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Abstract

As humans interact with autonomous agents to

perform increasingly complicated, potentially

risky tasks, it is important to be able to efficiently

evaluate an agent’s performance and correctness.

In this paper we formalize and theoretically an-

alyze the problem of efficient value alignment

verification: how to efficiently test whether the

behavior of another agent is aligned with a hu-

man’s values. The goal is to construct a kind of

“driver’s test” that a human can give to any agent

which will verify value alignment via a minimal

number of queries. We study alignment verifica-

tion problems with both idealized humans that

have an explicit reward function as well as prob-

lems where they have implicit values. We analyze

verification of exact value alignment for rational

agents and propose and analyze heuristic and ap-

proximate value alignment verification tests in a

wide range of gridworlds and a continuous au-

tonomous driving domain. Finally, we prove that

there exist sufficient conditions such that we can

verify exact and approximate alignment across an

infinite set of test environments via a constant-

query-complexity alignment test.

1. Introduction

If we desire autonomous agents that can interact with and

assist humans and other agents in performing complex, risky

tasks, then it is important that humans can verify that these

agents’ policies are aligned with what is expected and de-

sired. This alignment is often termed value alignment and is

defined in the Asilomar AI Principles1 as follows: "Highly

autonomous AI systems should be designed so that their

goals and behaviors can be assured to align with human

values throughout their operation." In this paper, we pro-
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vide a theoretical analysis of the problem of efficient value

alignment verification: how to efficiently test whether a

robot is aligned with a human’s values.

Existing work on value alignment often focuses on qualita-

tive evaluation of trust (Huang et al., 2018) or asymptotic

alignment of an agent’s performance via interactions and ac-

tive learning (Hadfield-Menell et al., 2016; Christiano et al.,

2017; Sadigh et al., 2017). By contrast, our work analyzes

the difficulty of efficiently evaluating another agent’s cor-

rectness by formally defining value alignment and seeking

efficient tests for value alignment verification that are appli-

cable when two or more agents already have learned a policy

or reward function and want to efficiently test compatibility.

To the best of our knowledge, we are the first to define and

analyze the problem of value alignment verification. In par-

ticular, we propose exact, approximate, and heuristic tests

that one agent can use to quickly and efficiently verify value

alignment with another agent.

As depicted in Figure 1, the goal of value alignment verifi-

cation is to construct a kind of “driver’s test” that a human

can give to any agent which will verify value alignment and

consists of only a small number of queries. We define values

in the reinforcement learning sense, i.e., with respect to a re-

ward function: a robot is exactly value aligned with a human

if the robot’s policy is optimal under the human’s reward

function. The two agents in a value alignment verification

problem (human and robot) may have different communica-

tion mechanisms and different value introspection abilities.

Thus, the way we analyze value alignment verification will

depend on whether the human’s and robot’s access to their

values is explicit, e.g., able to write down a value function or

reward function or implicit, e.g., able to answer preference

queries or sample actions from a policy. The most general

version of value alignment verification involves a human

with implicit values who seeks to verify the value alignment

of a robot with implicit values, e.g. a black-box policy. This

setting motivates our work; however, it is challenging and

we postpone many questions for future research.

We follow a ground-up approach where we analyze the dif-

ficulty of value alignment verification starting in the most

idealized setting, and then gradually relax our assumptions.

We first analyze sufficient conditions under which efficient

exact value alignment verification is possible in the explicit
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human, explicit robot setting, where an idealized human

tester knows their reward function and so does the robot.

When the robot is rational with respect to a reward func-

tion that is a linear combination of known features, we

show that it is possible to provably verify the alignment of

any rational explicit robot via a succinct test consisting of

either reward queries, value queries, or trajectory prefer-

ence queries. We next consider the explicit human, implicit

robot setting, where an idealized human knows their reward

function, but seeks to efficiently verify the alignment of a

black-box policy via action queries. We study heuristics for

generating value alignment verification tests in this setting

and compare their performance on a range of gridworlds.

Finally, in Section 4.5 we study the most general setting of

implicit human, implicit robot. We propose an algorithm

for approximate value alignment verification in continuous

state and action spaces and provide empirical results in a

continuous autonomous driving domain where the human

can only query the robot for preferences over trajectories.

We conclude with a brief discussion of the challenge of

designing value alignment verification tests that generalize

across multiple MDPs. Somewhat surprisingly, we provide

initial theory demonstrating that if the human can create the

test environment for the robot, then exact and approximate

value alignment across an infinite family of MDPs can be

verified by observing the robot’s policy in only two carefully

constructed test environments.

Source code and videos are available at https://sites.

google.com/view/icml-vav.

2. Related work

Value Alignment: Most work on value alignment focuses

on how to iteratively train a learning agent such that its

final behavior is aligned with a user’s intentions (Leike

et al., 2018; Russell et al., 2015; Amodei et al., 2016).

One example is cooperative inverse reinforcement learn-

ing (CIRL) (Hadfield-Menell et al., 2016; Fisac et al., 2020;

Shah et al., 2020), which formulates value alignment as

a game between a human and a robot, where both try to

maximize a shared reward function that is only known by

the human. CIRL and other research on value alignment

focus on ensuring the learning agent asymptotically con-

verges to the same values as the human teacher, but do not

provide a way to check whether value alignment has been

achieved. By contrast, we are interested in value alignment

verification. Rather than assuming a cooperative setting, we

assume the robot being tested has already learned a policy

or reward function and the human wants to efficiently verify

whether the robot is value aligned.

Reward Learning: Inverse reinforcement learning

(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Arora

& Doshi, 2018) and active preference learning (Wirth

et al., 2017; Christiano et al., 2017; Bıyık et al., 2019)

algorithms aim to determine the reward function of a

human via offline demonstrations or online queries. In

contrast, value alignment verification only seeks to answer

the question of whether two agents are aligned, without

concern for the exact reward function of the robot. In

Section 6 we prove that value alignment verification can

be performed in a constant number of queries whereas

active reward learning requires a logarithmic number of

queries (Amin & Singh, 2016; Amin et al., 2017). In cases

where the human has implicit values, active reward learning

can be used to infer the reward function of the human

tester, and then this inferred reward function can be used to

automatically generate a high-confidence value alignment

test. While active reward learning may be a subcomponent

of value alignment verification, it focuses on customizing

reward inference queries for a single agent, whereas value

alignment verification seeks to design a single alignment

test that works for all agents.

Machine Teaching: In machine teaching (Zhu et al.,

2018), a teacher seeks to optimize a minimal set of train-

ing data such that a student (running a particular learning

algorithm) learns a desired set of model parameters. Value

alignment verification can be seen as a form of machine test-

ing rather than teaching—machine teaching algorithms typi-

cally search for a minimal set of training data that will teach

a learner a specific model, whereas we seek a minimal set of

questions that will allow a tester to verify whether another

agent’s learned model is correct. Thus, in machine teaching,

the teacher provides examples and their answers, but in ma-

chine testing the tester provides examples and then queries

the testee for the answer. While machine teaching has been

applied to sequential decision making domains (Cakmak &

Lopes, 2012; Huang et al., 2017; Brown & Niekum, 2019),

we are not aware of any work that considers the problem of

value alignment verification.

Policy Evaluation Policy evaluation (Sutton & Barto,

1998) aims to answer the question, "How much return would

another agent achieve according to my values?" By focus-

ing on the simpler decision problem, "Is the robot value

aligned with the human?", we seek tests that are much more

sample-efficient than running a full policy evaluation. Off-

Policy Evaluation (OPE) seeks to perform policy evaluation

without executing the testee’s policy (Precup, 2000; Thomas

et al., 2015; Hanna et al., 2017). However, OPE is often

sample-inefficient, provides high-variance estimates, and

typically assumes explicit access to the tester’s reward func-

tion, and the tester and testee policies. Value alignment

verification is applicable in settings where the policies and

reward functions of both agents may be implicit and only

accessible indirectly.
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but not value aligned since they lead to more than one opti-

mal policy, one or more of which may not be optimal under

the human’s reward function. In the next section we show

that if we remove all such edge cases, we can construct an

aligned reward polytope (ARP) similar to the CRS, which

enables provable value alignment verification. Furthermore,

we show that the aligned reward polytope can be used for

alignment verification even when the human cannot directly

query for the robot’s reward function.

4.3. Sufficient Conditions for Provable Verification of

Exact Value Alignment

We seek an efficient value alignment verification test which

enables a human to query the robot to determine exact value

alignment as in Corollary 1. The following theorem demon-

strates that provable verification of exact value alignment is

possible under a variety of query types.

Theorem 1. Under the assumption of a rational robot that

shares linear reward features with the human, efficient exact

value alignment verification is possible in the following

query settings: (1) Query access to reward function weights

w
′, (2) Query access to samples of the reward function

R′(s), (3) Query access to V ∗
R′(s) and Q∗

R′(s, a), and (4)

Query access to preferences over trajectories.

4.3.1. CASE 1: REWARD WEIGHT QUERIES

We first consider the case where the human can directly

query the robot for their reward function weights w′. While

this problem setting is mainly of theoretical interest, we

will show that Cases (2) and (3) also reduce to this setting.

Querying directly for the robot’s reward function is maxi-

mally efficient since by definition it only requires a single

query. Although one can solve for the optimal policy un-

der a given w
′ and evaluate it under the human’s reward

function w, this brute force approach is computationally

demanding and must be repeated for each robot that needs

to be tested. By contrast, we will prove that there exists a

single efficient verification test that does not require solving

for the robot’s optimal policy and can be used to verify the

alignment of any robot.

As mentioned in the previous section, the CRS for the hu-

man’s optimal policy does not provide a sufficient test for

value alignment verification. Under the assumption of a

rational robot, a sufficient condition for value alignment

verification is to test whether a robot’s reward function lies

in the following set:

Definition 3. Given an MDP M composed of environment

E and reward function R, the aligned reward set (ARS) is

defined as the following set of reward functions:

ARS(R) = {R′ | OPT(R′) ⊆ OPT(R)}. (6)

Using Definition 3, we prove the following lemma which

will enable efficient verification of exact value alignment.

As a reminder, we use the notation Qπ
R(s, a) = w

TΦ
(s,a)
π ,

for Φ
(s,a)
π = Eπ[

∑∞
t=0 γ

tφ(st) | s0 = s, a0 = a], and

AR(s) = argmaxa′∈A Q∗
R(s, a

′).

Lemma 1. Given an MDP M = (E,R), assuming the

human’s reward function R, and the robot’s reward function

R′ can be represented as linear combinations of features

φ(s) ∈ R
k, i.e., R(s) = w

Tφ(s), R′(s) = w
′Tφ(s), and

given an optimal policy π∗
R under R then

w
′ ∈

⋂

(s,a,b)∈O

HR
s,a,b =⇒ R′ ∈ ARS(R) (7)

where HR
s,a,b =

{

w | w
T (Φ

(s,a)
π∗

R
− Φ

(s,b)
π∗

R
) > 0

}

and

O = {(s, a, b)|s ∈ S, a ∈ AR(s), b /∈ AR(s)} .

Proof sketch. First we show π∗
R is optimal under R′ using

the policy improvement theorem. Then, using the unique-

ness of the optimal value function, we show that all optimal

actions under R are also optimal actions under R′, and so

all optimal policies under R′ are optimal under R. (see

Appendix A.3 for the full proof).

Lemma 1 provides a sufficient condition for verifying exact

value alignment. We now have the necessary theory to

construct an efficient value alignment verification test in the

explicit human, explicit robot setting. We aim to efficiently

verify whether the robot’s reward function, R′, is within the

above intersection of half-spaces, which we call the Aligned

Reward Polytope (ARP), as this gives a sufficient condition

for R′ being value aligned with the human’s reward function

R. Our analysis in this section will be useful later when we

consider approximate tests for value alignment verification

when one or both of the agents have implicit values.2

The verification test is constructed by precomputing the

following matrix representation of the ARP:

∆ =





Φ
(s,a)
π∗

R
− Φ

(s,b)
π∗

R

...



 , (8)

where each row corresponds to a tuple (s, a, b) ∈ O. Thus,

a is an optimal action and b is a suboptimal action under R
and each row of ∆ represents the normal vector for a strict

half-space constraint based on feature count differences be-

tween an optimal and suboptimal action. Note that, using

this notation, exact value alignment can now be verified by

checking whether ∆w
′ > 0. This test can be made more

2Our results may also be of interest in the analysis of explicit
robot, explicit robot teaming, e.g., ad hoc teamwork (Stone et al.,
2010) where value alignment verification could provide a frame-
work for verifying whether two robots can work together.
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efficient by only including non-redundant half-space normal

vectors in ∆. In Appendix G.2 we discuss a straightforward

linear programming technique to efficiently obtain the mini-

mal set of half-space constraints that define the intersection

of half-spaces specified in Lemma 1.

4.3.2. CASE 2: REWARD QUERIES

We now consider the case where the tester can query for

samples of the robot’s reward function R′(s). Verifying

alignment via queries to R′(s) can be reduced to Case (1)

by querying the robot for R′(s) over a sufficient number

of states and then solving for a system of linear equations

to recover w′, since we assume both the human and robot

have access to the reward features φ(s).3 Let Φ be defined

as the matrix where each row corresponds to the feature

vector φ(s)T for a distinct state s ∈ S. Then, the number

of required queries is equal to rank(Φ) since we only need

samples corresponding to linearly independent rows of Φ.

Thus, if w′ ∈ R
k, in the worst case we only need k samples

from the robot’s reward function, since we have rank(Φ) ≤
k. If there is noise in the sampling procedure, then linear

regression can be used to efficiently estimate the robot’s

weight vector w′. Given w
′ we can verify value alignment

by checking whether ∆w
′ > 0.

4.3.3. CASE 3: VALUE FUNCTION QUERIES

Given query access to the robot’s state and state-action value

functions, w′ can be determined by noting that R′(s) =

w
′Tφ(s) and

R′(s) = Q∗
R′(s, a)− γEs′ [V

∗
R′(s′)] . (9)

Computing the expectation requires enumerating succes-

sor states. If we define the maximum degree of the MDP

transition function as

dmax = max
s∈S,a∈A

|{s′ ∈ S | P (s, a, s′) > 0}|, (10)

then at most the dmax possible next state value queries

are needed to evaluate the expectation. Thus, at most

rank(Φ)(dmax + 1) queries to the robot’s value functions

are needed to recover w′, and the tester can verify value

alignment via Case (1). Since rank(Φ) ≤ k as before, at

most k(dmax + 1) queries are required for w′ ∈ R
k.

4.3.4. CASE 4: PREFERENCE QUERIES

Finally, we consider the implicit robot setting where the

tester can only query the robot for preferences over tra-

jectories, ξ. Each preference over trajectories, ξA ≺ ξB ,

induces the constraint w′T (Φ(ξB) − Φ(ξA)) > 0, where

Φ(ξ) =
∑n

i=1 γ
iφ(si) is the cumulative discounted reward

3Note that our results also hold for rewards that are functions
of (s, a) and (s, a, s′).

features along a trajectory. Thus, our choice set of tests,

T , consists of all trajectory preference queries, and we

can guarantee value alignment if we have a test T such

that wT (Φ(ξB)− Φ(ξA)) > 0, ∀(ξA, ξB) ∈ T implies that

w ∈
⋂

HR
s,a,b. We can then construct ∆ in a similar fashion

as above, except each row corresponds to a half-space nor-

mal resulting from a preference over individual trajectories

(see Appendix A.3). Only a logarithmic number of prefer-

ences over randomly generated trajectories are needed to

accurately represent
⋂

HR
s,a,b via intersection of half-spaces

formed by the rows in ∆ (Brown et al., 2019).

4.4. Value Alignment Verification Heuristics

In the next section we relax our assumptions on the robot and

consider the explicit human, implicit robot setting, where

the human seeks to verify value alignment but the robot

has a black-box policy that only affords action queries.

In this case, we resort to heuristics for value alignment

as exact value alignment verification becomes impossible,

and ε-value alignment verification by directly attempting to

solve Equation (2) when T consists of state-action queries

is computationally intractable. As we discuss in detail in

Appendix B, a direct optimization approach would involve

estimating Π by computing the optimal policies for a large

number of different reward functions, evaluating each policy

under w to determine which policies are not ε-aligned with

the tester’s reward function R, and then solving a combina-

torial optimization problem over all possible state queries.

Instead, we resort to efficient heuristics. We consider three

heuristic alignment tests designed to work in the black-box

value alignment verification setting, where the tester can

only ask the robot policy action queries over states. Each

heuristic test consists of a method for selecting states at

which to test the robot by querying for an action from the

robot’s policy and checking if that action is an optimal action

under the human’s reward function. Note that querying only

a subset of states for robot actions is fundamentally limited

to value alignment verification tests with δfpr > 0 since

we will never know for sure that the agent will not take

a different action in that state if we query its policy again.

Thus, receiving the “right answer"—an optimal action under

the tester’s reward R—to an action query in a state is not a

sufficient condition for exact value alignment. We briefly

discuss three action query heuristics with full details in

Appendix C. Figure 3 shows examples of the state queries

generated by each heuristic in a simple gridworld.

Critical States Heuristic Our first heuristic is inspired by

the notion of critical states: states where Q∗
R(s, π

∗
R(s))−

1
|A|

∑

a∈A Q∗
R(s, a) > t, and t is a user defined thresh-

old (Huang et al., 2018). We adapt this idea to form a

critical state alignment heuristic test (CS) consisting of criti-

cal states under the human’s reward function R. Intuitively,
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these states are likely to be important; however, often many

critical states will be redundant since different states are

often important for similar reasons (see Figure 3).

Machine Teaching Heuristic Our next heuristic is based

on Set Cover Optimal Teaching (SCOT) (Brown & Niekum,

2019), a machine teaching algorithm that approximates the

minimal set of maximally informative state-action trajecto-

ries necessary to teach a specific reward function to an IRL

agent. Brown & Niekum (2019) prove that the learner will

recover a reward function in the intersection of halfspaces

that define the CRS (Corollary 2). We generate informative

trajectories using SCOT, and turn them into alignment tests

by querying the robot for their action at each state along the

trajectories. SCOT replaces the explicit checking of half-

space constraints in Section 4.3 with implicit half-space

constraints that are inferred by querying for robot actions

at states along trajectories, thus introducing approximation

error and the possibility of false positives. Furthermore, gen-

erating a test using SCOT is more computationally intensive

than generating a test via the CS heuristic; however, unlike

CS, SCOT will seek to avoid redundant queries by reasoning

about reward features over a collection of trajectories.

ARP Heuristic Our third heuristic takes inspiration from

the definition of the ARP to define a black-box alignment

heuristic (ARP-bb). ARP-bb first computes ∆ (see Equa-

tion (8)), removes redundant half-space constraints via lin-

ear programming, and then only queries for robot actions

from the states corresponding to the non-redundant con-

straints (rows) in ∆. Intuitively, states that are queried

by ARP-bb are important in the sense that taking differ-

ent actions reveals important information about the reward

function. However, ARP-bb uses single-state action queries

to approximate checking each half-space constraint. Thus,

ARP-bb trades off smaller query and computational com-

plexity with the potenital for larger approximation error.

4.5. Implicit Value Alignment Verification

We now discuss value alignment verification in the implicit

human, implicit robot setting. Without an explicit represen-

tation of the human’s values we cannot directly compute

the aligned reward polytope (ARP) via enumeration over

states and actions to create an intersection of half-spaces as

described above. Instead, we propose the pipeline outlined

in Figure 1 where an AI system elicits and distills human

preferences and then generates a test which can be used to

approximately verify the alignment of any rational agent.

As is common for active reward learning algorithms (Bıyık

et al., 2019), we assume that the preference elicitation al-

gorithm outputs both a set of preferences over trajectories

P = {(ξi, ξj) : ξi � ξj} and a set of reward weights w

sampled from the posterior distribution {wi} ∼ P (w|P).

Given P and P (w|P), the ARP of the human’s implicit

reward function can be approximated as

ARP (R) ≈
⋂

(ξi,ξj)∈P

{w | wT (Φ(ξi)− Φ(ξj)) > 0
}

,

(11)

which generalizes the definition of the ARP to MDPs with

continuous states and actions. To see this, note that the

intersection of half-spaces in Lemma 1 enumerates over

states and pairs of optimal and suboptimal actions under

the human’s reward R to create the set of half-space normal

vectors ∆, where each normal vector is a difference of

expected feature counts. This enumeration can only be done

in discrete MDPs. Equation (11) approximates the ARP for

continuous MDPs via half-space normal vectors constructed

with empirical feature count differences obtained from pairs

of actual trajectories over continuous states and actions.

This test can be further generalized to ε-value alignment

(Definition 1) to test agents with bounded rationality or

slightly misspecified reward functions. One method of con-

structing an ε-alignment test is to use the mean posterior

reward E[w] to approximate the value difference of each

pair of trajectories E[w](Φ(ξi)− Φ(ξj)), and only include

preference queries with estimated value differences of at

least ε. A robot with implicit values is verified as ε-value

aligned by test T if its preferences over each pair of trajec-

tories in T match the preferences provided by the human

(see Appendix F for more details).

5. Experiments

We now study the empirical performance of value alignment

verification tests, first in the explicit human setting and then

in the implicit human setting.

5.1. Value Alignment Verification with Explicit Human

We first study the explicit human setting and analyze the

efficiency and accuracy of exact value alignment verification

tests and heuristics. We consider querying for the weight

vector of the robot (ARP-w), querying for trajectory pref-

erences (ARP-pref), and the action-query heuristics: CS,

SCOT, and ARP-bb, described in Section 4.4.

5.1.1. CASE STUDY

To illustrate the types of test queries found via value align-

ment verification, we consider two domains inspired by

the AI safety gridworlds (Leike et al., 2017). The first do-

main, island navigation is shown in Figure 3. Figure 3a

shows the optimal policy under the tester’s reward function,

R(s) = 50 ·1green(s)− 1 ·1white(s)− 50 ·1blue(s), where

1color(s) is an indicator feature for the color of the grid

cell. Shown in figures 3b and 3c are the two preference

queries generated by ARP-pref which consist of pairwise
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trajectory queries (black is preferable to orange under R).

Preference query 1 verifies that the robot would rather move

the to terminal state (green) rather than visit more white

cells. Preference query 2 verifies that the robot would rather

visit white cells than blue cells. Figures 3d, 3e, and 3f show

action query tests designed using the ARP-bb, SCOT, and

CS heuristics. The robot is asked which action its policy

would take in each of the states marked with a question

mark. To pass the test, the agent must respond with an

optimal action under the human’s policy in each of these

states. ARP-bb chooses two states based on the half-space

constraints defined by the expected feature counts of π∗
R,

resulting in an small but myopic test. SCOT queries over a

maximally informative trajectory that starts near the water,

but includes several redundant states. CS only reasons about

Q-value differences and asks many redundant queries (see

Appendix D for more results).

5.1.2. SENSITIVITY ANALYSIS

We also analyze the accuracy and efficiency of value align-

ment verification in the explicit human, explicit robot and

explicit human, implicit robot settings for verifying exact

value alignment. We analyze performance across a suite

of random grid navigation domains with varying numbers

of states and reward features. We summarize our results

here and refer the reader to Appendix E for more details.

As expected, ARP-w and ARP-pref result in perfect accu-

racy. SCOT has uses fewer samples than the CS heuristic

while achieving nearly perfect accuracy. ARP-bb results

in higher accuracy tests, but generates more false positives

than SCOT. CS has significantly higher sample cost than the

other methods and requires careful tuning of the threshold

t to obtain good performance. Our results indicate that in

the implicit robot setting, ARP-pref and ARP-bb provide

highly efficient verification tests. Out of the action query

heuristics, SCOT achieved the highest accuracy, while hav-

ing larger sample complexity than ARP-bb, but achieving

lower sample complexity than CS.

5.2. Value Alignment Verification with Implicit Human

We next analyze approximate value alignment verification

in the continuous autonomous driving domain from Sadigh

et al. (2017), shown in Figure 4a, where we study the im-

plicit human, implicit robot setting and consider verifying

ε-value alignment. As depicted in Figure 1 we analyze the

use of active preference elicitation (Bıyık et al., 2019) to

perform value alignment verification with implicit human

values. We first analyze implicit value alignment verifica-

tion using preference queries to a synthetic human oracle

unobserved ground-truth reward function R.

We collected varying numbers of oracle preferences, and

computed a non-redundant ε-alignment test as described

in 4.5 and Appendix G.2. Tests were evaluated for accuracy

relative to a set of test reward weights. See Appendix G for

experimental parameters and details of the testing reward

generation protocol. Figure 4b displays the results of the

synthetic human experiments. The best tests achieved 100%

accuracy. Although collecting additional synthetic human

queries consistently improved verification accuracy, above

50 human queries, accuracy gains were minimal, demon-

strating the potential for human-in-the-loop preference elic-

itation. Furthermore, the generated verification tests were

often succinct: one of the tests with perfect accuracy re-

quired only six questions out of the original 100 elicited

preferences. Additional experiments and results are detailed

in Appendix G, including false positive and false negative

rate plots, and different methods of estimating the value gap

of questions. We also ran an initial pilot study using real

human preference labels which resulted in a verification test

that achieves 72% accuracy.

6. Generalization to Multiple MDPs

Up to this point, we have considered designing value align-

ment tests for a single MDP; however, it is also interesting

to try and design value alignment verification tests that en-

able generalization, e.g., if a robot passes the test, then this

verifies value alignment across many different MDPs.

As a step towards this goal, we present a result in the explicit

human, explicit robot setting where the human can construct

testing environments. We consider the idealized setting of an

omnipotent tester that is able to construct a set of arbitrary

test MDPs and can query directly for the entire optimal

policy of the robot in each MDP. This tester aims to verify

value alignment across an infinite family of environments

that share the same reward function. Our result builds on

prior analysis on the related problem of omnipotent active

reward learning. Amin & Singh (2016) prove that an active

learner can determine the reward function of another agent

within ε precision via O(log |S|+ log(1/ε)) policy queries.

By contrast, we prove in the following theorem that the

sample complexity of ε-value alignment verification is only

O(1) (see Appendix A.5 for the proof).

Theorem 2. Given a testing reward R (not necessarily

linear in known features), there exists a two-query test (com-

plexity O(1)) that determines ε-value alignment of a ratio-

nal agent over all MDPs that share the same state space

and reward function R, but may differ in actions, transitions,

discount factors, and initial state distribution.

We also note that if the human has access a priori to a finite

set of MDPs over which they want to verify value alignment,

then our results from earlier sections on exact, heuristic,

and approximate value alignment could be extended to this

setting. For example, we can define a generalized aligned

reward polytope for a family of MDPs as the intersection of
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A. Theory and Proofs

A.1. Value Alignment Verification of Black-Box Agents

Definition 1 makes no assumptions about the robot agent except that it acts according to some policy π′. Given this

assumption, how can a tester with reward function R efficiently solve the value alignment verification problem? A brute

force attempt at verification would be to query π′(s) at every state. However, querying the robot’s policy at every state is

expensive for discrete problems, and impossible for many real-world problems with continuous state-spaces. If we are

able to query for action probabilities at every state, then for discrete MDPs we can verify value alignment by checking

whether {a | π′(a|s) > 0} ⊆ argmaxa Q
∗
R∗(s, a), ∀s ∈ S . However, in the case of black-box value alignment verification

where the tester only has sample access to the robot’s policy without any additional assumptions about policy structure or

rationality, we have the following impossibility result:

Proposition 1. Even in a finite MDP (i.e., |S|, |A| < ∞), exact value alignment verification via sampling or observing

actions from a black-box policy π′ is impossible in a finite number of queries.

Proof. Consider the robot policy π′ that takes actions uniformly at random and assume that the tester’s reward function is

non-trivial, i.e., ¬∃c ∈ R, ∀s ∈ S, R(s) = c. Given a finite number of queries, there is a (
∑

a∈argmaxa Q∗

R
(s,a) π(a|s))

n

probability that every time the policy is queried at a state s it will select any optimal action a ∈ argmaxa Q
∗
R(s, a). This

proves the existence of a non-value aligned policy π′ that has non-zero probability of being certified as value aligned. In the

worst-case, almost surely verifying the value alignment of a policy requires an infinite number of policy queries.

A.2. Value Alignment for Rational Agents

We define OPT (R) = {π | ∀π ∈ Π, π(a|s) > 0 ⇒ a ∈ argmaxa Q
∗
R(s, a)}, the set of all optimal (potentially stochastic)

policies in MDP M = (E,R) where argmaxx f(x) := {x | f(y) ≤ f(x), ∀y} is the set of all function maximizing

arguments. We now prove the following:

Corollary 1. We have exact value alignment in environment E between a rational robot with reward function R′ and a

human with reward function R if OPT (R′) ⊆ OPT (R).

Proof. If OPT (R′) ⊆ OPT (R) then since π′ ∈ OPT (R′) we have π′ ∈ OPT (R). By construction, if a policy is in

OPT (R) then it is optimal under R, and so exact alignment immediately follows.

A.3. Value Alignment Verification with Explicit Values

In this section we prove the main theorem of our paper, that efficient exact value alignment verification is possible in many

settings. We start with a lemma, equivalent to the case where we have query access to the robot’s reward function. We will

reduce many of the cases of Theorem 1 to this case.

Lemma 1. Given an MDP M = (E,R), assuming the human’s reward function R, and the robot’s reward function R′

can be represented as linear combinations of features φ(s) ∈ R
k, i.e., R(s) = w

Tφ(s), R′(s) = w
′Tφ(s), and given an

optimal policy π∗
R under R then

w
′ ∈

⋂

(s,a,b)∈O

HR
s,a,b =⇒ R′ ∈ ARS(R) (12)

where HR
s,a,b =

{

w | wT (Φ
(s,a)
π∗

R
− Φ

(s,b)
π∗

R
) > 0

}

and O = {(s, a, b)|s ∈ S, a ∈ AR(s), b /∈ AR(s)} .

Proof. We will prove that
⋂

(s,a,b)∈O HR
s,a,b ⊆ ARS(R). Consider an arbitrary w

′ ∈
⋂

(s,a,b)∈O HR
s,a,b. By assumption

we have that

∀s ∈ S, ∀a ∈ AR, b /∈ AR,w
′TΦ

(s,a)
π∗

R
> w

′TΦ
(s,b)
π∗

R
(13)

Q
π∗

R

R′ (s, a) > Q
π∗

R

R′ (s, b) (14)
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Under R′ the Q-value of all actions that π∗
R does not take are strictly worse than that of the actions that it does take, and so

π∗
R is optimal under R′ by the policy improvement theorem.

Since π∗
R is optimal under R′, Q

π∗

R

R′ (s, a) = Q∗
R′(s, a). Thus Eq. 14 becomes

∀s ∈ S, ∀a ∈ AR, b /∈ AR, Q
∗
R′(s, a) > Q∗

R′(s, b) (15)

Now consider an arbitrary optimal policy under R′, call it π∗
R′ . Assume for contradiction that π∗

R′ /∈ OPT (R). Therefore,

there exists s ∈ S, a ∈ AR(s), and b /∈ AR(s) such that Q∗
R′(s, b) ≥ Q∗

R′(s, a). However, this contradicts (15). Thus,

we have π∗
R′ ∈ OPT (R) and since π∗

R′ was assumed to be any optimal policy under R′, we have w
′ ∈

⋂

(s,a,b)∈O HR
s,a,b

implies OPT (R′) ⊆ OPT (R) and so
⋂

(s,a,b)∈O HR
s,a,b ⊆ ARS(R) by Definition 3.

We now prove the full theorem.

Theorem 1. Under the assumption of a rational robot that shares linear reward features with the human, efficient exact

value alignment verification is possible in the following query settings: (1) Query access to reward function weights w′, (2)

Query access to samples of the reward function R′(s), (3) Query access to V ∗
R′(s) and Q∗

R′(s, a), and (4) Query access to

preferences over trajectories.

Proof. The proof of case (1) follows directly from Lemma 1.

In case (2), the tester can query for samples of the reward function R′(s). If the tester only has query access to R′(s), then

the weight vector w′ can be recovered by solving a linear system.

R
′
sample =









...

R(si)
...









= Φsamplew
′ =









...

Φ(si)
...









w
′ (16)

This system is guaranteed to have a unique solution if rank(Φsample) = k i.e. Φsample is full column rank. If Φ, the matrix

of features at every state, is full column rank, then there is a subset of k rows which is also full column rank. If Φ is not

full column rank, then there is some feature column φi which is a linear combination of other feature columns, and so can

be removed from the test without affecting the predicted alignment of any policy. Features can be safely removed in this

manner until the remaining columns are linearly independent. Thus for any environment there is a set of k states which one

can query R′(s) at in order to recover a sufficient subset of the reward weights for value alignment purposes. Note that this

also works for rewards that are functions of (s, a) and (s, a, s′).

If R′(s) is a stochastic function, then linear regression can be used to efficiently estimate the robot’s weight vector w′. After

recovering the weight vector, the same value alignment test used for case (1) can be used.

In case (3) the tester has access to the value functions of the robot. If the tester can query the robot agent’s value function

then R(s) can be recovered from the Bellman equation

R(s) = Q∗
R(s, a)− γEs′|s,a [V

∗
R(s

′)] (17)

Computing the expectation requires enumerating successor states. If we define the maximum degree of the MDP transition

function as

dmax = max
s∈S,a∈A

|{s′ ∈ S | P (s, a, s′) > 0}|, (18)

then at most the dmax possible next state value queries are needed to evaluate the expectation. Thus, at most rank(Φ)(dmax+
1) queries to the robot’s value functions are needed to recover w′, and the tester can verify value alignment via Case (1).

Since rank(Φ) ≤ k as before, at most k(dmax + 1) queries are required.

In case (4), the tester only has access to the robot’s values via preference queries over trajectories. If the robot agent being

tested can answer pairwise preferences over trajectories, then a value alignment test can also be tested via an approximation



Value Alignment Verification

of the ARP. Each preference over trajectories ξA ≺ ξB induces the constraint wT (ξB − ξA) > 0. Thus, given a test T
consisting of preferences over trajectories, we can guarantee value alignment if

{w | wT (ξB − ξA) > 0, ∀(ξA, ξB) ∈ T } ⊆ ARS(w). (19)

Note that a single trajectory in general will not actually match the successor features of a stochastic policy. However, by

synthesizing arbitrary trajectories we can create more half-space constraints than are used to define the ARP since these

trajectories do not need to be the product of a rational policy. As more trajectory queries are asked the estimate of the ARP

will approach a subset of the true ARP. Brown et al. (Brown et al., 2019) proved that given random halfplane constraints,

the volume of the polytope will decrease exponentially. Thus we will need a logarithmic number of queries to accurately

approximate the ARP.

A.4. Relationship of the ARP to Ng and Russell’s Consistent Reward Sets

In this section we discuss the relationship between our approach and the foundational work on IRL by Ng and Russell (Ng

& Russell, 2000).

We define the set of rewards consistent with an optimal policy as follows:

Definition 2. Given an environment E, the consistent reward set (CRS) of a policy π in environment E is defined as the set

of reward functions under which π is optimal:

CRS(π) = {w ∈ R
k | π is optimal with respect to R(s) = w

Tφ(s)}. (20)

The fundamental theorem of inverse reinforcement learning (Ng & Russell, 2000), defines the set of all consistent reward

functions as a set of linear inequalities for finite MDPs.

Proposition 2. (Ng & Russell, 2000) Given an environment E, with finite state and action spaces, R ∈ CRS(π) if and only

if

(Pπ −Pa)(I− γPπ)
−1

R ≥ 0, ∀a ∈ A (21)

where Pa is the transition matrix associated with always taking action a, Pπ is the transition matrix associated with policy

π, and R is the column vector of rewards for each state in the MDP.

When the reward function is a linear combination of features, we get the following:

Corollary 2. (Ng & Russell, 2000; Brown & Niekum, 2019) Given an environment E, the CRS(π) is given by the following

intersection of half-spaces:

{w ∈ R
k | wT (Φ(s,a)

π − Φ(s,b)
π ) ≥ 0, ∀a ∈ support(π(s)), b ∈ A, s ∈ S}. (22)

Proof. In every state s there is one or more optimal actions a. For each optimal action a ∈ support(π(s)), we then have by

definition of optimality that

Q∗(s, a) ≥ Q∗(s, b), ∀b ∈ A (23)

Rewriting this in terms of expected discounted feature counts we have

w
TΦ(s,a)

π ≥ w
TΦ(s,b)

π , ∀b ∈ A (24)

Thus, the entire feasible region is the intersection of the following half-spaces

w
T (Φ(s,a)

π − Φ(s,b)
π ) ≥ 0, (25)

∀a ∈ support(π(s)), b ∈ A, s ∈ S (26)

and thus the feasible region is convex.

The consistent reward set of a demonstration from an optimal policy can be defined similarly:
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Corollary 3. (Brown & Niekum, 2019) Given a set of demonstrations D from a policy π, CRS(D|π) is given by the

following intersection of half-spaces:

w
T (Φ(s,a)

π − Φ(s,b)
π ) ≥ 0, ∀(s, a) ∈ D, b ∈ A. (27)

Proof. The proof follows from the proof of 2 by only considering half-spaces corresponding to optimal (s, a) pairs in the

demonstration.

Note that Corollary 2 does not solve the alignment verification problem. It only provides a necessary, but not sufficient

condition. If a reward function is within the CRS of a policy dot not imply all agents optimal under that reward function are

aligned. Consider the example of the all zero reward: it is always in the CRS of any policy; however, an agent optimizing

the zero reward can end up with any policy. Even ignoring the all zero reward we can have rewards on the boundaries of the

CRS polytope that are consistent with a policy, but not value aligned since they lead to more than one optimal policy, one or

more of which may not be optimal under the tester’s reward function.

A.5. Proof of Theorem 2: ε-Alignment Verification via Omnipotent Testing

In this section we consider what is possible in the omnipotent tester case where a tester can design a set of test MDPs in

order to verify alignment over a (potentially infinite) family of MDPs that share reward information. We are able to prove

that, under some assumptions, alignment over a family of MDPs is possible by querying a complete policy in only two test

MDPs.

More formally, we consider the case where the testing agent is able to construct a set of arbitrary test MDPs to verify value

alignment across a family of environments that may have different transitions, actions, initial state distribution, and discount

factor, but that share the same reward function over states. Amin and Sing (Amin & Singh, 2016) prove that an omnipotent

active learner can determine the reward function of another agent within ε precision via O(log(|S|) + log(1/ε)) active

policy queries. We extend this result to the case of ε-value alignment verification.

Before we prove Theorem (2), we require the following Lemma, which proves that if two agents’ reward functions are

similar enough (in an L∞ sense) then we can guarantee ε-value alignment.

Lemma 2. If ‖R(s)−R′(s)‖∞ ≤ ε(1− γ)/2, where γ is the discount factor and ε is any non-negative error term, then

rational agents that have reward functions R(s) and R′(s) are ε-value aligned across all MDPs that share the reward

function R(s).

Proof. For π′ ∈ OPT (R′) to be ε-value aligned under the humans’ reward function R we must have ∀s ∈ S, V ∗
R(s) −

V π′

R (s) ≤ ε. To prove the lemma we must show that an adversary that picks R′ within the constraint ‖R(s)−R′(s)‖∞ ≤
ε(1− γ)/2 cannot violate the alignment condition in any MDP.

The adversary wants to maximize V ∗
R(s)− V π′

R (s) at some state. Let π∗
R ∈ OPT (R) be an optimal policy under R. Since

π′ is optimal under R′, we have V
π∗

R

R′ (s)− V π′

R′ (s) ≤ 0. We will show bounds on the maximum gap between VR′ and VR

for both policies, and use those bounds in combination with the above inequality to show that V ∗
R(s)− V π′

R (s) ≤ ε. The

adversary would like the resulting upper bound to be as large as possible, which is achieved by making V
π∗

R

R as large as

possible and V π′

R as small as possible, which is in turn achieved by making V
π∗

R

R′ as small as possible in relationship to

V
π∗

R

R and vice versa for V π′

R′ . Thus the adversary creates R′ by subtracting the maximum ε(1− γ)/2 from the true reward

(R′(s) = R(s)− ε(1− γ)/2) at states visited by π∗
R to make them look as bad as possible and adding ε(1− γ)/2 to the

true reward (R′(s) = R(s) + ε(1− γ)/2) at states visited by π′ look as good as possible. If π∗
R and π′ visit some of the
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same states, this assignment of R′(s) isn’t possible, but this only tightens our bound. Thus, we have in the worst-case

V
π∗

R

R′ = E[

∞
∑

t=0

γtR′(st) | st ∼ π∗
R] (28)

≥ E[

∞
∑

t=0

γt (R(st)− ε(1− γ)/2) | st ∼ π∗
R] (29)

≥ V
π∗

R

R −
ε(1− γ)

2(1− γ)
(30)

≥ V
π∗

R

R −
ε

2
(31)

and

V π′

R′ = E[

∞
∑

t=0

γtR′(st) | st ∼ π′] (32)

≤ E[

∞
∑

t=0

γt (R(st) + ε(1− γ)/2) | st ∼ π′] (33)

≤ V π′

R +
ε(1− γ)

2(1− γ)
(34)

≤ V π′

R +
ε

2
(35)

As noted above we have V
π∗

R

R′ (s) ≤ V π′

R′ (s) since π′ is optimal under R′. Substituting the above bounds provides that

V
π∗

R

R′ (s) ≤ V π′

R′ (s) (36)

V
π∗

R

R (s)− ε/2 ≤ V π′

R (s) + ε/2 (37)

V
π∗

R

R (s)− V π′

R (s) ≤ ε (38)

Thus, we have shown that under the assumption that ‖R(s) − R′(s)‖∞ ≤ ε(1 − γ)/2, then the robot agent with reward

function R′ is ε-value aligned with the tester’s reward function R under all possible MDPs that share the reward function

R.

Note that if we scale the reward of an agent by a positive constant or by a constant vector, we can get the difference to look

arbitrarily large even if the two rewards lead to the same optimal policy. This is undesirable for computing value alignment

in terms of reward differences. Comparing rewards in this way works best if they are similarly normalized. We utilize a

canonical form for reward functions defined by the transformation (R(s)−maxs R(s))/(maxs R(s)−mins R(s)) such

that the values of the reward function are scaled to be between 0 and 1 (Amin & Singh, 2016). Following the notation of

Amin and Singh (Amin & Singh, 2016) we use [R] to denote the canonical form for reward function R. Note that we will

not assume access to the canonical form of the robot’s reward function. Indeed we assume no direct access to this reward

function.

Given the ability to construct arbitrary testing environments, we can guarantee ε-value alignment over all MDPs that share

the reward function R. The following theorem is inspired by Amin and Singh (Amin & Singh, 2016) who prove an analogous

theorem for the case of actively querying an expert’s policy to approximate the expert’s reward function. The proof of Amin

and Singh (Amin & Singh, 2016) relies on binary search and the query algorithm they derive results in query complexity of

O(log(|S|) + log(1/ε)), where each query requires the expert to specify a complete policy for a new MDP. In contrast, our

proof is based instead on machine testing, and we prove that in the case of value alignment verification we only require O(1)
policy queries. In fact we only need two test MDPs with policy queries.
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Theorem 2. Given a testing reward R, there exists a two-query test (complexity O(1)) that determines ε-value alignment of

a rational agent over all MDPs that share the same state space and reward function R, but may differ in actions, transitions,

discount factors, and initial state distribution.

Proof. By Lemma 2 we want a test that guarantees ‖[R′]− [R]‖∞ ≤ ε(1− γ)/2. Thus we need to show that

|[R′](s)− [R](s)| ≤ ε(1− γ)/2, ∀s ∈ S (39)

which implies that

[R](s)− ε(1− γ)/2 ≤ [R′](s) ≤ [R](s) + ε(1− γ)/2, ∀s ∈ S. (40)

We use the notation [R] and [R′] to represent the canonical versions of R and R′, the tester’s and robot’s reward functions,

respectively. If we can directly query for R′, then we simply compute ‖R−R′‖∞ and check if it is less than ε(1− γ)/2.

We now consider the case where we can only query the robot’s policy. We define smax = argmaxs R(s) and smin =
argmins R(s) and s′max = argmaxs R

′(s) and s′min = argmins R
′(s).

We first cover the simple case where we only have two states: smin and smax. In this case, we can construct an MDP

with two actions: a1 that always leads to smin and a2 which always leads to smax. We then can verify value alignment

verification by asking for the robot’s optimal policy and checking that a2 is always preferred over a1. Note that if the robot

has more than two actions, we can simply make all remaining actions equivalent to either a1 or a2 since the tester has full

control over the transition dynamics.

We now consider the general case where there are more than two states. We create two testing environments such that from

each state there is an action a1 that self transitions and an action a2 that goes from each state to smax with probability αs and

to smin with probability (1− αs), except in states smin and smax in which all transitions via a1 and a2 are self transitions.

Thus, taking action a2 represents a gamble between the states with minimum and maximum reward under the tester’s reward

function R. For s ∈ S \ {smax, smin}, we design two different transition dynamics with the parameters αU and αL such

that αL
s = max([R](s)− ε(1−γ)

2 , 0) and αU
s = min([R](s) + ε(1−γ)

2 , 1). Then we construct two test environments EL and

EU . L has αL as the transitions and U has αU as the transitions. We then query the robot for its optimal policy in both test

environments and use the policy to answer the two test questions:

1. Is π(s) = a1, ∀s ∈ S \ {smin, smax} in MDP L?

2. Is π(s) = a2, ∀s ∈ S \ {smin, smax} in MDP U?

If the agent answers "YES" to the first question, then ∀s ∈ S \ {smax, smin} we know that a1 is at lest as good as a2. Thus

the agent prefers to self transition at a state rather than take action a2 which leads to a stochastic transitions to either smax or

smin. Thus, under the robot’s unknown reward R′ the following inequality holds for all s ∈ S \ {smax, smin}:

αL
s R

′(smax) + (1− αL
s )R

′(smin) ≤ R′(s) (41)

⇔ αL
s R

′(smax) + (1− αL
s )R

′(smin)−R′(s′min) ≤ R′(s)−R′(s′min) (42)

⇔ αL
s (R

′(smax)−R′(s′min)) + (1− αL
s )(R

′(smin)−R′(s′min)) ≤ R′(s)−R′(s′min) (43)

⇔ αL
s

R′(smax)−R′(s′min)

R′(s′max)−R′(s′min)
+ (1− αL

s )
R′(smin)−R′(s′min)

R′(s′max)−R′(s′min)
≤

R′(s)−R′(s′min)

R′(s′max)−R′(s′min)
(44)

⇔ αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s). (45)

and similarly, if the agent answers "YES" to question 2, we have

R′(s) ≤ αU
s R

′(smax) + (1− αU
s )R

′(smin) (46)

⇔ [R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](smin). (47)

These above inequalities hold for all s ∈ S \ {smax, smin}.

We now prove that answering "YES" to both questions 1 and 2 also means that s′max ≡ maxs R
′(s) = maxs R(s) ≡ smax

and s′min ≡ mins R
′(s) = mins R(s) ≡ smin. We assume that

ε(1−γ)
2 < 0.5 and thus consider three cases for the values of

αL
s = max([R](s)− ε(1−γ)

2 , 0) and αU
s = min([R](s) + ε(1−γ)

2 , 1)
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1. αL
s = 0 and αU

s = [R](s) + ε(1−γ)
2

2. αL
s = [R](s)− ε(1−γ)

2 and αU
s = [R](s) + ε(1−γ)

2

3. αL
s = [R](s)− ε(1−γ)

2 and αU
s = 1

Case 1: We have αL
s = 0, thus. If the robot answers YES to question 1, we have

αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s) (48)

⇒ [R′](smin) ≤ [R′](s) (49)

We also have

[R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](smin). (50)

plugging in the value in Equation (49) we have

[R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](s) (51)

⇒ [R′](s)− (1− αU
s )[R

′](s) ≤ αU
s [R

′](smax) (52)

⇒ [R′](s) ≤ [R′](smax) (53)

Case 2: We have αL
s = [R](s)− ε(1−γ)

2 and αU
s = [R](s) + ε(1−γ)

2 . Plugging these into Equation (45) we have

αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s) (54)

⇒ [R′](smin) ≤
1

(1− αL
s )

(

[R′](s)− αL
s [R

′](smax)
)

(55)

Plugging this into the following equation, yields:

[R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](smin) (56)

⇒ [R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )

(

1

(1− αL
s )

(

[R′](s)− αL
s [R

′](smax)
)

)

(57)

⇒ (1− αL
s )[R

′](s) ≤ (1− αL
s )α

U
s [R

′](smax) + (1− αU
s )

(

[R′](s)− αL
s [R

′](smax)
)

(58)

Plugging the values for αL
s and αU

s for Case 2 and reducing the resulting algebraic equation results in

[R′](s) ≤ [R′](smax) (59)

We then plug this value into Equation (54) we get

αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s) (60)

⇒ αL
s [R

′](s) + (1− αL
s )[R

′](smin) ≤ [R′](s) (61)

⇒ [R′](smin) ≤ [R′](s). (62)

Case 3: We have αL
s = [R](s)− ε(1−γ)

2 and αU
s = 1. Thus,

[R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](smin) (63)

⇒ [R′](s) ≤ [R′](smax). (64)

Plugging this into the following equation yields:

αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s) (65)

⇒ αL
s [R

′](s) + (1− αL
s )[R

′](smin) ≤ [R′](s) (66)

⇒ [R′](smin) ≤ [R′](s) (67)

(68)
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Thus, for every state s ∈ S \ {smax, smin}, we have proved that we always have

[R′](smin) ≤ [R′](s) ≤ [R′](smax). (69)

Therefore, it must be the case that s′max ≡ maxs R
′(s) = maxs R(s) ≡ smax and s′min ≡ mins R

′(s) = mins R(s) ≡
smin.

Combining the above results we have (assuming the robot answers "YES" to questions 1 and 2) that [R](smax) =
[R′](smax) = 1 and [R](smin) = [R′](smin) = 0. Additionally, for the remaining states, s ∈ S \ {smax, smin}, we have

that

αL
s R

′(smax) + (1− αL
s )R

′(smin) ≤ R′(s) ≤ αU
s R

′(smax) + (1− αU
s )R

′(smin) (70)

⇒ αL
s [R

′](smax) + (1− αL
s )[R

′](smin) ≤ [R′](s) ≤ αU
s [R

′](smax) + (1− αU
s )[R

′](smin)

⇒ αL
s ≤ [R′](s) ≤ αU

s (71)

⇒ max([R](s)− ε(1− γ)/2, 0) ≤ [R′](s) ≤ min([R](s) + ε(1− γ)/2, 1) (72)

⇒ |[R′](s)− [R](s)| ≤ ε(1− γ)/2. (73)

Thus, we have‖[R′]− [R]‖∞ ≤ ε(1− γ)/2 so by Lemma 2 we have verified ε-value alignment via two policy preference

queries as desired.

B. Value Alignment Verification for Action Queries

In this section we discuss the difficulty of solving Equation (2) directly to find which states to query for actions. The

approach detailed here will generally be intractable, but motivates the tractable heuristics discussed in Section 4.4.

We consider the problem of finding a subset of states where we will query the robot for an action they would take at that

state. We want to optimize the following objective (copied from the main text for convenience):

min
T⊆T

|T |, s.t. ∀π′ ∈ Π, (74)

V ∗
R(s)− V π′

R (s) > ε ⇒ Pr[π′ passes test T ] ≤ δfpr

V ∗
R(s)− V π′

R (s) ≤ ε ⇒ Pr[π′ fails test T ] ≤ δfnr

where the choice set T ⊂ T is the set of states where we query for actions from the robot’s policy. We seek to use these

actions to verify value alignment. Furthermore, we want to precompute a single test that will certify any agent.

We will discuss a naive approach that motivates our heuristics from Section 4.4. We propose a breadth-first search to find the

optimal set of test states for action queries.

First we need to establish how likely detecting ε-misalignment from a single action query at each state is. Consider all

the reward functions that have a policy that is rational under that reward function but is ε-value misaligned under R:

R′ = {R′|∃π′, π′ ∈ OPT (R′), π′ is ε−misalignedunderR}. For each policy optimal under a reward in R′, rollout that

policy at every state N times. From this we can obtain a Monte-Carlo estimate of the probability of detecting the robot is

ε-misaligned by taking the ratio of rollouts where the robot takes an ε-misaligned action b such that

Q∗
R(s, π

∗
R(s))−Q∗

R(s, b) > ε, (75)

to the number of rollouts N .

We now perform breadth-first search to search to solve the combinatorial optimization problem of determining the subset of

states that allow high-confidence value alignment verification. We use breadth-first search since we are interested in finding

the minimal number of states to test such that we can detect all non-aligned agents with probability at least δfpr. We start

with tests consisting of only one state and grow them via breadth-first search. The goal condition is that the probability the

test fails to detect a misaligned agent is less than δfpr. We can define this probability as

max
π′∈Π′

Pr[π′ passes test T] = max
π′∈Π′

∏

s∈T

(

1− Pr(π′ detected at s)
)

, (76)
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where Π′ is the set of ε misaligned policies under R.

Thus, we perform breadth-first graph search, where the search progressively explored all subsets of states starting with

singletons and returns the first subset of states such that maxπ′∈Π′ Pr[π′ passes test T] < δfpr. Note that the above test will

never fail an ε-value aligned agent, since all such agents will never take an action b that satisfies Equation (75) by definition.

Thus, we have δfnr = 0. If we are willing to allow some false negatives (the test is allowed to fail some ε-aligned agents),

then we can adjust the test by keeping track of all policies that are ε-value aligned and computing an analogous probability

to that above for false positives.

While the above procedure will work for the simplest of domains it has several fundamental drawbacks: (1) We need to

enumerate all policies in Π and check whether they are ε-value aligned or not, (2) We need to run multiple rollouts from

each ε-misaligned policy over multiple states to compute Pr(π′ detected at s) for every state, (3) We have to then run

a combinatorial optimization. In comparison, the action query heuristics we discuss in the paper only require solving a

single MDP for an optimal policy under the human’s reward R. However, the heuristics are specifically for testing exact

value alignment (ε = 0, δfpr = 0) and do not consider false negatives. Future work should examine how to bridge the

gap between these two extremes to see if there is a tractable middle ground that is amenable to high-confidence ε-value

alignment verification.

C. Value Alignment Verification Heuristics

In this section we discuss the value alignment verification heuristics in more detail. Note that all of the methods above

are not guaranteed to verify value alignment and may give false positives. However, all are designed to never give a false

negative.

C.1. Critical State-Action Value Alignment Heuristic

Prior work by Huang et al. (Huang et al., 2018), seeks to build human-agent trust by asking an agent for critical states which

are defined as follows:

Q∗
R(s, π

∗
R(s))−

1

|A|

∑

a∈A

Q∗
R(s, a) > t (77)

for some user-defined t. If t = 0, then all states will be critical states. On the otherhand, for large t, none of the states will

be critical. Thus, t must be carefully tuned to the scale of the reward function and to the particulars of the MDP. Huang et al.

(Huang et al., 2018) also proposed finding critical states in terms of states with policy entropy below some threshold t, but

found that state-action value critical states performed better. Futhermore, using entropy would label every state as critical for

a deterministic policy. State-action value critical states can also be computed for both deterministic and stochastic policies,

thus we only compare against state-action value critical states.

One possible way to use critical states for a value alignment heuristic would be to ask an agent for its critical states and

then see if those match the tester’s critical states However, this is problematic since reward scale isn’t fixed and there are

an infinite number of reward functions that lead to the same policy (Ng & Russell, 2000), so the gap in Q-values can be

arbitrarily large. Thus t would have to be carefully constructed and tuned for both the tester and the agent, making this

impractical. Instead, we simply calculate the critical states for the tester under a tester-defined t and then test whether the

optimal action that the agent being tested would take in the tester’s critical state is also optimal under the tester’s value

function.

This results in the following value alignment heuristic:

(1) Find critical states in true MDP for t ≥ 0.

(2) Query the robot for their action in each critical state and check if this is an optimal action under the tester’s reward

function.

C.2. Aligned Reward Polytope Black-Box Heuristic

For this heuristic we have the tester compute ARP (R) for the tester’s reward function R, and then find the minimum set of

equivalent constraints using linear programming as discussed in Section G.2. To run a verification test we simply take the
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set of states corresponding to this minimal set of constraints. For each of these constraints we have

w
T (Φ

(s,a)
π∗ − Φ

(s,b)
π∗ ) > 0 (78)

for all a ∈ argmaxa′ Q∗(s, a′). The test then consists of asking the agent being tested for the action the testee would take

in state s and checking if it is optimal under the tester’s reward function.

C.3. SCOT Trajectory-Based Heuristic

We also adapt the set cover optimal teaching (SCOT) algorithm for value alignment verification (Brown & Niekum, 2019).

As done in the original paper (Brown & Niekum, 2019), we first compute feature expectations, then we calculate the minimal

set of constraints that define the consistent reward set (CRS) using Corollary 2. We then rollout m trajectories using the

teacher’s policy from each initial state and calculate the CRS of the rollouts using Corollary 3. We then run set cover and

find the minimum set of rollouts of length H that implicitly covers the CRS.

Given the machine teaching demos from SCOT we mask the actions and ask the agent being tested what action it would take

in each state. We then compare this action with the machine teaching action. In particular, we implement this querying the

robot agent for an action at each state s and then checking if this action is optimal under the tester’s reward function.

C.4. Computational Complexity

In terms of complexity, the CS heuristic is the least computationally expensive since it requires only solving for the optimal

Q-values at each state and then selecting states with action-value gap larger than t. The ARP-bb heuristic is the next most

computationally intensive heuristic. It also only requires solving for the optimal policy for a single MDP, but also requires

computing ∆ and removing redundant constraints. If the policy is represented and learned using successor features (Barreto

et al., 2017), then we obtain ∆ simply by iterating over each state to find optimal and suboptimal actions. Alternatively,

given an optimal policy, ∆ can be efficiently recovered via a vectorized version of policy evaluation, where expected feature

vectors are propagated instead of expected values. Removing redundant constraints requires solving a LP. The complexity of

this will depend on the number of rows (number of states with unique feature count normal vectors) and columns (number

of features) of ∆. Finally, the SCOT heuristic is the most computationally intensive. It still requires solving one MDP (to

get the optimal policy for R), but also requires removing redundant half-space constraints from ∆ and then running a greedy

set-cover approximation.

D. Case Study Continued

To illustrate the types of test queries found via value alignment verification, we consider two domains inspired by the AI

safety grid worlds (Leike et al., 2017). The first domain, island navigation is shown in Section 5.1.1. We now discuss

another domain inspired by the AI safety gridworlds: lava world. This domain is shown in Figure 5. Figure 5a shows the

optimal policy under the tester’s reward function

R(s) = 50 · 1green(s)− 1 · 1white(s)− 50 · 1red(s), (79)

where 1color(s) is an indicator feature for the color of the grid cell. Shown in figures 5b and 5c are the two preference queries

generated by ARP-pref. In both cases the query consists of two trajectories (shown in black and orange for visualization),

and the agent taking the test must decide which trajectory is preferable (we chose the colors such that the black trajectory is

preferable to orange). We see that preference query 1 verifies that the agent would rather move the to terminal state (green)

rather than visit white cells. The second preference verifies that the agent would rather visit white cells than red cells, and

would rather take an indirect path to the goal state (green) rather than a more direct path that visits red cells. Note that the

black trajectory in preference query 2 first goes up, which results in a self transition, then goes left to get out of the lava.

Shown in figures 5d, 5e, and 5f are the query states for ARP-bb, SCOT, and CS heuristics, respectively. In each of these

tests the agent being tested is asked what action its policy would take in each of the states marked with a question mark. To

pass the test, the agent must respond with an optimal action under the tester’s policy in each of these states. ARP-bb chooses

two states where the half-spaces defined by the expected feature counts of following the optimal policy versus taking a

suboptimal action and following the optimal policy fully define the ARP.
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(3), or (4). In general there is nothing to suggest that questions asked of the human during a preference elicitation process

will make good test questions. In fact, such questions may be stricter than the ones that make up an ε-ARP. Questions

asked of the human are often between trajectories that are both suboptimal under the human’s reward function. The ARP is

constructed only using optimal-suboptimal pairs of trajectories, asking the robot only to have the correct preferences in

optimal actions, and is agnostic about preferences over suboptimal actions, as the policy will never take those actions. By

asking for preferences between suboptimal trajectories, we may be asking the robot to not only have the correct optimal

actions at every state, but also the correct rankings between suboptimal actions.

However there are reasons to believe that preference elicitation algorithms that operate over the same linear reward features

as the test will ask questions useful for an alignment test. These algorithms share much of the geometry of the ARP. Each

answer to a question induces a (potentially soft) half-space constraint over the possible reward function of the human. These

algorithms attempt to ask questions that remove the most volume from the posterior reward distribution (Sadigh et al.,

2017) or have the maximum expected information gain (Bıyık et al., 2019), which intuitively should result in high quality

questions.

If one is not satisfied by these arguments, one could use the posterior reward distribution to generate new questions for the

test. One could randomly generate test questions and answer those questions using the mean or MAP posterior reward.

In practice we found this to have poor performance. With much larger test sizes, the suboptimal-suboptimal trajectory

comparisons made the test so strict that nearly no rewards were passed. In future work we would like to generate test

questions that will not be too strict by generating optimal trajectories under the posterior reward and comparing them to

random suboptimal trajectories.

G. Experiment Details

G.1. Exact vs Heuristics Grid Domains

In all grid domains the transition dynamics are deterministic and actions corresponding to movement up, down, left, and

right are available at every state. Actions that would lead the agent off of the grid result result in the agent staying in the

same state. We ran experiments over different sized grid worlds with different numbers of features. For each grid world size

and number of features we generated 50 random MDPs with features placed randomly and with a random ground-truth

reward function. We then sampled 50 different reward function weights w from the unit hypersphere. This bounds the

Q-values of states, and so allowed us to tune over a bounded interval of t hyperparameters for the critical-action state value

alignment heuristic. For each reward we function we computed an optimal policy to create different agents for verification.

Duplicate policies were removed.

G.2. Half-space Normal Vector Redundancy removal

All experiments (gridworlds and Driver) do duplication and redundancy filtering. Duplicate constraints are detected by

computing cosine distance between the halfplane normal vectors. Any normal vectors that are within a small threshold

(0.0001) of other normal vectors are deduplicated arbitrarily. Trivial (all-zero) constraints are also removed. There are

several known ways to remove redundant constraints (Paulraj et al., 2010). We remove redundant constraints using the exact

linear programming method (Paulraj et al., 2010), following the procedure from Brown & Niekum (2019) which we will

briefly summarize.

A redundant constraint is one that can be removed without changing the interior of the intersection of half-spaces. We can

find redundant constraints efficiently using linear programming. To check if a constraint aTx ≤ b is binding we can remove

that constraint and solve the linear program with maxx a
Tx as the objective. If the optimal solution is still constrained to be

less than or equal to b even when the constraint is removed, then the constraint can be removed. However, if the optimal

value is greater than b then the constraint is non-redundant. Thus, all redundant constraints can be removed by making one

pass through the constraints, where each constraint is immediately removed if redundant.

As an example. Consider Figure 7. The hatched region on the right is the intersection of half-spaces that makes up the CRS.

If we take away the boundaries we get the ARP. Note that there are several half-space constraints that do not tightly define

the hatched region and are redundant.






