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Abstract. Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange
of heat, moisture, momentum, trace gases, and aerosols in the surface-atmosphere interface. The
PBL height (PBLH) represents the maximum height of the free atmosphere that is directly
influenced by the Earth’s surface. This study uses a multi-data synthesis approach from an
ensemble of multiple global datasets of radiosonde observations, reanalysis products and climate
model simulations to examine the spatial patterns of long-term PBLH trends over land between
60°S and 60°N for the period 1979-2019. By considering both the sign and statistical significance
of trends, we identify large-scale regions where the change signal is robust and consistent to
increase our confidence in the obtained results. Despite differences in the magnitude and sign of
PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the
enormous and driest Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India.
At the global scale, the changes in PBLH are significantly correlated positively with the changes
in surface heating and negatively with the changes in surface moisture, consistent with theory and
previous findings in the literature. The rising PBLH is in good agreement with increasing sensible
heat and surface temperature and decreasing relative humidity over the SDAP associated with
desert amplification, while the declining PBLH resonates well with increasing relative humidity
and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes
agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of

good-quality radiosonde observations.

Key words: Global warming, desert amplification, planetary boundary layer, planetary boundary

layer height
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1. Introduction

The land surface has a pronounced diurnal cycle in solar insolation, surface temperatures, and
atmospheric planetary boundary layer (PBL). Turbulent mixing in the PBL dominates the vertical
exchange of heat, moisture, momentum, trace gases, and aerosols in the surface-atmosphere
interface, and strongly influences the tropospheric temperature, humidity, and wind (Stull, 1988).
One fundamental variable of the PBL is the PBL height (PBLH). PBLH represents the maximum
height of the atmosphere that is directly influenced by the Earth’s surface, sets limits for the mixing
and dilution height of near-surface pollutants, and controls cloud formation and convection activity
that affect the Earth’s radiation budget and hydrological cycle (Ao et al., 2012; Chan and Wood,

2013; Ho et al., 2015).

PBLH displays substantial spatiotemporal variability under different surface and atmospheric
conditions, ranging from a few hundred meters to several kilometers (Stull, 1988). The PBLH over
land depends strongly on surface characteristics, including soil moisture, vegetation, land cover,
terrain, and proximity to the sea (Talbot et al., 2007; Liu and Liang, 2010; Seidel et al., 2012;
Zhang et al., 2013; Lee and De Wekker, 2016; Wei et al., 2017a; Sathyanadh et al., 2017). The
growth of PBLH is driven primarily by surface heating and atmospheric stability (Chan and Wood,
2013; Lee and De Wekker, 2016; Ao et al., 2017; Brahmanandam et al., 2020). In the subtropics
and tropics, PBLH is typically higher over drier regions and during drier seasons, because more
surface sensible heat flux is available to drive vertical mixing due to less surface moisture and
higher Bowen ratio. As expected, it maximizes over arid and semi-arid regions, in the afternoon,

and during warm and dry seasons when land surface temperatures are warmest, sensible heat flux
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is most significant, and static stability is lowest. Hence, the global PBLH climatology shows the
deepest daytime PBLH in the Sahara Desert and Arabian Peninsula (SDAP) (Gamo, 1996; Ao et

al., 2012; Garcia-Carreras et al., 2015; Ao et al., 2017; Wei et al., 2017a).

Changes in near-surface atmospheric variables such as temperature and relative humidity (RH) are
closely linked to changes in PBLH. Warmer and drier surfaces associated with higher temperatures
and lower RH result in greater sensible heat flux and lower latent heat flux, leading to deeper
convection and larger PBLH (Zhang et al. 2013; Darand and Zandkarimi, 2019). Hence, PBLH
shows strong correlations positively with surface air temperature and negatively with surface RH
in Europe (Zhang et al., 2013), China (Guo et al., 2016; Dang et al., 2016; Guo et al., 2019), East

Asia and North Africa (Zhao et al., 2017), and Iran (Darand and Zandkarimi, 2019).

Global mean surface temperatures have increased since the late 19th century, and this warming
has been spatially widespread and particularly marked since the 1980s, with the warming rate over
land double that over the ocean (IPCC, 2013). Associated with this warming are the global
increases in near-surface and tropospheric specific humidity of air (IPCC, 2013). Despite diverse
and complex spatial patterns of RH changes at regional scales, recent studies using observations,
reanalysis data, and general circulation models (GCMs) have suggested small increases in ocean
RH but substantial decreases in land RH in recent years with global warming (e.g., Simmons et
al., 2010; O’Gorman and Muller 2010; IPCC, 2013; Sherwood and Fu 2014; Willet et al., 2014;
Byrne and O’Gorman, 2016; Vicente-Serrano et al., 2017). As increasing surface temperature and
decreasing surface RH over land tend to deepen the PBLH, one scientific question is whether these

changes in temperature and RH may have raised the PBLH over land (e.g., Zhang et al., 2013).
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Due to limited spatial and temporal coverage of good-quality radiosonde measurements, there are
only several observational studies on long-term PBLH trends at regional scales. Zhang et al. (2013)
estimated the PBLH trends over Europe based on daily radiosonde observations at 25 stations
during 1973-2010 and found statistically significant increases in daytime PBLH in all four seasons.
Guo et al (2019) investigated the temporal trends of radiosonde derived PBLH from 1979 to 2016
in China and found a spatially uniform increasing trend from 1979 to 2003 but a trend shift
thereafter. Li et al. (2020) calculated daily maximum PBLH globally using operational radiosonde
and surface meteorological measurements from 219 carefully selected weather stations for the
period 1973-2018. They found significant increasing (decreasing) trends over 74 (48) stations.
However, these studies are inadequate to draw a broad conclusion about the large-scale patterns
of PBLH trends because the radiosonde network is not evenly distributed globally and has data

gaps in coverage over many regions.

The land surface has warmed rapidly in the past several decades but at different warming rates
among different regions. Recent studies (Zhou et al., 2015; 2016; Cook and Vizy, 2015; Evan et
al., 2015; Zhou, 2016) using observations, reanalysis data, and GCM simulations have found that
surface air temperatures in the mid- and low- latitudes have warmed most over the SDAP. This
warming amplification over deserts, which is termed desert amplification (DA), has intensified
with increasing greenhouse gases (GHGs), particularly after the 1980s. The essential features of
DA remained robust across all seasons, although the magnitude of DA was greater during warm

seasons (Zhou et al., 2016; Vizy and Cook, 2017; Wei et al., 2017b). These results suggest that
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DA is a fundamental large-scale feature of global warming patterns in the mid- and low- latitudes

and will accelerate in a warming climate.

Deserts make up approximately 1/3 of the global land surface area (Zhou, 2016; Wei et al., 2017a).
The SDAP is home to the two largest subtropical deserts in the world and covers a vast continental
land area in the low latitudes. As the deserts are extremely dry, with limited soil moisture,
vegetation and cloudiness, surface heating via sensible heat is documented as the dominant driver
for the PBLH growth there (Zhao, 2011; Ao et al., 2017). Considering the amplified continent-
scale surface heating associated with DA in a warming climate and constrained by limited moisture
availability over the deserts, it is expected to observe widespread increases in temperature and
decreases in RH over the SDAP. Another scientific question is whether the DA may have
manifested its impact by deepening the PBLH at a much larger spatial extent over the SDAP than

the other regions with spatially more heterogeneous RH changes.

Global reanalysis results in physically consistent estimates of past observations with complete
spatial and temporal coverage and thus has greatly improved our ability to examine climate
variability (Trenberth et al., 2008; IPCC. 2013). The reanalysis PBLH estimates have been used at
regional to global scales with reasonable results (e.g., Ao et al., 2012; Von Engeln and Teixeira,
2013; Guo et al., 2016; Zhao et al. 2017; Darand and Zandkarimi, 2019). There are a couple of
studies on the long-term trends of reanalysis PBLH over dry lands. Zhao et al. (2017) examined
the inter-decadal variability of PBLH based on the ECMWF first atmospheric reanalysis of the
20th century (ERA-20C) over arid and semi-arid areas in East Asia and North Africa for the period

1900-2010 and found substantial spatiotemporal variations in the PBLH trends during the 111-
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year period. This century-long reanalysis makes the investigation of multi-decadal variability
possible, but it assimilated only surface observations and contains spurious long-term climate
trends due to changes in the radiative forcing and the observing system throughout the century
(e.g., Poli et al., 2013; Bloomfieldet al., 2018). Darand and Zandkarimi (2019) examined monthly
PBLH data from the ERA-Interim reanalysis and revealed a significant increasing PBLH trend of
~31 m/decade at the country level over Iran for the period 1979-2016, with some seasonal
differences and largest increases in the semi northern part of the country. However, these two
regional studies are based only on one reanalysis product and have no validations against in sifu

observations and other datasets.

The availability of high-resolution reanalysis products and the newly available Coupled Model
Intercomparison Project Phase 6 (CMIP6) simulations provide us an opportunity to address the
above two questions by examining the PBLH changes at larger scales. This paper uses a multi-
data synthesis approach from an ensemble of multiple global datasets of radiosonde observations,
reanalysis products, and GCM simulations to detect and attribute the large-scale patterns of long-
term PBLH trends over land in the mid- and low- latitudes between 60°S and 60°N. It focuses on
the satellite era for the period 1979-2019 to maximize data coverage of measurements that are
assimilated into reanalysis products and are used to drive GCMs. By considering both the sign and
statistical significance of the trends, we identify large-scale regions where the change signal is
robust and consistent to increase our confidence in the obtained results. The major objective is to
test the hypothesis that the global warming signal is manifest most in the spatial extent of PBLH
change over the SDAP where the amplified surface warming associated with DA enhances

turbulent mixing and thus raise the PBLH height.
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2. Data and Methods

2.1. Data sources

Here we used nine types of datasets, consisting of radiosonde observations, four reanalysis
products, and 74 historical simulations from 27 CMIP6 models, for the period 1979-2019. To inter-
compare the PBLH estimates from different methods, the bulk Richardson number (Ri) method
(Vogelezang and Holtslag, 1996) was also chosen to consistently diagnose the PBLH, with a
critical value of 0.25, directly from the atmospheric soundings for three datasets whose PBLHs
were estimated using other methods. The Ri methods have proven to the most reliable approaches
over a wide range of conditions for both stable and convective boundary layers and don’t strongly
depend on the sounding vertical resolutions (e.g., Seidel et al., 2012; Zhang et al., 2013; Davy,
2018). We followed exactly the steps detailed in Seidel et al. (2012) and Zhang et al (2013) to
calculate the PBLH. Note that all PBLH estimates in this study are measured in meters above
ground level (AGL). The data details are mostly listed in Tables 1 and 2, with some key

information provided next.

2.1.1. Radiosonde measurements

Two observational PBLH datasets were derived from atmospheric soundings (mostly at 00 and 12
Coordinated Time Universal or UTC) in the updated Integrated Global Radiosonde Archive
Version 2 (IGRA2) (Durre and Yin 2008, 2011). First, we used the Ri method to estimate the
PBLH at 00 and 12 UTC for the period 1979-2019 (referred to as the IGRA2-RI, Table 2) based

on the IGRA2 sounding-derived parameters (ftp://ftp.ncdc.noaa.gov/pub/data/igra/derived/).
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Second, we used the daily maximum mixed layer height (MMLH) estimated by Li et al. (2020)
via the parcel method (Holzworth, 1964) for the period 1979-2018 (referred to as the IGRA2-
MMLH, Table 2) based on the IGRA2 and surface meteorological measurements. Because the
daily MMLH usually occurs locally in the early to late afternoon, the standard two radiosonde
observations each day cannot capture the fully developed mixed layer globally. The parcel method
was proposed to calculate daily MMLH using radiosondes and diurnal potential temperature
observations from morning to evening to characterize the convective mixing of the lower
troposphere (Holzworth, 1964). It has the advantage of using twice-daily radiosonde soundings
over most weather stations if the maximum virtual potential temperature coincides with the
MMLH and thus has been adopted by many studies to estimate the MMLH thereafter (e.g., Seidel
et al 2010, Li et al., 2020). Large uncertainties are expected over regions if this condition is not
met. Due to the presence of missing data over many radiosonde stations, a set of carefully designed
data selection and quality control criteria were developed to identify stations with good quality

data for long-term trend analysis (section 2.2)

2.1.2. Reanalysis products

Two latest state-of-the-art reanalysis products provide physically consistent, global gridded hourly
analysis fields at relatively high spatial and temporal resolutions. The second Modern-Era
Retrospective analysis for Research and Applications (MERRA-2) is a NASA atmospheric
reanalysis that begins in 1980 with the enhanced use of satellite observations (Gelaro et al., 2017).
ECMWF Reanalysis 5th Generation (ERAS) is the latest ECMWF atmospheric reanalysis of the
recent global climate, produced based on historical observations since 1979 with advanced

modeling and data assimilation systems (Hersbach et al., 2020). The reanalysis PBLH is estimated
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based on the Ri method with a critical value of 0.25 in the ERAS (C3S, 2017) and the total eddy
diffusion coefficient of heat with a threshold value of 2 m?s! in the MERRA-2 (e.g., McGrath-
Spangler and Molod 2014; Davy and Esau, 2014). The monthly means of hourly averaged PBLH,
surface sensible heat flux (SHFX, W/m?), surface latent heat flux (LHFX, W/m?), surface skin
temperature (Ts, K), 2m air temperature (Tom, K), 2m dew point temperature (Tdzm, K), 2m specific
humidity (q2m, kg/kg), 2m air RH (RH2m, %), and lifting condensational level (LCL, m or hPa),
were analyzed for the MERRA-2 (1980-2019) and ERAS (1979-2019). The LCL is provided by
the MERRA-2 as the height of LCL (m). It is not provided in the ERAS and so is computed as the
pressure of LCL (hPa) by an iterative procedure described by Stipanuk (1973) based on surface
pressure (Ps), Tom and Tdom. For both MERRA-2 and ERAS, RHm is not provided and so is

calculated using Tom and Tdam based on the equation in Dutton (1976).

ERAS also provides a 10-member reanalysis ensemble (referred to as ERA5-ensemble, Table 2)
used for uncertainty estimation (CSC, 2020). The uncertainty as defined for ERAS by the
Ensemble of Data Assimilations (EDA) system only considered mostly random uncertainties in
observations, sea surface temperatures (SSTs), and model physical parametrizations. Although not
all uncertainties are accounted for, the mean and spread of the ensemble provide valuable
information on the relative accuracy and reliability of the reanalysis data. The PBLH is estimated
based on the Ri method as in the ERAS reanalysis. The monthly means of daily mean PBLH for

the 10 members were analyzed for the period 1979-2019.

We also used the Ri method to estimate the PBLH at 6-hourly intervals for the period 1980-2019

(referred to as the MERRA-2-RI, Table 2) based on the 6-hourly 3-d atmospheric instantaneous

10
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and hourly averaged 2-d near-surface fields for air temperature, humidity, geopotential height, and
wind speed from the MERRA-2 output. Note that hourly averaged atmospheric analyzed fields are
not available. The monthly means of daily mean PBLH (an average of the four 6-hourly values)

were analyzed for the period 1980-2019.

2.1.3. CMIP6 simulations

The CMIP6 provides PBLH output available only from a subset of participating models at various
spatial resolutions (Eyring et al., 2016). Different PBL schemes at different vertical resolutions are
used in these models (Table 2). For example, the PBL scheme is based on the Ri number, mixing
lengths, and moist non-local thermodynamic mixing in the Canadian Earth System Model
(CanESMS, von Salzen et al., 2013), while the Community Earth System Model (CESM?2)
employed the so-called Cloud Layers Unified By Binormals (CLUBB) parameterization
(Bogenschutz et al., 2018), one of the “assumed probability density function (PDF)” methods
(Golaz et al., 2002; Larson et al., 2002). Unlike the traditional PBL schemes used in GCMs, the
CLUBB is a third order turbulence closure that is centered around a multivariate PDF and
represents a “unified” parameterization that is responsible for treating boundary layer clouds and
shallow convection with one parameterization (Bogenschutz et al., 2018). Here we used two types
of historical simulations from the CMIP6 archives (Eyring et al. 2016): historical (HIST) and
Atmospheric Model Intercomparison Project (AMIP) runs, referred to as CMIP6-HIST and
CMIP6-AMIP (Table 2), respectively. The CMIP6-HIST simulations (1850-2014) were forced
with observed changes in anthropogenic and natural forcing. The CMIP6-AMIP run (1979-2014)
was a standard global atmospheric general circulation model simulation for recent climate forced

by observed SSTs/sea ice and prescribed external forcings. In addition, we also used the Ri method
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to estimate the PBLH at 6-hourly interval for the period 1980-2014 (referred to as the CMIP6-
HIST-RI, Table 2) provided by Davy (2018) based on the 6-hourly 3-d atmospheric and 3-hourly
2-d near-surface instantaneous fields for air temperature, humidity, geopotential height, and wind

speed from the CMIP6-HIST simulations (Table 1).

Temporal variations in the CMIP6 simulations are determined mainly by the externally imposed
forcing, but also contain unforced internal variability (noise) within the atmosphere. To assess the
internal variability, some models provide an ensemble of realizations with different initial
conditions. For the CMIP6-AMIP and CMIP6-HIST, the available models with PBLH output at
the time of analysis were chosen and only the first three realizations were obtained for the models
with more than 3 realizations. For the CMIP6-HIST-RI, only the first realization for a subset of
CMIP6 models, for which data were available on the model-level grid and at the output frequency
needed, was chosen to estimate the PBLH as detailed in Davy (2018). In total, there are 74
simulations from 27 models: 26 AMIP runs from 12 models for CMIP6-AMIP, 35 runs from 15
models for CMIP6-HIST, and 13 runs from 13 models for CMIP6-HIST-RI. Each chosen model
and its number of realizations for the CMIP6 simulations are listed in Table 1. The monthly mean

of daily mean PBLH from these simulations were analyzed for the period 1979-2014.

2.2. Data processing

Here we examine the long-term PBLH trends over land between 60°N-60°S. The ocean is not
considered as the major processes controlling PBLH differ primarily between land and ocean
(Garratt, 1992; Seidel et al., 2012; Chan and Wood, 2013; Ho et al., 2015; Byrne and O’Gorman,

2016). The land beyond 60°N and 60°S is excluded because high-latitude continental interior
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regions and ice- and snow- covered surfaces have different PBLH characteristic from the mid- and
low- latitudes, particularly during cold seasons (Liu and Liang, 2010; Seidel et al., 2012; Wei et
al., 2017a; Davy, 2018). To attribute the changes in PBLH, we examine their statistical
relationships with other key PBLH-related variables using the two high-resolution reanalysis data

(i.e., ERAS and MERRA-2) due to the complete spatial and temporal coverage.

Initial analyses reveal some similar large-scale features in the PBLH trends across all seasons
except boreal winter. To reduce redundancy and the number of plots by season for different
datasets, we focus on the annual mean PBLH changes, which can capture well the major large-
scale PBLH trends for most seasons while minimizing signals in PBLH associated with seasonal
variations (e.g., insolation, clouds, soil moisture, and SSTs). This simplicity is reasonable as
observational studies generally show consistent patterns of long-term PBLH trends for all seasons
over 25 weather stations in Europe (Zhang et al., 2013) and over 219 carefully selected radiosonde

stations globally (Li et al., 2020).

For every station in the two radiosonde-derived PBLH datasets, the observed daily estimates of
MMLH and PBLH at 00 and 12 UTC were processed into the annual mean anomaly time series
for the period 1979-2018 following four steps. First, the observed daily estimates were first
averaged to calculate the monthly mean. For every month, at least 10 days of data were required
for the monthly averaging. Second, the monthly anomaly data was created by subtracting the long-
term monthly mean (climatology) from the monthly mean data, i.e., removing the climatological
seasonality. Third, the monthly anomaly data were averaged to create the annual mean for every

year, and at least 6 months of data were required for the annual averaging. Finally, the long-term
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annual mean anomaly time series was obtained for the period 1979-2018/2019, which required at
least 28 years (or 70%) of data. The use of thresholds of 10 days per month (e.g., Li et al., 2020),
6 months per year (e.g., Wang and Wang, 2016), and 70% of the temporal coverage (e.g., Gertler
and O’Gorman, 2019) is a reasonable compromise between the data length, completeness, and
spatial coverage. In total, 147 and 192 stations with adequate observations were chosen following
the above steps for the IGRA2-MMLH and IGRA2-RI PBLH datasets, respectively. The data
coverage is reasonably good over most regions in the Northern Hemisphere but relatively poor

over remote deserts and in the Southern Hemisphere.

It is well recognized that PBLH is strongly coupled with land-atmospheric interactions. Despite
the complexity and uncertainty in representing land-atmosphere interaction in different weather
and climate models, it was found that the ensemble mean (EM) of forecasts driven by different
initial conditions can reduce forecast uncertainties that result from errors in initial conditions (e.g.,
Guo et al., 2007; Hofer et al., 2012; Potter et al., 2018). It is also found that the multi-model
ensemble mean (MEM) often outperforms most individual models in simulating the land surface
component of weather and climate systems (Kharin and Zwiers, 2002; Guo et al., 2007). In
particular, different PBL schemes make varying assumptions about the transport of heat, moisture,
and momentum within the PBL (Lee and De Wekker, 2016). Averaging over multiple members
enhances the forcing signal and reduces noise from internal variability and errors from individual
members or models (IPCC, 2013). For the ERA5-ensemble, the 10-members were averaged to
calculate the EM (referred to as the ERAS5-EM). For the CMIP6 models, the models of single
realization and the multi-realization mean of each model with more than one realization were

averaged to obtain the MEM. Here we do not simply take the mean of all realizations of the
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available CMIP6 models to avoid biasing the MEM toward the models with a higher number of
realizations. The MEM for the 12 models in the CMIP6-AMIP, the 15 models in the CMIP6-HIST,
and the 13 models in the CMIP6-HIST-RI is referred to as the CMIP6-AMIP-MEM, CMIP6-
HIST-MEM, and CMIP6-HIST-RI-MEM, respectively. However, the EM and MEM average out
internal variability and so have a smaller magnitude in variability and trend than individual
members. The monthly mean PBLHs from the individual members of the ERAS and CMIP6
ensembles were analyzed and used to calculate the ensemble distribution, include the ensemble

mean and spread, for uncertainty estimate.

The global gridded reanalysis and CMIP6 data are monthly mean values with no missing data. All
data at different spatial resolutions were spatially re-projected into the common 1° by 1° grid boxes
using bilinear interpolation and then were processed into the annual mean anomaly time series for
every grid box. Note that the PBLH exhibits a distinct diurnal cycle. The CMIP6 data only consists
of monthly means of daily mean values, while the reanalysis data contain sub-daily values and so
need further processing. The reanalysis MERRA-2 and ERAS consist of 24 hourly averaged values
every month. For every grid box, we first used the 24 hourly-averaged PBLH values to obtain the
long-term climatology of the PBLH diurnal cycle and then identified the five consecutive hours
with maximum and minimum climatological PBLHs. Then the monthly means of hourly data were
aggregated to produce the monthly means of daily mean (an average of 24 hourly values), daily
maximum (an average of 5 hourly values with maximum climatological PBLHs), and daily
minimum (an average of 5 hourly values with minimum climatological PBLHs). We also created
the monthly means of daily PBLHs at 00 and 12 UTC for validations against the radiosonde

observations. For the ERAS5-ensemble members, the monthly means of daily mean PBLH were
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calculated from the 24 hourly-averaged PBLH values. For the MERRA-2-RI, the monthly means
of daily mean PBLH were calculated from the four 6-hourly instantaneous PBLH estimates.
Finally, for every grid box, the monthly mean data were processed into the annual mean anomaly
time series for each individual data period following the last three steps done above for the
radiosonde data. In total, there are 12660 land grid boxes of 1° by 1° between 60°N-60°S across a

wide range of atmospheric conditions and surface characteristics.

2.3. Methods of large-scale trend analysis

Large differences and uncertainties exist among different PBLH estimates and different datasets
(e.g., Seidel et al., 2010; McGrath-Spangler and Molod, 2014; McGrath-Spangler et al., 2015; Wei
etal.,2017b; Ao etal., 2017). In order to synthesize the differences and cope with the uncertainties,
we use a multi-data synthesis approach to make inferences on the robustness and consensus of the
long-term trends across the aforementioned different datasets. The emphasis is more on the sign
and significance of the trend and less on the magnitude as the changes are more likely robust if
more independent datasets agree on the direction and statistical significance of the changes (e.g.,
Power et al., 2012; IPCC, 2007; 2013; Dosio et al., 2019). We identify and focus on large-scale
regions where the change signal is considered to be robust and consistent if all (or 100%) of the
datasets show a statistically significant trend (p<0.05) and agree on the sign of the trend, to increase

our confidence in the obtained results.

Two widely used methods were used to quantify the magnitude and significance of the trend of

the annual mean anomaly time series processed above for any variable over the study period. The

first was to use the ordinary least squares regression (OLS) to estimate the linear trend (i.e., slope)
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combined with a two-tailed student’s 7 test for significance test, referred to as the OLS method.
The second was to use the Theil-Sen slope estimate to assess the monotonic trend (linear or non-
linear) combined with the Mann—Kendall test (Theil, 1950; Sen, 1968; Kendall 1970; Dytham,
2011) for significance test, referred to as the M-K method. The M-K method is a non-parametric
(i.e., distribution-free) test and is much less sensitive to outliers and skewed distributions compared
to linear regressions (IPCC, 2013). Trend analysis was performed for the annual mean anomaly

time series for all data variables created in section 2.2.

We also performed a detailed time series analysis over the entire study domain (60°N-60°S) and
two chosen regions (the SDAP and India) where a consensus on the PBLH trends was identified.
To maximize large-scale PBLH change patterns and minimize local-scale variability, we
aggregated the PBLH and related data via spatial averaging at two spatial scales: (1) station mean
and (2) regional mean. The former is simply an arithmetic mean of individual station data and was
applied to both the observational and reanalysis data. For the reanalysis, the station data were
obtained from the grid boxes where the chosen stations are located based on their geographic
location (latitude and longitude). The latter was applied only to the two reanalyses and was
calculated using area-weighted averaging over the land grid boxes between 60°S and 60°N, SDAP
(18°N-31°N, 5°W-50°E) and India (17°N-34°N, 68°E-96°E), depicted by the rectangle box in Fig.
3c. We calculated the Pearson’s correlation coefficient (referred to as R) to quantify the temporal

association between two times series or the spatial similarity between two variables.

Note that every variable analyzed in this study is an annual mean quantity. For brevity, the annual

mean of daily mean PBLH, daily maximum PBLH, daily minimum PBLH, daily PBLH at 00 UTC,
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and daily PBLH at 12 UTC, five frequently used variables, are referred to as PBLHmean, PBLHmax,
PBLHmin, PBLHoo, and PBLH1> hereafter, respectively. Also the term “annual mean” is often

omitted for the remainder of this paper.

3. Results and Discussion

3.1. Climatology and trends in PBLHmean for the reanalysis and CMIP6

Figure 1 shows the spatial patterns of climatological PBLHmean (m) from the four reanalysis and
three CMIP6 datasets. Overall, the PBLH climatology exhibits similar spatial patterns across the
different datasets, with the deepest PBL over low latitude drylands and the shallowest in high
latitudes and humid tropical regions. For the 12660 land grid boxes between 60°S-60°N, the spatial
correlation (R) between the ERAS and the other 6 datasets, MERRA-2, ERAS-EM, and MERRA-
2-RI, CMIP6-AMIP-MEM, CMIP6-HIST-MEM, and CMIP6-HIST-RI-MEM, are 0.70, 0.99,
0.67, 0.76, 0.76 and 0.75, respectively. These coefficients are all statistically significant (p
<0.0001). At the grid box level, the minimum, maximum, mean and standard deviation (STD) of
PBLHmean are 134.4, 1209.1, 585.1, and 155.1 meters for the ERAS, and 335.0, 2229.6, 937.5, and
336.8 meters for the MEAAR-2, respectively. These values in the ERAS are almost identical to
those in the ERAS-EM and mostly comparable to those in the MERRA-2-RI and three CMIP6
MEMs, while the MERRA-2 has much larger values than the MERRA-2-RI. The major differences
among these seven datasets include: (1) the three CMIP6 MEMs exhibit a much smaller spatial
range in PBLHmean, due to a much larger minimum and a smaller maximum, than the ERAS, (2)

the MERRA-2 has a much larger values in the minimum, maximum, mean and STD than any other

18



416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

datasets. These results are generally consistent with previous results (e.g., Svensson and Lindvall,

2015; Wei et al., 2017a; Davy, 2018; Zhou, 2020).

Figure 2 shows the spatial patterns of PBLHean trend (m/decade) estimated using the M-K method
from the reanalysis and CMIP6 datasets. Widespread positive trends are seen in the ERAS over
most land areas, except South Asia, Western Australia, and most of Canada, and Central and
Eastern U.S. (Fig. 2a). In comparison, fewer grid boxes have significant trends in the MERRA-2,
with strong and significant increasing trends in the Brazilian Highlands, most of Africa and the
Middle East, and significant decreasing trends in the Indian subcontinent, Australia and Eastern
China (Fig. 2b). The trend in the ERA5-EM (Fig. 2c) is very similar to that in the ERAS. The
MERRA-2-RI (Fig. 2d) shares similar trend patterns to the MERRA-2 but in a much smaller
magnitude and a slightly smaller spatial extent. The three CMIP6 MEMs (Fig. 2e-2f) share similar
significant increasing trends over most areas in the Northern Hemisphere (e.g., the SDAP,
continental U.S., and Europe), except West and South Asia, but widespread insignificant trends
across the Southern Hemisphere. Note that the CMIP6 trends over coastal regions and islands
differ from the reanalysis results due to the coarse spatial resolution of the models and the impacts
of marine PBL. In general, the trends are largest between 30°N-30°S in the reanalysis datasets and
between 30°N-60°N in the CMIP6 models. Among the 12660 land grid boxes between 60°S-60°N,
51.3% (4.1%), 18.8% (24.2%), 49.7% (4.3%), 20.5% (18.2%), 30.6% (12.8%), 36.0% (23.5%),
and 33.4% (16.7%) exhibit a statistically significant increasing (decreasing) trend at the 5% level,
for the ERAS, MERRA-2, ERA5-EM, MERRA-2-RI, CMIP6-AMIP-MEM, CMIP6-HIST-MEM,
and CMIP6-HIST-RI-MEM, respectively. When the trend is estimated using the OLS method, the

results remain very similar to these in the M-K method, except that the percentage of grid boxes
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with significant trends are slightly higher (Fig. S1). Evidently, the PBLH trend demonstrates large
differences in the sign and magnitude over many areas, but significant trends are consistently seen

at large scales over the SDAP and Indian subcontinent.

To identify the large-scale spatial patterns with a consensus on the PBLHmean trends among
different datasets, we calculate a consistency index (CI) as the number of datasets with the same
sign of trends that are statistically significant at the 5% level. The spatial patterns of the CI based
on the M-K method are shown, respectively, for the four reanalysis (Fig. 3a), three CMIP6 (Fig.
3b), and seven reanalysis+CMIP6 (Fig. 3c) datasets. For example, an index value of +4 (-4) in Fig.
3a indicates that all four reanalyses share similar and significant upward (downward) trends.
Figure 3a highlights the large-scale consensus on the significant increasing trends (in red, CI=4)
over North Africa, West Asia, Central Africa, and Brazil, and along the Mongolia—Russian Siberia
borders, but on the significant decreasing trends (in blue, CI=-4) over the Indian subcontinent.
Note that the MERRA-2-RI (Fig. 2d) has a much smaller area in red (e.g., over the SDAP) than
the other three reanalyses (Figs 2a-2b) because its PBLHmean is estimated from four 6-hourly
instantaneous atmospheric fields (rather than from 24-hourly averaged fields for the other
reanalyses), which have much larger interannual variability and thus fewer grid boxes with
significant trends (Table 2). Evidently, positive trends dominate over a broad, contiguous swath
of land covering the SDAP while negative trends are relatively smaller in spatial extent and cover
mostly India. The three CMIP6 datasets (Fig. 3b) show consistent significant increasing trends (in
red, CI=3) over many areas in North Africa, the contiguous U.S., and Eastern Canada, but
significant decreasing trends (in blue, CI=-3) over the Indian subcontinent and China. Note that

their area in red over the SDAP (Fig. 3b) is smaller than the entire desert areas with increasing
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PBLH trend in the reanalysis (Figs 2a-2¢) because of the impacts of marine PBL over coastal
regions in the periphery of the deserts in coarse resolution GCMs. When both the four reanalysis
and three CMIP6 datasets are considered together (Fig. 3c), only the SDAP and India stand out
with consistent trends. To confirm this further, we also performed the same analysis to Fig. 3 but
using the OLS method and obtain almost identical results (Fig. S2), indicating that the results of
PBLHmean trends are independent of the methods used for the trend estimate. The seven datasets
highlight a consensus and robustness on a large-scale pattern of rising PBLH over the enormous
SDAP (18°N-31°N, 5°W-50°E) and decreasing PBLH over India (17°N-34°N, 68°E-96°E), the
two rectangle boxes depicted in Fig. 3c. For brevity, our remaining paper will focus mostly on the

PBLH estimated from the M-K method and the SDAP and India as two regional hotspots.

Figure 4 shows the probability distribution function (PDF), or frequency of occurrence, of
PBLHumean trends (m/decade, Fig. 2) that are statistically significant at the 5% level over land
between 60°S-60°N (in blue), the SDAP (in red) and India (in green). Despite the large differences
in the trend magnitude, the reanalyses (Figs. 4a-4d) clearly show a tendency toward larger and
more positive (negative) trends over the SDAP (India) than the entire region of 60°S-60°N. Such
PDF differences are also evident in the CMIP6 MEMs (Figs. 4e-4g). Note that the EM and MEM
enhance the forcing signal (e.g., global warming signal) and reduce internal variability and model
uncertainty. All indicate that the SDAP (India) has a higher frequency of occurrence of large and
positive (negative) PBLH trends than the entire study domain. We also calculate the PDF to
demonstrate the ensemble spread of PBLHmean trend among the ensemble members in the ERAS
(Fig. 5a) and CMIP6 models (Figs. 5b-5d). The uncertainty associated with initial conditions,

observations, SSTs, and model physical parametrizations in the ERAS5-ensemble is small, and so
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all ensembles exhibit similar features to the ERAS5S-EM. The CMIP6 models exhibit large inter-
model differences, but most models demonstrate a higher frequency of occurrence of increasing

(decreasing) PBLH over the SDAP (India) than the entire study domain.

Figures 1-5 illustrate the PBLHmean climatology and trends at the grid box level. To focus on the
large-scale features, Table 3 lists the climatology (m) and trend (m/decade) of regional mean
PBLHmean for the reanalysis and CMIP6 datasets averaged over the entire study domain (60°S-
60°N), SDAP, and India. The MERRA-2 has substantially larger climatological values, 966.9
(60°S-60°N), 1453.2 (SDAP), and 1265.2 (India) meters than the other 6 datasets, which range
from 536.8-717.2, 691.3-843.2, and 594.4-761.7 meters, respectively. All datasets show consistent
and significant trends, positively in the SDAP and negatively in India, and the resulting trends
estimated using the M-K and OLS are very similar. Like the climatology, the MERRA2 has much
larger trends than the other datasets. For the region between 60°S-60°N, only the two ERAS
reanalyses and one of the CMIP6 data show statistically significant upward trends. The lack of
significant trend over the entire domain in the two MERRA-2 reanalyses is a result of smoothing

the spatially heterogeneous trends (Figs. 2b and 2d).

3.2. Comparisons with radiosonde observations at daytime

The above results show the PBLHmean changes for the gridded reanalysis and CMIP6 datasets.
Over land, the PBLH has a strong diurnal cycle. It is typically shallow and stable at night because
of longwave radiative cooling but grows deep and unstable at daytime because of solar heating
(Stull, 1988; Liu and Liang, 2010). Next, we use three compositing methods to validate the

reanalysis results against the radiosonde measurements but focus on the daytime PBLH for two
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reasons. First, most PBLH changes are expected to occur at daytime due to solar heating (Seidel
et al., 2012; Chan and Wood, 2013; Brahmanandam et al., 2020). Second, the PBLH is more
difficult to quantify and have larger uncertainty for the stable than unstable regime and so is better
estimated at daytime in terms of quality by current methods using radiosonde, reanalysis and GCM

data (e.g., Seidel et al., 2012).

First, we compare the observed MMLH and reanalysis PBLHmax (termed the compositing method
A) which represents the daytime maximum PBLH and is used to approximate the MMLH
estimated from the radiosonde observations. Note that temporal sampling may differ largely
between these two datasets over some regions (section 2.1.1). Figure 6a shows the spatial patterns
of MMLH trends estimated from the IGRA2-MMLH. Among the 147 stations between 60°S-
60°N, 29.9% (8.2%) have a statistically significant increasing (decreasing) trend at the 5% level.
In particular, the radiosonde data do exhibit coherent and large-scale spatial patterns of increasing
trends over the SDAP. Similar increasing (decreasing) trends are also seen over Europe (India),
consistent with previous observational studies (Zhang et al., 2013; Li et al., 2020). Figures 7a and
7b show the scatter plot of the MMLH trends and corresponding reanalysis PBLHmax trends for 63
stations that have a statistically significant trend (p<0.1) in the IGRA2-MMLH. Evidently, the
MMLH has much more stations with increasing trends than those with decreasing trends and it has
much larger trends than the reanalyses. Its correlation R is 0.12 (P=0.35) with the ERAS and 0.38
(p<0.01) with the MERRA-2, indicating the similar sign for most trends but large differences in
the magnitude. This weak correlation is partially expected considering the sampling issue
mentioned previously. However, at the regional scale, the MMHL could be useful over the SDAP

where the sampling issue is minor (see more results later)
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Second, we composite the PBLHoo and PBLH1> trends from the IGRA2-RI to better match the
reanalysis and observations and to avoid the above temporal sampling issue. The daytime
radiosonde trend is chosen from one of the two IGRA2-RI trends at 00 and 12 UTC (e.g., PBLHoo
and PBLHi2) whose climatological PBLH is larger (termed the compositing method B). The
reanalysis daytime trend is determined from the chosen UTC accordingly. Figure 6b shows the
spatial patterns of daytime PBLH trends estimated from the IGRA2-RI. Among the 192 stations
between 60°S-60°N, 60.9% (4.7%) have a statistically significant increasing (decreasing) trend at
the 5% level. The radiosonde data exhibit a much higher percentage of positive trends than Fig. 6a
and also increasing trends over the dry Arabian Peninsula and Europe, similar to Fig 6a. Figures
7¢ and 7d show the scatter plot of the observed and reanalysis daytime PBLH trend for 133 stations
with a statistically significant trend at the 10% level in the IGRA2-RI. The correlation R is 0.47
(p<0.01) for the ERAS and 0.50 (p<0.01) for the MERRA-2, much stronger than the R values in

Figs. 7a and 7b.

Third, we composite the PBLHoo and PBLH;> trends from the IGRA2-RI to match the reanalysis
and observations following the same logic in the compositing method B. The daytime radiosonde
trend is chosen from one of the two IGRA2-RI trends (e.g., PBLHoo and PBLH») based on the
local solar time as done in Wang and Wang (2016), and the reanalysis daytime data is chosen
accordingly (termed the compositing method C). The spatial patterns of observed daytime PBLH
trends and their percentages of the observed significant trends (Fig. 6¢) and the scatter plot between
observed and reanalyzed (Figs. 7e and 7f) show similar results to the compositing method B (Figs.

6b, 7c and 7d).
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Next, we validate the two reanalysis results against the observations from available radiosonde
stations at the regional scale as it is essential that the reanalyses can at least capture the major
PBLH features observed over the SDAP and India where consistent trends are identified in section
3.1. The focus is on the station mean variability instead of individual stations to maximize large-
scale patterns and minimize local influences. The daytime PBLHs for the reanalysis and
radiosonde data are compared for the compositing method A and B. The compositing method C is

not shown due to its similarity to the compositing method B.

Figures 8a and 8c show the station mean interannual variations in observed MMLH and reanalysis
PBLHmax anomalies (i.e., the compositing method A) from 5 stations over the SDAP. The PBLH
exhibits a persistent and statistically significant (p<0.01) upward trend and shares similar
interannual variability in the observed and reanalyzed data. The increasing trend is 98.4 m/decade
for the observations, 31.2 m/decade for the ERAS, and 18.7 m/decade for the MERRA-2. Although
underestimating the observed trend, the reanalysis PBLH shows a statistically positive correlation
with the observed PBLH, with R=0.76 (p<0.01) in the ERAS5, and 0.69 (p<0.01) in the MERRA-
2. These results indicate that the observed long-term trend and interannual variability in daily
MMLH are generally captured by the reanalyses reasonably well over the SDAP and the ERAS is
closer to the observations than the MERRA-2. Figures 8b and 8d are similar to Figs 8a and 8c but
from 9 stations in India. The reanalysis PBLH exhibits a significant decreasing trend (p<0.01)
while the observed data show negative but insignificant trends. In particular, the observed PBLH
exhibits opposite trends between the first and last 20 years. It correlates significantly with the

ERAS (R=0.53, p<0.01) but insignificantly with the MERRA-2 (R=-0.10, p=0.59). It is well
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documented that Indian radiosonde data contain large inhomogeneities due to frequent instrument
changes and other causes (e.g., Lanzante et al. 2003; Thorne et al. 2005; Zhou et a., 2020), which
may help to explain the opposite trends and the poor correlation. In addition, the PBLH over the
Indian subcontinent is characterized by complex topography and heterogeneous land surface,
coupled with the Indian monsoon and various soil-vegetation-atmosphere interactions (e.g.,
Sathyanadh et al., 2017). This complex along with the data quality issues result in low confidence
even in homogenized datasets because of the very poor quality and abnormally large variances in

the raw data (Zhou et a., 2020).

Figure 9 shows the station mean interannual variations in the observed and reanalysis daytime
PBLH anomalies (i.e., the compositing method B, Figs. 6b, 7c and 7d) from 5 stations available
over the Arabian Peninsula and 1 station available in India from the IGRA2-RI. Again, significant
increasing trends and strong correlations are evident in the dry Arabian Peninsula (R=0.72-0.76,
p<0.01), while weak and insignificant correlations are seen in India, where missing data is evident

in the radiosonde measurements.

We need to realize that the radiosonde data are point measurements, while the reanalysis values
are averaged over a grid box at a much coarser resolution (Chan and Wood, 2013). It is difficult
for the reanalysis data to match the observed PBLH trend that is localized in space and time. Also,
radiosonde profiles are measured twice a day at specified synoptic times (00 and 12 UTC), have
missing data over many stations, and are often insufficient in vertical resolution for most data,
which can create large fluctuations in PBLH estimate (Liu and Liang, 2010). Atmospheric

reanalyses produced at various institutes have substantially improved in quality as a result of better
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models, better input data, and better assimilation methods (Dee et al., 2011). Despite much
progress made in reducing uncertainties in assimilating various types of observations, current
reanalysis data still suffer from artifacts largely due to the global observing system changes and
cannot well represent near-surface variables such as surface energy flux and moisture, which could
produce complications on climate studies, especially regarding low-frequency trends at regional
scales (Robertson et al., 2014; Gelaro et al., 2017; Bosilovich et al., 2017). Hence, large differences
in PBLH trends between observed and reanalyzed exist at local to regional scales. Nevertheless,
the reanalysis PBLHs reproduces the observed trend and interannual variability over the SDAP,

while differ from observations over India due to radiosonde data quality issues.

3.3. Statistical relationships between PBLH and related variables

Previous studies have documented that changes in PBLH are strongly correlated with changes in
surface sensible heat, temperature, and RH (Zhang et al., 2013; Zhao et al., 2017; Darand and
Zandkarimi, 2019; Li et al., 2020). Here we perform similar statistical analyses between PBLH

and several key PBLH related variables using the two high-resolution reanalysis datasets.

Figure 10 shows the scatter plots between the trends in daily maximum PBLH, SHFX, Ts and
RHom for the ERAS (left panels) and MERRA-2 (right panels). Only the grid boxes with a
statistically significant trend in PBLH (p<0.05) over land between 60°N-60°S are included. As
expected from theory, the PBLH trend is positively correlated with the trend in SHFX and Ts, and
negatively correlated with the trend in RHom. For example, R 1s 0.77 with SHFX, 0.69 with Ts, and
-0.72 with RHom for the 7590 grid boxes in the ERAS, and the corresponding value is 0.85, 0.91

and -0.91 for the 4696 grid boxes in the MERRA-2. Considering the large sample size, the R values

27



623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

are extremely strong and all statistically significant (p<0.001), indicating a strong spatial coupling

between the paired trends.

To further examine the above relationships, we also calculate the correlation for three temporally
averaged PBLHs (daily maximum, daily minimum, and daily mean) and consider more PBL
related variables. Table 4 lists the R values for SHFX, LHFX, LCL, Ts, Tom, Tdom (g2m), and RHom
using both the M-K and OLS methods. Evidently, PBLH trends are correlated positively with the
trends in variables related to surface heating (SHFX, Tom, and Ts), and negatively with the trends
in variables related to surface moisture (LHFX, Td2m, g2m, and RH2m). Note that changes in LCL
are related to both surface heating and humidity as lower surface RH (i.e., warmer and/or drier air)
results in higher LCL (and PBLH as well). The correlation between PBLH and LCL is negative in
the ERAS as the LCL is expressed as the pressure (hPa), not the height (m) at the LCL that is used
in other datasets. Overall, the R values are extremely strong and all statistically significant
(p<0.001) for the daily maximum and daily mean PBLH considering the large sample size. For
example, the 28 R values for the daily maximum PBLH range between 0.50 and 0.92, with 21 of
them exceeding 0.70. In general, the R values are comparable for the daily maximum and daily
mean PBLH, but are much weaker for the daily minimum PBLH at nighttime. Interestingly, the

correlations are much stronger in the MERRA-2 than the ERA-5S.

Figure 11 shows the regional mean interannual variations in daily mean PBLH, SHFX, Ts, and
RHon for the ERAS (left panels) and MERRA-2 (right panels) averaged over the entire study
domain (60°S-60°N). The PBLH shows long-term upward trends consistent with the increase in

sensible heat and surface warming and the decrease in RH>, with time. At the interannual scale,
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the PBLH is correlated positively and significantly with SHFX (R=0.96) and Ts (R=0.88) and
negatively with RHom. (R=-0.96) in the ERAS. The correlations in the MERRA-2 data are similar
but slightly weaker. Unlike the persistent increasing trend in the ERAS, the MERRA-2 PBLH

exhibits an increasing trend from 1980 to 2002 but a downward trend thereafter.

Figures 12 is similar to Fig. 11 but for the SDAP. Again, the PBLH shows positive trends
consistent with the increase in sensible heat and surface warming and the decrease in RHo, with
time. At the interannual scale, the PBLH correlates positively and significantly with SHFX
(R=0.75) and Ts (0.75) and negatively with RH2, (R=-0.32) in the ERAS and the correlations are
slightly weaker in the MERRA-2. The weak correlation with RHom is expected given the limited
moisture availability over the deserts. Figures 13 is similar to Fig. 11 but for the India. In contrast
to the SDAP, the PBLH shows negative trends consistent with decreasing SFHX and Ts and
increasing RHom. At the interannual scale, the PBLH correlates positively and significantly with
SHFX (R=0.82) and Ts (0.28) and negatively with RHan (R=-0.92) in the ERAS and the
correlations are slightly weaker in the MERRA-2. The weak and insignificant R values with T; are

expected given increasing moisture availability (and thus latent heat) over India.

Besides the results for PBLHmean shown in Figs 11-13, we also calculate the correlation for
PBLHmax and PBLHmin and consider more PBL related variables. Table 5 lists the R values for
SHFX, LHFX, Ts, Tom, and RHom. Evidently, PBLH is correlated positively and mostly
significantly with the variables related to surface heating (SHFX, Tom, and Ts), and negatively with
the variables related to surface moisture (LHFX and RHm). Overall, the R value is extremely

strong and all statistically significant (p<0.001) for PBLHmax at daytime and PBLHmean, while the
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R value is much weaker for PBLHmin at nighttime, consistent with the R values for the trends
(Table 4). Note that the global mean time series (60°S-60°N) is mostly determined by large-scale
external forcing and so has a much larger R value than the regional mean time series (e.g., SDAP

and India) that is also affected by local to regional factors (e.g., clouds and SSTs).

3.4. Physical explanations for PBLH trends

The Earth is mainly warmed bottom up, as most solar radiation is absorbed at the surface and this
energy is transmitted to the rest of the atmosphere through PBL processes. There exists a high
level of complexity and heterogeneity of various factors in controlling the PBLH changes at
multiple spatial and temporal scales under different surface and atmospheric conditions (Stull
1988). Inherently, the PBLH is particularly sensitive to soil moisture, vegetation, and terrain
(Talbot et al., 2007; Liu and Liang, 2010; Seidel et al., 2012; Zhang et al., 2013; Lee and De
Wekker, 2016; Wei et al., 2017a; Sathyanadh et al., 2017), and thus exhibits a far more
heterogeneous picture than other variables such as temperature (e.g., Donat et al., 2014). For
example, soil moisture determines the partitioning of net radiation between sensible and latent heat
and thus the PBLH; its temporal change can significantly modify the PBLH from daily to
interannual time scales and its spatial change can largely determine the spatial heterogeneity in
PBLH (Guo et al., 2007; Lee and De Wekker, 2016). The spatiotemporal variations in these surface
conditions can substantially affect both the magnitude and sometimes the sign of the PBLH trends

at local to regional scales.
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There exists a wide range of complexity and uncertainty in PBLH estimates among different
datasets and methods. PBLH is one key measure of the strength of the PBL processes but lacks a
unified definition. Hence a variety of methods have been used to estimate the PBLH, and different
methods can produce substantially different values, even for the same atmospheric profile (e.g.,
Seidel et al., 2010; McGrath-Spangler and Molod, 2014). The radiosonde-based PBLH estimates
have limited spatial and temporal coverage and suffer from inhomogeneities (Thorne et al., 2011;
Haimberger et al., 2012). The reanalysis PBLH is a model-based estimate and so is prone to model
deficiencies (e.g., McGrath-Spangler and Molod, 2014; McGrath-Spangler et al., 2015; Wei et al.,
2017a; Zhou, 2020) and artifacts and non-physical trends largely due to the global observing
system changes (e.g., Dee et al., 2011; Robertson et al., 2014; Gelaro et al., 2017; Bosilovich et
al., 2017). It has been well documented that current weather and climate models have difficulties
and large uncertainties in accurately representing key PBL processes (Garcia-Carreras et al. 2013;

Holtslag et al. 2013; Wei et al., 2017b; Ao et al., 2017).

Our results show a large spread in the magnitude and sign of PBLH trends among different datasets
over many regions. This is not surprising at the global scale considering the difficulty and
uncertainty in estimating PBLH and the complexity and heterogeneity of PBLH changes discussed
above. Thus, it is challenging and somewhat impossible to validate the global long-term PBLH
trends in the reanalysis and GCM datasets using radiosonde observations with limited spatial and
temporal coverage. In order to synthesize the differences and cope with the uncertainties, we use
a multi-data synthesis approach from an ensemble of different datasets to identify large-scale
regions where the change signal is considered to be robust and consistent by considering both the

sign and statistical significance of the trends by all datasets (Power et al., 2012; Dosio et al., 2019).
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We assume that the PBLH estimate methods are based on well-established physical principles and
so are more likely to reach a consensus on the direction (or sign), than the magnitude, of the

change.

Our results indicate strong spatial coupling in the long-term trends between PBLH and surface
heating and moisture variables, particularly in the daytime. Over land, the PBLH growth is driven
mainly by surface heating and static stability (Chan and Wood, 2013; Lee and De Wekker; 2016;
Ao et al., 2017; Brahmanandam et al., 2020). Warmer and drier surfaces result in greater sensible
heat flux and PBLH, and so PBLH is strongly correlated with changes in near-surface sensible
heat, temperature, and RH (Zhang et al., 2013; Darand and Zandkarimi, 2019; Li et al., 2020). Our
statistical analyses (Table 4, Fig. 10) show significant correlations in the long-term trend,
positively between PBLH and variables related to surface heating (SHFX, Tom, and Ts), and
negatively between PBLH and variables related to surface moisture (LHFX, Td2m, g2m, and RHo).
These correlations are stronger at daytime than nighttime because of the close daytime coupling
between PBLH and solar heating (e.g., Liu and Liang, 2010; Zhang et al. 2013; Lee and De
Wekker, 2016). Our reported relationships are consistent with previous studies (Zhang et al. 2013;

Chan and Wood, 2013; Darand and Zandkarimi, 2019).

Our results highlight a consensus on increasing PBLH trends among different datasets over the
SDAP. The SDAP is among the driest and hottest regions on Earth and has limited soil moisture,
vegetation, and cloudiness. As discussed previously, surface heating via sensible heat is
documented as the dominant driver in determining the convective PBLH growth over arid areas

because of limited availability of surface moisture. It is well known that drier regions with less soil
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moisture and vegetation are associated with higher Bowen ratios and tend to experience larger
warming rates due to more sensible heat flux and less local evaporative cooling (Zhou et al. 2007,
2009; 2010). Increased downwelling longwave radiation (DLR) associated with large-scale
warming and moistening in response to increasing GHGs has been identified as the primary surface
radiative forcing for the amplified surface warming associated with DA over the SDAP (Zhou et
al., 2015; 2016; Cook and Vizy 2015; Zhou 2016; Evan et al., 2017; Wei et al., 2017b). This
positive radiative forcing is converted mainly into sensible heat over the dry deserts, which

enhances surface heating and deepens PBLH via elevated turbulent mixing in the PBL.

Our results also highlight a consensus on decreasing PBLH trends among different datasets over
the Indian subcontinent. Indian monsoon precipitation has intensified over the past three decades,
while drying trends are seen over the SDAP (e.g., Wang et al., 2012; Jin et al., 2014). This is
consistent with the well-coupled monsoon-desert mechanism (e.g., Rodwell and Hoskins, 1996;
Sun et al., 2019; Kim et al., 2019) and with GCM-based prediction of intensified monsoon in a
warming climate (e.g., Chen et al., 2020; Wang et al., 2020). For example, Hoskins (1996)
proposed that the drying trend in the arid regions resulted from the increased descent produced by
the monsoon heating-induced Rossby waves that interact with subtropical westerly flows. The
contrast changes in PBLH and T>m between the SDAP and India seem to support this monsoon-
desert coupling. In addition, our results in Fig. 13 and Table 4 also show close connections in the
trend and interannual variation between PBLH and near-surface moisture variables (e.g., RHom
and latent heat) over India, resonating with intensified monsoon precipitation. The reanalysis

results in India, however, cannot be validated using reliable radiosonde observations.

33



760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Our results suggest that the reanalysis PBLH estimate might be more reliable in the ERAS than
the MERRA-2. The reanalysis PBLH is estimated based on the Ri method in the ERAS and the
total eddy diffusion coefficient of heat in the MERRA-2 (e.g., McGrath-Spangler and Molod 2014;
Davy and Esau, 2014). Among various methods used to estimate the PBLH, the algorithms based
on the Ri method were proved to be most suitable for application to large radiosonde, reanalysis,
and GCM data sets (Seidel et al., 2012; McGrath-Spangler and Molod, 2014). Our PBLH estimates
using the Ri method from the MERRA-2-RI is much smaller than the PBLHs from the MERRA-
2 and comparable to the ERAS estimate. Also, systematic biases were documented in the MERRA-
2 PBLH, particularly at nighttime (e.g., McGrath-Spangler and Molod, 2014; Svensson and
Lindvall 2015; Dang et al., 2016; Davy, 2018; Zhou, 2020). Furthermore, our validations using
the radiosonde data show the ERAS PBLH is closer to the observations than the MERRA-2. If this

is the case, rising PBLH is likely more widespread spatially than that seen in the MERRA-2.

Our results indicate large discrepancies among different PBLH datasets, which are likely due to
the differences in spatial resolution (point measurements versus coarse-resolution grid averaged
data), observational uncertainties, and deficiencies in modeling the surface radiative forcing,
surface energy partitioning, and PBL mixing. The land surface and PBL change in response to
external forcings are a result of complex interactions among the atmosphere, PBL and land surface.
Considering the complexity of turbulent mixing and the challenges in observing and modeling the
PBL processes, it is very challenging to attribute the differences among different PBLH datasets
in the fully coupled land-atmosphere system. For example, the systematic underestimated diurnal
range in the PBLH and surface air temperature has been a long-standing issue in reanalysis and

numerical models (e.g., Wei et al., 2017a; 2017b; Du et al., 2018; Davy, 2018). As the focus of
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the present study is the detection of convergent PBLH trends, further attribution of these

differences is beyond the scope of this paper and will be explored in future studies.

4. Conclusions

This paper examines the large-scale patterns of long-term PBLH trends over land between 60°S
and 60°N. Different nine types of datasets consisting of radiosonde observations, reanalysis
products and climate model simulations are evaluated over the satellite era for the period 1979-
2019. To synthesize the differences and cope with the uncertainties among different PBLH
estimates, a multi-data synthesis approach is used to make inferences on the robustness and
consensus of the long-term trends across different datasets. The emphasis is more on the sign and
significance of the trend and less on the magnitude. We identify large-scale regions where all
datasets (or 100%) show a statistically significant trend (p<0.05) and agree on the sign of trends,
to increase our confidence in the obtained results. The testable hypothesis is that the global
warming signal is manifest most in terms of the spatial extent of PBLH change over the SDAP
where the amplified surface warming associated with DA enhances turbulent mixing and thus raise
the PBLH height. Despite methodological uncertainties and data limitations, the main findings of

this study are summarized as follows:

1. Large differences in long-term PBLH trends among different datasets are found over many
regions — expressed in different magnitudes and/or signs of trends. This spread reflects the
difficulty and uncertainty in estimating PBLH and the complexity and heterogeneity of various

factors in controlling the PBLH changes under different surface and atmospheric conditions.
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2. There is strong spatial coupling in the long-term trends between PBLH and related key variables,
particularly in the daytime. There are statistically significant correlations in the trends, positively
between PBLH and variables related to surface heating and negatively between PBLH and
variables related to surface moisture. The reported relationships are consistent with theory and

previous findings in the literature.

3. Different reanalysis and GCM datasets indicate consistently coherent and large-scale spatial
patterns of rising PBLH over the enormous SDAP and declining PBLH in India. Consistent PBLH
trends also exist in other regions but are much smaller in spatial extent than the SDAP and in a
subset of the nine datasets used. The radiosonde data exhibit similar spatial features of increasing
PBLH over the SDAP and the reanalysis data generally capture the observed regional mean long-
term trend and interannual variability in PBLH reasonably well over the deserts. The PBLH

changes over India cannot be validated due to lack of good-quality radiosonde observations.

4. One robust signal across all datasets reveals a consensus on increasing (decreasing) PBLH trends
over the SDAP (India). The ensemble distribution of reanalysis and GCM PBLH trends indicates
a greater coherence and a higher frequency of occurrence of rising (declining) trends over the
SDAP (India) than any other regions. The rising PBLH is in good agreement with amplified surface
warming associated with DA, decreasing RH, and increasing sensible heat over the SDAP, while
the declining PBLH is consistent with increasing RH and latent heat and decreasing sensible heat

in India in the reanalysis data.
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To the best of our knowledge, this work is the very first study to identify the large-scale patterns
of long-term PBLH trends in a warming climate among different datasets and establish their
relationships with several key PBLH related variables at the global scale. Climate models predict
consistently that DA will accelerate over the arid and semi-arid regions in the context of global
warming (Zhou et al., 2016; Zhou, 2016). Along with this amplified surface heating, the PBLH is
expected to rise continuously over the SDAP. The PBLH represents how deep the free atmosphere
is directly influenced by the Earth’s surface and responds to surface impacts. Rising PBLH
indicates deeper impacts of warming deserts on the free atmosphere. This finding has important
implications as the Sahara and Arabian deserts are considered to be a hotspot in terms of climate
change and impacts from regional to global scales through the influence of Saharan dust and
atmospheric circulation (Knippertz and Todd, 2012; Vizy and Cook, 2017; Thomas and Nigam,

2018).

Data Availability Statement. All the observational, reanalysis and climate model datasets are

publicly available.
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Table 1. List of 74 CMIP6 AMIP and HIST simulations from 27 models used in this study

Number of realizations used?®

Organization Model CMIP6- CMIP6- CMIP6-
AMIP HIST HIST-RI
Canadian Climate Centre for Modelling and 3 3
Analysis, Canada CanESM5
Canadian Climate Centre for Modelling and 3
Analysis, Canada CanESMS5-CanOE
National Center for Atmospheric Research, USA CESM2 3 3
National Center for Atmospheric Research, USA CESM2-FV2 3 3
National Center for Atmospheric Research, USA CESM2-WACCM 3 3
National Center for Atmospheric Research, USA | CESM2-WACCM-FV2 3 3
Centro Euro-Mediterraneo per I Cambiamenti 1
Climatici, Europe CMCC-CM2-SR5
Centre National de Recherches 1
Météorologiques, France CNRM-CM6-1
Centre National de Recherches 1
Météorologiques, France CNRM-ESM2-1
NOAA/Geophysical Fluid Dynamics 1 1
Laboratory, USA GFDL-CM4
NOAA/Geophysical Fluid Dynamics 1
Laboratory, USA GFDL-ESM4
NASA/Goddard Institute for Space Studies, 3 3
USA GISS-E2-1-G
NASA/Goddard Institute for Space Studies, 3
USA GISS-E2-1-H
NASA/Goddard Institute for Space Studies, 3
USA GISS-E2-2-G
Institute for Numerical Mathematics, Russian INM-CM4-8 1 1
Academy of Science, Russia INM-CM5-0 1 3
JAMSTEC/AORI/University of Tokyo/NIES, 1
Japan MIROC6
JAMSTEC/AORI/University of Tokyo/NIES, 1
Japan MIROC-ES2L
Max Planck Institute for Meteorology, Germany MPI-ESM-1-2-HAM 1
Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR 1
Max Planck Institute for Meteorology, Germany MPI-ESM1-2-LR 1
Meteorological Research Institute, Japan MRI-ESM2-0 1
Norwegian Climate Center, Norway NorESM2-LM 1 3 1
Norwegian Climate Center, Norway NorESM2-MM 1 1
Seoul National University, Seoul, Korea SAMO-UNICON 1
Research Center for Environmental Changes, 1 1
Academia Sinica, Taiwan TaiESM1
Met Office Hadley Centre, UK UKESMI-0-LL 1
Total models/simulations 12/26 15/35 13/13

Note: ?To assess internal variability, some models provide an ensemble of realizations with different initial conditions.
For the models with more than 3 realizations, only the first three realizations were obtained for each model. For the
CMIP6-AMIP and CMIP6-HIST, the available models with PBLH output at the time of analysis were chosen. For
CMIP6-HIST-RI, only the first realization for a subset of CMIP6 models for which data were available on the model-

level grid and the output frequency needed was chosen to estimate the PBLH as detailed in Davy (2018).
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Table 2. List of variable and method used to estimate the PBLH for the nine datasets used in this

study

Dataset acronym | Variable used PBLH estimate method Time

period

IGRA2-MMLH | Daily atmospheric profiles (pressure, The parcel method (Holzworth, | 1979-
temperature and dewpoint) at 00 and 12 UTC 1964) to estimate MMLH as 2018
from the IGRA2 and 3-hourly surface detailed in Li et al. (2020)
measurements (pressure, temperature and
dewpoint) from the NOAA’s NCDC

IGRA2-RI Daily atmospheric and near surface virtual The bulk Richardson number 1979-
potential temperature, geopotential height, and method with a critical value of | 2019
wind speed at 00 and 12 UTC from the IGRA2 0.25 following Seidel et al.
sounding-derived parameters from the NCDC (2012) and Zhang et al. (2013)

ERA5S Monthly mean of hourly mean PBLH provided The bulk Richardson number 1979-

ERAS-ensemble | by the reanalysis method with a critical value of | 2019

0.25 (C3S, 2017)

MERRA-2 Monthly mean of hourly mean PBLH provided The total eddy diffusion 1980-

by the reanalysis coefficient of heat with a 2019
threshold value of 2 m?s™!
(Salmun et al., 2018)

MERRA-2-RI 6-hourly 3-d atmospheric instantaneous and The bulk Richardson number 1980-
hourly averaged 2-d near-surface fields for air method with a critical value of | 2019
temperature, humidity, geopotential height, and | 0.25 following Seidel et al.
wind speed from the MERRA-2 output (GMAO; | (2012) and Zhang et al. (2013)
2015a; 2015b; 2015c¢; 2015d)

CMIP6-AMIP Monthly mean of daily mean PBLH provided by | Different PBL schemes and 1979-

CMIP6-HIST available models for the CMIP6 AMIP and vertical resolution in different 2014
HIST simulations (Table 1) models (e.g., Svensson and

Lindvall, 2015)

CMIP6-HIST-RI | 6-hourly 3-d atmospheric and 3-hourly 2-d near- | The bulk Richardson number 1979-

surface instantaneous fields for air temperature, | method with a critical value of | 2014

humidity, geopotential height, and wind speed
from the CMIP6 HIST simulations (Table 1)

0.25 as detailed in Davy (2018)
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1136  Table 3: Climatology (m) and trend (m/decade) of regional mean PBLHmean for the reanalysis
1137  and CMIP6 datasets used in this study

1138
Dataset Type 60°S-60°N SDAP India
ERAS Climatology 589.48 723.05 594.44
MERRA2 Climatology 966.91 1453.36 1265.16
ERA5-EM Climatology 599.48 737.25 599.98
MERRA2-RI Climatology 536.83 691.25 75743
CMIP6-AMIP-MEM Climatology 704.32 843.21 757.08
CMIP6-HIST-MEM Climatology 668.44 776.98 761.7
CMIP6-HIST-RI-MEM Climatology 717.19 754.27 751.73
ERAS OLS 7.59 14.51 -8.52
MERRA2 OLS 1.45 27.74 -25.7
ERAS5-EM OLS 7.66 16.43 -7.02
MERRA2-RI OLS 0.25 8.71 -19.17
CMIP6-AMIP-MEM OLS 0.51 3.26 -7.02
CMIP6-HIST-MEM OLS 0.22 1.82 -9.83
CMIP6-HIST-RI-MEM OLS 0.48 3.03 -12.33
ERAS M-K 7.62 14.69 -9.02
MERRA2 M-K 0.28 26.92 -27.78
ERA5-EM M-K 7.73 16.77 -7.65
MERRA2-RI M-K 0.09 8.83 -22.62
CMIP6-AMIP-MEM M-K 0.46 3.29 -6.47
CMIP6-HIST-MEM M-K 0.07 1.79 -9.83
CMIP6-HIST-RI-MEM M-K 0.42 2.86 -12.87

1139  Note: Column 2 (type): climatology - the climatology of regional mean PBLHnean, OLS and M-K - two methods used
1140 to calculate the trend and its significance. Regional averaging is applied to the land grid boxes between 60°S and
1141  60°N, SDAP (18°N-31°N, 5°W-50°E) and India (17°N-34°N, 68°E-96°E), depicted as the two rectangle boxes in Fig.
1142 3c.
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Table 4: Spatial correlations in annual mean trends between PBLH and related variables for the
two reanalysis (ERAS and MERRA-2) datasets

ERAS
Method PBLH N SHFX | LHFX | PLCL | Ts Tom | Tdam | RHom
OLS PBLHmean 7137 0.76 -0.52 | -0.73 | 0.61 | 0.51 | -0.50 | -0.73
OLS PBLHmax 7693 0.77 -064 | -0.74 | 0.70 | 0.51 | -0.57 | -0.73
OLS PBLHmin 4580 0.13 0.43 -0.16 | 0.04 | -0.0/ | -0.16 | -0.15
M-K PBLHmean 7018 0.76 -0.51 -0.72 | 0.60 | 0.51 | -0.49 | -0.72
M-K PBLHmax 7590 0.77 -0.63 | -0.74 | 0.69 | 0.50 | -0.57 | -0.72
M-K PBLHmin 4415 0.12 0.43 -0.16 | 004 | 0.00 | -0.15 | -0.15
MERRA-2
Method PBLH N SHFX | LHFX | ZLCL | Ts Tom qom | RHom
OLS PBLHmean 5609 0.65 -0.59 0.79 | 0.80 | 0.79 | -0.68 | -0.76
OLS PBLH ax 4857 0.86 -0.76 092 | 091 | 091 | -0.90 | -0.92
OLS PBLH i 6374 0.18 -0.08 044 | 055 | 055 | -0.17 | -0.39
M-K PBLHmean 5443 0.63 -0.57 0.76 | 0.77 | 0.76 | -0.66 | -0.74
M-K PBLH ax 4696 0.85 -0.74 090 | 091 | 090 | -0.89 | -0.91
M-K PBLH i 5991 0.16 -0.05 043 [ 052 | 052 | -0.18 | -0.38

Note: Column 1 (Method): Two methods (OLS and M-K) are used to calculate the trend (per decade) and its
significance; Column 2 (PBLH): PBLHmcan — daily mean of 24 hourly PBLH values, PBLH . — daytime mean
of five hours with maximum climatological PBL values, PBLHmin — nighttime mean of five hours with
minimum climatological PBL values; Column 3 (N): the number of grid boxes (N) with a statically significant
trend in PBLH (p<0.05) over land between 60°S and 60°N; Columns 4-10 (the corresponding PBLH related
surface variables): SHFX — sensible heat flux (W/m?), LHFX — latent heat flux (W/m?), PLCL — the pressure
at lifting condensation level (hPa), ZLCL — the height at lifting condensation level (m), Ts — surface skin
temperature (K), Tom — 2m surface air temperature (K), Tdom — 2m surface dew point temperature (K), qom —
2m surface specific humidity (g/kg), RHam — 2m surface relative humidity (%). All correlation coefficients in
bold except 2 italicized are statistically significant at the 1% level based on a two-tailed student’s # test due to
the large size of data samples (N).
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1157  Table 5: Temporal correlations in regional mean annual anomaly time series between PBLH and
1158  related variables for the two reanalysis (ERAS and MERRA-2) datasets during the period 1979-
1159 2019

1160
ERAS
Region PBLH N SHFX LHFX Ts Tom RHom
60°S-60°N PBLHmean 41 0.96 -0.21 0.88 0.88 -0.96
60°S-60°N PBLHnax 41 0.98 -0.75 0.88 0.87 -0.98
60°S-60°N PBLHnin 41 0.58 0.79 0.80 0.82 -0.67
SDAP PBLHmean 41 0.75 0.04 0.75 0.75 -0.32
SDAP PBLHmax 41 0.55 -0.15 0.67 0.68 -0.27
SDAP PBLHmin 41 -0.02 0.61 0.57 0.54 -0.19
India PBLHmean 41 0.82 -0.70 0.28 -0.03 -0.92
India PBLH pmax 41 0.86 -0.61 0.65 0.16 -0.93
India PBLHuin 41 -0.62 0.00 -0.13 -0.25 -0.44
MERRA-2
Region PBLH N SHFX LHFX Ts Tom RHom
60°S-60°N PBLH nean 40 0.81 -0.67 0.38 0.35 -0.88
60°S-60°N PBLHmax 40 0.91 -0.69 0.51 0.42 -0.95
60°S-60°N PBLHnin 40 0.14 0.10 0.47 0.47 -0.59
SDAP PBLHmean 40 0.43 -0.54 0.64 0.62 -0.38
SDAP PBLHmax 40 0.48 -0.56 0.63 0.59 -0.34
SDAP PBLHmin 40 0.02 -0.42 0.72 0.71 -0.41
India PBLHmean 40 0.88 -0.80 0.24 0.08 -0.86
India PBLHmax 40 0.95 -0.88 0.75 0.57 -0.95
India PBLHnin 40 0.00 -0.04 -0.20 -0.19 -0.03
1161 Note: All variables are defined in Tables 3 and 4. Correlation coefficients in bold are statistically significant
1162 at the 5% level based on the two-tailed student’s ¢ test.
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ERAS PBLH Climatology (1973-2019) (Min=134.4, Max=1209.1, Mean= 585.1, STD= 155.1) MERRA-2 PBLH Climatology (1980-2019) (Min=335.0, Max=2229.6, Mean= 937.5, STD= 336.8)
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ERAS-EM PBLH Climatology (1979-2019) (Min=141.8, Max=1222.4, Mean= 585.0, STD= 158.4) MERRA-2-RI PBLH Climatology (1980-2018) (Min= 15.4, Max=1452.5, Mean= 512.2, STD= 233.6)

© W0 M0 300 40 S0 60 700 B0 B0 1003 1100

CMIPS-HIST-MEM PBLH Climatology (1879-2014) (Min=346.7, Max=1022.8, Mean= 657 2, STD= 122.4)

Fig 1. Spatial patterns of climatological PBLHmean (m) from the seven reanalysis and CMIP6
datasets at 1° x 1° resolution: (a) ERAS (1979-2019), (b) MERRA-2 (1980-2019), (c) ERAS-
EM (1980-2019), (d) MERRA-2-RI (1980-2019), () CMIP6-AMIP-MEM (1979-2014), (f)
CMIP6-HIST-MEM (1979-2014), and (g) CMIP6-HIST-RI-MEM (1979-2014). The
maximum, minimum, mean and standard deviation (STD) of PBLH over all land grid boxes
between 60°S-60°N, are listed on the top of each panel.
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1178

ERAS PBLH Trend (1979-2019) 51.3%(+, p<0.05) 4.1%(-, p<0.05) MERRA-2 PBLH Trend (1980-2019) 18.8%(+, p<0.05) 24.2%l-, p<0.05)

90°W

275 225 78 25 75 25 285 75 125 178 225 278 215 225 75 -125 75 25 25 75 128 75 25 278

CMIPE-AMIP-MEM PBLH Trend (1978-2014)  30.6%(+, p<0.05) 12.8%(-, p<0.05) CMIPB-HIST-MEM PBLH Trend (1978-2014)  36.0%(+, p<0.05) 23.5%(-, p<0.05)

Fig 2. Spatial patterns of PBLHmean trend (m/decade) estimated using the M-K method from the
seven datasets at 1° x 1° resolution: (a) ERAS (1979-2019), (b) MERRA-2 (1980-2019), (c)
ERAS5-EM (1980-2019), (d) MERRA-2-RI (1980-2019), () CMIP6-AMIP-MEM (1979-2014),
(f) CMIP6-HIST-MEM (1979-2014), and (g) CMIP6-HIST-RI-MEM (1979-2014). The
percentage of positive (+) and negative (-) trends that are statistically significant at the 5% level
over all land grid boxes between 60°S-60°N, are listed on the top of each panel.
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Fig 3. Spatial patterns of consistency index (CI) for PBLHmean trend (m/decade) estimated using
the M-K method from (a) the four reanalysis datasets (Figs. 2a-2d), (b) the three CMIP6 datasets
(Figs. 2e-2g), and (c) all the seven datasets (Figs. 2a-2g). The value of consistency index is
defined as the number of the datasets with the same sign of trends that are statistically
significant at the 5% level. The rectangle boxes in blue (18°N-31°N, 5°W-50°E) and (17°N-
34°N, 68°E-96°E) in Fig. 3c depict the area over which the data is averaged for the regional
analysis over the SDAP and India, respectively.
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for the seven datasets (Fig. 2). The geographic domain for the SDAP and India are depicted in

Fig. 3c.
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Fig 5. Same as in Fig. 4 but for the four ensemble datasets: (a) ERAS 10-member ensemble
(1980-2019), (b) CMIP6-AMIP multi-model ensemble (1979-2014), (c) CMIP6-HIST multi-
model ensemble (1979-2014), and (d) CMIP6-HIST-RI multi-model ensemble (1979-2014).
The dashed and solid curves denote the individual ensemble members and the ensemble mean,

respectively.

61



1200
1201
1202
1203
1204
1205
1206

IGRA2 Daytime MMLH Trend (1979-2018)
T T R I

29 9%(+ p<0 05) 8 2%(- p<0 05)

BON ‘/‘j?i. .
5 o
o]
30N -
-
[ ] x<-120
0 - ® 120 «<=x<-80 =
® 80 «<=x<-40
- ® 40<=x<0
® 0O<=x<40
308 — ® 40<=x<80 I
. ® 80<=x<120
a [ ] X =120
605 T T T T T T T T L B
180 150W 120W 9OW B0W 30W 0 30E 60E S0E 120E 150E 180
IGRA2 Daytime PBLH Trend (1979-2019)  60.9%(+, p<0.05) 4.7%(-, p<0.05)
60N % ‘)Q.gh...Oog .‘3
[
o
&6 ¥
30N — T
[ ] X <-120
[ ® -120 <=x<-80
® 80 <=x<-40
® A0 <=x<0
® D<e=x<40
308 ® 40<=x<80
. ® B80<=x<120
b [ ] x>=120 L
60S T T T T T T T T T T
180 150W 120W 90W B60W 30W ] 30E BOE 90E 120E 150E 180
IGRA2 Daytlme PBLH Trend (1979-2019) = 61 5%(+, p<0.05) 6.2%(-, p<0.05)
L | |
60N /;’z, o k & %
T o [e}=] . % *
R ®oec0
30N — :
n b
1 [ ] X<-120
0 — ® 120 <=x<-80
B ® -80<=x<-40
1 ® -40<=x<0
® QO<=x<40
305 ® 40<=x<80
g ® B0<=x<120
| C L ] X >=120
80§ ——— , T , | I — T
180 150W 120W 90w G0W 30W 0 30E 60E S0E 120E 150E 180

Fig 6. Spatial patterns of PBLH trend (m/decade) estimated using the M-K method from the
IGRA2 radiosonde data: (a) daytime MMLH (the compositing method A), (b) daytime PBLH
(the compositing method B), and (c¢) daytime PBLH (the compositing method C). The
percentage of positive (+) and negative (-) trends that are statistically significant at the 5% level
over land between 60°S-60°N is listed on the top of each panel. The rectangle boxes in blue are
depicted in Fig. 3c.
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Fig 7. Comparison of PBLH trend (m/decade) estimated using the M-K method from the
IGRAZ2 radiosondes and corresponding ERAS5 and MERRA-2 datasets: (a,b) daytime MMLH
from 63 stations (Fig. 6a, the compositing method A), (c,d) daytime PBLH from 133 stations
(Fig. 6b, the compositing method B), and (e,f) daytime PBLH from 138 stations (Fig. 6c, the
compositing method C). The correlation coefficient (R) and its significance (p value) and
sample size (N) are listed on the top of each panel. Only the stations with a trend that is
statistically significant at the 10% level is used.
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Fig 8. Station-mean interannual variations in daytime MMLH anomalies from the IGRA2-
MMLH (left y-axis, m) and corresponding reanalysis daytime PBLHmax anomalies (right y-axis,
m) from (a, b) ERAS and (c, d) MERRA-2 averaged over 5 radiosonde stations in (a, c) the
SDAP and 9 statins in (b, d) India for the period 1979/1980-2019. These 14 stations are depicted
in Fig. 6a. The correlation coefficient (R) and its significance (p value) and sample size (N) are
listed on the top of each panel. The trend using the M-K method for the time series and its
significance (p value) and N are shown within each panel as well. The compositing method A
is used to produce the daytime PBLHs.
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1262  Fig 9. Station-mean interannual variations in daytime PBLH anomalies from the IGRA2-RI
1263 (left y-axis, m) and corresponding reanalysis daytime PBLH anomalies (right y-axis, m) from
1264  (a, b) ERAS and (¢, d) MERRA-2 averaged over 5 radiosonde stations in (a, ¢) the SDAP and
1265 1 statin in (b, d) India for the period 1979/1980-2019. These 6 stations are depicted in Fig. 6b.
1266  The correlation coefficient (R) and its significance (p value) and sample size (N) are listed on
1267  the top of each panel. The trend using the M-K method for the time series and its significance
1268  (p value) and N are shown within each panel as well. The compositing method B is used to
1269  produce the daytime PBLHs.
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Fig 10. Scatter plots between PBLHnax trend (x-axis) and corresponding trends in sensible heat
(SHFX, W/m?), surface skin temperature (Ts, K), and 2m relative humidity (RHam, %) for the
ERAS (left panels) and MERRA-2 (right panels). Only the grid boxes with a statistically
significant trend in PBLH (p<0.05) over land between 60°S-60°N are included. The correlation
coefficient between the two trends and the sample size (N) in grid boxes are listed on the top of
each panel. It is statistically significant (p<0.0001) in all plots.

66



1303

1304
1305
1306
1307
1308

. ERA5 60;’8-60°N . | II\;’IEF'thﬁ\-2 q0°8-60°N

~ 30 E —~ —_ ] -
£ ] —PBLH R=0.96 (p<0.01,N=41) E o0 g E 4,4 ~—PBLH R=081(p<0.01,N=40) r 0
= 20 F =3 2 ] - 2.0
£ o S F » ] ;
s 107 E = 9] E
z o4 Foo E & ] —A 2
& 3 o c & b
B, __W - i \/ o~ L
I E 3 = I -20 4 [
= E E w @ ] r
o -20 94 a E 2.0 % o 40 4 b 4.0
' T T T T ' T T T T ' T T T T l T 4 = ] ' T T T T ' T T T T l T T T T
1980 1990 2000 2010 1980 1990 2000 2010
Year Year
. ERA5 607S-60°N | MERRA-2 60°S-60°N
— 304 r . ] N
£ ] —PBLH R=0.88 (p<0.01,N=41) 1.0 E , 4 —PBLH R=0.38(p<0.05,N=40) o8
= 20 4 F = = 7 [
:_>v: E L 05 < % ] - 0.4
= R z
Z 05 A . /\V E oo E Z 03 AN A 00
s E o c ] E L
£ 10 _:W F < 5 ] W N\Wava \/\f\/_- s
@ 204qdc F -1.0 o 40 d F e
l T T T I T T T T I T T T T l T T T - I T T T T I T T T T ' T T T T l T T T T
1980 1990 2000 2010 1980 1990 2000 2010
Year Year
| ERA5 GOfS-BOC'N | IMEF%F%A-Z qo"s-so”N
30 | 20 _ 1 F
£ ——7PBLH R=-0.96 (p<0.01,N=41) F . E 40 4 —PBLH R=-0.88 (p<0.01,N=40) E 20
= 20 3 E o & = 0 g
T E I = © ] = 1.0
E 10 3 F = E 20 o
=] ] - o 1 -
= E Eoo E c ] E 0.0
S 0 V' R T L AT 7V :
£ 0 iM V\/M— 10 & £ ] \/ \/ W\/' 1.0
T ] F B T -20 4 E
Ml E [ oc @ ] E -2.0
o 209 e = 20 R f 20
' T T T T ' T T T T ' T T T T I T T T = ] T T T ' T T T T ' T T T T l T T T :
1980 1990 2000 2010 1980 1990 2000 2010
Year Year

Fig 11. Regional mean interannual variations in PBLHean anomaly (in green) and three PBLH
related variables (in red): sensible heat (SHFX, W/m?), surface skin temperature (Ts, K), and
2m relative humidity (RHom, %), for the ERAS (left panels) and MERRA-2 (right panels)
averaged between 60°S-60°N for the period 1979-2019. The correlation coefficient (R) and its
significance (p value) and sample size (N) are shown within each panel.
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Fig 12. Same as in Fig 11 but is averaged over the SDAP.
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Fig 13. Same as in Fig 11 but is averaged over India.
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ERAS PBLH Trend (1979-2019)
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Fig S1. Same as Fig. 2, but the trend is estimated using the OLS method.
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Reanalysis PBLH Trend Consistency Index (Cl)
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1321  Fig S2. Same as Fig. 3, but the trend is estimated using the OLS method.
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