
Computational Tool

An Open-Source Mesh Generation Platform for
Biophysical Modeling Using Realistic Cellular
Geometries

Christopher T. Lee,2,* Justin G. Laughlin,2 John B. Moody,3 Rommie E. Amaro,1 J. Andrew McCammon,1

Michael Holst,3 and Padmini Rangamani2,*
1Department of Chemistry and Biochemistry, 2Department of Mechanical and Aerospace Engineering, and 3Department of Mathematics,
University of California, San Diego, La Jolla, California

ABSTRACT Advances in imaging methods such as electron microscopy, tomography, and other modalities are enabling

high-resolution reconstructions of cellular and organelle geometries. Such advances pave the way for using these geometries

for biophysical and mathematical modeling once these data can be represented as a geometric mesh, which, when carefully

conditioned, enables the discretization and solution of partial differential equations. In this work, we outline the steps for a naı̈ve

user to approach the Geometry-preserving Adaptive MeshER software version 2, a mesh generation code written in Cþþ de-

signed to convert structural data sets to realistic geometric meshes while preserving the underlying shapes. We present two

example cases: 1) mesh generation at the subcellular scale as informed by electron tomography and 2) meshing a protein

with a structure from x-ray crystallography. We further demonstrate that the meshes generated by the Geometry-preserving

Adaptive MeshER software are suitable for use with numerical methods. Together, this collection of libraries and tools simplifies

the process of constructing realistic geometric meshes from structural biology data.

INTRODUCTION

The use of partial differential equations (PDEs) in mathe-

matical modeling of cellular phenomena is becoming

increasing common, particularly for problems that include

electrostatics, reaction-diffusion systems, fluid dynamics,

and continuum mechanics. Solutions to these equations us-

ing idealized geometries have provided insight into how

cell shape can affect signaling (1–4) and how blood flows

in vessels (5).

On the other hand, to gain better insight into how cellular

geometry can affect the dynamics of these mechanochem-

ical processes, using realistic geometries is necessary.

Already, freely available tools such as Virtual Cell (6) and

CellOrganizer (7) have paved the way for using realistic

cellular geometries in simulations. With the increasing

availability of high-resolution images of the cellular ultra-

structure, including the size and shape of organelles and

the curvature of the various cellular membranes, there is a

need for computational tools and algorithms that can

enable us to use these data as the geometry or domain of

Submitted September 11, 2019, and accepted for publication November 27,

2019.

*Correspondence: ctlee@ucsd.edu or prangamani@ucsd.edu

Editor: Ruth Baker.

SIGNIFICANCE As biophysical structure determination methods improve, the rate of new structural data is increasing.

New methods that allow the interpretation, analysis, and reuse of such structural information will thus take on

commensurate importance. In particular, geometric meshes such as those commonly used in graphics and mathematics

can enable a myriad of mathematical analysis. In this work, we describe the Geometry-preserving Adaptive MeshER

software version 2 (GAMer 2), a mesh generation library designed for biological data sets. Using GAMer 2 and the

associated tools PyGAMer and BlendGAMer, biologists can robustly generate computer- and algorithm-friendly geometric

mesh representations informed by structural biology data. We expect that GAMer 2 will be a valuable tool to bring realistic

geometries to biophysical models.

Biophysical Journal 118, 1003–1008, March 10, 2020 1003

https://doi.org/10.1016/j.bpj.2019.11.3400

� 2020 Biophysical Society.

This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).



interest and conduct simulations using numerical

methods (8).

For most relevant geometries, it is impossible to obtain

analytical solutions for PDEs; this necessitates the use of

numerical methods to provide an approximate solution.

These numerical methods are based on discretization

(approximating the PDE with a discrete algebraic system)

combined with solvers (typically iterative methods that

converge to the solution to the algebraic system). The first

step usually requires the generation of a geometric mesh

over which the problem can be discretized using techniques

such as finite difference, finite volume, finite element, or

other methods to build the algebraic system that approxi-

mates the PDE. The numerical approximation to the PDE

is then produced by solving the resulting linear or nonlinear

algebraic equations using an appropriate fast solver. One of

the computational challenges associated with generating

meshes of biological data sets is the presence of highly

irregular surfaces with curvatures at the nanometer or

Ångstrom length scales. Although many tools from the

graphics community exist to generate meshes for visualiza-

tion, these poor-quality meshes, when used to solve a PDE,

can both destroy the quality of the discretization as an

approximation to the PDE and also produce algebraic sys-

tems that are badly conditioned and difficult to solve effi-

ciently or accurately with iterative solvers.

Although it is possible to design discretizations of PDE

problems on surfaces using the finite volume methods or

other techniques, we prefer the finite element method

(FEM) here for a number of reasons. To begin with, the

FEM first arose in the 1960s in the engineering community

as a response to the poor performance of the existing discre-

tization techniques for PDEs involving shells and other com-

plex physical shapes. In addition, methods such as the FEM

that are built on the basis of function expansion to provide a

natural framework both for treating highly nonlinear prob-

lems and for discretizing multiple PDEs that couple together

to form a larger multiphysics system. Lastly, the FEM frame-

work is quite general and can, in fact, be shown to reproduce

finite volume, spectral, and other discretizations through the

appropriate choices of the basis and test functions.

One challenge preventing the routine use of experimental

ultrastructural data with PDE-based mathematical modeling

is the difficulty associated in generating a discretization, or

commonly a mesh, that accurately represents the structures

of interest. Building upon existing meshing codes such as

TetGen (9), NetGen (10), TetWild (11), MeshLab (12),

Gmsh (13), and CGAL (14)—along with commercial codes

such as ANSYS Meshing, among others—we describe the

development of a meshing framework, the Geometry-pre-

serving Adaptive MeshER software version 2 (GAMer 2),

which is designed specifically for biological mesh genera-

tion. This code has been completely rewritten from version

1, which was previously described by Yu et al. (15,16) and

Gao et al. (17–19). GAMer 2 features the original GAMer

algorithms but with significantly improved ease of use, dis-

tributability, and maintainability. We have also developed a

new Python application programming interface (API) called

PyGAMer and streamlined the GAMer Blender add-on

called BlendGAMer. The complete explanation of the math-

ematics and underlying algorithms are available in (15–20).

In what follows, we provide an overview of the GAMer

mesh generation capabilities for the general biophysicist.

METHODS

At its core, GAMer is a mesh generation and conditioning library that uses

concepts from the graphics and engineering literature. It can be used to pro-

duce high-quality surface and volume meshes from several types of input:

1) Protein Data Bank (PDB)/procedure qualification record (PQR) file

(Ångstrom to nanometer), 2) volumetric data set (Ångstrom to meter), or

3) initial surface mesh (Ångstrom to meter). To enable FEM-based

applications, GAMer also has utilities to support boundary marking. Tetra-

hedral meshes of a domain can be constructed in GAMer through the use of

functionality provided by TetGen (21). Surface or volume meshes can be

outputted to several common formats for use with other tools such as

FEniCS (22,23), ParaView (24), MCell (25), and FFEA (26), among others.

We note that although GAMer is designed primarily with FEM-based appli-

cations in mind, conditioned meshes of realistic geometries can also be used

for geometric analysis such as the estimation of curvatures, volumes, and

surface areas (27). Conditioned meshes can also be used in other tools

such as MCell (25) and three-dimensional (3D) printing. Example tutorials

of using GAMer 2 to generate surface and volume meshes of a protein

structure (PDB: 2JHO) and a subcellular scene of a calcium release unit

(CRU) from a murine cardiac myocyte imaged using electron tomography

(ET) (Cell Image Library: 3603 (28)) (Fig. 1) are provided in the documen-

tation (https://gamer.readthedocs.io/en/latest/tutorial.html) and described in

this report. Here, we will summarize the key implementation steps and refer

the interested reader to (27) for technical details of the implementation.

GAMer 2 development

One of the limitations of the prior versions of GAMer is the inability to

robustly represent meshes of arbitrary manifoldness and topology. This lim-

itation prevented the safe application of GAMer to nonmanifold meshes,

which often produced segmentation faults or other undefined behaviors.

To ameliorate this, in GAMer 2, we replaced the underlying mesh represen-

tation to use the colored abstract simplicial complex (CASC) data structure

(29). CASC keeps careful track of the mesh topology and, therefore, makes

it trivial to track the manifoldness of a given mesh object. By eliminating

the need for a code to handle encounters with nonmanifold elements, the

code base is significantly reduced, and segmentation faults are eliminated.

Another benefit of using CASC is that it can represent both surface meshes

(2D simplices embedded in 3D) and volume meshes (3D simplices

embedded in 3D), allowing users to interact with both the surface and vol-

ume meshes using an identical API. This simplification contributes to the

long-term maintainability of the GAMer 2 code.

In the development of GAMer 2, we have also migrated to use the cross-

platform CMake build toolchain and away from the previous GNU build

system Autotools. Using CMake, GAMer 2 can now be compiled and run

on major operating systems, including Linux, Mac OS, and Windows,

which were previously unsupported. Detailed installation instructions

are provided online (https://gamer.readthedocs.io/en/latest/install.html).

We note that theWindows binary can be built using Microsoft Visual Studio

and does not require the installation of Unix-like environments such as Cyg-

win. By supporting the compilation of GAMer 2 that uses native and

preferred tools, this improves binary compatibility with other libraries

and simplifies distribution.

Lee et al.

1004 Biophysical Journal 118, 1003–1008, March 10, 2020



Collaborative workflow

To further improve code availability and to encourage community collabo-

ration, the GAMer code is now hosted on Github (https://github.com/ctlee/

gamer). In this environment, users can file issues to report bugs or ask ques-

tions. Users are also encouraged to contribute to the code by submitting pull

requests. All pull requests are subject to rigorous continuous-integration

testing, using both Travis-CI (Linux and Mac OS) and Appveyor (Win-

dows), to ensure code compatibility across a wide range of operating sys-

tems, compilers, and compiler versions before integration with the main

deployment branches. Along with source control, GAMer 2 also imple-

ments git-tagging-based semantic versioning to track the software version.

The compiled code can report the source version, which aids in reporting

and debugging. This strict versioning introduces improved ability for

both users and developers to track code provenance.

Implementation of a new PyGAMer API

In addition to the complete redesign of the core library, the corresponding

Python interface, now called PyGAMer, is generated using PyBind 11 (30)

instead of SWIG (31). PyBind 11 was designed to expose Cþþ data types

to Python and vice-versa while minimizing boilerplate code by capitalizing

upon the capabilities of the Cþþ compiler. One of the benefits of this

approach is the ability to bind complex template types, which are exten-

sively used in CASC, enabling users to develop the Python script to interact

with various elements of the mesh and call Cþþ methods. Another benefit

of using PyBind 11 is its support for embedding Python docstrings, which

enable straightforward documentation of PyGAMer using popular Python

tools such as Sphinx. As a result, documentation for GAMer 2 and Py-

GAMer is now automatically generated and hosted online (https://gamer.

readthedocs.io).

Using scikit-build, which connects setup tools and CMake, installation of

PyGAMer in any Python environment can be achieved using pip. Versions

of pipR 10.0 will automatically download and resolve build-time and run-

time dependencies, compile, and install the PyGAMer Python extension

module. Users of older pip versions need to install any missing build-

time dependencies beforehand. Instructions on how to install these depen-

dencies are provided in both the online documentation and demonstrated in

Video S1.

BlendGAMer development

To support interactive modeling with graphical feedback, we have also

developed a GAMer add-on for Blender (32) called BlendGAMer, which

has also been rewritten to use PyGAMer. In addition to this update, the

user interface has been redesigned to be user friendly as shown in Fig. 2.

The boundary marking capability of BlendGAMer now uses Blender attri-

bute layers instead of lists of values. Many features now have corresponding

toggles in the interface, for example, the number of neighborhood rings to

consider when computing the local structure tensor. Several mesh condi-

tioning operations have also been updated to operate only upon selected

vertices. This provides users with the flexibility to refine local portions of

the mesh as desired. There is also a new Mesh Analysis panel that contains

several helpful features for analyzing the quality of a mesh and includes

curvature estimation. Based upon the newly implemented semantic version-

ing, BlendGAMer can now track the version of metadata that is stored in a

given file. Using this information, BlendGAMer can perform automatic

metadata migration from version to version as improved schemes for meta-

data storage are created.

Modeling diffusion in the CRU geometry

To demonstrate the use of the mesh generated from GAMer 2 with the FEM,

we model the diffusion of a molecule with concentration u in the realistic

geometry of a CRU (Fig. 3). In the volume, the dynamics of u are given by

vu

vt
¼ DV

2
u�

u

t

in U; (1)

uðx; t ¼ 0Þ ¼ 0; (2)

where D is the diffusion coefficient, t is a decay constant and represents re-

actions that consume u, U is the cytosolic domain, and t is time. We define

the following boundary conditions:

Dðn , VuÞ ¼ Jin on vUt�tubule; (3)

Dðn , VuÞ ¼ 0 on vUother; (4)

vU ¼ vUt�tubuleWvUother; (5)

where Jin is the inward flux on the t-tubule membrane (vUt�tubule). No flux

boundary conditions are applied to all other boundaries. The following sys-

tem is solved using FEniCS (22,23) and visualized using ParaView (24). We

note that the boundaries vUt�tubule and vUother are differentiated by markers

applied using BlendGAMer.

FIGURE 1 Example workflow using GAMer to construct a tetrahedral domain suitable for use with finite element simulations. (A) A segmented electron

tomogram of a murine cardiac calcium release unit (CRU) from Cell Image Library: 3603 is shown here. (B) Stacks of contours from the traced model are

shown here. (C) The conditioned surface mesh of the model is shown here. (D) The tetrahedralized domain that can be used for simulating cytosolic diffusion

is shown here. Note that we have inverted the tetrahedralized domain to represent the free space surrounding the CRU geometry. Scale bars, 200 nm. To see

this figure in color, go online.

Computational Tool

Biophysical Journal 118, 1003–1008, March 10, 2020 1005



RESULTS AND DISCUSSION

We demonstrate that GAMer is capable of generating

high-quality surface and volume simplex meshes of

geometries as informed by structural biology data sets.

The incorporated Python library (PyGAMer) and Blender

add-on (BlendGAMer) enable users to prototype or interact

with meshes as they are conditioned. Collectively, these

tools facilitate mathematical modeling of biological systems

using realistic geometries.

The GAMer workflow has been previously applied in

several works (27,33–38). Several example applications

are also described in the online GAMer 2 documentation.

As an example, the steps to go from ET data to simulation

quality mesh are shown in Fig. 1. In this example, a

segmented ET data set (Fig. 1 A) featuring a murine CRU

is retrieved from the Cell Image Library as shown in

Fig. 1 B. We note that this is the same starting geometry pre-

viously used by Hake et al. (36). From the model contours,

we generated a preliminary mesh that was conditioned using

BlendGAMer to produce Fig. 1 C. To model the cytosolic

space surrounding the CRU, Blender Boolean mesh opera-

tions were used to invert the geometry followed by tetra-

hedralization (Fig. 1 D). The mesh is now sufficiently

high-quality and suitable for use with FEM-based simula-

tions as shown in Fig. 3.

In Fig. 4, we demonstrate the mesh generation capabil-

ities of GAMer from atomistic protein-structural data such

as those available from the PDB. A volume data set repre-

senting the approximate occupied space of all atoms is

generated by applying a Gaussian kernel over the atomic

positions. An isosurface of the data set can then be meshed

using the marching cubes algorithm (39). Although GAMer

includes a basic table of atom types to assign radii, more so-

phisticated atomic radius assignment tools (e.g., PDB2PQR

FIGURE 2 Screenshot of the BlendGAMer tool shelf menu in 3D modeling software Blender. The user can call GAMer mesh conditioning, analysis,

boundary marking, and tetrahedralization functions by clicking buttons and adjusting settings in the tool shelf. Shown on the right is a conditioned surface

mesh of the CRU model. To see this figure in color, go online.

Lee et al.

1006 Biophysical Journal 118, 1003–1008, March 10, 2020



(40)) can be used and radius information passed via the PQR

file format.

CONCLUSIONS

The realism of biophysical models can be enhanced by

incorporating realistic geometries from structural biology

at various length scales. We have demonstrated the applica-

bility of GAMer 2 at two different length scales and suggest

that tools such as GAMer 2 brings the community closer to

realizing the goal of conducting physics-based simulations

in realistic cellular geometries by simplifying the mesh

generation process. We believe that, moving forward,

GAMer 2 can serve as an integrative platform for meshing

biological mesh generation. Furthermore, our design strate-

gies in implementing GAMer 2 encourage community

collaboration, an important aspect of tool building for sys-

tems and computational biology.

Software availability

GAMer is licensed under GNU Lesser General Public

License, version 2.1 or later. Full documentation and exam-

ples are available at the project home page, https://gamer.

readthedocs.io/, and development is hosted on GitHub at

http://github.com/ctlee/gamer. The latest release v2.0.5 is

archived on Zenodo (https://doi.org/10.5281/zenodo.

2340294).

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.11.3400.

AUTHOR CONTRIBUTIONS

C.T.L., J.G.L., J.B.M., and M.J.H. developed the software. C.T.L. drafted

the article. C.T.L., J.G.L., J.B.M., J.A.M., R.E.A., M.J.H., and P.R. edited

the article. All authors read and approved the final article.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health:

P41-GM103426 and R01-GM31749; the National Science Foundation:

DMS-CM1620366 and DMS-FRG1262982; and the Air Force Office of

Scientific Research Multidisciplinary Research Program of the University

Research Initiative FA9550-18-1-0051. C.T.L. also acknowledges support

from the National Institutes of Health grant MBTG T32-GM008326 and

a Hartwell Foundation Postdoctoral Fellowship. J.G.L. acknowledges sup-

port from a University of California, San Diego Center for Trans-scale

FIGURE 3 Snapshots of molecular diffusion in the CRU geometry. In

(A), the initial condition is shown; in (B), 200 ms is shown; in (C), 400

ms is shown; in (D), 5000 ms is shown. The molecules can be trapped in

locally confined regions leading to microdomains with locally increased

concentrations. To see this figure in color, go online.

FIGURE 4 Example demonstrating the meshing

of protein myoglobin (PDB: 2JHO). In (A), the

rendered cartoon representation with heme and

iron shown as sticks is shown. In (B), the tetrahedr-

alization of the space excluding the protein volume

is shown. Red denotes faces marked as protein,

and blue denotes faces on the boundary of the en-

closing cube. To see this figure in color, go online.

Computational Tool

Biophysical Journal 118, 1003–1008, March 10, 2020 1007



Structural Biology and Biophysics/Visible Molecular Cell Consortium

Fellowship. R.E.A. is a cofounder and scientific advisor of, and has equity

interest in, Actavalon, Inc.

REFERENCES

1. Rangamani, P., A. Lipshtat, ., R. Iyengar. 2013. Decoding informa-
tion in cell shape. Cell. 154:1356–1369.

2. Bell, M., T. Bartol, ., P. Rangamani. 2019. Dendritic spine geometry
and spine apparatus organization govern the spatiotemporal dynamics
of calcium. J. Gen. Physiol. 151:1017–1034.

3. Cugno, A., T. M. Bartol,., P. Rangamani. 2019. Geometric principles
of second messenger dynamics in dendritic spines. Sci. Rep. 9:11676.

4. Ohadi, D., D. L. Schmitt, ., P. Rangamani. 2019. Computational
modeling reveals frequency modulation of calcium-cAMP/PKA
pathway in dendritic spines. Biophys. J. 117:1963–1980.

5. Updegrove, A., N. M. Wilson, ., S. C. Shadden. 2017. SimVascular:
an open source pipeline for cardiovascular simulation. Ann. Biomed.
Eng. 45:525–541.

6. Loew, L. M., and J. C. Schaff. 2001. The virtual cell: a software
environment for computational cell biology. Trends Biotechnol.

19:401–406.

7. Murphy, R. F. 2012. CellOrganizer: image-derived models of
subcellular organization and protein distribution. Methods Cell Biol.

110:179–193.

8. Xu, C. S., K. J. Hayworth, ., H. F. Hess. 2017. Enhanced FIB-SEM
systems for large-volume 3D imaging. eLife. 6:e25916.

9. Si, H. 2015. TetGen, a delaunay-based quality tetrahedral mesh gener-
ator. ACM Trans. Math. Softw. 41:1–36.

10. Schöberl, J. 1997. NETGEN an advancing front 2D/3D-mesh generator
based on abstract rules. Comput. Vis. Sci. 1:41–52.

11. Hu, Y., Q. Zhou, ., D. Panozzo. 2018. Tetrahedral meshing in the
wild. ACM Trans. Graph. 37:1–14.

12. Cignoni, P., M. Callieri, ., G. Ranzuglia. 2008. MeshLab: an
open-source mesh processing tool. In Eurographics Italian Chapter
Conference. V. Scarano, R. De Chiara, and U. Erra, eds. The Euro-
graphics Association, pp. 129–136.

13. Geuzaine, C., and J.-F. Remacle. 2009. Gmsh: a 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Int.
J. Numer. Methods Eng. 79:1309–1331.

14. CGAL, Computational Geometry Algorithms Library. http://www.
cgal.org.

15. Yu, Z., M. J. Holst, ., J. A. McCammon. 2008. Feature-preserving
adaptive mesh generation for molecular shape modeling and simula-
tion. J. Mol. Graph. Model. 26:1370–1380.

16. Yu, Z., M. J. Hoist, and J. Andrew McCammon. 2008. High-fidelity
geometric modeling for biomedical applications. Finite Elem. Anal.

Des. 44:715–723.

17. Gao, Z., Z. Yu, and M. Holst. 2012. Quality tetrahedral mesh smooth-
ing via boundary-optimized delaunay triangulation. Comput. Aided
Geom. Des. 29:707–721.

18. Gao, Z., Z. Yu, and M. Holst. 2013. Feature-preserving surface mesh
smoothing via suboptimal Delaunay triangulation. Graph. Models.

75:23–38.

19. Chen, L., and M. Hoist. 2011. Efficient mesh optimization schemes
based on optimal delaunay triangulations. Comput. Methods Appl.

Mech. Eng. 200:967–984, Published online November, 16, 2010.

20. Lee, C.T., Moody, J.B., Laughlin, J.G., Holst, M. (2019, November 12).
ctlee/gamer: Release v2.0.5 (Version v2.0.5). Zenodo. http://doi.org/
10.5281/zenodo.3538541.

21. Si, H. 2015. TetGen, a delaunay-based quality tetrahedral mesh gener-
ator. ACM Trans. Math Software. 41:1–36.

22. Logg, A., K.-A. Mardal, and G. Wells. 2012. Automated Solution of
Differential Equations by the Finite Element Method. Springer, Berlin,
Germany.

23. Alnass, M. S., J. Blechta, ., G. N. Wells. 2015. The FEniCS Project
Version 1.5. Archive of Numerical Software. 3:100.

24. Ahrens, J., B. Geveci, and C. Law. 2005. ParaView: an end-user tool for
large-data visualization. In Visualization Handbook. Elsevier, Amster-
dam, the Netherlands.

25. Stiles, J. R., and T. M. Bartol. 2001. Monte Carlo methods for simu-
lating realistic synaptic microphysiology using MCell. In Computa-
tional Neuroscience: Realistic Modeling for Experimentalists. E. De
Schutter, ed. CRC Press, pp. 87–127.

26. Solernou, A., B. S. Hanson, ., S. A. Harris. 2018. Fluctuating finite
element analysis (FFEA): a continuum mechanics software tool
for mesoscale simulation of biomolecules. PLoS Comput. Biol.

14:e1005897.

27. Lee, C. T., J. G. Laughlin,., P. Rangamani. 2019. GAMer 2: a system
for 3D mesh processing of cellular electron micrographs. bioRxiv

https://doi.org/10.1101/534479.

28. Hoshijima, M. 2004. CCDB:3603, MUS MUSCULUS, T-tubules,
sarcoplasmic reticulum, myocyte. CIL. Dataset.

29. Lee, C. T., J. B. Moody, ., M. J. Holst. 2019. The implementation of
the colored abstract simplicial complex and its application to mesh gen-
eration. ACM Trans. Math Software. 45:1–20.

30. Jakob, W., J. Rhinelander, and D. Moldovan. 2017. pybindll - Seamless
operability between Cþþ11 and Python. https://github.com/pybind/
pybind11.

31. Beazley, D. M. 1996. SWIG: an easy to use tool for integrating script-
ing languages with C and Cþþ’’. In Proceedings of the 4th Conference
on USENIX Tcl/Tk Workshop, 1996 - Volume 4. TCLTK’96. USENIX
Association, p. 15.

32. Blender Foundation.. 2018. Blender - a 3D modelling and rendering
package. Stichting Blender Foundation, Amsterdam, the Netherlands
http://www.blender.org.

33. Yu, Z., M. J. Holst, ., M. Hoshijima. 2008. Three-dimensional
geometric modeling of membrane-bound organelles in ventricular my-
ocytes: bridging the gap between microscopic imaging and mathemat-
ical simulation. J. Struct. Biol. 164:304–313.

34. Cheng, Y., Z. Yu, ., A. P. Michailova. 2010. Numerical analysis of
Ca2þ signaling in rat ventricular myocytes with realistic transverse-
axial tubular geometry and inhibited sarcoplasmic reticulum. PLoS
Comput. Biol. 6:el000972.

35. Cheng, Y., P. Kekenes-Huskey, ., A. Michailova. 2012. Multi-scale
continuum modeling of biological processes: from molecular electro-
diffusion to sub-cellular signaling transduction. Comput. Sci. Discov.
5:015002.

36. Hake, J., A. G. Edwards, ., A. D. McCulloch. 2012. Modelling car-
diac calcium sparks in a three-dimensional reconstruction of a calcium
release unit. J. Physiol. 590:4403–4422.

37. Kekenes-Huskey, P. M., Y. Cheng, ., A. P. Michailova. 2012.
Modeling effects of L-type ca(2þ) current and na(þ)-ca(2þ)
exchanger on ca(2þ) trigger flux in rabbit myocytes with realistic
T-tubule geometries. Front. Physiol. 3:351.

38. Bromer, C., T. M. Bartol, ., K. M. Harris. 2018. Long-term potentia-
tion expands information content of hippocampal dentate gyrus synap-
ses. Proc. Natl. Acad. Sci. USA. 115:E2410–E2418.

39. Lorensen, W. E., and H. E. Cline. 1987. Marching cubes: a high reso-
lution 3D surface construction algorithm. ACM SIGGRAPH Comput.

Graph. 21:163–169.

40. Dolinsky, T. J., J. E. Nielsen, ., N. A. Baker. 2004. PDB2PQR: an
automated pipeline for the setup of Poisson-Boltzmann electrostatics
calculations. Nucleic Acids Res. 32:W665–W667.

Lee et al.

1008 Biophysical Journal 118, 1003–1008, March 10, 2020


	An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries
	Introduction
	Methods
	GAMer 2 development
	Collaborative workflow
	Implementation of a new PyGAMer API
	BlendGAMer development
	Modeling diffusion in the CRU geometry

	Results and Discussion
	Conclusions
	Software availability

	Supporting Material
	Author Contributions
	Acknowledgments
	References


