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Abstract

Counting homomorphisms of a constant sized pattern graph H in an input graph G is a
fundamental computational problem. There is a rich history of studying the complexity of this
problem, under various constraints on the input G and the pattern H. Given the significance
of this problem and the large sizes of modern inputs, we investigate when near-linear time
algorithms are possible. We focus on the case when the input graph has bounded degeneracy,
a commonly studied and practically relevant class for homomorphism counting. It is known
from previous work that for certain classes of H, H-homomorphisms can be counted exactly in
near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H
for which near-linear time algorithms are possible?

We completely resolve this problem, discovering a clean dichotomy using fine-grained com-
plexity. Let m denote the number of edges in G. We prove the following: if the largest in-
duced cycle in H has length at most 5, then there is an O(m logm) algorithm for counting
H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length
at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant
γ > 0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms.

1 Introduction

Analyzing occurrences of small pattern graphs in a large input graph is a fundamental algorith-
mic problem with a rich line of work in both theory and practice [Lov67, CN85, FG04, DJ04,
Lov12, ANRD15, CDM17, PSV17, RW20]. A common version of this problem is homomorphism
counting, which has numerous applications in logic, properties of graph products, partition func-
tions in statistical physics, database theory, and network science [CM77, BW99, DG00, BCL+06,
PSV17, DRW19, PS20]. Denote the pattern simple graph as H = (V (H), E(H)), which is thought
of as fixed (or constant-sized). The input simple graph is denoted by G = (V (G), E(G)). An
H-homomorphism is an edge-preserving map f : V (H) → V (G). Formally, ∀(u, v) ∈ E(H),
(f(u), f(v)) ∈ E(G). When f is an injection, this map corresponds to the common notion of
subgraphs. We use HomH(G) to denote the count of the distinct H-homomorphisms.

The problem of computing HomH(G) for various choices of H is a deep subfield of study in
graph algorithms [IR78, AYZ97, BW99, DG00, DST02, DJ04, BCL+06, CDM17, Bre19, RW20].

∗All the authors are supported by NSF TRIPODS grant CCF-1740850, NSF CCF-1813165, CCF-1909790, and
ARO Award W911NF1910294.
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Indeed, even the case of H being a triangle, clique, or cycle have led to long lines of results. Many
practical and theoretical algorithms for subgraph counting are based on homomorphism counting,
and it is known that subgraph counts can be expressed as a linear combination of homomorphism
counts [CDM17]. Let n = |V (G)| and k = |V (H)|. It is known that computing HomH(G) is
#W [1]-hard when parameterized by k (even when H is a k-clique), so we do not expect no(k)

algorithms for general H [DJ04]. Yet the nk barrier can be beaten when H has structure. Notably,
Curticapean-Dell-Marx proved that if H has treewidth at most 2, then HomH(G) can be computed
in poly(k) · nω, where ω is the matrix multiplication constant [CDM17].

For many modern applications in network science, since n is very large, one desires linear-time
algorithms. Indeed, one might argue that the “right” notion of computational efficiency in these
settings is (near) linear time. Motivated by these concerns, we investigate the barriers for achieving
linear time algorithms to count HomH(G), especially when G is a “real-world” graph.

We focus on the class of bounded degeneracy graphs. This is the class of graphs where all
subgraphs have a constant average degree. A seminal result of Chiba-Nishizeki proves that clique
counting can be done in linear time for such graphs [CN85]. Importantly, this paper introduced the
technique of graph orientations for subgraph counting, that has been at the center of many state-
of-the-art practical algorithms [ANRD15, JSP15, PSV17, OB17, JS17, PS20]. The degeneracy has
a special significance in the analysis of real-world graphs, since it is intimately tied to the technique
of “core decompositions”.

Many algorithmic ideas for homomorphism or subgraph counting on bounded degeneracy graphs
have been quite successful in practice, and form the basis of state-of-the-art algorithms. Can we
understand the limits of these methods? Theoretically, when is homomorphism counting possible
in near-linear time on bounded degeneracy graphs? Chiba-Nishizeki [CN85] proved that clique
and 4-cycle counting can be done in linear time. A result of the authors shows that near-linear
time is possible when |V (H)| = k 6 5 [BPS20]. In a significant generalization, Bressan [Bre19]
defines an intricate notion of DAG treewidth, and shows (among other things) that a near-linear
time algorithm exists when the DAG treewidth of H is one. These results lead us to the main
question addressed by our work.

Can we characterize the pattern graphs H for which HomH(G) is computable in near-linear
time (when G has bounded degeneracy)?

Our main result is a surprisingly clean resolution of this problem, assuming fine-grained com-
plexity results. There is a rich history of complexity dichotomies for homomorphism detection and
counting problems [HN90, DG00, DJ04, Gro07, RW20]. In this work, we discover such a dichotomy
for near-linear time algorithms.

Let LICL(H) be the length of the largest induced cycle in H.

Theorem 1.1. Let G be an input graph with n vertices, m edges, and degeneracy κ. Let f : N→ N
denote some explicit function. Let γ > 0 denote the constant from the Triangle Detection
Conjecture.

If LICL(H) 6 5: there exists an algorithm that computes HomH(G) in time f(κ) ·m log n.
If LICL(H) > 6: assume the Triangle Detection Conjecture. For any function g : N→

N, there is no algorithm with (expected) running time g(κ)o(m1+γ) that computes HomH(G).

(We note that the condition on H involves induced cycles, but we are interested in counting
non-induced homomorphisms.)

Abboud and Williams introduced the Triangle Detection Conjecture on the complexity
of determining whether a graph has a triangle [AW14]. Assuming that there is no O(m1+γ) time
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triangle detection algorithm, they proved lower bounds for many classic graph algorithm problems.
It is believed that the constant γ could be arbitrarily close to 1/3 [AW14].

Conjecture 1.2 (Triangle Detection Conjecture [AW14]). There exists a constant γ > 0
such that in the word RAM model of O(log n) bits, any algorithm to detect whether an input graph
on m edges has a triangle requires Ω(m1+γ) time in expectation.

1.1 Main Ideas

Background for the Upper Bound. We begin with some context on the main algorithmic ideas used
for homomorphism/subgraph counting in bounded degeneracy graphs. Any graph G of bounded
degeneracy has an acyclic orientation G→, where all outdegrees are bounded. Moreover, G→ can be
found in linear time [MB83]. For any pattern graph H, we consider all possible acyclic orientations.
For each such orientation H→, we compute the number of H→-homomorphisms (in G→). (Directed
homomorphisms are maps that preserve the direction of edges.) Finally, we sum these counts over
all acyclic orientations H→. This core idea was embedded in the seminal paper of Chiba-Nishizeki,
and has been presented in such terms in many recent works [PSV17, OB17, Bre19, BPS20].

Since G→ has bounded outdegrees, for any bounded, rooted tree T→ (edges pointing towards
leaves), all T→-homomorphisms can be explicitly enumerated in linear time. To construct a homo-
morphism of H→, consider the rooted trees of a DFS forest T→1 , T→2 , . . . generated by processing
the sources first. We first enumerate all homomorphisms of T→1 , T→2 , . . . in linear time. We need
to count how many tuples of these homomorphisms can be “assembled” into H→-homomorphisms.
(We note that the number of H→-homomorphisms can be significantly super-linear.) The main
idea is to index the rooted tree homomorphisms appropriately, so that H→-homomorphisms can
be counted in linear time. This requires a careful understanding of the shared vertices among the
rooted DFS forest T→1 , T→2 , . . ..

The previous work of the authors showed how this efficient counting can be done when |V (H)| 6
5, though the proof was ad hoc [BPS20]. It did a somewhat tedious case analysis for various
H, exploiting specific structure in the various small pattern graphs. Bressan gave a remarkably
principled approach, introducing the notion of the DAG treewidth [Bre19]. We will take some
liberties with the original definition, for the sake of exposition. Bressan defined the DAG treewidth
of H→, and showed that when this quantity is 1, Hom→H (G→) can be computed in near-linear time.
The DAG treewidth is 1 when the following construct exists. For any source s of H→, let R(s)
be the set of vertices in H→ reachable from s. The sources of H→ need to be be arranged in a
tree T such that the following holds. If s lies on the (unique) path between s1 and s2 (in T ), then
R(s1)∩R(s2) ⊆ R(s). In some sense, this gives a divide-and-conquer framework to construct (and
count) H→-homomorphisms. Any H→-homomorphism can be broken into “independent pieces”
that are only connected by the restriction of the homomorphism to R(s). By indexing all the
tree homomorphisms appropriately, the total count of H→-homomorphisms can be determined in
near-linear time by dynamic programming. Note that we need the DAG treewidth of all acyclic
orientations of H to be 1, which is a challenging notion to describe succinctly.

From Induced Cycles to DAG tree decompositions. We observe an interesting contrast between
the previous work of the authors and Bressan’s work. The former provides a simple family of H for
which HomH(G) can be computed in near-linear time in bounded degeneracy graphs, yet the proofs
were ad hoc. The latter gave a principled algorithmic approach, but it does not succinctly describe
what kinds of H allow for such near-linear algorithms. Can we get the best of both worlds?

Indeed, that is what we achieve. By a deeper understanding of why |V (H)| 6 5 was critical
in [BPS20] and generalizing it through the language of DAG tree decompositions, we can prove:
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the DAG treewidth of H is one iff LICL(H) 6 5.
When LICL(H) 6 5, for any acyclic orientation H→, we provide a (rather complex) iterative

procedure to construct the desired DAG tree decomposition T . The proof is intricate and involves
many moving parts. The connection between induced cycles and DAG tree decompositions is
provided by a construct called the unique reachability graph. For any set S of sources in H→,
construct the following simple, undirected graph UR(S). Add edge (s, s′) if there exists a vertex
that is in R(s) ∩ R(s′), but not contained in any R(s′′), for s′′ ∈ S \ {s, s′}. A key lemma states
that if UR(S) contains a cycle (for any subset S of sources), then H contains an induced cycle of
at least twice the length. Any cycle in a simple graph has length at least 3. So if UR(S) has a
cycle, then H has an induced cycle of length at least 6. Thus, if LICL(H) 6 5, for all S, the simple
graph UR(S) is a forest.

For any set S of sources, we will (inductively) construct a partial DAG tree decomposition that
only involves S. Let us try to identify a “convenient” vertex x ∈ S with the following property. We
inductively take the partial DAG tree decomposition T ′ of S \ {x}, and try to attach x as a leaf
in T ′ preserving the DAG tree decomposition conditions (that involve reachability). By carefully
working out the definitions, we identify a specific intersection property of R(x) with the reachable
sets of the other sources in S \ {x}. When this property holds, we can attach x and extend the
partial DAG tree decomposition, as described above. When the property fails, we prove that the
degree of x in UR(S) is at least 2. But UR(S) is a forest, and thus contains a vertex of degree 1.
Hence, we can always identify a convenient vertex x, and can iteratively build the entire DAG tree
decomposition.

We also prove the converse. If LICL(H) > 6, then the DAG treewidth (of some orientation)
is at least two. This proof is significantly less complex, but crucially uses the unique reachability
graph.

The Lower Bound: Triangles Become Long Induced Cycles. We start with the simple construc-
tion of [BPS20] that reduces triangle counting in arbitrary graphs to 6-cycle counting in bounded
degeneracy graphs. Given a graph G where we wish to count triangles, we consider the graph G′

where each edge of G is subdivided into a path of length 2. Clearly, triangles in G have a 1-1
correspondence with 6-cycles in G′. It is easy to verify that G′ has bounded degeneracy.

Our main idea is to generalize this idea for any H where LICL(H) = 6. The overall aim is to
construct a graph G′ where each H-homomorphism corresponds to a distinct induced 6-cycle in G′,
which comes from a triangle in G. We will actually fail to achieve this aim, but get “close enough”
to prove the lower bound.

Let H denote the pattern obtained after removing the induced 6-cycle from H. Let us outline
the construction of G′. We first take three copies of the vertices of G. For every edge (u, v) of
G, connect copies of u and v that lie in different copies by a path of length two. Note that each
triangle of G has been converted into six 6-cycles. We then add a single copy of H, and connect
H to the remaining vertices (these connections depend on the edges of H). This completes the
description of G′. Exploiting the relation of degeneracy to vertex removal orderings, we can prove
that G′ has bounded degeneracy.

It is easy to see that every triangle in G leads to a distinct H-homomorphism. Yet the converse
is potentially false. We may have “spurious” H-homomorphisms that do not involve the induced
6-cycles that came from triangles in G. By a careful analysis of G′, we can show the following.
Every spurious H-homomorphism avoids some vertex in the copy of H (in G′).

These observations motivate the problem of partitioned -homomorphisms. Let P be a partition
of the vertices of G′ into k sets. A partitioned-homomorphism is an H-homomorphism where each
vertex is mapped to a different set of the partition. We can choose P appropriately, so that the
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triangle count of G is the number of partitioned-homomorphisms scaled by a constant (that only
depends on the automorphism group of H). Thus, we reduce triangle counting in arbitrary graphs
to counting partitioned-homomorphisms in bounded degeneracy graphs.

Our next insight is to give up the hope of showing a many-one linear-time reduction from
triangle counting to H-homomorphisms, and instead settle for a Turing reduction. This suffices
for the lower bound of Theorem 1.1. Using inclusion-exclusion, we can reduce a single instance of
partitioned-homomorphism counting to 2k instances of vanilla H-homomorphism counting. The
details are somewhat complex, but this description covers the basic ideas.

When LICL(H) > 6, we replace edges in G by longer paths, to give longer induced cycles. The
partitions become more involved, but the essence of the proof remains the same.

2 Related Work

Counting homomorphisms has a rich history in the field of parameterized complexity theory. Dı́az et
al. [DST02] designed a dynamic programming based algorithm for the HomH(G) problem with
runtime O(2kntw(H)+1) where tw(H) is the treewidth of the target graph H. Dalmau and Jon-
sson [DJ04] proved that HomH(G) is polynomial time solvable if and only if H has bounded
treewidth, otherwise it is #W [1]-complete. More recently, Roth and Wellnitz [RW20] consider
a doubly restricted version of HomH(G), where both H and G are from restricted graph classes.
They primarily focus on the parameterized dichotomy between poly-time solvable instances and
#W [1]-completeness.

We give a brief review of the graph parameters treewidth and degeneracy. The notion of tree
decomposition and treewidth were introduced in a seminal work by Robertson and Seymour [RS83,
RS84, RS86]; although it has been discovered before under different names [BB73, Hal76]. Over the
years, tree decompositions have been used extensively to design fast divide-and-conquer algorithms
for combinatorial problems. Degeneracy is a nuanced measure of sparsity and has been known since
the early work of Szekeres-Wilf [SW68]. The family of bounded degeneracy graphs is quite rich: it
involves all minor-closed families, bounded expansion families, and preferential attachment graphs.
Most real-world graphs tend to have small degeneracy ([GG06, JS17, SERF18, BCG20, BS20], also
Table 2 in [BCG20]), underscoring the practical importance of this class. The degeneracy has been
exploited for subgraph counting problems in many algorithmic results [CN85, Epp94, ANRD15,
JSP15, PSV17, OB17, JS17, PS20].

Bressan [Bre19] introduced the concept of DAG treewidth to design faster algorithms for homo-
morphism and subgraph counting problems in bounded degeneracy graphs. They prove the follow-
ing dichotomy for the subgraph counting problem. For a pattern H with |V (H)| = k and an input
graph G with |E(G)| = m and degeneracy κ, one can count HomH(G) in f(κ, k)O(mτ(H) logm)
time, where τ(H) is the DAG treewidth of H (Theorem 3.4). On the other hand, assuming
the exponential time hypothesis [IPZ98], the subgraph counting problem does not admit any
f(κ, k)mo(τ(H)/ ln τ(H))) algorithm, for any positive function f : N × N → N. Previous work of
the authors shows that for every k > 6, there exists some pattern H with k vertices, such that
HomH(G) cannot be counted in linear time, assuming fine-grained complexity conjectures [BPS20].
We note that these results do not give a complete characterization like Theorem 1.1. They define
classes of H that admit near-linear or specific polynomial time algorithms, and show that some H
(but not all) outside this class does not have such efficient algorithms.

We remark here that in an independent and parallel work, Gishboliner, Levanzov, and Shapira [GLS20]
effectively prove the same characterization for linear time homomorphism counting.

The problem of approximately counting homomorphism and subgraphs have been studied ex-
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tensively in various Big Data models such as the property testing model [ELRS17, ERS18, AKK18,
ERS20], the streaming model [BKS02, MMPS11, KMSS12, AGM12, JSP13, PTTW13, MVV16,
BC17, BS20], and the map reduce model [Coh09, SV11, KPP+14]. These works often employ clever
sampling based techniques and forego exact algorithms.

Almost half a century ago, Itai and Rodeh [IR78] gave the first non-trivial algorithm for
the triangle detection and finding problem with O(m3/2) runtime. Currently, the best known
algorithm for the triangle detection problem uses fast matrix multiplication and runs in time
O(min{nω,m2ω/(ω+1)}) [AYZ97]. Improving on the exponent is a major open problem, and it
is widely believed that m4/3 (corresponding to ω = 2) is a lower bound for the problem. Thus,
disproving the Triangle Detection Conjecture would require a significant breakthrough.
See [AW14] for a detailed list of other classic graph problems whose hardness is derived using
Triangle Detection Conjecture.

3 Preliminaries

We use G to denote the input graph and H to denote the target pattern graph. We consider
both G = (V (G), E(G)) and H = (V (H), E(H)) to be simple, undirected, and connected graphs.
Throughout the paper, we use m and n to denote |V (G)| and |E(G)| respectively, for the input
graph G. We denote |V (H)| by k.

We use #HomH to denote the problem of counting homomorphisms for a fixed pattern graph
H. We use #SubH for the analogous subgraph counting problem.

If a subset of vertices V ′ ⊆ V (G) is deleted from G, we denote the remaining subgraph by
G − V ′. We use G[V ′] to denote the subgraph of G induced by V ′. The length of the largest
induced cycle in H is denoted by LICL(H).

We say that a graph G is k-degenerate if each non-empty subgraph of G has minimum vertex
degree of at most k. The smallest integer k such that G is k-degenerate is the degeneracy of graph
G. To denote the degeneracy of a graph G, we use κ(G) or simply κ if G is clear from the context.
Observe that by definition, if a graph is k-degenerate, all its subgraphs are also k-degenerate, so
the degeneracy of each subgraph of G is at most κ(G). We note that the arboricity is a closely
related notion, and is related by a constant factor to the degeneracy.

We will heavily use acyclic orientations of graphs. For the graph H (say), we use H→ to denote
an acyclic orientation of the simple graph H. Vertex orderings and DAGs are closely related to
degeneracy. Given a vertex ordering ≺ of a graph G, we can obtain a DAG G→≺ by orienting each
edge {u, v} ∈ E(G) from u to v if u ≺ v.

Now, we define a homomorphism from H to G. We denote the number of homomorphism from
H to G by HomH(G).

Definition 3.1. A homomorphism from H to G is a mapping π : V (H) → V (G) such that,
{π(u), π(v)} ∈ E(G) for all {u, v} ∈ E(H). If H and G are both directed, then π should preserve
the directions of the edges. If π is injective, then it is called an embedding of H in G.

Next, we define a match (also called copy) of H in G.

Definition 3.2. A match of H in G is a subgraph of G that is isomorphic to H. If a match of H
is an induced subgraph of G, then it is an induced match of H in G.

Observe that each embedding of H in G corresponds to a match of G.

DAG tree decompositions. Bressan [Bre19] defined the notion of DAG tree decompositions for
DAGs, analogous to the widely popular tree decompositions for undirected graphs. The crucial
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difference in this definition is that only the set of source vertices in the DAG are considered for
creating the nodes in the tree. Let D be a DAG and S ⊆ V be the set of source vertices in D. For
a source vertex s ∈ S, let reachableD(s) denote the set of vertices in D that are reachable from
s. For a subset of the sources B ⊆ S, let reachableD(B) =

⋃
s∈B reachableD(s). When the

underlying DAG is clear from the context, we drop the subscript D.

Definition 3.3 (DAG tree decomposition [Bre19]). Let D be a DAG with source vertices S. A
DAG tree decomposition of D is a tree T = (B, E) with the following three properties.

1. Each node B ∈ B (referred to as a “bag” of sources) is a subset of the source vertices S:
B ⊆ S.

2. The union of the nodes in T is the entire set S:
⋃
B∈B B = S.

3. For all B, B1, B2 ∈ B, if B lies on the unique path between the nodes B1 and B2 in T , then
reachable(B1) ∩ reachable(B2) ⊆ reachable(B).

The DAG treewidth of a DAG D is then defined as the minimum over all possible DAG tree
decompositions of D, the size of the maximum bag. For a simple undirected graph H, the DAG
treewidth is the maximum DAG treewidth over all possible acyclic orientations of H. We denote
the DAG treewidth of D and H by τ(D) and τ(H), respectively.

Bressan [Bre19] gave an algorithm for solving the #HomH problem in bounded degeneracy
graphs.

Theorem 3.4 (Theorem 16 in [Bre19]). Given an input graph G on m edges with degeneracy κ
and a pattern graph H on k vertices, there is an O(κkmτ(H) log n) time algorithm for solving the
#HomH problem.

4 LICL and Homomorphism Counting in Linear Time

We prove that the class of graphs with LICL 6 5 is equivalent to the class of graphs with τ = 1.

Theorem 4.1. For a simple graph H, LICL(H) 6 5 if and only if τ(H) = 1.

By Theorem 3.4, this implies that HomH(G) can be determined in near-linear time when
LICL(H) 6 5 and G has bounded degeneracy.

We first prove that, for a simple graph H, if LICL(H) is at most five, then τ(H) = 1. This is
discussed in Section 4.2. Then we prove the converse: if LICL(H) is at least six, then τ(H) > 2.
We take this up in Section 4.3.

Outline of the Proof Techniques. Before discussing the proofs in detail, we provide a high level
description of the proof techniques.

Fix an arbitrary acyclic orientation H→ of H. We use S to denote the set of source vertices.
We describe a recursive procedure to build a DAG tree decomposition of width one, starting from
a single source in S.

Note that property (2) in the definition of DAG tree decomposition (Definition 3.3) requires the
union of nodes in the tree to cover all the source vertices in S. So, we need to be careful, if we wish
to use induction to construct the final DAG tree decomposition. To this end, we relax the property
(1) and (2) of DAG tree decomposition and define a notion of partial DAG tree decomposition. In a
partial DAG tree decomposition with respect to a subset Sp ⊆ S, the nodes in the tree are subsets
of Sp and the union of the nodes cover the set Sp. The requirement of property (3) remains the
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same. The width of the tree is defined same as before. We formalize this in Definition 4.5. Now,
consider a subset Sr+1 ⊆ S of size r + 1. We show how to build a partial DAG tree decomposition
of width one for Sr+1, assuming there exists a partial DAG tree decomposition of width one for
any subset of S of size r.

Let x ∈ Sr+1 and S−x denote the set after removing the element x: S−x = Sr+1\{x}. Let T−x be
a partial DAG tree decomposition of width one for the set S−x (such a tree exists by assumption).
We identify a “good property” of the tree T−x that enables construction of a width one partial DAG
tree decomposition for the entire set Sr+1. The property is the following: there exists a leaf node `
in T−x connected to the node d ∈ T−x such that reachable(x)∩reachable(`) ⊆ reachable(d).
We make this precise in Definition 4.7. Assume T−x has this good property, and ` ∈ T−x be the
leaf that enables T−x to posses the good property. Then we first construct a width one partial
DAG tree decomposition T−` for the set S−` = Sr+1 \ {`} and after that add ` as a leaf node to
the node d in T−`. We prove that the resulting tree is indeed a valid width one partial DAG tree
decomposition for Sr+1(we prove this in Claim 4.9). To complete the proof, it is now sufficient to
show the existence of an element x ∈ Sr+1 such that a partial DAG tree decomposition for T−x has
the good property. This is the key technical element that distinguishes graphs with LICL at most
5 from those with LICL at least six.

We make a digression and discuss this key technical element further. We consider a graph that
captures certain reachability aspects of the source vertices in H→. We define this as the unique
rechability graph, URSp , for a subset of the source vertices Sp ⊆ S. The vertex set of URSp is
simply the set Sp. Two vertices s1 and s2 in URSp are joined by an edge if and only if there exists
a vertex v ∈ V (H→) such that only s1 and s2 among the vertices in Sp, can reach v in H→. We
prove that, if the underlying undirected graph H has LICL(H) 6 5, then the graph URSp , for any
subset Sp ⊆ S, is acyclic. This is given in Lemma 4.3 in Section 4.1.

Now, coming back to the proof of Lemma 4.4, we show that there must exist an element
x ∈ Sr+1 such that a partial DAG tree decomposition for T−x has the “good property”, as otherwise
the unique reachability graph URSr+1 over the set Sr+1 has a cycle. However, this contradicts
LICL(H) 6 5 (Lemma 4.3). This is established in Claim 4.10. This completes the proof of
Lemma 4.4.

Now consider Lemma 4.11. Observe that, to prove this lemma, it is sufficient to exhibit a DAG
H→ of H with τ(H→) > 2. We first prove in Lemma 4.12 that if the the unique reachability
graph URS(H→) has a triangle, then τ(H→) > 2. Then, for any graph H with LICL(H) > 6, we
construct a DAG H→ such that the unique reachability graph URS(H→) has a triangle. It follows
that τ(H) > 2.

4.1 Main Technical Lemma

In this section, we describe our main technical lemma. We define a unique reachability graph for a
DAG H→ over a subset of source vertices Sp ⊆ S(H→). This graph captures a certain reachability
aspect of the source vertices in Sp in the graph H→. More specifically, two vertices s1 and s2 are
joined by and edge in URSp if and only if there exists a vertex v in V (H→) such that only s1 and
s2 among the vertices in Sp, can reach v in H→.

Definition 4.2 (Unique reachability graph). Let H→ be a DAG of H with source vertices S and
Sp ⊆ S be a subset of S. We define a unique reachability graph URSp(Sp, ESp) on the vertex set Sp,
and the edge set ESp such that there exists an edge e = {s1, s2} ∈ ESp , for s1, s2 ∈ Sp, if and only
if the set (reachableH→(s1) ∩ reachableH→(s2)) \ reachableH→(Sp \ {s1, s2}) is non-empty.

We are interested in the existence of a cycle in URSp . We show that a cycle in URSp is closely
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v3,1
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v1,2

s2

v2,3

C ′
s3

s1 s2

URSp

Figure 1: Let Sp = {s1, s2, s3}. On the left, we give an example of a URSp graph with a triangle.
On the right, we give a possible example of the vertices v1,2, v2,3, and v3,1 (vi,j is as defined in the
proof of Lemma 4.3). C ′ forms an induced cycle of length six in H.

related to an induced cycle in H, the underlying undirected graph of H→. More specifically, we
prove that if LICL of H is at most five, then URSp must be acyclic for each subset Sp ⊆ S.

Lemma 4.3. Let H→ be a DAG of H with source vertices S and Sp ⊆ S be an arbitrary subset
of S. Let URSp(Sp, ESp) be the unique reachability graph for the subset Sp. If LICL(H) 6 5, then
URSp is acyclic.

Proof. We in fact prove a stronger claim. We show that if URSp has an `-cycle, then LICL(H) > 2`.
Consider an edge {si, sj} in ESp . Let unique-reachable(si, sj) denote the set of vertices in H→

reachable from si and sj both, but non-reachable from any other vertices in Sp. Let dist(s, t)
denote the length of the shortest directed path from s to t in H→. We set dist(s, t) = ∞, if t
is not reachable from s. Now, let vi,j be the vertex in the unique-reachable(si, sj) set with
the smallest total distance (directed) from si and sj (breaking ties arbitrarily). Formally, vi,j =
arg minv dist(si, v) + dist(sj , v), where v ∈ unique-reachable(si, sj).

Let C = s1, s2, . . . , s`, s1(= s`+1) be an `-cycle in URSp . Then using C and the vertices vi,i+1,
for i ∈ [`] (abusing notation, we take v`,`+1 = v`,1), we construct a cycle of length at least 2` in H.
Denote by ps→v the directed path from a source vertex s ∈ Sp to a vertex v ∈ H→. Intuitively,
inserting the paths psi→vi,i+1 and psi+1→vi,i+1 between the source si and si+1, for each i ∈ [`] (again,
taking s`+1 = s1), induces a cycle of length at least 2` in H. See Figure 1 for a simple demonstration
of this. We make this formal below.

Let V (p) denote the set of vertices of a path p. Any edge between vertices in V (psi→vi,i+1)
other than the edges of psi→vi,i+1 , results in either a path between si and vi,i+1 shorter than
dist(si, vi,i+1) or a directed cycle in H→. Thus, the edges of psi→vi,i+1 are the only edges be-
tween vertices in V (psi→vi,i+1). It is easy to see that any edge between V (psi→vi,i+1) \ {vi,i+1}
and V (psi+1→vi,i+1) \ {vi,i+1} result in a vertex v′i,i+1 where dist(si, v

′
i,i+1) + dist(si+1, v

′
i,i+1) <

dist(si, vi,i+1) + dist(si+1, vi,i+1), therefore no such edges exist. Also, any edge from a vertex in
reachableH→(Sp \ {si, si+1}) to a vertex in V (psi→vi,i+1) or V (psi+1→vi,i+1) implies that vi,i+1 ∈
reachableH→(Sp \ {si, si+1}), which is not true by definition. Hence, there are no such edges
either.

We use E(p) to denote the set of edges of a path p. For convenience, we assume ` + 1 in the
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index is to be treated as 1 instead. Let

VC′ =
⋃
p∈P

V (p), EC′ =
⋃
p∈P

E(p),

where P =
⋃
i∈[`]

{psi→vi,i+1 , psi+1→vi,i+1}.

Now, it is easy to see that the graph induced by the set VC′ is indeed an induced cycle C ′. There
are 2` paths in P , and each path p ∈ P has at least two vertices. As we showed above, these paths
do not share edges. Thus the length of C ′ is at least 2`, and LICL(H) > 2`. Considering the
contrapositive, we deduce that if LICL(H) 6 5, then URSp is acyclic.

4.2 DAG Treewidth for Graphs with LICL at most Five

In this section, we prove the following lemma.

Lemma 4.4. For every simple graph H, if LICL(H) 6 5 then τ(H) = 1.

We introduce some notation. We start with defining the notion of partial DAG tree decompo-
sition. In this definition, we consider a tree decomposition with respect to a subset of the source
vertices of the original DAG.

Definition 4.5 (partial DAG tree decomposition). Let H→ be a DAG with source vertices S. For
a subset Sp ⊆ S, a partial DAG tree decomposition of H→ with respect to Sp is a tree T = (B, E)
with the following three properties.

1. Each node B ∈ B (referred to as a “bag”) is a subset of the sources in Sp: B ⊆ Sp.

2. The union of the nodes in T is the entire set Sp:
⋃
B∈B B = Sp.

3. For all B,B1, B2 ∈ B, if B is on the unique path between B1 and B2 in T , then we have
reachable(B1) ∩ reachable(B2) ⊆ reachable(B).

The partial DAG treewidth of T is maxB∈B |B|. Abusing notation, we use τ(T ) to denote the
partial DAG treewidth of T .

Observe that, when Sp = S, we recover the original definition of DAG tree decomposition. Our
proof strategy is to show by induction on the size of the subset Sp that there exists a partial DAG
tree decomposition of width one for each Sp ⊆ S. In particular, when Sp = S, it follows that there
exists a DAG tree decomposition for H→ of width one.

We next define intersection-cover for a pair of vertices, based on the third property of the
DAG tree decomposition. We generalize this notion to a subset of source vertices Sp ⊆ S and define
a notion of Sp-cover. These notions will be useful in identifying a suitable source vertex in an
existing partial DAG tree decomposition to attach a new node to it.

Definition 4.6 (intersection-cover and Sp-cover). Let H→ be a DAG with sources S. Let
s1 and s2 be a pair of sources in S. We call a source s ∈ S an intersection-cover of s1 and s2
if reachable(s1) ∩ reachable(s2) ⊆ reachable(s). Furthermore, assume Sp ⊆ S is a subset of
the sources S. We call a source s ∈ S, a Sp-cover of s1 ∈ S if for each source s2 ∈ Sp, s is an
intersection-cover for s1 and s2.

10



We now introduce one final piece of notation. Assume Sp ⊂ S be a subset of the source vertices
in the DAG H→. Let x be some source vertex in S that does not belong to Sp. Let TSp denote
a partial DAG tree decomposition of width one for Sp. Now, consider a leaf node ` in TSp . Let d
denote the only node in TSp that is adjacent to `. We claim that if d is an intersection-cover
for ` and x, then we can construct a partial DAG tree decomposition for Sp ∪{x} of width one (we
will make this more formal and precise in the following paragraph). We identify such source and
partial DAG tree decomposition pair (x, TSp) as a good-pair.

Definition 4.7 (good-pair). Let x ∈ S(H→) be a source vertex and TSp be a partial DAG tree
decomposition of width one for Sp ⊂ S(H→) where x /∈ Sp. We call the pair (x, TSp) a good-pair
if there exists a leaf node ` ∈ TSp connected to the node d ∈ TSp such that d is an intersection-
cover for x and `.

We prove a final technical lemma that provides insight into the process of adding a new source
vertex to an existing partial DAG tree decomposition of width one.

Lemma 4.8. Let H→ be a DAG of H with sources S and Sp ⊂ S be a subset of S. Assume T is
a partial DAG tree decomposition for Sp with τ(T ) = 1. Consider a source s ∈ S such that s /∈ Sp.
If d ∈ Sp is a Sp-cover of s, then connecting s to d in T as a leaf results in a tree T ′ that is a
partial DAG tree decomposition for Sp ∪ {s}. Furthermore, τ(T ′) = 1.

Proof. We first prove that T ′ is a partial DAG tree decomposition for Sp ∪ {s}. The properties (1)
and (2) of partial DAG tree decomposition (see Definition 4.5) trivially hold for T ′. If T has one
or two nodes, then by definition of Sp-cover, T ′ satisfies property (3). So we assume T has at
least 3 nodes.

Note that T and T ′ are identical barring the leaf node s. Hence, for any three nodes s1, s2,
and s3 in T ′ with s /∈ {s1, s2, s3}, property (3) of partial DAG tree decomposition (Definition 4.5)
holds. Now, consider s with two other nodes s1 and s2 in T ′ where s1 is on the unique path
between s and s2. If s1 = d, then property (3) holds as d is a Sp-cover of s. So assume s1 6= d.
But then, s1 is on the unique path between d and s2 (by construction of T ′). Since property (3)
holds for d, s1, and s2 in T , we have reachable(d) ∩ reachable(s2) ⊆ reachable(s1). We
also have reachable(s) ∩ reachable(s2) ⊆ reachable(d) as d is a Sp-cover of s. Hence,
reachable(s) ∩ reachable(s2) ⊆ reachable(s1). Therefore, property (3) holds. Thus, T ′ is
a partial DAG tree decomposition of Sp ∪ {s}. As τ(T ) = 1, it follows immediately from the
construction that τ(T ′) = 1.

We now have all the ingredients to prove Lemma 4.4. For the sake of completeness, we restate
the lemma.

Lemma 4.4. For every simple graph H, if LICL(H) 6 5 then τ(H) = 1.

Proof. The DAG treewidth of a simple graph H is defined as the maximum DAG treewidth of any
DAG H→ obtained from H. So, we prove that τ(H→) = 1 for each DAG H→ of H. In the rest of
the proof, we fix a DAG of H, and call it H→. Let S(H→) denote the set of all source vertices in
H→. When H→ is clear from the context, we simply use S.

Let Sp ⊆ S denote a subset of S. We prove by induction on the size of the subset Sp that
there exists a partial DAG tree decomposition (Definition 4.5) of width one for each Sp ⊆ S. In
particular, when Sp = S, it follows that there exists a DAG tree decomposition for H→ of width
one.

The base case of |Sp| = 1 is trivial: put the only source in Sp in a bag B as the only node in
the partial DAG tree decomposition for H→. Similarly, for |Sp| = 2, put the two sources in two
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separate bags and connect them by an edge in the partial DAG tree decomposition for H→. The
resulting tree is a partial DAG tree decomposition of width one. Now assume that, it is possible
to build a partial DAG tree decomposition of width one for any subset Sp ⊂ S where |Sp| 6 r, and
1 6 r < |S|. We show how to construct a partial DAG tree decomposition of width one for any
subset Sp ⊆ S where |Sp| = r + 1 for r > 2.

Fix a subset Sr+1 ⊆ S of size r + 1. Consider an arbitrary source x ∈ Sr+1. By induction
hypothesis, we can construct a partial DAG tree decomposition of width one for the set S−x =
Sr+1 \ {x}. We call the tree T−x. Now recall that, we call the pair (x, T−x) a good-pair if
there exists a leaf node ` ∈ T−x connected to the node d ∈ T−x such that d is an intersection-
cover for x and ` (see Definition 4.7). We argue the existence of a good-pair (x, T−x) and give
a constructive process to find a width one partial DAG tree decomposition of Sr+1 from such a
good-pair (x, T−x).

A good-pair leads to a partial DAG tree decomposition of width one. We first show that if there
exists a source x ∈ Sr+1 and a width one partial DAG tree decomposition T−x for S−x = Sr+1 \{x}
such that (x, T−x) is a good-pair, then there exists a width one partial DAG tree decomposition for
Sr+1. In fact, we give a simple constructive process to find such a partial DAG tree decomposition:
construct a width one partial DAG tree decomposition T−` for S−` = Sr+1 \ {`}, and then connect
` as a leaf to d in T−`.

Claim 4.9. Let x ∈ Sr+1 be a source vertex and T−x be a width one partial DAG tree decomposition
for S−x = Sr+1 \ {x} such that (x, T−x) is a good-pair. Then, there exists a partial DAG tree
decomposition T for Sr+1 with τ(T ) = 1.

Proof. Since (x, T−x) is a good-pair, there exists a leaf node ` ∈ T−x connected to the node d ∈ T−x
such that d is an intersection-cover for x and `. We build a partial DAG tree decomposition
of width one for S−` = Sr+1 \ {`} (such a tree exists by induction hypothesis), and then add ` as
a leaf node to the node d. We prove that the resulting tree, denoted as T , is partial DAG tree
decomposition for Sr+1 with τ(T ) = 1.

Since ` is only connected to d in T−x, d is a S−x-cover of `. Also, d is an intersection-cover
of ` and x, so d is a Sr+1-cover of `. Therefore, by applying Lemma 4.8, it follows that T is a
partial DAG tree decomposition of Sr+1 with τ(T ) = 1.

Existence of a good-pair. We have shown how to construct a partial DAG tree decomposition for
the set Sr+1 if there exists a good-pair (x, T−x) where x is a source in Sr+1 and T−x is a width
one partial DAG tree decomposition for S−x. We now show that for any set Sr+1, there always
exists a good-pair (x, T−x).

Claim 4.10. There exists a vertex x ∈ Sr+1 and a width one partial DAG tree decomposition T−x
for S−x = Sr+1 \ {x}, such that (x, T−x) is a good-pair.

Proof. Assume for contradiction, the claim is false. Consider the unique reachability graph on the
vertex set Sr+1, denoted by URSr+1(Sr+1, ESr+1) (see Definition 4.2). Let x ∈ Sr+1 be an arbitrary
source vertex. By assumption, (x, T−x) is not a good-pair. So, for each leaf node ` ∈ T−x
connected to the node d ∈ T−x, d is not an intersection-cover for x and `. Then, there exists
a vertex v in H→, such that v ∈ reachable(x) ∩ reachable(`), but v /∈ reachable(d). On the
other hand, by construction, d is a S−x-cover for ` (d is the only node connected to ` in T−x).
Hence, v is reachable from none of the source vertices in S−x, other than `. Therefore, the edge
{x, `} ∈ ESr+1 . Now, T−x has at least two leaves, so the degree of the source vertex x in URSr+1

is at least 2. The same argument holds for each x ∈ Sr+1. Hence, the degree of each vertex in
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s3

t2

s1

t3

s2

t1

H→
s3

s1 s2

URS(H→)

Figure 2: Let H be a six cycle. In the middle figure, we show the DAG H→ of H for which
τ(H→) > 2. On the right, we show the UR graph corresponding to H→. It is a triangle as t1
is only reachable from {s2, s3}, t2 is only reachable from {s1, s3}, and t3 is only reachable from
{s1, s2}.

URSr+1 is at least two. Now |Sr+1| > 3 (recall r > 2), thus there exists a cycle C in URSr+1 of
length at least 3. By applying Lemma 4.3, we have LICL(H) > 6. But LICL(H) 6 5, so this leads
to a contradiction. Hence, the claim is true.

We proved by induction that for any non-empty subset Sp ⊆ S, there exist a partial DAG tree
decomposition for Sp with width one. In the case when Sp = S, the partial DAG tree decomposition
is a DAG tree decomposition for H→. This completes the proof of Lemma 4.4.

4.3 DAG Treewidth for Graphs with LICL at least Six

In this section, we prove the following lemma.

Lemma 4.11. For every simple graph H, if LICL(H) > 6 then τ(H) > 2.

We first discuss the simple case of the 6-cycle. Note that, to prove that τ(H) > 2, it suffices to
show that there exists a DAG H→ of H such that τ(H→) > 2. Let H→ be a DAG of H as shown
in the middle figure in Fig. 2. Let S = {s1, s2, s3} be the set of sources in H→. Consider the unique
reachability graph URS(S,ES), shown on the right in Fig. 2. The graph URS is a triangle: t1 is
not reachable from s1, but reachable from s2 and s3, and so on. In any DAG tree decomposition
T of H→ with width one, all source vertices are a vertex of T by themselves. So at least one of
s1, s2, or s3 (say s1) would be on the unique path between the other two. But this would violate
property (3) of DAG tree decomposition. It follows that τ(H) > 2. In this case, it is not difficult
to argue that τ(H) = 2.

We formalize this intuition to prove in the following lemma: if the URS graph of a DAG H→

with source vertices S has a triangle in it, then it must the case that τ(H→) > 2. Then, to
prove τ(H) > 2 for a graph H, it is sufficient to show the existence of a DAG H→ such that the
corresponding URS(H→) has a triangle.

Lemma 4.12. Let H→ be a DAG of H with source vertices S and URS(S,ES) be the unique
reachability graph for the set S. If URS has a triangle, then τ(H) > 2.

Proof. Assume for contradiction, τ(H→) = 1 and T be a DAG tree decomposition of width one.
Let {s1, s2, s3} be a triangle in the graph URS . As T is a DAG tree decomposition with width one,
all source vertices in S must be a node by themselves in T . Observe that, there must exists a node
s ∈ T that is between the unique path for a pair of nodes in {s1, s2, s3}. As otherwise, these three
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nodes are all pairwise connected by an edge forming a triangle in T . Wlog, assume s is on the unique
path between s1 and s2 in T . Since, {s1, s2} is an edge in URS , by definition, there exists a vertex
ts1,s2 ∈ V (H→), such that t ∈ reachableH→(s1)∩reachableH→(s2), but t /∈ reachableH→(s).
But, this violates the property (3) of DAG tree decomposition in Definition 3.3. So such a tree T
cannot exists and hence, τ(H→) > 2. Therefore, τ(H) > 2.

We are now ready to prove the main lemma. We restate the lemma for completeness.

Lemma 4.11. For every simple graph H, if LICL(H) > 6 then τ(H) > 2.

Proof. Let LICL(H) = r, where r > 6 and r = 3`+ q, for some ` > 2 where q ∈ {0, 1, 2}. Assume
C = v1, v2, . . . , vr, v1 is an induced cycle of length r in H. We construct a DAG H→ as follows.

Consider an edge e = (u, v) in H. Assume only one of the end point does not belong to V (C) —
say u /∈ V (C). Then we orient the edge from v to u. Now consider the case when both u, v /∈ V (C).
We orient such edges in an arbitrary manner ensuring the resulting orientation is acyclic. We now
describe the orientation of the edges on the r-cycle C. We mark three vertices s1, s2 and s3 in C as
sources that are at least distance two apart from each other. Wlog, assume s1 = v1, s2 = v`+1, and
s3 = v2`+1. Now we mark three vertices t1, t2, and t3 as sinks such that t1 is between s1 and s2,
t2 is between s2 and s3, and t3 is between s3 and s1 in the cycle C. Again, wlong assume t1 = v2,
t2 = v`+2, and t3 = v2`+2. Finally, orient the edges in C towards the sink vertices and away from
the sources. This completes the description of H→.

Now let S denote the set of source vertices in H→. Consider the unique reachability graph
URS(S,ES). We claim that URS includes a triangle. Indeed, we show that {s1, s2, s3} forms
a triangle in URS . We first argue the existence of the edge {s1, s2} ∈ ES . The vertex t1 is
reachable from s1 and s2, but not from s3. Since all the edges that are not part of the cycle C,
are oriented outwards from the vertices in C, no other source vertices in S can reach t1 in H→.
Hence, {s1, s2} ∈ ES . Similarly, we can argue the existence of the edges {s2, s3} and {s1, s3} in
ESp . Applying Lemma 4.12, it follows that τ(H) > 2.

5 LICL and the Homomorphism Counting Lower Bound

In this section, we prove our main lower bound result. We show that for a pattern graph H with
LICL(H) > 6, the #HomH problem does not admit a linear time algorithm in bounded degeneracy
graphs, assuming the Triangle Detection Conjecture (Conjecture 1.2). We state our main
theorem below.

Theorem 5.1. Let H be a pattern graph on k vertices with LICL(H) > 6. Assuming the Triangle
Detection Conjecture, there exists an absolute constant γ > 0 such that for any function
f : N× N→ N, there is no (expected) f(κ, k)o(m1+γ) algorithm for the #HomH problem, where m
and κ are the number of edges and the degeneracy of the input graph, respectively.

Outline of the Proof. We first present an outline of our proof; the complete proof is discussed
in Section 5.1. Let tri-cnt denote the problem of counting the number of triangles in a graph.
We prove the theorem by a linear time Turing reduction from the tri-cnt problem to the #HomH

problem. Assuming the Triangle Detection Conjecture, any algorithm (possibly random-
ized) for the tri-cnt problem requires ω(m) time, where m is the number of edges in the input
graph. Given an input instance G of the tri-cnt problem, we construct a graph GH with bounded
degeneracy and O(|E(G)|) edges. We show how the number of triangles in G can be obtained by
counting specific homomorphisms of H in GH .
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Let LICL(H) = r and C be one of the largest induced cycles in H; let V (C) denotes its vertices.
We now describe the construction of the graph GH . The graph GH has two main parts: (1) the
fixed component, denoted as Gfixed (this part is independent of the input graph G and only depends
on the pattern graph H) and (2) the core component, denoted as Gcore. Additionally, there are
edges that connect these two components, denoted by Ebridge. Let HC-excluded denote the graph
after we remove V (C) from H. More formally, HC-excluded = H − V (C). The fixed component
Gfixed is a copy of HC-excluded.

Next, we give an intuitive account of our construction. We discuss the role of Gcore and how
its connection to Gfixed through Ebridge ensures that the number of triangles in G can be obtained
by counting homomorphisms of H. Then we give an overview of the construction.

Intuition behind the Construction. The main idea is to construct Gcore and Ebridge in such a
way that each triangle in G transforms to an r-cycle in Gcore, that then composes a match of H
together with Gfixed (recall that Gfixed is a copy of HC-excluded). To this end, we design Gcore

in r parts, ensuring the following properties hold for each r-cycle in Gcore that contains exactly
one vertex in each of these r parts: (1) It composes a match of H together with Gfixed and (2) It
corresponds to a triangle in G. Let P ′ denote the partition of V (Gcore) into these r parts. Further,
assume we construct GH in a way that, each match of H that contains the vertices of Gfixed and
exactly one vertex in each set V ∈ P ′, corresponds to one of the r-cycles described above. It is
now easy to see that if we can count these matches of H, we can then obtain the number of the
described r-cycles in Gcore and hence the number of triangles in G.

Consider a partition P of V (GH) where |P| = k. Assume there is a linear time algorithm ALG
for #HomH in bounded degeneracy graphs. Then, Lemma 5.3 proves that there exists a linear time
algorithm that, using ALG, counts the matches of H in G that include exactly one vertex in each
set V ∈ P . These matches are called P-matches of H, as we define formally later in Definition 5.2.
Also, each r-cycles in Gcore that contain exactly one vertex in each set V ∈ P ′ is a P ′-match of
C. Now, we define the partition P of V (GH) as follows; P includes each set in P ′ and each of the
k − r vertices in Gfixed as a set by itself.

Overall, by construction of GH , we can get the number of triangles in G by the number of
P ′-matches of C in Gcore. Further, we can obtain the number of P ′-matches of C in Gcore by the
number of P-matches of H in GH that we count using ALG. The following restates the desired
properties of GH we discussed, more formally.

(I) There is a bijection between the set of P-matches of H in GH and the set of P ′-matches of
C in Gcore.

(II) The number of triangles in G is a simple linear function of the number of P ′-matches of C in
Gcore.

Next, we give an overview of the construction of GH for r = 6. We prove that properties (I)
and (II) hold for our construction in the general case in Lemma 5.6 and Lemma 5.7, respectively.

Overview of the Construction. In what follows, we give an overview of Gfixed, Gcore, and Ebridge.
For the ease of presentation, we assume r = 6.

(1) Gfixed is a copy of HC-excluded. We denote the vertex set in Gfixed as Vfixed-set. Observe
that, Gfixed does not depend on the input graph G.

(2) The core component Gcore consists of two set of vertices: Vcore-set and Vauxiliary-set. We
first discuss the sets Vcore-set and Vauxiliary-set, and then introduce the edge set E(Gcore).
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(a) Vcore-set consists of three set of vertices, V1 = {w1, . . . , wn}, V2 = {x1, . . . , xn}, and
V3 = {y1, . . . , yn} — each of size n (recall |V (G)| = n). The vertices in each of these
sets correspond to the vertices in V (G) = {u1, . . . , un}.

(b) The construction of Vauxiliary-set depends on r. For r = 6, it consists of three sets,
denoted as V1,2, V2,3, and V1,3 — each of size 2m (recall |E(G)| = m). The vertices in
each of these sets corresponds to the edges in E(G). We index them using e, for each
e ∈ E(G): V1,2 = {v1,2e , v2,1e }e∈E(G), and so on. The role of these sets will become clear
as we describe the edges of Gcore.

(c) Consider an edge e = {ui, uj} ∈ E(G) and the pair V1 and V2. We connect the vertex

wi ∈ V1 to the vertex xj ∈ V2 by a 2-path via the vertex v1,2e ∈ V1,2. Similarly, we

connect the vertex wj to the vertex xi by a 2-path via the vertex v2,1e . In particular,

we add the edges {wi, v1,2e } and {v1,2e , xj}, and the edges {wj , v2,1e } and {v2,1e , xi} to the
set E(Gcore). We repeat the process for the pairs (V2, V3) and (V1, V3) for each edge
e ∈ E(G).

(3) We now describe the edge set Ebridge that serves as connections between Gfixed and Gcore.
Let σbridge be a bijective mapping between the two sets V (C) and {V1, V2, V3, V1,2, V2,3, V1,3};
σbridge : V (C)→ {V1, V1,2, V2, V2,3, V3, V1,3}. For each edge e = {u, v} ∈ E(H) such that u ∈
V (C) and v /∈ V (C), we do the following. Let zv ∈ Vfixed-set denote the vertex corresponding
to the vertex v (recall Gfixed-set is a copy of HC-excluded). We connect zv to all the vertices
in the set σbridge(u) and add these edges to Ebridge.

Note that, here P ′ = {V1, V1,2, V2, V2,3, V3, V1,3}. Before diving into the details of deriving the
triangle counts in G, we first take an example pattern graph H to visually depict the constructed
graph GH (see Figure 3) and discuss why properties (I) and (II) hold in our construction.

An Illustrative Example. LetH be the graph as shown in Figure 3a. In this example, LICL(H) = 6.
Let C = a3, a4, a5, a6, a7, a8, a3 be the induced 6-cycle in H. We demonstrate the constructed graph
GH in Figure 3b. We now discuss the various components of GH .

(1) The graph Gfixed is shown by the red oval. The vertices z1 and z2 compose Vfixed-set, where
z1 corresponds to a1 and z2 corresponds to a2.

(2) The graph Gcore is shown by the blue oval. For each edge e = {ui, uj} ∈ E(G), (for some
input graph G, which is not shown in the figure), we add a total of six 2-paths: two between
each pair of sets from {V1, V2, V3}. For instance, between the set V1 and V2 these 2-paths are
as follows: {wi, v1,2e , xj} and {wj , v2,1e , xi}. The vertices wi, wj belong to V1; xi, xj belong to

V2; and v1,2e , v2,1e belong to V1,2.

(3) Finally we describe the edge set Ebridge (the edges in violet). We consider the following bijec-
tive mapping σbridge: σbridge(a3) = V1, σbridge(a4) = V1,2, σbridge(a5) = V2, σbridge(a6) =
V2,3, σbridge(a7) = V3, σbridge(a8) = V1,3. Now consider the edge {a3, a1} ∈ E(G); a3 ∈ V (C)
and a1 /∈ V (C). So we connect z1 (the vertex corresponding to a1) to each vertex in the set
σbridge(a3) = V1. We repeat the same process for each edge {u, v} in E(H) where u ∈ V (C)
and v /∈ V (C).

Observe that in this example, P = {{z1}, {z2}, V1, V1,2, V2, V2,3, V3, V1,3}. It is easy to see that
Ebridge connects Gcore to Gfixed, such that each 6-cycle in Gcore compose a match of H together
with Gfixed. Each P-match of H is actually an induced match as the only edges between its vertices
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a1 a2

a3

a4

a5 a6

a7

a8

HC-excluded

(a) The pattern graph H

z1 z2

V1
V1,2

V2
V2,3

V3V1,3

Gcore

Gfixed

Ebridge

(b) The constructed graph GH . In Gcore, we only depict six edges
corresponding to a triangle in G (there would be six more edges
corresponding to the same triangle, that we do not show here).
Also, we only depict the vertices relevant to the triangle.

Figure 3: GH constructed for an example pattern graph H

in GH are the edges that correspond to the match. Therefore, in this example, each P-match of H
in GH include a 6-cycle in Gcore that is actually a P ′-match of C. Thus, property (I) holds.

It is not difficult to see that a triangle in G introduces a total of six many 6-cycle in Gcore

that are P ′-matches of C in Gcore. The converse follows as each P ′-match of C, which is a 6-
cycle in Gcore, must contain exactly one vertex from each of the three sets in each of Vcore-set
and Vauxiliary-set. So, we could obtain the number of triangles in G by dividing the number of
P ′-matches of C in Gcore by six. Thus, property (II) holds.

Deriving The Triangle Counts in G. So far, we have shown that properties (I) and (II) hold in
GH for our construction. Therefore, the number of P-matches of H in GH reveals the number of
triangles in G. However, we are interested in utilizing the homomorphism count of H to derive
the triangle count in G. Indeed, we obtain the number of P-matches of H in GH by carefully
looking at “restricted” homomorphisms from H to G. One crucial property of the graph GH that
we will require is bounded degeneracy. In fact, our construction of the graph GH ensures that
it has constant degeneracy irrespective of the degeneracy of G (we will formally prove this later
in Lemma 5.5).

Let ALG be an algorithm for the #HomH problem, that runs in f(κ, k) · O(m) time for some
explicit function f , where m and κ are the number of edges and degeneracy of the input graph,
respectively. Then, we can use ALG to count the homomorphisms from H to any subgraph of GH
in time f(κ(GH), k) · O(m). Note that, here we use the fact that for any subgraph G′H of GH ,
κ(G′H) 6 κ(GH).

We now solve the final missing piece of the puzzle: how to count the number of P-matches of
H in GH using ALG? We present a two step solution to this question. First, we count the number
of “P restricted” homomorphisms, denoted by P-homomorphism and defined in Definition 5.2,
from H to GH by running ALG on carefully chosen subgraphs of GH . Intuitively, a “P restricted”
homomorphism is a homomorphism from H to GH that involves at least one vertex in each part
of P. Second, we use the count from the first step to derive the number of P-matches of H in GH .
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We present this in Lemma 5.3.
We now formally define P-match and P-homomorphism.

Definition 5.2 (P-match and P-homomorphism). Let P = {V1, . . . , Vk} be a partition of the
vertex set V (G) of the input graph G where |V (H)| = k for the pattern graph H. Further
assume |Vi| > 1 for each i ∈ [k]. Let GH-match be a subgraph of G such that GH-match is a
match of H. We call GH-match a P-match, if it includes exactly one vertex from each set Vi
in P: |V (GH-match) ∩ Vi| = 1 for each i ∈ [k]. Let π : V (H) → V (G) be a homomorphism
from H to G. We call π a P-homomorphism, if the image of π is non-empty in each set Vi:
|{v : π(u) = v for u ∈ V (H)} ∩ Vi| > 1 for each i ∈ [k].

In the following lemma, we prove that it is possible to count the number of P-matches of H in
GH by running ALG on suitably chosen 2k many subgraphs of GH .

Lemma 5.3. Assume that ALG is an algorithm for the #HomH problem that runs in time
O(mf(κ, k)) for some function f , where m = E(G) and κ = κ(G) for the input graph G, and
k = V (H). Let P = {V1, . . . , Vk} be a partition of V (G) with |Vi| > 1 for each i ∈ [k]. Then, there
exists an algorithm that counts the number of P-match of H in G with running time O(2k ·mf(κ, k)).

Proof. Let F1,F2, . . . ,F2k−1 be the non-empty subfamilies of P. Let G1, G2, . . . , G2k−1 be the
subgraphs of G where Gi is induced on the vertex set V (G) \ (

⋃
S∈Fi

S), for i ∈ [2k − 1]. Note

that a homomorphism from H to any subgraphs Gi, for i ∈ [2k − 1], is also a homomorphism from
H to G. Since each Gi is a subgraph of G, the degeneracy κ(Gi) 6 κ. Then, ALG can count
homomorphisms from H to any Gi in time O(mf(κ, k)). Using the inclusion-exclusion principle,
we can obtain the number of homomorphisms from H to G that are also a homomorphism from H
to at least one of the subgraphs in {G1, G2, . . . , G2k−1} in O(2k ·mf(κ, k)). Hence, we can obtain
the number of P-homomorphisms from H to G as follows,

HomH(G)−
∑

16i62k−1

(−1)|Fi|−1HomH(Gi) .

Note that if a homomorphism from H to G does not include any vertex in a set Vi in P, then it
is also a homomorphism from H to at least one of the subgraphs in {G1, G2, G2k−1}. Thus, we do
not count such a homomorphism from H to G. Since k = |V (H)|, P-homomorphisms of H in G
are actually embeddings of H in G that involve exactly one vertex in each part of P . Observe that
each such embedding of H in G corresponds to a P-match of H in G. For each match GH-match of
H in G, there are |Aut(H)| embeddings of H in G that map H to GH-match. Thus, by dividing the
number of P-homomorphisms from H to G by |Aut(H)|, we obtain the number of P-matches of H
in G in O(2k ·mf(κ, k)) time.

5.1 Proof of Main Theorem

We now present the details of the construction of GH for the general case and prove Theorem 5.1.

Proof of Theorem 5.1. We present a linear time Turing reduction form the tri-cnt problem to
the #HomH problem in bounded degeneracy graphs. Let G be the input instance of the tri-cnt
problem where V (G) = {u1, . . . , un} and |E(G)| = m. First, we construct a graph GH based on G
and H such that GH has bounded degeneracy and O(m) edges.

Construction of GH . Let LICL(H) = r where r > 6; and V (H) = {a1, a2, . . . , ak}, where
ak−r+1, ak−r+2, . . . , ak, ak−r+1 is an induced r-cycle C. Let HC-excluded denote H − V (C). GH
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has two main parts, Gfixed and Gcore. These two parts are connected by the edge set Ebridge.
Gfixed is a copy of HC-excluded and has the vertex set Vfixed-set = {z1, z2, . . . , zk−r}. zi ∈ Vfixed-set
corresponds to ai in HC-excluded for i ∈ [k − r]. Thus, zi, zj ∈ Vfixed-set are adjacent iff {ai, aj} is
an edge in HC-excluded.

Gcore contains two sets of vertices, Vcore-set, and Vauxiliary-set. Vertices in Vcore-set correspond
to vertices in V (G), and vertices in Vauxiliary-set correspond to the edges in E(G). Vcore-set consists
of three copies of V (G) without any edges inside them. More precisely, Vcore-set is composed of
three sets of vertices V1 = {w1, . . . , wn}, V2 = {x1, . . . , xn}, and V3 = {y1, . . . , yn}. For i ∈ [n],
vertices wi ∈ V1, xi ∈ V2, and yi ∈ V3 correspond to ui ∈ V (G). There are no edges inside Vcore-set.
We describe Vauxiliary-set next.

Vauxiliary-set corresponds to the vertices of the paths of length r/3 that we add between V1, V2,
and V3. Let r = 3` + q, for some ` > 2 and q ∈ {0, 1, 2}. The vertices in Vauxiliary-set consists of
the sets of vertices V1,2, V2,3, and V1,3. For each edge e ∈ E(G) and each pair in {V1, V2, V3}, we
add two sets of vertices to Vauxiliary-set. Next, we describe the vertices we add to V1,2, V2,3, and
V1,3 for an edge e ∈ E(G). For the pair V1 and V2, we add

V 1,2
e =

{
v1,2e,1 , . . . , v

1,2
e,`−1

}
and V 2,1

e =
{
v2,1e,1 , . . . , v

2,1
e,`−1

}
to V1,2. For the pair V2 and V3, we add

V 2,3
e =

{
v2,3e,1 , . . . , v

2,3
e,`−1+bq/2c

}
and V 3,2

e =
{
v3,2e,1 , . . . , v

3,2
e,`−1+bq/2c

}
to V2,3. And finally, for the pair V1 and V3, we add

V 1,3
e =

{
v1,3e,1 , . . . , v

1,3
e,`−1+b(q+1)/2c

}
and V 3,1

e =
{
v3,1e,1 , . . . , v

3,1
e,`−1+b(q+1)/2c

}
to V1,3. The following defines V1,2, V2,3, and V1,3 more formally. For i, j ∈ {1, 2, 3} where i < j,

Vi,j =
⋃

e∈E(G)

V i,j
e ∪ V j,i

e .

This completes the description of V (Gcore). We describe E(Gcore) next.
The edges inside Gcore stitch vertices in Vauxiliary-set to form paths of length r/3 between each

pair in {V1, V2, V3}. E(Gcore-set) consists of three sets of edges, E1,2, E2,3, and E1,3. For each edge
in G and each pair in {V1, V2, V3}, we add two sets of edges to Gcore. We describe the edges we
add to Gcore for each edge e = {ui, uj} ∈ E(G). For the pair V1 and V2, we add

E1,2
e =

{
(wi, v

1,2
e,1), (v1,2e,1 , v

1,2
e,2), . . . , (v1,2e,`−1, xj)

}
and E2,1

e =
{

(wj , v
2,1
e,1), (v2,1e,1 , v

2,1
e,2), . . . , (v2,1e,`−1, xi)

}
to E1,2. Edges in E1,2 form `-paths between V1 and V2 with V1,2 as interior vertices. For the pair
V2 and V3, we add

E2,3
e =

{
(xi, v

2,3
e,1), (v2,3e,1 , v

2,3
e,2), . . . , (v2,3e,`−1+bq/2c, yj)

}
and E3,2

e =
{

(xj , v
3,2
e,1), (v3,2e,1 , v

3,2
e,2), . . . , (v3,2e,`−1+bq/2c, yi)

}
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to E2,3. Edges in E2,3 compose `+ bq/2c-paths between V2 and V3, by joining the vertices in V2,3.
And, for the pair V1 and V3, we add

E1,3
e =

{
(wi, v

1,3
e,1), (v1,3e,1 , v

1,3
e,2), . . . , (v1,3e,`−1+b(q+1)/2c, yj)

}
and E3,1

e =
{

(wj , v
3,1
e,1), (v3,1e,1 , v

3,1
e,2), . . . , (v3,1e,`−1+b(q+1)/2c, yi)

}
to E1,3. The edge set E1,3 joins vertices in V1,3 to form ` + b(q + 1)/2c-paths between V1 and
V3. We can describe the three sets of edges that compose E(Gcore) more formally as follows. For
i, j ∈ {1, 2, 3} where i < j,

Ei,j =
⋃

e∈E(G)

Ei,je ∪ Ej,ie .

Now, we describe the edge set Ebridge that connects Gfixed and Gcore. First, we partition V1,2,
V2,3, and V1,3 based on distance to V1, V2, and V3, respectively. For instance, we define V i

1,2 to be
all the vertices in V1,2 with i as the length of the shortest path to a vertex in V1. Recall that each
vertex in V1,2 serves as an internal vertex of a path between a vertex in V1 and a vertex in V2.
Formally, we define

V i
1,2 =

⋃
e∈E(G)

{v1,2e,i , v
2,1
e,i } for i ∈ {1, . . . , `− 1},

V i
2,3 =

⋃
e∈E(G)

{v2,3e,i , v
3,2
e,i } for i ∈ {1, . . . , `− 1 + bq/2c},

and V i
1,3 =

⋃
e∈E(G)

{v1,3e,i , v
3,1
e,i } for i ∈ {1, . . . , `− 1 + b(q + 1)/2c}.

Now that we have partitioned Vauxiliary-set, we add the sets V1, V2, and V3 to this partition of
Vauxiliary-set to define a partition P ′ of V (Gcore) as follows.

P ′ =
{
V1, V2, V3,

V 1
1,2, . . . , V

`−1
1,2 ,

V 1
2,3, . . . , V

`−1+bq/2c
2,3 ,

V 1
1,3, . . . , V

`−1+b(q+1)/2c
1,3

}
.

Observe that |P ′| = r. Let σbridge : V (C)→ P ′ be a bijective mapping. We first describe Ebridge

based on σbridge and then specify σbridge. The following describes the edges we add to Ebridge for
each edge e = {u, v} ∈ E(H) where u ∈ V (C) and v /∈ V (C). Let zv ∈ Vfixed-set be the vertex
corresponding to v. We add an edge between zv and each vertex in σbridge(u). We describe σbridge
next.

We set σbridge to map V (C) to an r-cycle in Gcore that is a P ′-match of C (recall Definition 5.2).
Recall that C = ak−r+1, ak−r+2, . . . , ak, ak−r+1. We break this cycle into three parts of length `,
` + bq/2c, and ` + b(q + 1)/2c, respectively, starting from ak−r+1. We set σbridge(ak−r+1) to V1,
σbridge(ak−r+1+`) to V2, and σbridge(ak−r+1+2`+bq/2c) to V3. In order for σbridge to map C to a
P ′-match of C, we set σbridge to map vertices of C between ak−r+1 and ak−r+1+` to vertices of the
paths between V1 and V2, which are vertices in V1,2. Similarly, σbridge maps vertices of C between
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ak−r+1+` and ak−r+1+2`+bq/2c to V2,3, and vertices of C between ak−r+1+2`+bq/2c and ak−r+1 to V1,3.
Formally,

σbridge(ak−r+1) = V1,

σbridge(ak−r+1+i) = V i
1,2, for i ∈ {1, . . . , `− 1},

σbridge(ak−r+1+`) = V2,

σbridge(ak−r+1+`+i) = V i
2,3, for i ∈ {1, . . . , `− 1 + bq/2c},

σbridge(ak−r+1+2`+bq/2c) = V3,

and σbridge(ak−r+1+2`+bq/2c+i) = V i
2,3, for i ∈ {1, . . . , `− 1 + b(q + 1)/2c}.

This completes the description of Ebridge and hence GH . Before presenting the details of the
reduction, we first show that GH has bounded degeneracy and O(m) edges.

The following lemma shows that in order to prove a graph G is t-degenerate, we only need to
exhibit an ordering ≺ of V (G) such that each vertex of G has t or fewer neighbors that come later
in the ordering ≺. Given a graph G and an ordering ≺ of V (G), the DAG G→≺ is obtained by
orienting the edges of G with respect to ≺.

Lemma 5.4. [Szekeres-Wilf [SW68]] Given a graph G, κ(G) 6 t if there exists an ordering ≺ of
V (G) such that the out-degree of each vertex in G→≺ is at most t.

Next, we show that GH has bounded degeneracy using Lemma 5.4.

Lemma 5.5. κ(GH) 6 k − r + 2.

Proof. We present a vertex ordering ≺ for GH such that for each vertex v ∈ V (GH), the out-degree
of v is at most k − r + 2 in GH

→
≺ . Let ≺ be an ordering of V (GH) such that Vauxiliary-set ≺

Vcore-set ≺ Vfixed-set, and ordering within each set is arbitrary. Each vertex in Vauxiliary-set is
connected to exactly two other vertices in V (Gcore) and at most to all k − r vertices in Vfixed-set.
So the out-degree of each vertex in Vauxiliary-set in GH

→
≺ is at most k − r + 2. Since there are no

edges inside Vcore-set, the only out-edges from vertices inside Vcore-set is to vertices in Vfixed-set.
Further, the only out-edges from vertinces in Vfixed-set are to other vertices in Vfixed-set. Thus the
out-degree of each vertex v ∈ V (GH) in GH

→
≺ is at most k − r + 2.

Observe that GH has at most κ(GH)·|V (GH)| edges. By Lemma 5.5, κ(GH) < k, and |V (GH)| <
6m`+ 3n+ k by construction of GH . Thus, GH has O(m) edges.

Details of the Reduction. We define a partition of V (GH) by adding each vertex in Vfixed-set as
a set by itself to P ′. Formally,

P =
{
{z1}, {z2}, . . . , {zk−r},

V1, V2, V3,

V 1
1,2, . . . , V

`−1
1,2 ,

V 1
2,3, . . . , V

`−1+bq/2c
2,3 ,

V 1
1,3, . . . , V

`−1+b(q+1)/2c
1,3

}
.

Observe that |P| = k. Also, since GH has bounded degeneracy, each subgraph of GH has bounded
degeneracy too. Thus, by Lemma 5.3 we can count P-matches of H in GH in linear time if there
exists an algorithm ALG for #HomH problem that runs in time O(mf(κ, k)) for a positive function
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f . In Lemma 5.6, we prove that there is a bijection between P-matches of H in GH and P ′-matches
of C in Gcore. Further, in Lemma 5.7, we prove that the number of triangles in G is a simple linear
function of the number of P ′-matches of C in Gcore. So, by counting P-matches of H in GH , we
can obtain the number of triangles in G.

Lemma 5.6. There exists a bijection between the set of P-matches of H in GH and the set of
P ′-matches of C in Gcore.

Proof. Let H ′ be a P-match of H in GH . Observe that by construction of GH , the only edges
of GH inside V (H ′) are edges of H ′. Therefore, H ′ is actually an induced match of H in GH .
By construction of GH , specifically Ebridge, the number of edges between Vfixed-set and V (H ′) \
Vfixed-set is equal to the number of edges between HC-excluded and C. As Gfixed is a copy of
HC-excluded, there are exactly |E(HC-excluded)| edges inside the set of vertices Vfixed-set. Thus, H ′

has exactly |E(C)| = r edges inside Gcore. We describe these edges next.
Let wi, xj , and yt be the vertices of H ′ in V1, V2, and V3, respectively. Inside Gcore, wi could

only be connected to the two vertices of H ′ in V 1
1,2 and V 1

1,3. Furthermore, xj could only be adjacent

to the two vertices of H ′ in V `−1
1,2 and V 1

2,3. And finally, yt could only be neighbors of the two vertices

of H ′ in V
`−1+bq/2c
2,3 and V

`−1+b(q+1)/2c
1,3 . In addition, each vertex in Vauxiliary-set has at most two

neighbors inside Gcore, and the same holds in H ′. Inside Gcore, H ′ has exactly r edges, so each
vertex is connected (only) to their two possible neighbors specified above. Hence, there exist an
`-path between wi and xj , an `+bq/2c-path between xj and yt, and an `+b(q+1)/2c-path between
wi and yt. Thus, H ′ − Vfixed-set is an r-cycle inside Gcore that includes exactly one vertex in each
part of P ′, and hence is a P ′-match of C. It is easy to see that this P ′-match of C is actually an
induced match. Next, we show the other direction.

Let C ′ be a P ′-match of C in Gcore. It is easy to see that by construction of Gcore, C ′ is an
induced match. By construction of GH , GH [V (C ′)∪Vfixed-set] is an induced match of H. Therefore,
C ′ corresponds to exactly one P-match of H in GH .

Lemma 5.7. Let P ′-match(C,Gcore) denote the set of P ′-matches of C in Gcore. The number of
triangles in G is equal to | P ′-match(C,Gcore)|/6.

Proof. Consider a cycle C ′ ∈ P ′-match(C,Gcore). Let wi, xj , and yt be the the only vertices of
C ′ in V1, V2, and V3, respectively. There should be a path between wi and xj in C ′ that does not
include yt, so other than wi and xj , it only includes vertices in Vauxiliary-set. The only possible
such path in Gcore is an `-path between wi and xj . Therefore, this `-path exists, and as a result
(ui, uj) ∈ E(G). Similarly, C ′ includes a path between xj and yt that only contain vertices in
Vaux other than xj and yt. Therefore, there exists an ` + bq/2c-path between xj and yt in Gcore,
and hence (uj , ut) ∈ E(G). Finally, a path between wi and yt that other than its endpoints, only
includes vertices in Vauxiliary-set, should be a part of C ′. So, there exists an ` + b(q + 1)/2c-path
between wi and yt in Gcore. As a result, (ui, ut) ∈ E(G). Thus, C ′ corresponds only to the triangle
ui, uj , ut in G. Observe that, C ′ could be specified by its vertices in V1, V2, and V3. Next, we prove
the other direction; exactly 6 P ′-matches of C in Gcore correspond to each triangle in G.

Consider a triangle T with the vertex set {ui, uj , ut} in G and a P ′-match C ′ of C in Gcore

that corresponds to T . There are six different bijective mappings from {ui, uj , ut} to {V1, V2, V3}.
As we showed above, C ′ could be specified by its vertices in V1, V2, and V3. So, given a bijective
mapping σtriangle : {ui, uj , ut} → {V1, V2, V3}, the three vertices σtriangle(ui), σtriangle(uj), and
σtriangle(ut) specify C ′. Thus, there are exactly 6 P ′-matches of C in Gcore that correspond to T .
As a result, the number of triangles in G is | P ′-match(C,Gcore)|/6.

22



Lemma 5.6 and Lemma 5.7 together show that we can obtain the number of triangles in G
from the number of P-matches of H in GH , in constant time. In conclusion, we have proved that
if there exists an algorithm ALG for the #HomH problem that runs in time O(mf(κ, k)) for a
positive function f , then there exists an O(m) algorithm for the tri-cnt problem. Assuming the
Triangle Detection Conjecture, the problem of tri-cnt has the worst case time complexity
of ω(m) for an input graph with m edges. Thus, the O(m) Turing reduction from the tri-cnt
problem to #HomH problem we presented proves Theorem 5.1.

Observation 5.8. In the proof of Theorem 5.1, we count P-homomorphisms (defined in Defini-
tion 5.2) from H to GH using the algorithm ALG. Since |P| = |V (H)|, each P-homomorphism
from H to GH is an embedding of H in GH . Thus, we can apply the same argument of Lemma 5.3
assuming there exists an algorithm for counting subgraphs, that has the same running time of ALG.
Therefore, using the same argument as that of the proof of Theorem 5.1, we can prove the exact
same statement of Theorem 5.1 for the #SubH problem.

6 Conclusion

In this paper, we study the problem of counting homomorphisms of a fixed pattern H in a graph
G with bounded degeneracy. We provided a clean characterization of the patterns H for which
near-linear time algorithms are possible — if and only if the largest induced cycle in H has length
at most 5 (assuming standard fine-grained complexity conjectures). We conclude this exposition
with two natural research directions.

While we discover a clean dichotomy for the homomorphism counting problem, the landscape
for the subgraph counting problem is not as clear. Our hardness result (Theorem 5.1) holds for
the subgraph counting version — if a pattern H has LICL > 6, then there does not exists any
near-linear time (randomized) algorithm for finding the subgraph count of H (see Observation ob-
servation 5.8). However, the “only if” direction does not follow. It would be interesting to find a
tight characterization for the subgraph counting problem.

Both our current work and a previous work [BPS20] attempt at understanding what kind of
patterns can be counted in near-linear time in sparse graphs. It would be interesting to explore
beyond linear time algorithms. Specifically, we pose the following question: Can we characterize
patterns that are countable in quadratic time?
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