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Abstract. Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange 28 

of heat, moisture, momentum, trace gases, and aerosols in the surface-atmosphere interface. The 29 

PBL height (PBLH) represents the maximum height of the free atmosphere that is directly 30 

influenced by the Earth’s surface. This study uses a multi-data synthesis approach from an 31 

ensemble of multiple global datasets of radiosonde observations, reanalysis products and climate 32 

model simulations to examine the spatial patterns of long-term PBLH trends over land between 33 

60S and 60N for the period 1979-2019. By considering both the sign and statistical significance 34 

of trends, we identify large-scale regions where the change signal is robust and consistent to 35 

increase our confidence in the obtained results. Despite differences in the magnitude and sign of 36 

PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the 37 

enormous and driest Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. 38 

At the global scale, the changes in PBLH are significantly correlated positively with the changes 39 

in surface heating and negatively with the changes in surface moisture, consistent with theory and 40 

previous findings in the literature. The rising PBLH is in good agreement with increasing sensible 41 

heat and surface temperature and decreasing relative humidity over the SDAP associated with 42 

desert amplification, while the declining PBLH resonates well with increasing relative humidity 43 

and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes 44 

agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of 45 

good-quality radiosonde observations.    46 

 47 

Key words: Global warming, desert amplification, planetary boundary layer, planetary boundary 48 

layer height   49 
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1. Introduction 50 

 51 

The land surface has a pronounced diurnal cycle in solar insolation, surface temperatures, and 52 

atmospheric planetary boundary layer (PBL). Turbulent mixing in the PBL dominates the vertical 53 

exchange of heat, moisture, momentum, trace gases, and aerosols in the surface-atmosphere 54 

interface, and strongly influences the tropospheric temperature, humidity, and wind (Stull, 1988). 55 

One fundamental variable of the PBL is the PBL height (PBLH). PBLH represents the maximum 56 

height of the atmosphere that is directly influenced by the Earth’s surface, sets limits for the mixing 57 

and dilution height of near-surface pollutants, and controls cloud formation and convection activity 58 

that affect the Earth’s radiation budget and hydrological cycle (Ao et al., 2012; Chan and Wood, 59 

2013; Ho et al., 2015).  60 

 61 

PBLH displays substantial spatiotemporal variability under different surface and atmospheric 62 

conditions, ranging from a few hundred meters to several kilometers (Stull, 1988). The PBLH over 63 

land depends strongly on surface characteristics, including soil moisture, vegetation, land cover, 64 

terrain, and proximity to the sea (Talbot et al., 2007; Liu and Liang, 2010; Seidel et al., 2012; 65 

Zhang et al., 2013; Lee and De Wekker, 2016; Wei et al., 2017a; Sathyanadh et al., 2017). The 66 

growth of PBLH is driven primarily by surface heating and atmospheric stability (Chan and Wood, 67 

2013; Lee and De Wekker, 2016; Ao et al., 2017; Brahmanandam et al., 2020). In the subtropics 68 

and tropics, PBLH is typically higher over drier regions and during drier seasons, because more 69 

surface sensible heat flux is available to drive vertical mixing due to less surface moisture and 70 

higher Bowen ratio. As expected, it maximizes over arid and semi-arid regions, in the afternoon, 71 

and during warm and dry seasons when land surface temperatures are warmest, sensible heat flux 72 



 

 

 

4 

is most significant, and static stability is lowest. Hence, the global PBLH climatology shows the 73 

deepest daytime PBLH in the Sahara Desert and Arabian Peninsula (SDAP) (Gamo, 1996; Ao et 74 

al., 2012; Garcia-Carreras et al., 2015; Ao et al., 2017; Wei et al., 2017a).  75 

 76 

Changes in near-surface atmospheric variables such as temperature and relative humidity (RH) are 77 

closely linked to changes in PBLH. Warmer and drier surfaces associated with higher temperatures 78 

and lower RH result in greater sensible heat flux and lower latent heat flux, leading to deeper 79 

convection and larger PBLH (Zhang et al. 2013; Darand and Zandkarimi, 2019). Hence, PBLH 80 

shows strong correlations positively with surface air temperature and negatively with surface RH 81 

in Europe (Zhang et al., 2013), China (Guo et al., 2016; Dang et al., 2016; Guo et al., 2019), East 82 

Asia and North Africa (Zhao et al., 2017), and Iran (Darand and Zandkarimi, 2019).   83 

 84 

Global mean surface temperatures have increased since the late 19th century, and this warming 85 

has been spatially widespread and particularly marked since the 1980s, with the warming rate over 86 

land double that over the ocean (IPCC, 2013). Associated with this warming are the global 87 

increases in near-surface and tropospheric specific humidity of air (IPCC, 2013). Despite diverse 88 

and complex spatial patterns of RH changes at regional scales, recent studies using observations, 89 

reanalysis data, and general circulation models (GCMs) have suggested small increases in ocean 90 

RH but substantial decreases in land RH in recent years with global warming (e.g., Simmons et 91 

al., 2010; O’Gorman and Muller 2010; IPCC, 2013; Sherwood and Fu 2014; Willet et al., 2014; 92 

Byrne and O’Gorman, 2016; Vicente-Serrano et al., 2017). As increasing surface temperature and 93 

decreasing surface RH over land tend to deepen the PBLH, one scientific question is whether these 94 

changes in temperature and RH may have raised the PBLH over land (e.g., Zhang et al., 2013).  95 
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 96 

Due to limited spatial and temporal coverage of good-quality radiosonde measurements, there are 97 

only several observational studies on long-term PBLH trends at regional scales. Zhang et al. (2013) 98 

estimated the PBLH trends over Europe based on daily radiosonde observations at 25 stations 99 

during 1973-2010 and found statistically significant increases in daytime PBLH in all four seasons. 100 

Guo et al (2019) investigated the temporal trends of radiosonde derived PBLH from 1979 to 2016 101 

in China and found a spatially uniform increasing trend from 1979 to 2003 but a trend shift 102 

thereafter. Li et al. (2020) calculated daily maximum PBLH globally using operational radiosonde 103 

and surface meteorological measurements from 219 carefully selected weather stations for the 104 

period 1973-2018. They found significant increasing (decreasing) trends over 74 (48) stations. 105 

However, these studies are inadequate to draw a broad conclusion about the large-scale patterns 106 

of PBLH trends because the radiosonde network is not evenly distributed globally and has data 107 

gaps in coverage over many regions.  108 

 109 

The land surface has warmed rapidly in the past several decades but at different warming rates 110 

among different regions. Recent studies (Zhou et al., 2015; 2016; Cook and Vizy, 2015; Evan et 111 

al., 2015; Zhou, 2016) using observations, reanalysis data, and GCM simulations have found that 112 

surface air temperatures in the mid- and low- latitudes have warmed most over the SDAP. This 113 

warming amplification over deserts, which is termed desert amplification (DA), has intensified 114 

with increasing greenhouse gases (GHGs), particularly after the 1980s. The essential features of 115 

DA remained robust across all seasons, although the magnitude of DA was greater during warm 116 

seasons (Zhou et al., 2016; Vizy and Cook, 2017; Wei et al., 2017b). These results suggest that 117 
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DA is a fundamental large-scale feature of global warming patterns in the mid- and low- latitudes 118 

and will accelerate in a warming climate.  119 

 120 

Deserts make up approximately 1/3 of the global land surface area (Zhou, 2016; Wei et al., 2017a). 121 

The SDAP is home to the two largest subtropical deserts in the world and covers a vast continental 122 

land area in the low latitudes. As the deserts are extremely dry, with limited soil moisture, 123 

vegetation and cloudiness, surface heating via sensible heat is documented as the dominant driver 124 

for the PBLH growth there (Zhao, 2011; Ao et al., 2017). Considering the amplified continent-125 

scale surface heating associated with DA in a warming climate and constrained by limited moisture 126 

availability over the deserts, it is expected to observe widespread increases in temperature and 127 

decreases in RH over the SDAP. Another scientific question is whether the DA may have 128 

manifested its impact by deepening the PBLH at a much larger spatial extent over the SDAP than 129 

the other regions with spatially more heterogeneous RH changes.  130 

 131 

Global reanalysis results in physically consistent estimates of past observations with complete 132 

spatial and temporal coverage and thus has greatly improved our ability to examine climate 133 

variability (Trenberth et al., 2008; IPCC. 2013). The reanalysis PBLH estimates have been used at 134 

regional to global scales with reasonable results (e.g., Ao et al., 2012; Von Engeln and Teixeira, 135 

2013; Guo et al., 2016; Zhao et al. 2017; Darand and Zandkarimi, 2019). There are a couple of 136 

studies on the long-term trends of reanalysis PBLH over dry lands. Zhao et al. (2017) examined 137 

the inter-decadal variability of PBLH based on the ECMWF first atmospheric reanalysis of the 138 

20th century (ERA-20C) over arid and semi-arid areas in East Asia and North Africa for the period 139 

1900-2010 and found substantial spatiotemporal variations in the PBLH trends during the 111-140 
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year period. This century-long reanalysis makes the investigation of multi-decadal variability 141 

possible, but it assimilated only surface observations and contains spurious long-term climate 142 

trends due to changes in the radiative forcing and the observing system throughout the century 143 

(e.g., Poli et al., 2013; Bloomfieldet al., 2018). Darand and Zandkarimi (2019) examined monthly 144 

PBLH data from the ERA-Interim reanalysis and revealed a significant increasing PBLH trend of 145 

~31 m/decade at the country level over Iran for the period 1979-2016, with some seasonal 146 

differences and largest increases in the semi northern part of the country. However, these two 147 

regional studies are based only on one reanalysis product and have no validations against in situ 148 

observations and other datasets.  149 

 150 

The availability of high-resolution reanalysis products and the newly available Coupled Model 151 

Intercomparison Project Phase 6 (CMIP6) simulations provide us an opportunity to address the 152 

above two questions by examining the PBLH changes at larger scales. This paper uses a multi-153 

data synthesis approach from an ensemble of multiple global datasets of radiosonde observations, 154 

reanalysis products, and GCM simulations to detect and attribute the large-scale patterns of long-155 

term PBLH trends over land in the mid- and low- latitudes between 60S and 60N. It focuses on 156 

the satellite era for the period 1979-2019 to maximize data coverage of measurements that are 157 

assimilated into reanalysis products and are used to drive GCMs. By considering both the sign and 158 

statistical significance of the trends, we identify large-scale regions where the change signal is 159 

robust and consistent to increase our confidence in the obtained results. The major objective is to 160 

test the hypothesis that the global warming signal is manifest most in the spatial extent of PBLH 161 

change over the SDAP where the amplified surface warming associated with DA enhances 162 

turbulent mixing and thus raise the PBLH height. 163 
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 164 

2.  Data and Methods 165 

 166 

2.1. Data sources 167 

Here we used nine types of datasets, consisting of radiosonde observations, four reanalysis 168 

products, and 74 historical simulations from 27 CMIP6 models, for the period 1979-2019. To inter-169 

compare the PBLH estimates from different methods, the bulk Richardson number (Ri) method 170 

(Vogelezang and Holtslag, 1996) was also chosen to consistently diagnose the PBLH, with a 171 

critical value of 0.25, directly from the atmospheric soundings for three datasets whose PBLHs 172 

were estimated using other methods. The Ri methods have proven to the most reliable approaches 173 

over a wide range of conditions for both stable and convective boundary layers and don’t strongly 174 

depend on the sounding vertical resolutions (e.g., Seidel et al., 2012; Zhang et al., 2013; Davy, 175 

2018). We followed exactly the steps detailed in Seidel et al. (2012) and Zhang et al (2013) to 176 

calculate the PBLH. Note that all PBLH estimates in this study are measured in meters above 177 

ground level (AGL). The data details are mostly listed in Tables 1 and 2, with some key 178 

information provided next. 179 

 180 

2.1.1. Radiosonde measurements 181 

Two observational PBLH datasets were derived from atmospheric soundings (mostly at 00 and 12 182 

Coordinated Time Universal or UTC) in the updated Integrated Global Radiosonde Archive 183 

Version 2 (IGRA2) (Durre and Yin 2008, 2011). First, we used the Ri method to estimate the 184 

PBLH at 00 and 12 UTC for the period 1979-2019 (referred to as the IGRA2-RI, Table 2) based 185 

on the IGRA2 sounding-derived parameters (ftp://ftp.ncdc.noaa.gov/pub/data/igra/derived/). 186 
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Second, we used the daily maximum mixed layer height (MMLH) estimated by Li et al. (2020) 187 

via the parcel method (Holzworth, 1964) for the period 1979-2018 (referred to as the IGRA2-188 

MMLH, Table 2) based on the IGRA2 and surface meteorological measurements. Because the 189 

daily MMLH usually occurs locally in the early to late afternoon, the standard two radiosonde 190 

observations each day cannot capture the fully developed mixed layer globally. The parcel method 191 

was proposed to calculate daily MMLH using radiosondes and diurnal potential temperature 192 

observations from morning to evening to characterize the convective mixing of the lower 193 

troposphere (Holzworth, 1964). It has the advantage of using twice-daily radiosonde soundings 194 

over most weather stations if the maximum virtual potential temperature coincides with the 195 

MMLH and thus has been adopted by many studies to estimate the MMLH thereafter (e.g., Seidel 196 

et al 2010, Li et al., 2020). Large uncertainties are expected over regions if this condition is not 197 

met. Due to the presence of missing data over many radiosonde stations, a set of carefully designed 198 

data selection and quality control criteria were developed to identify stations with good quality 199 

data for long-term trend analysis (section 2.2) 200 

 201 

2.1.2. Reanalysis products 202 

Two latest state-of-the-art reanalysis products provide physically consistent, global gridded hourly 203 

analysis fields at relatively high spatial and temporal resolutions. The second Modern-Era 204 

Retrospective analysis for Research and Applications (MERRA-2) is a NASA atmospheric 205 

reanalysis that begins in 1980 with the enhanced use of satellite observations (Gelaro et al., 2017). 206 

ECMWF Reanalysis 5th Generation (ERA5) is the latest ECMWF atmospheric reanalysis of the 207 

recent global climate, produced based on historical observations since 1979 with advanced 208 

modeling and data assimilation systems (Hersbach et al., 2020). The reanalysis PBLH is estimated 209 
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based on the Ri method with a critical value of 0.25 in the ERA5 (C3S, 2017) and the total eddy 210 

diffusion coefficient of heat with a threshold value of 2 m2s-1 in the MERRA-2 (e.g., McGrath-211 

Spangler and Molod 2014; Davy and Esau, 2014). The monthly means of hourly averaged PBLH, 212 

surface sensible heat flux (SHFX, W/m2), surface latent heat flux (LHFX, W/m2), surface skin 213 

temperature (TS, K), 2m air temperature (T2m, K), 2m dew point temperature (Td2m, K), 2m specific 214 

humidity (q2m, kg/kg), 2m air RH (RH2m, %), and lifting condensational level (LCL, m or hPa), 215 

were analyzed for the MERRA-2 (1980-2019) and  ERA5 (1979-2019). The LCL is provided by 216 

the MERRA-2 as the height of LCL (m). It is not provided in the ERA5 and so is computed as the 217 

pressure of LCL (hPa) by an iterative procedure described by Stipanuk (1973) based on surface 218 

pressure (Ps), T2m and Td2m. For both MERRA-2 and ERA5, RH2m is not provided and so is 219 

calculated using T2m and Td2m based on the equation in Dutton (1976). 220 

 221 

ERA5 also provides a 10-member reanalysis ensemble (referred to as ERA5-ensemble, Table 2) 222 

used for uncertainty estimation (CSC, 2020). The uncertainty as defined for ERA5 by the 223 

Ensemble of Data Assimilations (EDA) system only considered mostly random uncertainties in 224 

observations, sea surface temperatures (SSTs), and model physical parametrizations. Although not 225 

all uncertainties are accounted for, the mean and spread of the ensemble provide valuable 226 

information on the relative accuracy and reliability of the reanalysis data. The PBLH is estimated 227 

based on the Ri method as in the ERA5 reanalysis. The monthly means of daily mean PBLH for 228 

the 10 members were analyzed for the period 1979-2019.  229 

 230 

We also used the Ri method to estimate the PBLH at 6-hourly intervals for the period 1980-2019 231 

(referred to as the MERRA-2-RI, Table 2) based on the 6-hourly 3-d atmospheric instantaneous 232 



 

 

 

11 

and hourly averaged 2-d near-surface fields for air temperature, humidity, geopotential height, and 233 

wind speed from the MERRA-2 output. Note that hourly averaged atmospheric analyzed fields are 234 

not available. The monthly means of daily mean PBLH (an average of the four 6-hourly values) 235 

were analyzed for the period 1980-2019.  236 

 237 

2.1.3. CMIP6 simulations 238 

The CMIP6 provides PBLH output available only from a subset of participating models at various 239 

spatial resolutions (Eyring et al., 2016). Different PBL schemes at different vertical resolutions are 240 

used in these models (Table 2). For example, the PBL scheme is based on the Ri number, mixing 241 

lengths, and moist non-local thermodynamic mixing in the Canadian Earth System Model 242 

(CanESM5, von Salzen et al., 2013), while the Community Earth System Model (CESM2) 243 

employed the so-called Cloud Layers Unified By Binormals (CLUBB) parameterization 244 

(Bogenschutz et al., 2018), one of the “assumed probability density function (PDF)” methods 245 

(Golaz et al., 2002; Larson et al., 2002). Unlike the traditional PBL schemes used in GCMs, the 246 

CLUBB is a third order turbulence closure that is centered around a multivariate PDF and 247 

represents a “unified” parameterization that is responsible for treating boundary layer clouds and 248 

shallow convection with one parameterization (Bogenschutz et al., 2018). Here we used two types 249 

of historical simulations from the CMIP6 archives (Eyring et al. 2016): historical (HIST) and 250 

Atmospheric Model Intercomparison Project (AMIP) runs, referred to as CMIP6-HIST and 251 

CMIP6-AMIP (Table 2), respectively. The CMIP6-HIST simulations (1850-2014) were forced 252 

with observed changes in anthropogenic and natural forcing. The CMIP6-AMIP run (1979-2014) 253 

was a standard global atmospheric general circulation model simulation for recent climate forced 254 

by observed SSTs/sea ice and prescribed external forcings. In addition, we also used the Ri method 255 
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to estimate the PBLH at 6-hourly interval for the period 1980-2014 (referred to as the CMIP6-256 

HIST-RI, Table 2) provided by Davy (2018) based on the 6-hourly 3-d atmospheric and 3-hourly 257 

2-d near-surface instantaneous fields for air temperature, humidity, geopotential height, and wind 258 

speed from the CMIP6-HIST simulations (Table 1).  259 

 260 

Temporal variations in the CMIP6 simulations are determined mainly by the externally imposed 261 

forcing, but also contain unforced internal variability (noise) within the atmosphere. To assess the 262 

internal variability, some models provide an ensemble of realizations with different initial 263 

conditions. For the CMIP6-AMIP and CMIP6-HIST, the available models with PBLH output at 264 

the time of analysis were chosen and only the first three realizations were obtained for the models 265 

with more than 3 realizations. For the CMIP6-HIST-RI, only the first realization for a subset of 266 

CMIP6 models, for which data were available on the model-level grid and at the output frequency 267 

needed, was chosen to estimate the PBLH as detailed in Davy (2018). In total, there are 74 268 

simulations from 27 models: 26 AMIP runs from 12 models for CMIP6-AMIP, 35 runs from 15 269 

models for CMIP6-HIST, and 13 runs from 13 models for CMIP6-HIST-RI. Each chosen model 270 

and its number of realizations for the CMIP6 simulations are listed in Table 1. The monthly mean 271 

of daily mean PBLH from these simulations were analyzed for the period 1979-2014. 272 

 273 

2.2. Data processing  274 

Here we examine the long-term PBLH trends over land between 60N-60S. The ocean is not 275 

considered as the major processes controlling PBLH differ primarily between land and ocean 276 

(Garratt, 1992; Seidel et al., 2012; Chan and Wood, 2013; Ho et al., 2015; Byrne and O’Gorman, 277 

2016). The land beyond 60N and 60S is excluded because high-latitude continental interior 278 
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regions and ice- and snow- covered surfaces have different PBLH characteristic from the mid- and 279 

low- latitudes, particularly during cold seasons (Liu and Liang, 2010; Seidel et al., 2012; Wei et 280 

al., 2017a; Davy, 2018). To attribute the changes in PBLH, we examine their statistical 281 

relationships with other key PBLH-related variables using the two high-resolution reanalysis data 282 

(i.e., ERA5 and MERRA-2) due to the complete spatial and temporal coverage.  283 

 284 

Initial analyses reveal some similar large-scale features in the PBLH trends across all seasons 285 

except boreal winter. To reduce redundancy and the number of plots by season for different 286 

datasets, we focus on the annual mean PBLH changes, which can capture well the major large-287 

scale PBLH trends for most seasons while minimizing signals in PBLH associated with seasonal 288 

variations (e.g., insolation, clouds, soil moisture, and SSTs). This simplicity is reasonable as 289 

observational studies generally show consistent patterns of long-term PBLH trends for all seasons 290 

over 25 weather stations in Europe (Zhang et al., 2013) and over 219 carefully selected radiosonde 291 

stations globally (Li et al., 2020). 292 

 293 

For every station in the two radiosonde-derived PBLH datasets, the observed daily estimates of 294 

MMLH and PBLH at 00 and 12 UTC were processed into the annual mean anomaly time series 295 

for the period 1979-2018 following four steps. First, the observed daily estimates were first 296 

averaged to calculate the monthly mean. For every month, at least 10 days of data were required 297 

for the monthly averaging. Second, the monthly anomaly data was created by subtracting the long-298 

term monthly mean (climatology) from the monthly mean data, i.e., removing the climatological 299 

seasonality. Third, the monthly anomaly data were averaged to create the annual mean for every 300 

year, and at least 6 months of data were required for the annual averaging. Finally, the long-term 301 
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annual mean anomaly time series was obtained for the period 1979-2018/2019, which required at 302 

least 28 years (or 70%) of data. The use of thresholds of 10 days per month (e.g., Li et al., 2020), 303 

6 months per year (e.g., Wang and Wang, 2016), and 70% of the temporal coverage (e.g., Gertler 304 

and O’Gorman, 2019) is a reasonable compromise between the data length, completeness, and 305 

spatial coverage. In total, 147 and 192 stations with adequate observations were chosen following 306 

the above steps for the IGRA2-MMLH and IGRA2-RI PBLH datasets, respectively. The data 307 

coverage is reasonably good over most regions in the Northern Hemisphere but relatively poor 308 

over remote deserts and in the Southern Hemisphere.  309 

 310 

It is well recognized that PBLH is strongly coupled with land-atmospheric interactions. Despite 311 

the complexity and uncertainty in representing land-atmosphere interaction in different weather 312 

and climate models, it was found that the ensemble mean (EM) of forecasts driven by different 313 

initial conditions can reduce forecast uncertainties that result from errors in initial conditions (e.g., 314 

Guo et al., 2007; Hofer et al., 2012; Potter et al., 2018). It is also found that the multi-model 315 

ensemble mean (MEM) often outperforms most individual models in simulating the land surface 316 

component of weather and climate systems (Kharin and Zwiers, 2002; Guo et al., 2007). In 317 

particular, different PBL schemes make varying assumptions about the transport of heat, moisture, 318 

and momentum within the PBL (Lee and De Wekker, 2016). Averaging over multiple members 319 

enhances the forcing signal and reduces noise from internal variability and errors from individual 320 

members or models (IPCC, 2013). For the ERA5-ensemble, the 10-members were averaged to 321 

calculate the EM (referred to as the ERA5-EM). For the CMIP6 models, the models of single 322 

realization and the multi-realization mean of each model with more than one realization were 323 

averaged to obtain the MEM. Here we do not simply take the mean of all realizations of the 324 
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available CMIP6 models to avoid biasing the MEM toward the models with a higher number of 325 

realizations. The MEM for the 12 models in the CMIP6-AMIP, the 15 models in the CMIP6-HIST, 326 

and the 13 models in the CMIP6-HIST-RI is referred to as the CMIP6-AMIP-MEM, CMIP6-327 

HIST-MEM, and CMIP6-HIST-RI-MEM, respectively. However, the EM and MEM average out 328 

internal variability and so have a smaller magnitude in variability and trend than individual 329 

members. The monthly mean PBLHs from the individual members of the ERA5 and CMIP6 330 

ensembles were analyzed and used to calculate the ensemble distribution, include the ensemble 331 

mean and spread, for uncertainty estimate.  332 

 333 

The global gridded reanalysis and CMIP6 data are monthly mean values with no missing data. All 334 

data at different spatial resolutions were spatially re-projected into the common 1 by 1 grid boxes 335 

using bilinear interpolation and then were processed into the annual mean anomaly time series for 336 

every grid box. Note that the PBLH exhibits a distinct diurnal cycle. The CMIP6 data only consists 337 

of monthly means of daily mean values, while the reanalysis data contain sub-daily values and so 338 

need further processing. The reanalysis MERRA-2 and ERA5 consist of 24 hourly averaged values 339 

every month. For every grid box, we first used the 24 hourly-averaged PBLH values to obtain the 340 

long-term climatology of the PBLH diurnal cycle and then identified the five consecutive hours 341 

with maximum and minimum climatological PBLHs. Then the monthly means of hourly data were 342 

aggregated to produce the monthly means of daily mean (an average of 24 hourly values), daily 343 

maximum (an average of 5 hourly values with maximum climatological PBLHs), and daily 344 

minimum (an average of 5 hourly values with minimum climatological PBLHs).  We also created 345 

the monthly means of daily PBLHs at 00 and 12 UTC for validations against the radiosonde 346 

observations. For the ERA5-ensemble members, the monthly means of daily mean PBLH were 347 
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calculated from the 24 hourly-averaged PBLH values. For the MERRA-2-RI, the monthly means 348 

of daily mean PBLH were calculated from the four 6-hourly instantaneous PBLH estimates. 349 

Finally, for every grid box, the monthly mean data were processed into the annual mean anomaly 350 

time series for each individual data period following the last three steps done above for the 351 

radiosonde data. In total, there are 12660 land grid boxes of 1 by 1 between 60N-60S across a 352 

wide range of atmospheric conditions and surface characteristics. 353 

 354 

2.3. Methods of large-scale trend analysis 355 

Large differences and uncertainties exist among different PBLH estimates and different datasets 356 

(e.g., Seidel et al., 2010; McGrath-Spangler and Molod, 2014; McGrath‐Spangler et al., 2015; Wei 357 

et al., 2017b; Ao et al., 2017). In order to synthesize the differences and cope with the uncertainties, 358 

we use a multi-data synthesis approach to make inferences on the robustness and consensus of the 359 

long-term trends across the aforementioned different datasets. The emphasis is more on the sign 360 

and significance of the trend and less on the magnitude as the changes are more likely robust if 361 

more independent datasets agree on the direction and statistical significance of the changes (e.g., 362 

Power et al., 2012; IPCC, 2007; 2013; Dosio et al., 2019). We identify and focus on large-scale 363 

regions where the change signal is considered to be robust and consistent if all (or 100%) of the 364 

datasets show a statistically significant trend (p<0.05) and agree on the sign of the trend, to increase 365 

our confidence in the obtained results.  366 

 367 

Two widely used methods were used to quantify the magnitude and significance of the trend of 368 

the annual mean anomaly time series processed above for any variable over the study period. The 369 

first was to use the ordinary least squares regression (OLS) to estimate the linear trend (i.e., slope) 370 
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combined with a two-tailed student’s t test for significance test, referred to as the OLS method. 371 

The second was to use the Theil-Sen slope estimate to assess the monotonic trend (linear or non-372 

linear) combined with the Mann–Kendall test (Theil, 1950; Sen, 1968; Kendall 1970; Dytham, 373 

2011) for significance test, referred to as the M-K method. The M-K method is a non-parametric 374 

(i.e., distribution-free) test and is much less sensitive to outliers and skewed distributions compared 375 

to linear regressions (IPCC, 2013). Trend analysis was performed for the annual mean anomaly 376 

time series for all data variables created in section 2.2.   377 

 378 

We also performed a detailed time series analysis over the entire study domain (60N-60S) and 379 

two chosen regions (the SDAP and India) where a consensus on the PBLH trends was identified. 380 

To maximize large-scale PBLH change patterns and minimize local-scale variability, we 381 

aggregated the PBLH and related data via spatial averaging at two spatial scales: (1) station mean 382 

and (2) regional mean. The former is simply an arithmetic mean of individual station data and was 383 

applied to both the observational and reanalysis data. For the reanalysis, the station data were 384 

obtained from the grid boxes where the chosen stations are located based on their geographic 385 

location (latitude and longitude). The latter was applied only to the two reanalyses and was 386 

calculated using area-weighted averaging over the land grid boxes between 60S and 60N, SDAP 387 

(18N-31N, 5W-50E) and India (17N-34N, 68E-96E), depicted by the rectangle box in Fig. 388 

3c. We calculated the Pearson’s correlation coefficient (referred to as R) to quantify the temporal 389 

association between two times series or the spatial similarity between two variables.   390 

 391 

Note that every variable analyzed in this study is an annual mean quantity. For brevity, the annual 392 

mean of daily mean PBLH, daily maximum PBLH, daily minimum PBLH, daily PBLH at 00 UTC, 393 
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and daily PBLH at 12 UTC, five frequently used variables, are referred to as PBLHmean, PBLHmax, 394 

PBLHmin, PBLH00, and PBLH12 hereafter, respectively. Also the term “annual mean” is often 395 

omitted for the remainder of this paper.  396 

 397 

3. Results and Discussion 398 

 399 

3.1. Climatology and trends in PBLHmean for the reanalysis and CMIP6 400 

Figure 1 shows the spatial patterns of climatological PBLHmean (m) from the four reanalysis and 401 

three CMIP6 datasets. Overall, the PBLH climatology exhibits similar spatial patterns across the 402 

different datasets, with the deepest PBL over low latitude drylands and the shallowest in high 403 

latitudes and humid tropical regions. For the 12660 land grid boxes between 60S-60N, the spatial 404 

correlation (R) between the ERA5 and the other 6 datasets, MERRA-2, ERA5-EM, and MERRA-405 

2-RI, CMIP6-AMIP-MEM, CMIP6-HIST-MEM, and CMIP6-HIST-RI-MEM, are 0.70, 0.99, 406 

0.67, 0.76, 0.76 and 0.75, respectively. These coefficients are all statistically significant (p 407 

<0.0001). At the grid box level, the minimum, maximum, mean and standard deviation (STD) of 408 

PBLHmean are 134.4, 1209.1, 585.1, and 155.1 meters for the ERA5, and 335.0, 2229.6, 937.5, and 409 

336.8 meters for the MEAAR-2, respectively. These values in the ERA5 are almost identical to 410 

those in the ERA5-EM and mostly comparable to those in the MERRA-2-RI and three CMIP6 411 

MEMs, while the MERRA-2 has much larger values than the MERRA-2-RI. The major differences 412 

among these seven datasets include: (1) the three CMIP6 MEMs exhibit a much smaller spatial 413 

range in PBLHmean, due to a much larger minimum and a smaller maximum, than the ERA5, (2) 414 

the MERRA-2 has a much larger values in the minimum, maximum, mean and STD than any other 415 
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datasets. These results are generally consistent with previous results (e.g., Svensson and Lindvall, 416 

2015; Wei et al., 2017a; Davy, 2018; Zhou, 2020).  417 

 418 

Figure 2 shows the spatial patterns of PBLHmean trend (m/decade) estimated using the M-K method 419 

from the reanalysis and CMIP6 datasets. Widespread positive trends are seen in the ERA5 over 420 

most land areas, except South Asia, Western Australia, and most of Canada, and Central and 421 

Eastern U.S. (Fig. 2a). In comparison, fewer grid boxes have significant trends in the MERRA-2, 422 

with strong and significant increasing trends in the Brazilian Highlands, most of Africa and the 423 

Middle East, and significant decreasing trends in the Indian subcontinent, Australia and Eastern 424 

China (Fig. 2b). The trend in the ERA5-EM (Fig. 2c) is very similar to that in the ERA5. The 425 

MERRA-2-RI (Fig. 2d) shares similar trend patterns to the MERRA-2 but in a much smaller 426 

magnitude and a slightly smaller spatial extent. The three CMIP6 MEMs (Fig. 2e-2f) share similar 427 

significant increasing trends over most areas in the Northern Hemisphere (e.g., the SDAP, 428 

continental U.S., and Europe), except West and South Asia, but widespread insignificant trends 429 

across the Southern Hemisphere. Note that the CMIP6 trends over coastal regions and islands 430 

differ from the reanalysis results due to the coarse spatial resolution of the models and the impacts 431 

of marine PBL. In general, the trends are largest between 30N-30S in the reanalysis datasets and 432 

between 30N-60N in the CMIP6 models. Among the 12660 land grid boxes between 60S-60N, 433 

51.3% (4.1%), 18.8% (24.2%), 49.7% (4.3%), 20.5% (18.2%), 30.6% (12.8%), 36.0% (23.5%), 434 

and 33.4% (16.7%) exhibit a statistically significant increasing (decreasing) trend at the 5% level, 435 

for the ERA5, MERRA-2, ERA5-EM, MERRA-2-RI, CMIP6-AMIP-MEM, CMIP6-HIST-MEM, 436 

and CMIP6-HIST-RI-MEM, respectively. When the trend is estimated using the OLS method, the 437 

results remain very similar to these in the M-K method, except that the percentage of grid boxes 438 
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with significant trends are slightly higher (Fig. S1). Evidently, the PBLH trend demonstrates large 439 

differences in the sign and magnitude over many areas, but significant trends are consistently seen 440 

at large scales over the SDAP and Indian subcontinent. 441 

 442 

To identify the large-scale spatial patterns with a consensus on the PBLHmean trends among 443 

different datasets, we calculate a consistency index (CI) as the number of datasets with the same 444 

sign of trends that are statistically significant at the 5% level. The spatial patterns of the CI based 445 

on the M-K method are shown, respectively, for the four reanalysis (Fig. 3a), three CMIP6 (Fig. 446 

3b), and seven reanalysis+CMIP6 (Fig. 3c) datasets. For example, an index value of +4 (-4) in Fig. 447 

3a indicates that all four reanalyses share similar and significant upward (downward) trends. 448 

Figure 3a highlights the large-scale consensus on the significant increasing trends (in red, CI=4) 449 

over North Africa, West Asia, Central Africa, and Brazil, and along the Mongolia–Russian Siberia 450 

borders, but on the significant decreasing trends (in blue, CI=-4) over the Indian subcontinent. 451 

Note that the MERRA-2-RI (Fig. 2d) has a much smaller area in red (e.g., over the SDAP) than 452 

the other three reanalyses (Figs 2a-2b) because its PBLHmean is estimated from four 6-hourly 453 

instantaneous atmospheric fields (rather than from 24-hourly averaged fields for the other 454 

reanalyses), which have much larger interannual variability and thus fewer grid boxes with 455 

significant trends (Table 2).  Evidently, positive trends dominate over a broad, contiguous swath 456 

of land covering the SDAP while negative trends are relatively smaller in spatial extent and cover 457 

mostly India.  The three CMIP6 datasets (Fig. 3b) show consistent significant increasing trends (in 458 

red, CI=3) over many areas in North Africa, the contiguous U.S., and Eastern Canada, but 459 

significant decreasing trends (in blue, CI=-3) over the Indian subcontinent and China. Note that 460 

their area in red over the SDAP (Fig. 3b) is smaller than the entire desert areas with increasing 461 
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PBLH trend in the reanalysis (Figs 2a-2c) because of the impacts of marine PBL over coastal 462 

regions in the periphery of the deserts in coarse resolution GCMs. When both the four reanalysis 463 

and three CMIP6 datasets are considered together (Fig. 3c), only the SDAP and India stand out 464 

with consistent trends. To confirm this further, we also performed the same analysis to Fig. 3 but 465 

using the OLS method and obtain almost identical results (Fig. S2), indicating that the results of 466 

PBLHmean trends are independent of the methods used for the trend estimate. The seven datasets 467 

highlight a consensus and robustness on a large-scale pattern of rising PBLH over the enormous 468 

SDAP (18N-31N, 5W-50E) and decreasing PBLH over India (17N-34N, 68E-96E), the 469 

two rectangle boxes depicted in Fig. 3c. For brevity, our remaining paper will focus mostly on the 470 

PBLH estimated from the M-K method and the SDAP and India as two regional hotspots.  471 

 472 

Figure 4 shows the probability distribution function (PDF), or frequency of occurrence, of 473 

PBLHmean trends (m/decade, Fig. 2) that are statistically significant at the 5% level over land 474 

between 60S-60N (in blue), the SDAP (in red) and India (in green). Despite the large differences 475 

in the trend magnitude, the reanalyses (Figs. 4a-4d) clearly show a tendency toward larger and 476 

more positive (negative) trends over the SDAP (India) than the entire region of 60S-60N. Such 477 

PDF differences are also evident in the CMIP6 MEMs (Figs. 4e-4g). Note that the EM and MEM 478 

enhance the forcing signal (e.g., global warming signal) and reduce internal variability and model 479 

uncertainty. All indicate that the SDAP (India) has a higher frequency of occurrence of large and 480 

positive (negative) PBLH trends than the entire study domain. We also calculate the PDF to 481 

demonstrate the ensemble spread of PBLHmean trend among the ensemble members in the ERA5 482 

(Fig. 5a) and CMIP6 models (Figs. 5b-5d). The uncertainty associated with initial conditions, 483 

observations, SSTs, and model physical parametrizations in the ERA5-ensemble is small, and so 484 
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all ensembles exhibit similar features to the ERA5-EM. The CMIP6 models exhibit large inter-485 

model differences, but most models demonstrate a higher frequency of occurrence of increasing 486 

(decreasing) PBLH over the SDAP (India) than the entire study domain.  487 

 488 

Figures 1-5 illustrate the PBLHmean climatology and trends at the grid box level. To focus on the 489 

large-scale features, Table 3 lists the climatology (m) and trend (m/decade) of regional mean 490 

PBLHmean for the reanalysis and CMIP6 datasets averaged over the entire study domain (60S-491 

60N), SDAP, and India. The MERRA-2 has substantially larger climatological values, 966.9 492 

(60S-60N), 1453.2 (SDAP), and 1265.2 (India) meters than the other 6 datasets, which range 493 

from 536.8-717.2, 691.3-843.2, and 594.4-761.7 meters, respectively. All datasets show consistent 494 

and significant trends, positively in the SDAP and negatively in India, and the resulting trends 495 

estimated using the M-K and OLS are very similar.  Like the climatology, the MERRA2 has much 496 

larger trends than the other datasets. For the region between 60S-60N, only the two ERA5 497 

reanalyses and one of the CMIP6 data show statistically significant upward trends. The lack of 498 

significant trend over the entire domain in the two MERRA-2 reanalyses is a result of smoothing 499 

the spatially heterogeneous trends (Figs. 2b and 2d).  500 

 501 

3.2. Comparisons with radiosonde observations at daytime 502 

The above results show the PBLHmean changes for the gridded reanalysis and CMIP6 datasets. 503 

Over land, the PBLH has a strong diurnal cycle. It is typically shallow and stable at night because 504 

of longwave radiative cooling but grows deep and unstable at daytime because of solar heating 505 

(Stull, 1988; Liu and Liang, 2010). Next, we use three compositing methods to validate the 506 

reanalysis results against the radiosonde measurements but focus on the daytime PBLH for two 507 
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reasons. First, most PBLH changes are expected to occur at daytime due to solar heating (Seidel 508 

et al., 2012; Chan and Wood, 2013; Brahmanandam et al., 2020). Second, the PBLH is more 509 

difficult to quantify and have larger uncertainty for the stable than unstable regime and so is better 510 

estimated at daytime in terms of quality by current methods using radiosonde, reanalysis and GCM 511 

data (e.g., Seidel et al., 2012).  512 

 513 

First, we compare the observed MMLH and reanalysis PBLHmax (termed the compositing method 514 

A) which represents the daytime maximum PBLH and is used to approximate the MMLH 515 

estimated from the radiosonde observations. Note that temporal sampling may differ largely 516 

between these two datasets over some regions (section 2.1.1).  Figure 6a shows the spatial patterns 517 

of MMLH trends estimated from the IGRA2-MMLH. Among the 147 stations between 60S-518 

60N, 29.9% (8.2%) have a statistically significant increasing (decreasing) trend at the 5% level. 519 

In particular, the radiosonde data do exhibit coherent and large-scale spatial patterns of increasing 520 

trends over the SDAP. Similar increasing (decreasing) trends are also seen over Europe (India), 521 

consistent with previous observational studies (Zhang et al., 2013; Li et al., 2020). Figures 7a and 522 

7b show the scatter plot of the MMLH trends and corresponding reanalysis PBLHmax trends for 63 523 

stations that have a statistically significant trend (p<0.1) in the IGRA2-MMLH. Evidently, the 524 

MMLH has much more stations with increasing trends than those with decreasing trends and it has 525 

much larger trends than the reanalyses. Its correlation R is 0.12 (P=0.35) with the ERA5 and 0.38 526 

(p<0.01) with the MERRA-2, indicating the similar sign for most trends but large differences in 527 

the magnitude. This weak correlation is partially expected considering the sampling issue 528 

mentioned previously. However, at the regional scale, the MMHL could be useful over the SDAP 529 

where the sampling issue is minor (see more results later) 530 
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 531 

Second, we composite the PBLH00 and PBLH12 trends from the IGRA2-RI to better match the 532 

reanalysis and observations and to avoid the above temporal sampling issue. The daytime 533 

radiosonde trend is chosen from one of the two IGRA2-RI trends at 00 and 12 UTC (e.g., PBLH00 534 

and PBLH12) whose climatological PBLH is larger (termed the compositing method B). The 535 

reanalysis daytime trend is determined from the chosen UTC accordingly. Figure 6b shows the 536 

spatial patterns of daytime PBLH trends estimated from the IGRA2-RI. Among the 192 stations 537 

between 60S-60N, 60.9% (4.7%) have a statistically significant increasing (decreasing) trend at 538 

the 5% level. The radiosonde data exhibit a much higher percentage of positive trends than Fig. 6a 539 

and also increasing trends over the dry Arabian Peninsula and Europe, similar to Fig 6a. Figures 540 

7c and 7d show the scatter plot of the observed and reanalysis daytime PBLH trend for 133 stations 541 

with a statistically significant trend at the 10% level in the IGRA2-RI. The correlation R is 0.47 542 

(p<0.01) for the ERA5 and 0.50 (p<0.01) for the MERRA-2, much stronger than the R values in 543 

Figs. 7a and 7b.  544 

 545 

Third, we composite the PBLH00 and PBLH12 trends from the IGRA2-RI to match the reanalysis 546 

and observations following the same logic in the compositing method B. The daytime radiosonde 547 

trend is chosen from one of the two IGRA2-RI trends (e.g., PBLH00 and PBLH12) based on the 548 

local solar time as done in Wang and Wang (2016), and the reanalysis daytime data is chosen 549 

accordingly (termed the compositing method C). The spatial patterns of observed daytime PBLH 550 

trends and their percentages of the observed significant trends (Fig. 6c) and the scatter plot between 551 

observed and reanalyzed (Figs. 7e and 7f) show similar results to the compositing method B (Figs. 552 

6b, 7c and 7d). 553 
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 554 

Next, we validate the two reanalysis results against the observations from available radiosonde 555 

stations at the regional scale as it is essential that the reanalyses can at least capture the major 556 

PBLH features observed over the SDAP and India where consistent trends are identified in section 557 

3.1. The focus is on the station mean variability instead of individual stations to maximize large-558 

scale patterns and minimize local influences. The daytime PBLHs for the reanalysis and 559 

radiosonde data are compared for the compositing method A and B. The compositing method C is 560 

not shown due to its similarity to the compositing method B.  561 

 562 

Figures 8a and 8c show the station mean interannual variations in observed MMLH and reanalysis 563 

PBLHmax anomalies (i.e., the compositing method A) from 5 stations over the SDAP. The PBLH 564 

exhibits a persistent and statistically significant (p<0.01) upward trend and shares similar 565 

interannual variability in the observed and reanalyzed data. The increasing trend is 98.4 m/decade 566 

for the observations, 31.2 m/decade for the ERA5, and 18.7 m/decade for the MERRA-2. Although 567 

underestimating the observed trend, the reanalysis PBLH shows a statistically positive correlation 568 

with the observed PBLH, with R=0.76 (p<0.01) in the ERA5, and 0.69 (p<0.01) in the MERRA-569 

2. These results indicate that the observed long-term trend and interannual variability in daily 570 

MMLH are generally captured by the reanalyses reasonably well over the SDAP and the ERA5 is 571 

closer to the observations than the MERRA-2. Figures 8b and 8d are similar to Figs 8a and 8c but 572 

from 9 stations in India. The reanalysis PBLH exhibits a significant decreasing trend (p<0.01) 573 

while the observed data show negative but insignificant trends. In particular, the observed PBLH 574 

exhibits opposite trends between the first and last 20 years. It correlates significantly with the 575 

ERA5 (R=0.53, p<0.01) but insignificantly with the MERRA-2 (R=-0.10, p=0.59). It is well 576 
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documented that Indian radiosonde data contain large inhomogeneities due to frequent instrument 577 

changes and other causes (e.g., Lanzante et al. 2003; Thorne et al. 2005; Zhou et a., 2020), which 578 

may help to explain the opposite trends and the poor correlation. In addition, the PBLH over the 579 

Indian subcontinent is characterized by complex topography and heterogeneous land surface, 580 

coupled with the Indian monsoon and various soil-vegetation-atmosphere interactions (e.g., 581 

Sathyanadh et al., 2017). This complex along with the data quality issues result in low confidence 582 

even in homogenized datasets because of the very poor quality and abnormally large variances in 583 

the raw data (Zhou et a., 2020).  584 

 585 

Figure 9 shows the station mean interannual variations in the observed and reanalysis daytime 586 

PBLH anomalies (i.e., the compositing method B, Figs. 6b, 7c and 7d) from 5 stations available 587 

over the Arabian Peninsula and 1 station available in India from the IGRA2-RI. Again, significant 588 

increasing trends and strong correlations are evident in the dry Arabian Peninsula (R=0.72-0.76, 589 

p<0.01), while weak and insignificant correlations are seen in India, where missing data is evident 590 

in the radiosonde measurements. 591 

 592 

We need to realize that the radiosonde data are point measurements, while the reanalysis values 593 

are averaged over a grid box at a much coarser resolution (Chan and Wood, 2013). It is difficult 594 

for the reanalysis data to match the observed PBLH trend that is localized in space and time. Also, 595 

radiosonde profiles are measured twice a day at specified synoptic times (00 and 12 UTC), have 596 

missing data over many stations, and are often insufficient in vertical resolution for most data, 597 

which can create large fluctuations in PBLH estimate (Liu and Liang, 2010). Atmospheric 598 

reanalyses produced at various institutes have substantially improved in quality as a result of better 599 
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models, better input data, and better assimilation methods (Dee et al., 2011). Despite much 600 

progress made in reducing uncertainties in assimilating various types of observations, current 601 

reanalysis data still suffer from artifacts largely due to the global observing system changes and 602 

cannot well represent near-surface variables such as surface energy flux and moisture, which could 603 

produce complications on climate studies, especially regarding low-frequency trends at regional 604 

scales (Robertson et al., 2014; Gelaro et al., 2017; Bosilovich et al., 2017). Hence, large differences 605 

in PBLH trends between observed and reanalyzed exist at local to regional scales. Nevertheless, 606 

the reanalysis PBLHs reproduces the observed trend and interannual variability over the SDAP, 607 

while differ from observations over India due to radiosonde data quality issues.  608 

 609 

3.3. Statistical relationships between PBLH and related variables 610 

Previous studies have documented that changes in PBLH are strongly correlated with changes in 611 

surface sensible heat, temperature, and RH (Zhang et al., 2013; Zhao et al., 2017; Darand and 612 

Zandkarimi, 2019; Li et al., 2020). Here we perform similar statistical analyses between PBLH 613 

and several key PBLH related variables using the two high-resolution reanalysis datasets.  614 

 615 

Figure 10 shows the scatter plots between the trends in daily maximum PBLH, SHFX, Ts and 616 

RH2m for the ERA5 (left panels) and MERRA-2 (right panels). Only the grid boxes with a 617 

statistically significant trend in PBLH (p<0.05) over land between 60N-60S are included. As 618 

expected from theory, the PBLH trend is positively correlated with the trend in SHFX and Ts, and 619 

negatively correlated with the trend in RH2m. For example, R is 0.77 with SHFX, 0.69 with Ts, and 620 

-0.72 with RH2m for the 7590 grid boxes in the ERA5, and the corresponding value is 0.85, 0.91 621 

and -0.91 for the 4696 grid boxes in the MERRA-2. Considering the large sample size, the R values 622 
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are extremely strong and all statistically significant (p<0.001), indicating a strong spatial coupling 623 

between the paired trends.  624 

 625 

To further examine the above relationships, we also calculate the correlation for three temporally 626 

averaged PBLHs (daily maximum, daily minimum, and daily mean) and consider more PBL 627 

related variables. Table 4 lists the R values for SHFX, LHFX, LCL, Ts, T2m, Td2m (q2m), and RH2m 628 

using both the M-K and OLS methods. Evidently, PBLH trends are correlated positively with the 629 

trends in variables related to surface heating (SHFX, T2m, and Ts), and negatively with the trends 630 

in variables related to surface moisture (LHFX, Td2m, q2m, and RH2m). Note that changes in LCL 631 

are related to both surface heating and humidity as lower surface RH (i.e., warmer and/or drier air) 632 

results in higher LCL (and PBLH as well). The correlation between PBLH and LCL is negative in 633 

the ERA5 as the LCL is expressed as the pressure (hPa), not the height (m) at the LCL that is used 634 

in other datasets. Overall, the R values are extremely strong and all statistically significant 635 

(p<0.001) for the daily maximum and daily mean PBLH considering the large sample size. For 636 

example, the 28 R values for the daily maximum PBLH range between 0.50 and 0.92, with 21 of 637 

them exceeding 0.70. In general, the R values are comparable for the daily maximum and daily 638 

mean PBLH, but are much weaker for the daily minimum PBLH at nighttime. Interestingly, the 639 

correlations are much stronger in the MERRA-2 than the ERA-5.  640 

 641 

Figure 11 shows the regional mean interannual variations in daily mean PBLH, SHFX, Ts, and 642 

RH2m for the ERA5 (left panels) and MERRA-2 (right panels) averaged over the entire study 643 

domain (60S-60N). The PBLH shows long-term upward trends consistent with the increase in 644 

sensible heat and surface warming and the decrease in RH2m with time. At the interannual scale, 645 
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the PBLH is correlated positively and significantly with SHFX (R=0.96) and Ts (R=0.88) and 646 

negatively with RH2m. (R=-0.96) in the ERA5. The correlations in the MERRA-2 data are similar 647 

but slightly weaker. Unlike the persistent increasing trend in the ERA5, the MERRA-2 PBLH 648 

exhibits an increasing trend from 1980 to 2002 but a downward trend thereafter.  649 

 650 

Figures 12 is similar to Fig. 11 but for the SDAP. Again, the PBLH shows positive trends 651 

consistent with the increase in sensible heat and surface warming and the decrease in RH2m with 652 

time. At the interannual scale, the PBLH correlates positively and significantly with SHFX 653 

(R=0.75) and Ts (0.75) and negatively with RH2m (R=-0.32) in the ERA5 and the correlations are 654 

slightly weaker in the MERRA-2. The weak correlation with RH2m is expected given the limited 655 

moisture availability over the deserts. Figures 13 is similar to Fig. 11 but for the India. In contrast 656 

to the SDAP, the PBLH shows negative trends consistent with decreasing SFHX and Ts and 657 

increasing RH2m. At the interannual scale, the PBLH correlates positively and significantly with 658 

SHFX (R=0.82) and Ts (0.28) and negatively with RH2m (R=-0.92) in the ERA5 and the 659 

correlations are slightly weaker in the MERRA-2. The weak and insignificant R values with Ts are 660 

expected given increasing moisture availability (and thus latent heat) over India.  661 

 662 

Besides the results for PBLHmean shown in Figs 11-13, we also calculate the correlation for 663 

PBLHmax and PBLHmin and consider more PBL related variables. Table 5 lists the R values for 664 

SHFX, LHFX, Ts, T2m, and RH2m. Evidently, PBLH is correlated positively and mostly 665 

significantly with the variables related to surface heating (SHFX, T2m, and Ts), and negatively with 666 

the variables related to surface moisture (LHFX and RH2m). Overall, the R value is extremely 667 

strong and all statistically significant (p<0.001) for PBLHmax at daytime and PBLHmean, while the 668 
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R value is much weaker for PBLHmin at nighttime, consistent with the R values for the trends 669 

(Table 4). Note that the global mean time series (60S-60N) is mostly determined by large-scale 670 

external forcing and so has a much larger R value than the regional mean time series (e.g., SDAP 671 

and India) that is also affected by local to regional factors (e.g., clouds and SSTs). 672 

 673 

3.4. Physical explanations for PBLH trends 674 

 675 

The Earth is mainly warmed bottom up, as most solar radiation is absorbed at the surface and this 676 

energy is transmitted to the rest of the atmosphere through PBL processes. There exists a high 677 

level of complexity and heterogeneity of various factors in controlling the PBLH changes at 678 

multiple spatial and temporal scales under different surface and atmospheric conditions (Stull 679 

1988). Inherently, the PBLH is particularly sensitive to soil moisture, vegetation, and terrain 680 

(Talbot et al., 2007; Liu and Liang, 2010; Seidel et al., 2012; Zhang et al., 2013; Lee and De 681 

Wekker, 2016; Wei et al., 2017a; Sathyanadh et al., 2017), and thus exhibits a far more 682 

heterogeneous picture than other variables such as temperature (e.g., Donat et al., 2014). For 683 

example, soil moisture determines the partitioning of net radiation between sensible and latent heat 684 

and thus the PBLH; its temporal change can significantly modify the PBLH from daily to 685 

interannual time scales and its spatial change can largely determine the spatial heterogeneity in 686 

PBLH (Guo et al., 2007; Lee and De Wekker, 2016). The spatiotemporal variations in these surface 687 

conditions can substantially affect both the magnitude and sometimes the sign of the PBLH trends 688 

at local to regional scales. 689 

 690 
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There exists a wide range of complexity and uncertainty in PBLH estimates among different 691 

datasets and methods. PBLH is one key measure of the strength of the PBL processes but lacks a 692 

unified definition. Hence a variety of methods have been used to estimate the PBLH, and different 693 

methods can produce substantially different values, even for the same atmospheric profile (e.g., 694 

Seidel et al., 2010; McGrath-Spangler and Molod, 2014). The radiosonde-based PBLH estimates 695 

have limited spatial and temporal coverage and suffer from inhomogeneities (Thorne et al., 2011; 696 

Haimberger et al., 2012). The reanalysis PBLH is a model-based estimate and so is prone to model 697 

deficiencies (e.g., McGrath-Spangler and Molod, 2014; McGrath‐Spangler et al., 2015; Wei et al., 698 

2017a; Zhou, 2020) and artifacts and non-physical trends largely due to the global observing 699 

system changes (e.g., Dee et al., 2011; Robertson et al., 2014; Gelaro et al., 2017; Bosilovich et 700 

al., 2017). It has been well documented that current weather and climate models have difficulties 701 

and large uncertainties in accurately representing key PBL processes (Garcia-Carreras et al. 2013; 702 

Holtslag et al. 2013; Wei et al., 2017b; Ao et al., 2017).  703 

 704 

Our results show a large spread in the magnitude and sign of PBLH trends among different datasets 705 

over many regions. This is not surprising at the global scale considering the difficulty and 706 

uncertainty in estimating PBLH and the complexity and heterogeneity of PBLH changes discussed 707 

above. Thus, it is challenging and somewhat impossible to validate the global long-term PBLH 708 

trends in the reanalysis and GCM datasets using radiosonde observations with limited spatial and 709 

temporal coverage. In order to synthesize the differences and cope with the uncertainties, we use 710 

a multi-data synthesis approach from an ensemble of different datasets to identify large-scale 711 

regions where the change signal is considered to be robust and consistent by considering both the 712 

sign and statistical significance of the trends by all datasets (Power et al., 2012; Dosio et al., 2019). 713 
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We assume that the PBLH estimate methods are based on well-established physical principles and 714 

so are more likely to reach a consensus on the direction (or sign), than the magnitude, of the 715 

change.  716 

 717 

Our results indicate strong spatial coupling in the long-term trends between PBLH and surface 718 

heating and moisture variables, particularly in the daytime. Over land, the PBLH growth is driven 719 

mainly by surface heating and static stability (Chan and Wood, 2013; Lee and De Wekker; 2016; 720 

Ao et al., 2017; Brahmanandam et al., 2020). Warmer and drier surfaces result in greater sensible 721 

heat flux and PBLH, and so PBLH is strongly correlated with changes in near-surface sensible 722 

heat, temperature, and RH (Zhang et al., 2013; Darand and Zandkarimi, 2019; Li et al., 2020). Our 723 

statistical analyses (Table 4, Fig. 10) show significant correlations in the long-term trend, 724 

positively between PBLH and variables related to surface heating (SHFX, T2m, and Ts), and 725 

negatively between PBLH and variables related to surface moisture (LHFX, Td2m, q2m, and RH2m). 726 

These correlations are stronger at daytime than nighttime because of the close daytime coupling 727 

between PBLH and solar heating (e.g., Liu and Liang, 2010; Zhang et al. 2013; Lee and De 728 

Wekker, 2016). Our reported relationships are consistent with previous studies (Zhang et al. 2013; 729 

Chan and Wood, 2013; Darand and Zandkarimi, 2019). 730 

 731 

Our results highlight a consensus on increasing PBLH trends among different datasets over the 732 

SDAP. The SDAP is among the driest and hottest regions on Earth and has limited soil moisture, 733 

vegetation, and cloudiness. As discussed previously, surface heating via sensible heat is 734 

documented as the dominant driver in determining the convective PBLH growth over arid areas 735 

because of limited availability of surface moisture. It is well known that drier regions with less soil 736 
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moisture and vegetation are associated with higher Bowen ratios and tend to experience larger 737 

warming rates due to more sensible heat flux and less local evaporative cooling (Zhou et al. 2007; 738 

2009; 2010). Increased downwelling longwave radiation (DLR) associated with large-scale 739 

warming and moistening in response to increasing GHGs has been identified as the primary surface 740 

radiative forcing for the amplified surface warming associated with DA over the SDAP (Zhou et 741 

al., 2015; 2016; Cook and Vizy 2015; Zhou 2016; Evan et al., 2017; Wei et al., 2017b). This 742 

positive radiative forcing is converted mainly into sensible heat over the dry deserts, which 743 

enhances surface heating and deepens PBLH via elevated turbulent mixing in the PBL.  744 

 745 

Our results also highlight a consensus on decreasing PBLH trends among different datasets over 746 

the Indian subcontinent. Indian monsoon precipitation has intensified over the past three decades, 747 

while drying trends are seen over the SDAP (e.g., Wang et al., 2012; Jin et al., 2014). This is 748 

consistent with the well-coupled monsoon-desert mechanism (e.g., Rodwell and Hoskins, 1996; 749 

Sun et al., 2019; Kim et al., 2019) and with GCM-based prediction of intensified monsoon in a 750 

warming climate (e.g., Chen et al., 2020; Wang et al., 2020). For example, Hoskins (1996) 751 

proposed that the drying trend in the arid regions resulted from the increased descent produced by 752 

the monsoon heating-induced Rossby waves that interact with subtropical westerly flows. The 753 

contrast changes in PBLH and T2m between the SDAP and India seem to support this monsoon-754 

desert coupling. In addition, our results in Fig. 13 and Table 4 also show close connections in the 755 

trend and interannual variation between PBLH and near-surface moisture variables (e.g., RH2m 756 

and latent heat) over India, resonating with intensified monsoon precipitation. The reanalysis 757 

results in India, however, cannot be validated using reliable radiosonde observations.  758 

 759 
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Our results suggest that the reanalysis PBLH estimate might be more reliable in the ERA5 than 760 

the MERRA-2. The reanalysis PBLH is estimated based on the Ri method in the ERA5 and the 761 

total eddy diffusion coefficient of heat in the MERRA-2 (e.g., McGrath-Spangler and Molod 2014; 762 

Davy and Esau, 2014). Among various methods used to estimate the PBLH, the algorithms based 763 

on the Ri method were proved to be most suitable for application to large radiosonde, reanalysis, 764 

and GCM data sets (Seidel et al., 2012; McGrath-Spangler and Molod, 2014). Our PBLH estimates 765 

using the Ri method from the MERRA-2-RI is much smaller than the PBLHs from the MERRA-766 

2 and comparable to the ERA5 estimate. Also, systematic biases were documented in the MERRA-767 

2 PBLH, particularly at nighttime (e.g., McGrath-Spangler and Molod, 2014; Svensson and 768 

Lindvall 2015; Dang et al., 2016; Davy, 2018; Zhou, 2020). Furthermore, our validations using 769 

the radiosonde data show the ERA5 PBLH is closer to the observations than the MERRA-2. If this 770 

is the case, rising PBLH is likely more widespread spatially than that seen in the MERRA-2.  771 

 772 

Our results indicate large discrepancies among different PBLH datasets, which are likely due to 773 

the differences in spatial resolution (point measurements versus coarse-resolution grid averaged 774 

data), observational uncertainties, and deficiencies in modeling the surface radiative forcing, 775 

surface energy partitioning, and PBL mixing. The land surface and PBL change in response to 776 

external forcings are a result of complex interactions among the atmosphere, PBL and land surface. 777 

Considering the complexity of turbulent mixing and the challenges in observing and modeling the 778 

PBL processes, it is very challenging to attribute the differences among different PBLH datasets 779 

in the fully coupled land-atmosphere system. For example, the systematic underestimated diurnal 780 

range in the PBLH and surface air temperature has been a long-standing issue in reanalysis and 781 

numerical models (e.g., Wei et al., 2017a; 2017b; Du et al., 2018; Davy, 2018). As the focus of 782 
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the present study is the detection of convergent PBLH trends, further attribution of these 783 

differences is beyond the scope of this paper and will be explored in future studies.  784 

 785 

4. Conclusions  786 

 787 

This paper examines the large-scale patterns of long-term PBLH trends over land between 60S 788 

and 60N. Different nine types of datasets consisting of radiosonde observations, reanalysis 789 

products and climate model simulations are evaluated over the satellite era for the period 1979-790 

2019. To synthesize the differences and cope with the uncertainties among different PBLH 791 

estimates, a multi-data synthesis approach is used to make inferences on the robustness and 792 

consensus of the long-term trends across different datasets. The emphasis is more on the sign and 793 

significance of the trend and less on the magnitude. We identify large-scale regions where all 794 

datasets (or 100%) show a statistically significant trend (p<0.05) and agree on the sign of trends, 795 

to increase our confidence in the obtained results. The testable hypothesis is that the global 796 

warming signal is manifest most in terms of the spatial extent of PBLH change over the SDAP 797 

where the amplified surface warming associated with DA enhances turbulent mixing and thus raise 798 

the PBLH height. Despite methodological uncertainties and data limitations, the main findings of 799 

this study are summarized as follows: 800 

 801 

1. Large differences in long-term PBLH trends among different datasets are found over many 802 

regions – expressed in different magnitudes and/or signs of trends. This spread reflects the 803 

difficulty and uncertainty in estimating PBLH and the complexity and heterogeneity of various 804 

factors in controlling the PBLH changes under different surface and atmospheric conditions.  805 
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 806 

2. There is strong spatial coupling in the long-term trends between PBLH and related key variables, 807 

particularly in the daytime. There are statistically significant correlations in the trends, positively 808 

between PBLH and variables related to surface heating and negatively between PBLH and 809 

variables related to surface moisture. The reported relationships are consistent with theory and 810 

previous findings in the literature. 811 

 812 

3. Different reanalysis and GCM datasets indicate consistently coherent and large-scale spatial 813 

patterns of rising PBLH over the enormous SDAP and declining PBLH in India. Consistent PBLH 814 

trends also exist in other regions but are much smaller in spatial extent than the SDAP and in a 815 

subset of the nine datasets used. The radiosonde data exhibit similar spatial features of increasing 816 

PBLH over the SDAP and the reanalysis data generally capture the observed regional mean long-817 

term trend and interannual variability in PBLH reasonably well over the deserts. The PBLH 818 

changes over India cannot be validated due to lack of good-quality radiosonde observations.    819 

 820 

4. One robust signal across all datasets reveals a consensus on increasing (decreasing) PBLH trends 821 

over the SDAP (India). The ensemble distribution of reanalysis and GCM PBLH trends indicates 822 

a greater coherence and a higher frequency of occurrence of rising (declining) trends over the 823 

SDAP (India) than any other regions. The rising PBLH is in good agreement with amplified surface 824 

warming associated with DA, decreasing RH, and increasing sensible heat over the SDAP, while 825 

the declining PBLH is consistent with increasing RH and latent heat and decreasing sensible heat 826 

in India in the reanalysis data.  827 

 828 
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To the best of our knowledge, this work is the very first study to identify the large-scale patterns 829 

of long-term PBLH trends in a warming climate among different datasets and establish their 830 

relationships with several key PBLH related variables at the global scale. Climate models predict 831 

consistently that DA will accelerate over the arid and semi-arid regions in the context of global 832 

warming (Zhou et al., 2016; Zhou, 2016). Along with this amplified surface heating, the PBLH is 833 

expected to rise continuously over the SDAP. The PBLH represents how deep the free atmosphere 834 

is directly influenced by the Earth’s surface and responds to surface impacts. Rising PBLH 835 

indicates deeper impacts of warming deserts on the free atmosphere. This finding has important 836 

implications as the Sahara and Arabian deserts are considered to be a hotspot in terms of climate 837 

change and impacts from regional to global scales through the influence of Saharan dust and 838 

atmospheric circulation (Knippertz and Todd, 2012; Vizy and Cook, 2017; Thomas and Nigam, 839 

2018). 840 
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Table 1. List of 74 CMIP6 AMIP and HIST simulations from 27 models used in this study 1127 

 

Organization 

 

Model 

Number of realizations useda 

CMIP6-

AMIP 

CMIP6-

HIST 

CMIP6-

HIST-RI 

Canadian Climate Centre for Modelling and 

Analysis, Canada CanESM5 

3 3  

Canadian Climate Centre for Modelling and 

Analysis, Canada CanESM5-Can0E 

 3  

National Center for Atmospheric Research, USA CESM2 3 3  

National Center for Atmospheric Research, USA CESM2-FV2 3 3  

National Center for Atmospheric Research, USA CESM2-WACCM 3 3  

National Center for Atmospheric Research, USA CESM2-WACCM-FV2 3 3  

Centro Euro-Mediterraneo per I Cambiamenti 

Climatici, Europe CMCC-CM2-SR5 

  1 

Centre National de Recherches 

Météorologiques, France CNRM-CM6-1 

  1 

Centre National de Recherches 

Météorologiques, France CNRM-ESM2-1 

  1 

NOAA/Geophysical Fluid Dynamics 

Laboratory, USA GFDL-CM4 

 1 1 

NOAA/Geophysical Fluid Dynamics 

Laboratory, USA GFDL-ESM4 

 1  

NASA/Goddard Institute for Space Studies, 

USA GISS-E2-1-G 

3 3  

NASA/Goddard Institute for Space Studies, 

USA GISS-E2-1-H 

 3  

NASA/Goddard Institute for Space Studies, 

USA GISS-E2-2-G 

3   

Institute for Numerical Mathematics, Russian 

Academy of Science, Russia 

INM-CM4-8 1 1  

INM-CM5-0 1 3  

JAMSTEC/AORI/University of Tokyo/NIES, 

Japan MIROC6 

  1 

JAMSTEC/AORI/University of Tokyo/NIES, 

Japan MIROC-ES2L 

  1 

Max Planck Institute for Meteorology, Germany MPI-ESM-1-2-HAM   1 

Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR   1 

Max Planck Institute for Meteorology, Germany MPI-ESM1-2-LR   1 

Meteorological Research Institute, Japan MRI-ESM2-0   1 

Norwegian Climate Center, Norway NorESM2-LM 1 3 1 

Norwegian Climate Center, Norway NorESM2-MM  1 1 

Seoul National University, Seoul, Korea SAM0-UNICON   1 

Research Center for Environmental Changes, 

Academia Sinica, Taiwan TaiESM1 

1 1  

Met Office Hadley Centre, UK UKESM1-0-LL 1   

Total models/simulations  12/26 15/35 13/13 

Note:  aTo assess internal variability, some models provide an ensemble of realizations with different initial conditions. 1128 
For the models with more than 3 realizations, only the first three realizations were obtained for each model. For the 1129 
CMIP6-AMIP and CMIP6-HIST, the available models with PBLH output at the time of analysis were chosen. For 1130 
CMIP6-HIST-RI, only the first realization for a subset of CMIP6 models for which data were available on the model-1131 
level grid and the output frequency needed was chosen to estimate the PBLH as detailed in Davy (2018).  1132 
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Table 2. List of variable and method used to estimate the PBLH for the nine datasets used in this 1133 

study 1134 

Dataset acronym Variable used PBLH estimate method Time 

period 

IGRA2-MMLH Daily atmospheric profiles (pressure, 

temperature and dewpoint) at 00 and 12 UTC 

from the IGRA2 and 3-hourly surface  

measurements (pressure, temperature and 

dewpoint) from the NOAA’s NCDC 

The parcel method (Holzworth, 

1964) to estimate MMLH as 

detailed in Li et al. (2020) 

1979-

2018 

IGRA2-RI Daily atmospheric and near surface virtual 

potential temperature, geopotential height, and 

wind speed at 00 and 12 UTC from the IGRA2 

sounding-derived parameters from the NCDC 

The bulk Richardson number 

method with a critical value of 

0.25 following Seidel et al. 

(2012) and Zhang et al. (2013) 

1979-

2019 

ERA5 

ERA5-ensemble 

Monthly mean of hourly mean PBLH provided 

by the reanalysis 

The bulk Richardson number 

method with a critical value of 

0.25 (C3S, 2017) 

1979-

2019 

MERRA-2 Monthly mean of hourly mean PBLH provided 

by the reanalysis 

The total eddy diffusion 

coefficient of heat with a 

threshold value of 2 m2s-1 

(Salmun et al., 2018) 

1980-

2019 

MERRA-2-RI 6-hourly 3-d atmospheric instantaneous and 

hourly averaged 2-d near-surface fields for air 

temperature, humidity, geopotential height, and 

wind speed from the MERRA-2 output (GMAO; 

2015a; 2015b; 2015c; 2015d) 

The bulk Richardson number 

method with a critical value of 

0.25 following Seidel et al. 

(2012) and Zhang et al. (2013) 

1980-

2019 

CMIP6-AMIP 

CMIP6-HIST 

Monthly mean of daily mean PBLH provided by 

available models for the CMIP6 AMIP and 

HIST  simulations (Table 1) 

Different PBL schemes and 

vertical resolution in different 

models (e.g., Svensson and 

Lindvall, 2015) 

1979-

2014 

CMIP6-HIST-RI 6-hourly 3-d atmospheric and 3-hourly 2-d near-

surface instantaneous fields for air temperature, 

humidity, geopotential height,  and wind speed 

from the CMIP6 HIST simulations (Table 1) 

The bulk Richardson number 

method with a critical value of 

0.25 as detailed in Davy (2018) 

1979-

2014 

  1135 
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Table 3: Climatology (m) and trend (m/decade) of regional mean PBLHmean for the reanalysis 1136 

and CMIP6 datasets used in this study 1137 

 1138 
Dataset Type 60S-60N SDAP India 

ERA5 Climatology 589.48 723.05 594.44 

MERRA2 Climatology 966.91 1453.36 1265.16 

ERA5-EM Climatology 599.48 737.25 599.98 

MERRA2-RI Climatology 536.83 691.25 757.43 

CMIP6-AMIP-MEM Climatology 704.32 843.21 757.08 

CMIP6-HIST-MEM Climatology 668.44 776.98 761.7 

CMIP6-HIST-RI-MEM Climatology 717.19 754.27 751.73 

ERA5 OLS 7.59 14.51 -8.52 

MERRA2 OLS 1.45 27.74 -25.7 

ERA5-EM OLS 7.66 16.43 -7.02 

MERRA2-RI OLS 0.25 8.71 -19.17 

CMIP6-AMIP-MEM OLS 0.51 3.26 -7.02 

CMIP6-HIST-MEM OLS 0.22 1.82 -9.83 

CMIP6-HIST-RI-MEM OLS 0.48 3.03 -12.33 

ERA5 M-K 7.62 14.69 -9.02 

MERRA2 M-K 0.28 26.92 -27.78 

ERA5-EM M-K 7.73 16.77 -7.65 

MERRA2-RI M-K 0.09 8.83 -22.62 

CMIP6-AMIP-MEM M-K 0.46 3.29 -6.47 

CMIP6-HIST-MEM M-K 0.07 1.79 -9.83 

CMIP6-HIST-RI-MEM M-K 0.42 2.86 -12.87 

Note: Column 2 (type): climatology - the climatology of regional mean PBLHmean, OLS and M-K - two methods used 1139 
to calculate the trend and its significance. Regional averaging is applied to the land grid boxes between 60S and 1140 
60N, SDAP (18N-31N, 5W-50E) and India (17N-34N, 68E-96E), depicted as the two rectangle boxes in Fig. 1141 
3c.   1142 
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Table 4: Spatial correlations in annual mean trends between PBLH and related variables for the 1143 

two reanalysis (ERA5 and MERRA-2) datasets 1144 

 1145 
ERA5 

Method PBLH N SHFX LHFX PLCL Ts T2M Td2M RH2M 

OLS PBLHmean 7137 0.76 -0.52 -0.73 0.61 0.51 -0.50 -0.73 

OLS PBLHmax 7693 0.77 -0.64 -0.74 0.70 0.51 -0.57 -0.73 

OLS PBLHmin 4580 0.13 0.43 -0.16 0.04 -0.01 -0.16 -0.15 

M-K PBLHmean 7018 0.76 -0.51 -0.72 0.60 0.51 -0.49 -0.72 

M-K PBLHmax 7590 0.77 -0.63 -0.74 0.69 0.50 -0.57 -0.72 

M-K PBLHmin 4415 0.12 0.43 -0.16 0.04 0.00 -0.15 -0.15 

MERRA-2 

Method PBLH N SHFX LHFX ZLCL Ts T2M q2M RH2M 

OLS PBLHmean 5609 0.65 -0.59 0.79 0.80 0.79 -0.68 -0.76 

OLS PBLHmax 4857 0.86 -0.76 0.92 0.91 0.91 -0.90 -0.92 

OLS PBLHmin 6374 0.18 -0.08 0.44 0.55 0.55 -0.17 -0.39 

M-K PBLHmean 5443 0.63 -0.57 0.76 0.77 0.76 -0.66 -0.74 

M-K PBLHmax 4696 0.85 -0.74 0.90 0.91 0.90 -0.89 -0.91 

M-K PBLHmin 5991 0.16 -0.05 0.43 0.52 0.52 -0.18 -0.38 

Note: Column 1 (Method): Two methods (OLS and M-K) are used to calculate the trend (per decade) and its 1146 
significance; Column 2 (PBLH): PBLHmean – daily mean of 24 hourly PBLH values,  PBLHmax – daytime mean 1147 
of five hours with maximum climatological PBL values, PBLHmin – nighttime mean of five hours with 1148 
minimum climatological PBL values; Column 3 (N): the number of grid boxes (N) with a statically significant 1149 
trend in PBLH (p<0.05) over land between 60S and 60N; Columns 4-10 (the corresponding PBLH related 1150 
surface variables): SHFX – sensible heat flux (W/m2), LHFX – latent heat flux (W/m2), PLCL – the pressure 1151 
at lifting condensation level (hPa), ZLCL – the height at lifting condensation level (m), Ts – surface skin 1152 
temperature (K), T2m – 2m surface air temperature (K), Td2m – 2m surface dew point temperature (K), q2m – 1153 
2m surface specific humidity (g/kg), RH2m – 2m surface relative humidity (%). All correlation coefficients in 1154 
bold except 2 italicized are statistically significant at the 1% level based on a two-tailed student’s t test due to 1155 
the large size of data samples (N).    1156 
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Table 5: Temporal correlations in regional mean annual anomaly time series between PBLH and 1157 

related variables for the two reanalysis (ERA5 and MERRA-2) datasets during the period 1979-1158 

2019  1159 

 1160 
ERA5 

Region PBLH N SHFX LHFX Ts T2M RH2M 

60S-60N PBLHmean 41 0.96 -0.21 0.88 0.88 -0.96 

60S-60N PBLHmax 41 0.98 -0.75 0.88 0.87 -0.98 

60S-60N PBLHmin 41 0.58 0.79 0.80 0.82 -0.67 

SDAP PBLHmean 41 0.75 0.04 0.75 0.75 -0.32 

SDAP PBLHmax 41 0.55 -0.15 0.67 0.68 -0.27 

SDAP PBLHmin 41 -0.02 0.61 0.57 0.54 -0.19 

India PBLHmean 41 0.82 -0.70 0.28 -0.03 -0.92 

India PBLHmax 41 0.86 -0.61 0.65 0.16 -0.93 

India PBLHmin 41 -0.62 0.00 -0.13 -0.25 -0.44 

MERRA-2 

Region PBLH N SHFX LHFX Ts T2M RH2M 

60S-60N PBLHmean 40 0.81 -0.67 0.38 0.35 -0.88 

60S-60N PBLHmax 40 0.91 -0.69 0.51 0.42 -0.95 

60S-60N PBLHmin 40 0.14 0.10 0.47 0.47 -0.59 

SDAP PBLHmean 40 0.43 -0.54 0.64 0.62 -0.38 

SDAP PBLHmax 40 0.48 -0.56 0.63 0.59 -0.34 

SDAP PBLHmin 40 0.02 -0.42 0.72 0.71 -0.41 

India PBLHmean 40 0.88 -0.80 0.24 0.08 -0.86 

India PBLHmax 40 0.95 -0.88 0.75 0.57 -0.95 

India PBLHmin 40 0.00 -0.04 -0.20 -0.19 -0.03 

Note: All variables are defined in Tables 3 and 4. Correlation coefficients in bold are statistically significant 1161 
at the 5% level based on the two-tailed student’s t test.    1162 
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 1163 
 1164 

Fig 1. Spatial patterns of climatological PBLHmean (m) from the seven reanalysis and CMIP6 1165 

datasets at 1 x 1 resolution: (a) ERA5 (1979-2019), (b) MERRA-2 (1980-2019), (c) ERA5-1166 

EM (1980-2019), (d) MERRA-2-RI (1980-2019), (e) CMIP6-AMIP-MEM (1979-2014), (f) 1167 

CMIP6-HIST-MEM (1979-2014), and (g) CMIP6-HIST-RI-MEM (1979-2014). The 1168 

maximum, minimum, mean and standard deviation (STD) of PBLH over all land grid boxes 1169 

between 60S-60N, are listed on the top of each panel.   1170 
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 1171 

 1172 
Fig 2. Spatial patterns of PBLHmean trend (m/decade) estimated using the M-K method from the 1173 

seven datasets at 1 x 1 resolution: (a) ERA5 (1979-2019), (b) MERRA-2 (1980-2019), (c) 1174 

ERA5-EM (1980-2019), (d) MERRA-2-RI (1980-2019), (e) CMIP6-AMIP-MEM (1979-2014), 1175 

(f) CMIP6-HIST-MEM (1979-2014), and (g) CMIP6-HIST-RI-MEM (1979-2014). The 1176 

percentage of positive (+) and negative (-) trends that are statistically significant at the 5% level 1177 

over all land grid boxes between 60S-60N, are listed on the top of each panel.   1178 
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 1179 

 1180 

Fig 3. Spatial patterns of consistency index (CI) for PBLHmean trend (m/decade) estimated using 1181 

the M-K method from (a) the four reanalysis datasets (Figs. 2a-2d), (b) the three CMIP6 datasets 1182 

(Figs. 2e-2g), and (c) all the seven datasets (Figs. 2a-2g). The value of consistency index is 1183 

defined as the number of the datasets with the same sign of trends that are statistically 1184 

significant at the 5% level. The rectangle boxes in blue (18N-31N, 5W-50E) and (17N-1185 

34N, 68E-96E) in Fig. 3c depict the area over which the data is averaged for the regional 1186 

analysis over the SDAP and India, respectively. 1187 

1188 
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 1189 
Fig 4. The probability distribution function (PDF) or frequency of occurrence of PBLHmean 1190 

(m/decade) that are statistically significant at the 5% level over land averaged over three 1191 

regions: the zonal mean between 60S-60N (in blue), the SDAP (in red), and India (in green) 1192 

for the seven datasets (Fig. 2). The geographic domain for the SDAP and India are depicted in 1193 

Fig. 3c. 1194 
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Fig 5. Same as in Fig. 4 but for the four ensemble datasets: (a) ERA5 10-member ensemble 1195 

(1980-2019), (b) CMIP6-AMIP multi-model ensemble (1979-2014), (c) CMIP6-HIST multi-1196 

model ensemble (1979-2014), and (d) CMIP6-HIST-RI multi-model ensemble (1979-2014). 1197 

The dashed and solid curves denote the individual ensemble members and the ensemble mean, 1198 

respectively.  1199 
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Fig 6. Spatial patterns of PBLH trend (m/decade) estimated using the M-K method from the 1200 

IGRA2 radiosonde data: (a) daytime MMLH (the compositing method A), (b) daytime PBLH 1201 

(the compositing method B), and (c) daytime PBLH (the compositing method C). The 1202 

percentage of positive (+) and negative (-) trends that are statistically significant at the 5% level 1203 

over land between 60S-60N is listed on the top of each panel. The rectangle boxes in blue are 1204 

depicted in Fig. 3c. 1205 
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 1244 

Fig 7. Comparison of PBLH trend (m/decade) estimated using the M-K method from the 1245 

IGRA2 radiosondes and corresponding ERA5 and MERRA-2 datasets: (a,b) daytime MMLH 1246 

from 63 stations (Fig. 6a, the compositing method A), (c,d) daytime PBLH from 133 stations 1247 

(Fig. 6b, the compositing method B), and (e,f) daytime PBLH from 138 stations (Fig. 6c, the 1248 

compositing method C). The correlation coefficient (R) and its significance (p value) and 1249 

sample size (N) are listed on the top of each panel. Only the stations with a trend that is 1250 

statistically significant at the 10% level is used.  1251 
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 1252 

Fig 8. Station-mean interannual variations in daytime MMLH anomalies from the IGRA2-1253 

MMLH (left y-axis, m) and corresponding reanalysis daytime PBLHmax anomalies (right y-axis, 1254 

m) from (a, b) ERA5 and (c, d) MERRA-2 averaged over 5 radiosonde stations in (a, c) the 1255 

SDAP and 9 statins in (b, d) India for the period 1979/1980-2019. These 14 stations are depicted 1256 

in Fig. 6a. The correlation coefficient (R) and its significance (p value) and sample size (N) are 1257 

listed on the top of each panel. The trend using the M-K method for the time series and its 1258 

significance (p value) and N are shown within each panel as well. The compositing method A 1259 

is used to produce the daytime PBLHs.  1260 
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 1261 

Fig 9. Station-mean interannual variations in daytime PBLH anomalies from the IGRA2-RI 1262 

(left y-axis, m) and corresponding reanalysis daytime PBLH anomalies (right y-axis, m) from 1263 

(a, b) ERA5 and (c, d) MERRA-2 averaged over 5 radiosonde stations in (a, c) the SDAP and 1264 

1 statin in (b, d) India for the period 1979/1980-2019. These 6 stations are depicted in Fig. 6b. 1265 

The correlation coefficient (R) and its significance (p value) and sample size (N) are listed on 1266 

the top of each panel.  The trend using the M-K method for the time series and its significance 1267 

(p value) and N are shown within each panel as well. The compositing method B is used to 1268 

produce the daytime PBLHs.  1269 
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 1296 

Fig 10. Scatter plots between PBLHmax trend (x-axis) and corresponding trends in sensible heat 1297 

(SHFX, W/m2), surface skin temperature (Ts, K), and 2m relative humidity (RH2m, %) for the 1298 

ERA5 (left panels) and MERRA-2 (right panels). Only the grid boxes with a statistically 1299 

significant trend in PBLH (p<0.05) over land between 60S-60N are included. The correlation 1300 

coefficient between the two trends and the sample size (N) in grid boxes are listed on the top of 1301 

each panel. It is statistically significant (p<0.0001) in all plots.   1302 
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 1303 

Fig 11. Regional mean interannual variations in PBLHmean anomaly (in green) and three PBLH 1304 

related variables (in red): sensible heat (SHFX, W/m2), surface skin temperature (Ts, K), and 1305 

2m relative humidity (RH2m, %), for the ERA5 (left panels) and MERRA-2 (right panels) 1306 

averaged between 60S-60N for the period 1979-2019. The correlation coefficient (R) and its 1307 

significance (p value) and sample size (N) are shown within each panel.   1308 
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 1310 

Fig 12. Same as in Fig 11 but is averaged over the SDAP.  1311 

  1312 
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 1313 

Fig 13. Same as in Fig 11 but is averaged over India. 1314 
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 1315 
 1316 

Fig S1. Same as Fig. 2, but the trend is estimated using the OLS method. 1317 

  1318 
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 1319 
 1320 

Fig S2. Same as Fig. 3, but the trend is estimated using the OLS method. 1321 


