implementation results in less photo-realistic generative examples. Autoregressive models obtain158
the best log-likelihoods at the cost of poor dimensionality reduction. Importantly, all of these models159
are unsupervised, implying that they are not limited by manual annotation that is otherwise a common160
challenge to supervised learning approaches.161

In cell biology, much of the work in building generative models of cellular structures has been associated162
with the open source CellOrganizer [80, 81, 82, 83, 84, 85, 86], which uses a Gaussian Mixture Model163
given reference frames like the cell and nuclear shape in order to predict organelle shape distribution.164
These models also have the option to be parametric (parameters such as number of objects), which reduces165
the complexity of the learning task, the training time and GPU computing resources required, while also166
allowing for exploration and analysis of the parameters and their effect on the spatial organization of167
cells. Aside from CellOrganizer, other recent efforts have begun to leverage deep generative models in168
cell biology. We now have models that can predict structure localization given cell and nuclear shape [87],169
extract functional relationships between fluorescently tagged proteins structures in cell images [88], learn170
cell features from cell morphological profiling experiments [89], and interpret gene expression levels from171
single-cell RNA sequencing data [90, 91].172

The challenge going forward will be how best to use generative modeling given the data in hand. This will173
depend on the question we want to ask of the data. For example, if we are modeling processes associated174
with cell and nuclear shape, spherical harmonics based generative models might be more appropriate than175
deep learning based methods [92]. If we are interested in inpainting a missing wedge from a tomogram176
using a generative model, then GANs might be more appropriate [93]. Generated images can also be used177
as a source of training data for segmentation and classification tasks [94]. Taken together, these choices will178
help develop efficient end-to-end pipelines for segmentation and shape generation, and provide a platform179
for running biophysical simulations. Already, CellOrganizer can export spatial instances to cell simulation180
engines such as MCell [95] and VirtualCell [96], allowing us to simulate chemical reactions in different181
spatial compartments. Similar pipelines for deep generative models will need to be implemented in order182
to fully realize their downstream interpretations.183
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5 APPLICATIONS OF ML FOR MESHING, SIMULATION, AND DATA ANALYSIS

ML is commonly applied to mesh segmentation and classification; examples include PointNet [98]184
(segments and classifies a point cloud), and MeshCNN [99] (segments and classifies edges in a mesh).185
However, although the term machine learning was not traditionally used to describe meshing techniques,186
in fact algorithms for mesh generation (cf. [100]), mesh improvement (such as mesh smoothing [101]), and187
mesh refinement [102, 103, 104, 105] all fundamentally involve local (cf. [106]) and/or global (cf. [107])188
optimization of an objective function (see Fig. 2). Mesh point locations, and/or edge/face connectivity189
decisions are viewed as parameters that are determined (or learned) as part of an iterative algorithm190
that extremizes a local or global objective function (usually involving constraints as well) in an effort191
to generate, improve, or refine a given mesh. In addition, adaptive numerical methods for simulation of192
physical systems involving the solution of ordinary (ODE) and partial (PDE) differential equations are193
again an early example of the application of ML techniques in computational science, long before the194
terminology was widely used. A classic reference from the 1970’s in the context of adaptive finite element195
methods is [108, 109]; all modern approaches to adaptive numerical methods for ODE and PDE systems196
continue to follow the same general framework outlined in that work: (i) Solve the ODE/PDE on the197
current mesh; (ii) Estimate the error using a posteriori indicators; (iii) Refine the mesh using provably198
non-degenerate local refinement with closure; (iv) Go back to step (i) and repeat the iteration until a target199
quality measure is obtained (a standard approach is to approximately minimize a global error function,200
through the use of local error estimates). These types of adaptive algorithms are effectively machine201
learning the best possible choice (highest accuracy with least cost) of mesh and corresponding numerical202
discretization for the target ODE/PDE system. Recent work in the area is now moving toward a more203
explicit and sophisticated use of modern ML techniques (cf. [110, 111]).204

Given a high quality and high resolution mesh representation of a structural geometry (see Fig. 2), we205
can begin to probe structure-function relationships through mathematical modeling [11, 112]. However, a206
single realistic geometry is not enough since it only captures a snapshot in time of the cellular geometry.207
Furthermore, structural variability is a hallmark of cell biology [14, 24]. Dimensionality reduction208
techniques like principal component analaysis (PCA) or Variational Autoencoders (VAEs) can help209
determine both the average and extreme representations of a distribution of shapes, providing a starting210
point for running simulations. Generative models (discussed section 4) can then be used to populate a211
single cell with multiple learned distributions – for example, generate cell shapes from EM images overlaid212
with protein structure shapes learned from fluorescence images [10, 87, 80].213

To facilitate population studies, it is important that structural datasets be made publicly available, as they214
commonly are in neuroscience [24, 113, 23]. This is following in the footsteps of -omics datasets such as215
genomics, proteomics and transcriptomics [114], which have traditionally been made public in large scale216
projects like the Cancer Genome Atlas [115], the Human Microbiome Project [116] and the ENCODE217
project consortium [117]. ML can then be used to identify structure-phenotype associations, in much the218
same way as genotype-phenotype relationships are predicted from -omics studies [118, 119].219

Importantly, by running simulations on distributions of realistic shapes, we can generate experimentally220
testable hypotheses. This is much harder in -omics datasets, where mechanistic insight is usually obtained221
via constraint based modeling [119]. Further, we can also explore the implications of assuming an idealistic222
geometry – a common assumption in hypothesis-driven modeling. For example, idealized geometries have223
been the starting point of many signaling models that explore spatio-temporal dynamics using deterministic224
reaction-diffusion formulations[120, 4, 17, 5, 18, 121, 122, 123] or using Brownian dynamics or other225
formulations[124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134]. An excellent example of insights226
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gained using these idealized geometries is in exploring how changing the diffusion distances can affect the227
dynamics of signaling molecules such as Ca2+ [123]. Other physical systems that are commonly modeled228
and simulated include structural mechanics [7, 2], fluid mechanics [135, 112] and thermodynamics [136].229

A major bottleneck in setting up accurate computational simulations of biophysical systems, idealistic or230
otherwise, revolve around the choice of constitutive equations, estimation of the free parameters such as231
reaction rate constants, diffusion coefficients, and material properties, and computational algorithms for232
solving the resulting governing equations numerically on these domains. While there is a large history of233
mathematical modeling in biology to set the stage for constitutive equations, estimation of free parameters234
remains a major challenge. Another major challenge for physically realistic models of signaling is knowing235
the location of the various molecules involved. Realistic geometries pose the additional challenge of236
requiring us to first understand the distribution of shapes, followed by analyzing simulation results across237
that distribution. Similar to how ML can be used in adaptive numerical methods to output a good mesh, ML238
can also be used for adaptive nonlinear data fitting to determine biophysical parameters with uncertainity239
estimates [137, 138]. Incorporating domain knowledge such as stress-strain relationships [139] or statistical240
molecular dynamic states [140] into ML algorithms can also improve interpretability while closing the241
loop between ML frameworks and biophysical modeling.242

6 PERSPECTIVES AND FUTURE DIRECTIONS

In this perspective, we have discussed three key aspects of a pipeline for realistic cellular simulations:243
(i) Reconstruction and segmentation of cellular structure; (ii) Generation of cellular structure; and (iii)244
Mesh generation, refinement and simulation. While these were discussed separately, neural networks245
like Pixel2Mesh demonstrate the feasibility of end-to-end pipelines from a single black box [141]. Of246
course, black boxes are not interpretable, and recent ML frameworks using Visible Neural Networks [142]247
demonstrate the potential of incorporating extensive prior knowledge to create a fully interpretable neural248
network capable of highlighting functional changes to every neuron/subsystem upon perturbing the input.249
Other ML frameworks like SAUCIE use regularizations to enforce mechanistic intepretability in the hidden250
layers of an autoencoder neural network [143]. We anticipate that future endeavours will implement a fully251
interpretable and end-to-end pipeline for biophysical simulations.252
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Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in370
neuroanatomy 9 (2015) 142.371
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Figure 1. An illustration of the complex pipeline needed to go from imaging data to a segmented mesh,
with various opportunities for emerging techniques in machine learning shown throughout the pipeline.
Top row: EM images obtained from [24] of dendritic spines from mouse brain tissue. Middle row: Manual
tracing or contouring, interpolation, and stacking of contours is extremely time consuming, prone to
error, and relies of human judgement. Bottom row: On the other hand, development of training labels and
different learning techniques can reduce both time and error, bridging the gap between biological data and
simulations. Classical algorithms like Otsu’s thresholding and watershed are widely used and convenient
but prone to error. Traditional machine learning algorithms like Random Forest and Naive Bayes are less
prone to error and easy to use but require manual painting/interaction. Deep learning algorithms are highly
effective and require no manual interaction but are limited by large training sets and compute resources.
The list of techniques described is representative only, and not exhaustive.
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Figure 2. An illustration of complexity, size, quality, and local resolution of meshes typically needed for
realistic simulation of biophysical systems. Meshes are generated using GAMer 2 [97, 11]. A) Example
surface mesh of a dendritic spine with geometry informed by electron micrographs from [24]. The plasma
membrane is shown in purple with the post synaptic density rendered in dark purple. The spine apparatus,
a specialized form of the endoplasmic reticulum is shown in yellow. B) A zoomed in view of the spine
apparatus. Note that the mesh density is much higher in order to represent the fine structural details. C)
Binned histogram distributions of mesh angles for both the plasma membrane and spine apparatus. The
colored smooth lines are the result of a kernel density estimate. Dotted red lines correspond to the minimum
and maximum angle values in each mesh. Both meshes are high quality with few high aspect ratio triangles
(i.e., those deviating most from equilateral).
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