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However the mechanical role of phylosillicate weakening of a detachment shear zone has quartzite microstructure, grains habits: small rhomb-shaped folia, large sheet
not been adequately explored in nature. We conduct our analysis on the east-rooted, oriented perpendicular to grains, and cigar- to needle-shaped grains.

the foliation, and parallel

to the lineation * Quartz microstructures change with muscovite

S content and muscovite grain shape and distribution:
e e ey when interconnected layers of muscovite are

*i{.”_, s present, quartz grains appear pinned against these

W
i, - g

Miocene Raft River detachment shear zone, localized in a ~100 m thick quartzite (~90%
quartz, ~10% muscovite) dominated DSZ. Muscovite content, spatial distribution,
arrangement and interconnectivity is investigated by thin section analysis and CT-
scanning. Preliminary results indicate that quartz microstructures change with the amount
of muscovite present in the quartzite, suggesting that phyllosilicate precipitation plays a
role in quartz deformation and strain localization.
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muscovite content is minimal, quartz grains appear

!

T
(9]
o
o

| £ | e muscovite distribution, spatial arrangement and

o EEC ! interconnectivity, and volume.

« Conduct Electron Backscattered Diffraction
analyses to characterize quartz crystallographic
preferred orientation, and see how it correlates to
muscovite XRCT analysis.

* Investigate the relationship between quartz grain
size, deformation, phyllosilicate content, and
ultimately if phyllosilicate distribution, size, or
connectivity affects the strength of the shear zone.
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Fluid—rock interaction in a detachment system associated with the formation of a metamorphic core complex
(from Gottardi et al., 2018).
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STUDY AREA

We focus on the top-to-the-east Miocene Raft River detachment shear zone, located in the \/
central and eastern Raft River Mountains, that has been extensively mylonitized and
metamorphosed under greenschist facies conditions (Wells, 1997, 2001; Wells et al., 2000,
Gotfttardi et al., 2011, 2015). The DSZ is localized in the Proterozoic Elba quartzite, which
unconformably overlies an Archean basement complex, and consists of an alternating
sequence of white quartzite and muscovite-quartzite schist, with a few feldspar-rich
quartzite near the top of the detachment shear zone.
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Simplified regional geologic map of the eastern Raft River Mountains, with location of the Clear Creek Canyon
(study are). Modified from Gottardi and Teyssier (2013), and Gottardi et al. (2015).




