
 

 

 

1 

 1 

Diurnal Asymmetry of Desert Amplification and Its Possible 2 

Connections to Planetary Boundary Layer Height:  3 

A Case Study for the Arabian Peninsula   4 

 5 

Liming Zhou 6 

 7 

Department of Atmospheric and Environmental Sciences, SUNY at Albany, Albany, NY 12222, 8 

USA 9 

 10 

 11 

Correspondence 12 

Liming Zhou 13 

Department of Atmospheric and Environmental Sciences 14 

University at Albany, State University of New York 15 

 1400 Washington Avenue, Albany, NY 12222 16 

Tel: (518) 442-4446; Fax: (518) 442-5825 17 

Email: lzhou@albany.edu 18 

 19 

Accepted for publication in 20 

Climate Dynamics  21 

January 4, 2021 22 

23 

mailto:lzhou@albany.edu


 

 

 

2 

Abstract. Recent studies using observations, reanalysis data and climate model simulations 24 

documented that 2m surface air temperature (T2m) has been amplified over the world’s hottest 25 

and driest Sahara Desert and the Arabian Peninsula, referred to as desert amplification (DA). 26 

This study presents a comprehensive analysis of hourly surface observations, radiosonde 27 

measurements, and two latest state-of-the-art reanalysis products for the period 1979-2018 to 28 

examine the diurnal and vertical variations of DA and their connections with planetary boundary 29 

layer height (PBLH). It focuses on the Arabian Peninsula (AP), where observations are relatively 30 

abundant compared to the data scarce Sahara regions. Both observational and reanalysis data 31 

show that the diurnal cycle of surface warming rate depends, to some extent, inversely on the 32 

magnitude of climatological PBLH, and so DA has a distinct diurnal asymmetry with a stronger 33 

warming for a shallower PBLH. Results of upper air profiles reveal that DA is a bottom-heavy 34 

warming profile, which maximizes near the surface, decreases quickly with height, and is limited 35 

to the lower troposphere (>700 hPa) and surface. The major PBLH biases could explain, at least 36 

partially, some of the diurnal and vertical warming/cooling biases in the reanalyses. These results 37 

suggest that besides the surface radiative forcing, the PBLH may play an important role in 38 

modulating the diurnal and vertical structure of DA over the AP through heat redistributing via 39 

turbulent mixing.  40 

 41 
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1. Introduction 43 

 44 

Deserts make up approximately 1/3 of the global land surface area (Zhou, 2016; Wei et al., 45 

2017a). The Sahara and Arabian deserts, the world’s two largest hot deserts, are formed in the 46 

subtropical subsiding branch of the Hadley cells and so generally associated with dry and 47 

cloudless weather conditions (Wu et al., 2009). The Sahara Desert and the Arabian Peninsula 48 

(SDAP) are among the driest and hottest regions on Earth and considered to be a hotspot in terms 49 

of climate change and impacts from regional to global scales through the influence of dust 50 

aerosols and atmospheric circulation (Knippertz and Todd, 2012; Vizy and Cook, 2017; Thomas 51 

and Nigam, 2018). Observations and climate model simulations indicate adverse impacts of 52 

increasing warming and drought on fragile desert ecosystems in response to elevated greenhouse 53 

gas (GHG) concentrations (Huang et al., 2016; Thomas and Nigam, 2018). 54 

 55 

By analyzing observational, reanalysis and projected land surface 2m air temperatures (referred 56 

to as T2m hereafter), several recent studies documented that T2m in mid- and low- latitudes has 57 

warmed the most over the SDAP. Zhou et al. (2015; 2016) examined the observational, 58 

reanalysis, and modeled T2m trends in 50S-50N by large-scale ecoregion for the period 1979-59 

2012 and found dramatically increased warming rates with increasing surface aridity and the 60 

strongest warming over the driest and least vegetated SDAP. Cook & Vizy (2015) evaluated 61 

annual mean T2m of three reanalyses and two observational gridded datasets for the period 62 

1979-2012 and showed 2-4 times more warming over the Sahara than over the whole tropics. 63 

Evan et al (2015) examined in-situ observations of three stations and one atmospheric reanalysis 64 

for the months of July and August during the period of 1979–2012 and identified amplified 65 
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warming in summer over the Western Sahara Desert. Zhou (2016) further examined T2m 66 

changes in historical and projected simulations (1950-2100) from the Coupled Model 67 

Intercomparison Project phase 5 (CMIP5) and found strongest surface warming consistently and 68 

persistently seen over the SDAP during various 30-year periods after the 1980s, pointing to 69 

desert amplification (DA) in a warming climate. This work also showed that the magnitude of 70 

DA increased linearly with the global mean radiative forcing due to increasing GHGs. DA was 71 

reproduced by CMIP5 historical “all forcings” simulations, but was absent if only natural 72 

forcings were used, suggesting human influence (Zhou et al., 2015; 2016; Zhou, 2016). Using 73 

multiple satellite datasets, Wei et al. (2017a) indicated that DA was strongest at the surface, 74 

decreased with height, and mostly disappeared in the upper troposphere. The essential features of 75 

DA remained robust across all seasons, although the magnitude of DA was greater during 76 

summer months (Zhou et al., 2016; Vizy and Cook, 2017; Wei et al., 2017a). These results 77 

suggest that DA is a fundamental feature of global warming patterns in mid- and low- latitudes 78 

and intensifies with increasing GHGs.  79 

 80 

DA is conceptually similar to the well-known arctic amplification (AA), a subject of intensive 81 

research for several decades (e.g., Serreze and Barry, 2011). AA has been attributed to feedbacks 82 

associated with surface albedo, water vapor, cloud, and lapse rate, and to changes in atmospheric 83 

and oceanic heat transport (IPCC, 2007; 2013). In contrast, DA is an emerging new concept and 84 

its causes are largely unknown. Several recent studies suggested that DA may result mainly from 85 

large-scale greenhouse effects in a warming climate over the SDAP associated with increasing 86 

water vapor (Cook & Vizy 2015; Zhou et al. 2016; Zhou 2016; Wei et al., 2017a; Evan et al., 87 

2017). This attribution was proposed from the local surface energy budget perspective, based on 88 
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the results that the desert warming rate is well correlated spatially and temporally with enhanced 89 

downward longwave radiation (DLR) at the surface as a result of a warmer and moister 90 

atmosphere. It is suggested that DA may alter regional-scale climate and circulation over the 91 

deserts and surroundings and thus have significant environmental, societal, and economic 92 

consequences (Zhou 2016; Vizy and Cook 2017). Hence, understanding major processes that 93 

control DA is essential for a complete assessment of climate change and impacts. 94 

 95 

One distinct feature of hot desert climate is the pronounced diurnal cycle. The SDAP is 96 

characterized by extremely high temperatures during daytime and very low temperatures during 97 

nighttime, which creates the largest diurnal temperature range (DTR) in the world (Zhou et al. 98 

2007; 2009; 2010). It is also marked by a large diurnal cycle in the atmospheric planetary 99 

boundary layer (PBL). Turbulent mixing in the PBL governs the vertical exchange of heat, 100 

moisture, momentum, and aerosols in the surface-atmosphere interface and thus strongly 101 

influences the atmospheric temperature, moisture, and wind (Stull, 1988). The PBL height 102 

(PBLH) represents the maximum height of the free atmosphere that is directly influenced by the 103 

Earth’s surface and responds to surface impacts. On the diurnal time scale, the development of 104 

PBL typically consists of the deep convective boundary layer (CBL) during the day, the shallow 105 

stable boundary layer (SBL) at night, and their transition stages in the morning and evening 106 

periods. In general, PBLH depends proportionally on the intensity of surface heating over dry 107 

regions, and so the global PBL climatology shows the maximum PBLH in the SDAP, up to 3.5 108 

km in summer months (Ao et al., 2012). Among various climate zones worldwide, the SDAP 109 

generally has the deepest and well-mixed PBL at daytime but the shallowest and most stably 110 
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stratified PBL at nighttime, with the strongest diurnal asymmetry in PBLH (Gamo, 1996; 111 

Messager et al., 2010; Garcia-Carreras et al., 2015; Davy, 2018).  112 

 113 

It is interesting to note that the spatial pattern of DA is coupled geographically well with that of 114 

the climatological DTR and PBLH over the SDAP, which are strongly connected with the unique 115 

diurnal features of desert land surface and PBL processes. Besides the positive radiative forcing 116 

at the surface, recent studies indicated that the PBLH modulates the T2m response to the surface 117 

forcing and is a stronger predictor of the diurnal asymmetry in surface warming (McNider et al. 118 

2012; Davy and Esau, 2016; Davy et al., 2016). This implies that the strong diurnal cycle of 119 

PBLH over the SDAP may result in a diurnal asymmetry in DA. Also, the amplified surface 120 

warming associated with DA could modify the vertical warming profile or lapse rate over deserts 121 

via strong turbulent mixing in the PBL. However, recent detection and attribution of DA have 122 

been limited to the seasonal and annual features of daily mean T2m (Zhou et al., 2015; Cook & 123 

Vizy 2015; Zhou et al. 2016; Zhou 2016; Wei et al., 2017a; Evan et al., 2017; Vizy and Cook 124 

2017), little attention is given to understand how DA varies diurnally and vertically. Hence, 125 

understanding the diurnal and vertical features of DA and their connections with PBLH is an 126 

important next step.  127 

 128 

The diurnal variation is one of the most fundamental modes of variability of the global climate 129 

system and may function as a bridge between weather and climate (Yang and Slingo, 2001; 130 

Ruppert, 2016). Changes in surface temperatures such as daily maximum (Tmax), daily minimum 131 

(Tmin), and the DTR have been examined intensively to study climate change and variability 132 

(IPCC, 2007; 2013). Associated with global warming is a greater warming in Tmin than Tmax, and 133 
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thus a substantial reduction in the DTR observed over many land areas since 1950 (Vose et al., 134 

2005; IPCC, 2007; 2013). The DTR calculated from Tmin and Tmax (DTR=Tmax - Tmin) are often 135 

analyzed to describe the diurnal cycle, but the full diurnal cycle is far more complex than the 136 

simple difference in the two numbers and needs analysis of high temporal resolution data (e.g., 137 

Vinnikov et al., 2002; Davy et al., 2017).   138 

 139 

Despite its importance to Earth’s climate, the Sahara has one of the sparsest networks of routine 140 

meteorological measurements of any landmass on Earth, with most measurements only available 141 

at the periphery of the desert (Marsham et al., 2013). This data gap fundamentally limits our 142 

understanding of the Saharan climate because of insufficient observations available for data 143 

collection, assimilation or model validation (Garcia-Carreras et al., 2015; Wei et al., 2017a; 144 

2017b). Also, weather and climate models have difficulties in realistically simulating the 145 

magnitude and diurnal evolution of PBLH and T2m, particularly over dry climates (Christensen 146 

et al., 2008; McNider et al. 2012; Boberg and Christensen, 2012; Lewis and Karoly, 2013; Davy 147 

and Esau, 2016; Davy et al., 2017; Wei et al., 2017b; Davy, 2018). These data limitations and 148 

model deficiencies cast doubt on detecting and attributing DA. Further validation of DA using in 149 

situ observations is essential. 150 

 151 

Surface and atmospheric observations in the Arabian Peninsula (AP) are relatively abundant 152 

compared to significant data gaps in the Sahara Desert. DA is a continental-scale warming 153 

pattern covering the entire SDAP and so the warming features in the AP are representative of 154 

DA. In addition, high temporal and spatial resolution reanalysis products have been released 155 

recently with improved quality. This provides a great opportunity to further understand and 156 
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validate DA using in-situ observations and advanced reanalysis data over the AP. The present 157 

paper analyzes high resolution data from surface and radiosonde observations and two widely 158 

used reanalysis data to examine the diurnal cycle and vertical structure of DA and its potential 159 

drivers over the AP. It focuses on the modern satellite data era for the period 1979-2018 to 160 

maximize spatial coverage of measurements that are assimilated into reanalysis products. This 161 

era also corresponds to the period when the observed DA signal is most significant. 162 

 163 

The motivation for this study is threefold. The first goal is to search for more observational 164 

evidence of DA. The second goal is to examine the diurnal variation in surface warming 165 

associated with DA and potential drivers using hourly data, rather than the DTR as done 166 

previously. The third goal is to link the diurnal cycle of DA with that in the upper air. Climate 167 

change research has focused dominantly on T2m, including the detection and attribution of DA, 168 

but temperature changes are not limited to the Earth surface and can be extended into the free 169 

atmosphere (Brocard et al, 2013). The vertical structure of temperature changes can tell a whole 170 

story of climate change, and in this case, can improve our understanding of the diurnal coupling 171 

of surface and air temperatures over deserts.  172 

 173 

2.  Data and Methods 174 

 175 

2.1. Study region 176 

 177 

This study focuses on the AP and surrounding areas, where high-quality surface and radiosonde 178 

observations are available. It is worth noting that the spatial coverage of observational network 179 
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in the AP is sparser than that in North America and Europe but is relatively abundant for large-180 

scale analysis in comparison to the other SDAP regions. The study domain, depicted as the 181 

rectangle box (16.5N-32.5N, 34.5E-50E) in Fig. 1, covers most of the AP countries and part 182 

of several neighboring states such as Egypt, Sudan, Iraq, Iran, and Israel. It includes the Arabian 183 

Desert, which occupies almost the entire AP, but excludes the relatively humid southern part of 184 

the AP affected by convective processes and clouds (Hassan et al., 2016; Patlakas et al., 2019).  185 

 186 

The climate of the AP is extremely hot and dry, with infrequent low rainfall (Chowdhury and Al-187 

Zahrani, 2013; Patlakas et al., 2019). The landscape consists of highlands in the western and 188 

southwestern regions, the vast arid and extra arid lands of the interior (Najd), the world’s largest 189 

continuous bodies of sand deserts, and the Rub Al–Khali in the southeast (Patlakas et al., 2019). 190 

Despite sharing similar large-scale climate features, the AP also demonstrates some level of 191 

heterogeneity at local to regional scales due to variations in vegetation, topography, proximity to 192 

sea, and regional circulation patterns (Ahmed, 1997; Krishna, 2014). Among the AP countries, 193 

Saudi Arabia occupies ~4/5 of the AP and a large part of the Arabian Desert lies within the 194 

country. It is among the hottest countries with very low humidity in the world and average 195 

temperature ranging from 27°C-43°C in inland regions and 27-38°C in coastal regions (Krishna, 196 

2014). For example, the highest (lowest) temperature of 52°C (-10°C) are recorded in two 197 

stations in Saudi Aribia (Almazroui et al. 2014). Saudi Arabia provides most of the station-based 198 

observations used in this study and is relatively well studied in terms of climate change 199 

compared to the Sahara Desert.   200 

 201 

2.2. Observational and reanalysis data 202 
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 203 

2.2.1. Integrated global daily radiosonde data 204 

 205 

Daily weather data for the atmosphere have been regularly obtained from radiosondes and pilot 206 

balloons dating back to 1905. The Integrated Global Radiosonde Archive Version 2 (IGRA2) 207 

from the U.S. National Climatic Data Center (NCDC) consists of quality-controlled sounding 208 

observations from various sources at >1500 global stations with varying periods of record (Durre 209 

et al., 2006). Measurements include atmospheric vertical profiles of temperature, humidity, wind 210 

and other variables at mandatory pressure levels. The IGRA2 has applied a comprehensive set of 211 

quality control procedures to the data to remove gross errors. So far, it is the largest and most 212 

complete dataset of quality-assured radiosonde observations freely available. Its temporal and 213 

spatial coverage is most complete over the U.S., Western Europe, Russia and Australia. The 214 

vertical resolution and extent of soundings improve significantly over time, with nearly three-215 

quarters of all soundings reaching up to at least 100 hPa by 2003. However, the IGRA2 data 216 

have not been adjusted for inhomogeneities due to changes in instrumentation, observing 217 

practice, or station location.  218 

 219 

It is well recognized that radiosonde data need bias correction for homogeneity before they can 220 

be used for trend analysis in climatic research (Thorne et al., 2011; Haimberger et al., 2012). One 221 

of the widely used homogeneity-adjusted radiosonde datasets based on the IGRA2 is the 222 

homogenization of global radiosonde temperatures with the Radiosonde Observation Correction 223 

Using Reanalyses (RAOBCORE) and the Radiosonde Innovation Composite Homogenization 224 

(RICH) (Haimberger, 2007; Haimberger et al., 2008). The RAOBCORE homogenization method 225 
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detected shifts in existing radiosonde observation time series and estimated the size of the shifts 226 

using background forecast time series from ERA-40 (1958-1978) and ERA-Interim (1979 227 

onwards) as reference for break detection. However, the background forecasts may be influenced 228 

by biases in the radiosonde data, and by uncertainty from other observing systems, most notably 229 

satellites, and reanalysis models (Haimberger et al., 2012). To avoid this problem, the RICH 230 

homogenization method created reference series from neighboring radiosonde stations for 231 

breakpoint adjustment. It works well if the radiosonde network is not too sparse and only 232 

homogeneous pieces of the neighboring time series are used. Note that homogeneity adjustments 233 

were only made to radiosonde-based temperature measurements.  234 

 235 

This study used the latest version v1.74 of the RICH dataset on 16 pressure levels for several 236 

reasons: (1) it has the longest data record with most stations compared to other homogeneity‐237 

adjusted radiosonde datasets over the AP; (2) it has homogeneity-adjusted measurements at both 238 

daytime and nighttime (00 and 12 Coordinated Time Universal or UTC); (3) it exhibits the 239 

closest match to the latest satellite observations in the tropics (Thorne et al., 2011). Note that the 240 

RAOBCORE adjusted data is assimilated into the ERA5, which is used in this study, while 241 

RICH adjusted data is not used for the ERA5.  242 

 243 

Here the subdaily and daily temperatures from the RICH were downloaded for the period 1979-244 

2018. Eight radiosonde stations over the study region were chosen following the data selection 245 

criteria (section 2.3.1). To estimate the climatology of PBLH for the same period, the original 246 

radiosonde soundings from the IGRA2 were also used (section 2.3.3).   247 

 248 
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2.2.2. Integrated global hourly surface observations  249 

 250 

Hourly surface-based meteorological observations are available from the global-scale, quality-251 

controlled integrated surface hourly dataset (DS3505) archived in the U.S. NCDC 252 

(https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd). The DS3505 consists of numerous global 253 

hourly and synoptic observations for regular weather parameters (e.g., temperature, dew point, 254 

wind, etc.) into a common format and data model, and thus provides a single collection of global 255 

hourly data with continuous updates. The primary data sources include the Automated Surface 256 

Observing System (ASOS), Automated Weather Observing System (AWOS), and various others 257 

from more than 35,000 stations worldwide for the period 1901-present. The data spatial and 258 

temporal coverage in the DS3505 is however not even. The best spatial coverage is evident in 259 

North America, Europe, Australia, and parts of Asia, but only a limited number of stations is in 260 

the Southern Hemisphere and the African Continent. Some stations have data as far back as 261 

1901, but there is a substantial increase in data volume starting in the late 1970s. In terms of data 262 

continuity, some stations have over 50 years of continuous records, while others have “breaks” in 263 

the period of record (Smith et al., 2011). 264 

 265 

Besides internal quality control (QC) procedures applied to several major input datasets to the 266 

DS3505, there have been continued incremental improvements in automated QC software since 267 

2003 (Smith et al., 2011). The input data sources were first processed through automated and 268 

some manual QC and then additional QC software was developed and applied to the entire 269 

archive. The QC process included 54 QC algorithms checking for proper data format for each 270 

field, extreme values and limits, consistency between parameters, and continuity between 271 

https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd
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observations. The standardized and consistent QC procedure in the DS3505 was designed to 272 

eliminate obvious errors in the data, minimize overflagging of data, and ensure delivery of 273 

spatially variable, research-quality data. Detailed information regarding the QC process is 274 

described in Smith et al. (2011).  275 

 276 

This study used the subhourly and hourly T2m from the DS3505 for the period 1979-2018. 21 277 

surface stations over the AP were chosen following the data selection criteria (section 2.3.1). 278 

 279 

2.2.3. High-resolution reanalysis products  280 

 281 

This study used two of the latest state-of-the-art reanalysis products that provide hourly or 6-282 

hourly analysis fields at relatively high spatial resolutions for the period 1979-2018.   283 

 284 

ECMWF Reanalysis 5th Generation (ERA5) gives a numerical description of the recent climate, 285 

produced by combining vast amounts of historical observations into global estimates using 286 

advanced modelling and data assimilation systems (C3S, 2017). This climate reanalysis provides 287 

hourly estimates of many atmospheric, land and oceanic climate variables covering the period 288 

1979 to present. The data cover the Earth on a 30 km grid and resolve the atmosphere using 137 289 

levels from the surface up to a height of 80 km. The monthly mean data of analyzed 290 

meteorological fields: (1) hourly averaged temperature, humidity, wind speed, geopotential 291 

height on pressure levels, and (2) hourly averaged surface pressure and PBLH, at a spatial 292 

resolution of 0.5° longitude ×0.5° latitude are used in this study. Hourly averaged T2m, surface 293 

humidity, and surface fluxes at the same spatial resolution are provided by the ERA5-Land (C3S, 294 
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2019). The ERA5-Land is a replay of the land component of the ERA5 climate reanalysis for the 295 

period 1981-present. It is produced to meet the needs of users for a more accurate surface dataset 296 

using the tiled ECMWF Scheme for Surface Exchanges over Land incorporating the land surface 297 

hydrology (H-TESSEL) model. All available ERA5 and ERA5-land datasets are detailed at 298 

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset. 299 

 300 

The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is a 301 

NASA atmospheric reanalysis that begins in 1980 with the enhanced use of satellite observations 302 

(Gelaro et al., 2017). The MERRA-2 data are provided on the same horizontal grid of 0.625° 303 

longitude ×0.5° latitude at 42 pressure levels. The monthly mean data of analyzed meteorological 304 

fields: (1) 6-hourly (00, 06, 12 and 18 UTC) instantaneous temperature, humidity, wind speed, 305 

geopotential height on pressure levels, and (2) hourly averaged variables of T2m, surface 306 

humidity, surface pressure, PBLH, and surface fluxes, are examined in this study. Note that the 307 

hourly analyzed sounding data is not provided in the MERRA-2. A comprehensive list of 308 

available variables is detailed at https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf. 309 

 310 

2.3. Data processing and methods 311 

 312 

The above four datasets have different temporal resolutions. The surface observations in the 313 

DS3505 have subhourly and hourly data; the radiosonde observations in the RICH contain 314 

subdaily and daily data; the two reanalysis products consist of monthly means of hourly averaged 315 

or 6-hourly instantaneous data. Since the signal of DA is limited to the surface and lower 316 

troposphere, the four datasets are processed into two types: (1) the hourly-averaged data near the 317 

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf
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surface (e.g., T2m, PBLH, and surface fluxes) and (2) the sounding data at 00 and 12 UTC (e.g., 318 

air temperature and humidity). The latter only considers the 10 “mandatory reporting” pressure 319 

levels at and below 100 hPa shared by both radiosonde and reanalysis data: 1000, 925, 850, 700, 320 

500, 400, 300, 250, 200, 150, and 100 hPa. Because the annual mean surface pressure over the 321 

study region is 948 hPa in the MERRA-2 and 952 hPa in the ERA5, the sounding results on 1000 322 

hPa are excluded.  323 

 324 

This work mainly analyzes temperature trends considering the arid nature of the AP climate as 325 

rainfall occurs only on a few days per year for most stations and humidity is persistently very 326 

low (Almazroui, 2014). Also, observed temperatures are of relatively high-quality, have much 327 

fewer missing data than other variables in the DS3505, and are homogeneity adjusted in the 328 

RICH. Only the annual mean data are examined to maximize the data coverage as seasonal mean 329 

data have a smaller sample size with a relatively higher ratio of missing data. Doing so will not 330 

bias the results with seasonality as DA is a large-scale warming pattern across all seasons (Vizy 331 

and Cook, 2017; Wei et al., 2017a). Because every variable analyzed here is an annual mean 332 

quantity, the term “annual mean” will be often omitted for brevity for the remainder of this 333 

paper.  334 

 335 

2.3.1. Data processing for near surface and atmospheric air temperatures  336 

 337 

The first task is to create annual mean anomalies for hourly T2m and for atmospheric 338 

temperatures at 00 and 12 UTC for the study period following the five steps detailed next. The 339 

first step is to create the daily hourly mean data. For each day, the subhourly and hourly data are 340 
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aggregated into hourly averaged data. This step is applied only to the surface station observations 341 

from the DS3505. The second step is to create the monthly mean data. For each month, the daily 342 

data are averaged to create the monthly mean. For every month, at least 10 days of data are 343 

required for the monthly averaging. Otherwise, missing data is assigned for that month. This step 344 

is applied to both the surface and radiosonde observations. The third step is to create the monthly 345 

mean anomalies by subtracting the long-term monthly mean (climatology) from the monthly 346 

mean data. The fourth step is to create the annual mean anomalies. For every year, the monthly 347 

mean anomalies are averaged to create the annual mean anomalies, and at least 6 months of data 348 

are required for the annual averaging. The fifth step is to create the long-term annual mean 349 

anomalies. At least 28 years (70%) of data for the study period 1979-2018 are required. The third 350 

to fifth steps are applied to all four datasets. The use of thresholds of 10 days per month (e.g., Li 351 

et al., 2020), 6 months per year (e.g., Wang and Wang, 2016), and 70% of the temporal coverage 352 

(e.g., Gertler and O’Gorman, 2019) is a reasonable compromise between the data length, 353 

completeness, and spatial coverage. 354 

 355 

The second task is to identify radiosonde stations in the RICH and surface stations in the DS3505 356 

from all available stations over the AP that having valid observations. There are 8 radiosonde 357 

stations and 21 surface stations in the study domain meeting the above data selection criteria. 358 

Most chosen stations are located within the airport premises, which are isolated from urban 359 

centers or industrial areas and comply with the World Meteorological Organization (WMO) 360 

standards (Almazroui et al., 2014). The name, WMO identifier number, and location for these 361 

stations are listed in Tables 1-2 and illustrated in Fig. 1a. 362 

 363 
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The third task is to estimate the linear trend of annual mean temperature anomaly time series 364 

over the study period using least squares fitting. A two-tailed student’s t test is used to quantify 365 

the probability of whether the trend is statistically significant from zero. Before the trend 366 

analysis, a three-hour smoothing is applied to the surface hourly data for three reasons. First, the 367 

sample size among individual hours in the DS3505 varies largely for some stations due to 368 

irregular missing data and so the smoothing helps to reduce the sampling inhomogeneity. 369 

Second, the study domain spans 15.5 in longitude (34.5E-50E) covering two time zones in 370 

local solar time, and so the smoothing helps to reduce the small phase difference in the diurnal 371 

cycle of data among different grids when spatial averaging is applied. Third, the reanalysis 372 

hourly averaged data consist of a continuous sequence of data averaged over the indicated 373 

interval and time stamped at 00:30 UTC, 01:30 UTC, …, 23:30 UTC, while the reanalysis 374 

instantaneous data contain snapshots at synoptic times (00 and 12 UTC). The 3-hourly averaging 375 

helps to smooth out the timing difference among the data with different temporal resolutions. 376 

However, this three-hourly smoothing has limited impact if the data is smooth in the diurnal 377 

cycle. Trend analysis is performed at every station for the observations, every grid for the 378 

reanalysis, or for the spatially aggregated data.   379 

 380 

2.3.2. Data processing for other variables 381 

 382 

The above data processing calculates the climatology and linear trends in the annual mean data 383 

of (i) T2m at the hourly time scale and (ii) vertical temperature profiles at 00 and 12 UTC. The 384 

monthly means of daily Tmax, Tmin and DTR were composited from the hourly T2m values and 385 

their annual mean trends are estimated accordingly. Similarly, the monthly means of hourly 386 
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averaged surface fluxes: sensible heat, latent heat, DLW, downward shortwave radiation (DSR), 387 

net shortwave and longwave radiation, and upward shortwave and longwave radiation, are 388 

processed and the linear trends of annual mean anomalies of these variables are also calculated 389 

for the MERRA-2 and ERA5. For simplicity, the trends of T2m, DLR and DSR, three frequently 390 

used variables, are referred to as T2mtrend (C/decade), DLRtrend (W/m2/decade), and DSRtrend 391 

(W/m2/decade) hereafter, respectively. 392 

 393 

2.3.3. Creating climatological PBLH 394 

 395 

Both ERA5 and MERRA-2 provide the monthly mean of hourly averaged PBLH. The reanalysis 396 

PBLH is derived based on the bulk Richardson number in the ERA5 (C3S, 2017) following the 397 

conclusions of Seidel et al. (2012) and the total eddy diffusion coefficient of heat with a 398 

threshold value of 2 m2s-1 in the MERRA-2 (Salmun et al., 2018). The monthly means of hourly 399 

averaged PBLH from the reanalysis are averaged to create the long-term climatology of PBLH, 400 

referred to as PBLHclimate.  401 

 402 

The reanalysis-derived PBLH is a model-based estimate with large uncertainties and different 403 

PBLH estimation methods can produce substantially different values (section 3.5). To validate 404 

and intercompare the reanalysis PBLH, the bulk Richardson number (Ri) method (Vogelezang 405 

and Holtslag, 1996) is chosen to consistently diagnose the PBLH directly from the atmospheric 406 

soundings among different datasets. The Ri methods have proven to work reasonably well for 407 

both stable and convective boundary layers, and don’t strongly depend on the sounding vertical 408 
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resolutions (e.g., Seidel et al., 2012; Zhang et al., 2013). The Ri is the ratio of turbulence 409 

associated with buoyancy to that associated with mechanical shear (Seidel et al., 2012): 410 

 411 

𝑅𝑖(𝑧) =
(𝑔0/𝜃𝑣𝑠)(𝜃𝑣𝑧−𝜃𝑣𝑠)(𝑧−𝑧𝑠)

(𝑢𝑧−𝑢𝑠)
2+(𝑣𝑧−𝑣𝑠)

2
,               (1) 412 

 413 

where g0 is the acceleration of gravity, z is height, and s denotes the surface at the 2 m level, v is 414 

virtual potential temperature, u and v are the zonal and meridional wind speed.  415 

 416 

This study followed exactly the steps detailed in Seidel et al. (2012) to diagnose the PBLH for 417 

the radiosonde observations (IGRA2) and reanalysis datasets (ERA5 and MERRA-2). Due to the 418 

lack of observational winds at 2m, Ri is calculated by setting the surface winds to zero in the 419 

reanalyses for consistency with the radiosonde observations. With these assumptions, the PBLH 420 

is designed as the lowest level at which the bulk Ri reaches the critical value of 0.25. Scanning 421 

the Ri profile upward from the surface (at 2 m), the first level with Ri ≥0.25 is identified, and 422 

linear interpolation between that level and the next lowest level provides an estimate of z(Ri0.25). 423 

The PBLH estimated based on z(Ri0.25) is referred to as PBLH_Ri0.25. Note that all PBLH 424 

estimates in this study are measured in meters above ground level (AGL).  425 

 426 

2.3.4. Multiple linear regression analysis 427 

 428 

For the reanalysis data, T2mtrends are found to be mostly related to DLRtrend and DSRtrend, which 429 

represent the surface longwave and shortwave radiative forcing, and PBLHclimate, which 430 

modulates the T2m response to the surface forcing. Next, these three variables are used as 431 
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independent variables in a multiple linear regression to quantify their relative contributions to the 432 

spatial and/or diurnal variation in T2mtrend over the study domain:  433 

 434 

𝑇2𝑚𝑡𝑟𝑒𝑛𝑑 = 𝛽0 + 𝛽1 ∗
1

𝑃𝐵𝐿𝐻𝑐𝑙𝑖𝑚𝑎𝑡𝑒
+ 𝛽2 ∗ 𝐷𝐿𝑅𝑡𝑟𝑒𝑛𝑑 + 𝛽3 ∗ 𝐷𝑆𝑅𝑡𝑟𝑒𝑛𝑑,            (2) 435 

 436 

where 1 through 3 are the partial regression coefficients estimated based on least squares 437 

fitting. Each coefficient represents the change in T2mtrend to a one-unit change in the respective 438 

independent variable, holding all other variables constant. Its sign determines if the independent 439 

variable affects T2mtrend positively or negatively. Statistical t and F tests can be performed to 440 

assess the statistical significance of each regression coefficient and the overall regression model, 441 

respectively. The adjusted R-squared (R2
adjusted) measures the percentage of variance in T2mtrend 442 

that can be explained by the three variables after adjusting the statistic based on the number of 443 

independent variables in the regression model.  444 

 445 

2.3.5. Obtaining large-scale features 446 

 447 

Besides the large-scale radiative forcing, T2mtrend at individual stations is influenced by local 448 

factors and thus demonstrates some level of inter-station differences (section 2.1). In order to 449 

maximize large-scale warming patterns and minimize station-scale temperature variability, 450 

spatial averaging is applied at two spatial scales: (1) station mean and (2) regional mean. The 451 

former is simply an arithmetic mean of individual station data and is used for both the 452 

observational and reanalysis data. For the reanalysis, the station level data are obtained from the 453 

grid boxes where the chosen stations are located based on their geographic location (latitude and 454 
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longitude). The regional mean is applied only to the reanalysis fields using area-weighted 455 

averaging over the land grids within the rectangle study domain (16.5N-32.5N, 34.5E-50E) 456 

depicted in Fig.1.  457 

 458 

The regional mean cannot be done for the observations because of limited stations available in 459 

the study domain and the non-uniform distribution of stations. As an alternative, an empirical 460 

orthogonal function (EOF) analysis is performed on the observed surface and radiosonde data to 461 

emulate their regional mean data that could be compared with the regional mean reanalysis data. 462 

EOF decomposes the data in terms of orthogonal basis functions and finds both spatial patterns 463 

(called EOF) and associated time series to extract the space–time modes of climate variability 464 

(Bjornsson and Venegas, 1997). The first EOF explains the greatest fraction of the total variance, 465 

the second for the largest part of the remaining variance, and so on. The EOF analysis helps to 466 

identify the most important modes of data variability, which describe the degree of coherence of 467 

spatial variation. A new temperature time series can be reconstructed based on the first EOF 468 

pattern to quantify the dominant large-scale warming patterns shared among all stations.   469 

 470 

3. Results and discussion 471 

 472 

3.1. Hourly T2m trends in surface observations 473 

 474 

Figure 2 shows the diurnal cycle of T2mtrend during 1979-2018, along with the diurnal cycle of 475 

climatological T2m, for the 21 surface stations in the DS3505. For each station, the T2mtrend is 476 

positive at every hour and exhibits a strong diurnal pattern. Among the 504 (24 hours * 21 477 
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stations) trends, 501 are statistically significant (p<0.05). The warming rate is generally in 478 

opposite phase with the climatological T2m value but with a lag of few hours. The 479 

largest/smallest warming is mostly seen around the transitions between day and night, with the 480 

largest warming in the early morning and the smallest warming in the late afternoon to the early 481 

evening. Among the 21 stations, the 24-hour averaged warming rate ranges from 0.39 to 0.93 482 

C/decade, and the diurnal range of the hourly warming rate is 0.20 to 0.77 C/decade.   483 

 484 

To focus on the large-scale warming features, Fig. 3a shows the diurnal cycle of station mean 485 

hourly T2mtrend. The hourly warming rate ranges 0.45-0.73 C/decade, with a diurnal range of 486 

0.28 C/decade and a 24-hour average of 0.59 C/decade. As stated previously, the leading EOF 487 

modes can capture the large-scale features shared among all individual stations. The 488 

reconstructed T2mtrend from EOF1 (Fig. 3b), which can explain 79.6% of the total data variance 489 

from the original 21 stations, resembles Fig. 3a but in a slightly smaller magnitude. The hourly 490 

warming rate ranges 0.38-0.60 C/decade, with a 24-hour average of 0.50 C/decade. The 491 

climatology of T2m reaches the minimum of 18.7 C at 03 UTC and the maximum of 30.0 C at 492 

12 UTC, while the warming trend maximizes at 05 UTC in the early morning and minimizes at 493 

15 UTC around the sunsets. Like individual stations (Fig. 2), the diurnal cycle of station mean 494 

warming rate generally depends inversely on that of the climatological T2m value, but with a lag 495 

of few hours. Previous studies (e.g., Seidel et al., 2005) showed that the diurnal cycle of 496 

temperature peaks a few hours after local solar noon at the surface. Note that local solar time in 497 

Saudi Arabia = UTC + 3 hours. 498 

 499 
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Figure 4a shows interannual variations of station mean time series of T2m anomalies at 00 and 500 

12 UTC from 1979 to 2018 averaged over the 21 surface stations in the DS3505. T2m at both 501 

UTC times exhibits a persistent and statistically significant (p<0.001) upward trend and similar 502 

interannual variability. The warming trend is 0.60 C/decade at 00 UTC, and 0.57 C/decade at 503 

12 UTC, indicating stronger warming rates at nighttime than daytime. Note that the T2mtrend 504 

difference between 00 and 12 UTC is not large because both UTC times do not correspond to the 505 

times with the maximum/minimum warming rates.  506 

 507 

There are no warming trends reported at hourly time scales over the AP in the literature. Despite 508 

some seasonal and spatial variations in magnitude, warming has been consistently observed 509 

across stations and seasons in Saudi Arabia (Rehman and Al-Hadhrami, 2012; Almazroui et al., 510 

2012; 2014; Alghamdi and Moore, 2014; Athar, 2014; Krishna, 2014; Tarawneh and 511 

Chowdhury, 2018). Here several recent studies that reported daily mean, Tmax, and Tmin trends in 512 

Saudi Arabia are used to partially validate the results in Figs 2-3. Krishna (2014) analyzed 513 

annual mean T2m trends for the period 1984-2013 for 4 stations representing 4 different climatic 514 

zones of Saudi Arabia, and estimated significant warming trends of 0.52-0.69, 0.31-0.62, and 515 

0.48-0.71 °C/decade for the daily mean, Tmax, and Tmin. Alghamdi and Moore (2014) compared 516 

warming trends over the period 1985–2010 at two weather stations (urban vs. rural) in Riyadh 517 

city, Saudi Arabia. The rural station showed a warming trend of 0.69 and 0.83C/decade for the 518 

Tmax and Tmin, respectively. The corresponding values for the urban station are 0.45 and 0.68 519 

C/decade. Tarawneh and Chowdhury (2018) calculated T2m changes during the period 1984-520 

2013 for three stations representing the central, northern and southwest regions of Saudi Arabia, 521 

and documented the overall warming rates of 0.58–1.25 °C/decade in summer and 0.43–0.66 522 
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°C/decade in winter. To compare with these previous estimates, the annual mean Tmax, Tmin, and 523 

DTR trends for the 21 surface stations in the DS3503 were estimated. Their station mean trends 524 

(Table 3) are found to be 0.56, 0.72, and -0.16 °C/decade, respectively, and all are statistically 525 

significant (p<0.05), indicating a stronger warming rate in Tmin than Tmax and thus a decline in 526 

DTR. Evidently, the T2m trends shown in Figs. 2-3 and Table 3 are in the range of recent 527 

observation-based estimates over the AP.  528 

 529 

3.2. Temperature trends in radiosonde observations 530 

 531 

Figure 5 shows the vertical profile of temperature trends from 850 to 100 hPa during the period 532 

1979-2018 for the 8 radiosonde stations in the RICH. Note that the RICH data below 850 hPa are 533 

not analyzed due to poor quality as done by others (e.g., Thorne et al., 2011). Despite some 534 

differences, all stations show generally consistent results: cooling trends above 200 hPa and 535 

warming trends downward in the troposphere. Among the 144 trends (9 pressure levels * 2 UTC 536 

times * 8 stations), 77 are statistically significant at p <0.05, and so are all the trends in the 537 

lowest three layers (500, 700, and 850 hPa). The largest warming trend is 0.65 C/decade at 850 538 

hPa and the biggest cooling rate is -0.34 C/decade at 100 hPa. The trends at 00 and 12 UTC 539 

differ slightly in the free atmosphere but stronger warming is mostly seen at 00 UTC than 12 540 

UTC in the lower troposphere. In general, there are two warming maxima in the profile, a strong 541 

one at 850 hPa and a very weaker one centered at 200-300 hPa.  542 

 543 

Like the surface observations, the station mean results are examined to focus on the large-scale 544 

warming features. Fig 6a shows the vertical trend profile of station mean temperature averaged 545 
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over the 8 radiosonde stations in the RICH at 00 and 12 UTC for 100-850 hPa. The trend is 546 

negative above 200 hPa but is positive and increases downward in the entire troposphere, with a 547 

maximum of 0.43 C/decade at 850 hPa. Among the 18 trends (9 pressure levels * 2 UTC times), 548 

13 are statistically significant at p <0.05, including the lowest three layers (500, 700, and 850 549 

hPa). The corresponding mean T2mtrend, for the 8 radiosonde stations, 0.68 C/decade (00 UTC) 550 

and 0.48 C/decade (12 UTC) from the DS3505, is also plotted in Fig. 6a. Figure 6b shows the 551 

reconstructed warming profile based on EOF analysis to capture the large-scale features shared 552 

among all individual radiosonde stations. The first EOF explains 54.3% (00 UTC) and 49.8% (12 553 

UTC) of the total data variance from the original 8 stations. The vertical profile in Fig. 6b is very 554 

similar to that in Fig. 6a. Again, the station mean profiles exhibit two warming maxima (i.e., R-555 

shaped): a very weaker top-heavy one centered at 250 hPa and a strong bottom-heavy one 556 

maximizing at the surface. The former represents the well-known warming profile peaking in the 557 

tropical upper troposphere associated with the positive water vapor feedback in a warming 558 

climate (Held and Soden, 2000; IPCC, 2007; 2013). The latter represents the signal of DA that 559 

maximizes at the surface and decreases with height as also documented by multiple satellite 560 

measurements (Wei et al., 2017a).  561 

 562 

The warming trend is consistently larger at 00 UTC than 12 UTC in the lower troposphere and 563 

this day-night warming difference increases with pressure and maximizes at the surface (Fig. 6). 564 

This diurnal warming asymmetry is small between 500-700 hPa and become more evident for 565 

the layers > 700 hPa. As the station mean PBLH at 12 UTC over the AP is ~2.1 km (Table 4), it 566 

is reasonable to believe that the diurnal signal of DA is limited to the lower troposphere below 567 

700 hPa. The free atmosphere in the tropics has relatively small diurnal variations because the 568 
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atmosphere is dynamically well mixed (Sherwood et al., 2005; Byrne and O’Gorman, 2016; 569 

2018). For example, Seidel and Free (2009) analyzed the amplitude and phase of the 570 

climatological diurnal cycle of upper-air temperatures based on four-times-daily radiosonde data 571 

from 53 stations and found that the amplitude of the annual-average diurnal cycle (half the DTR) 572 

is largest (1 to 4 C) at the surface, decreases with height quickly, and becomes very small (<0.4 573 

C) at 700 hPa and above. Brocard et al. (2013) analyzed the phase and amplitude of the diurnal 574 

temperature cycle based on 53 years of radiosonde measurements from a station in Switzerland 575 

and showed a strongly decreasing amplitude with height from about 3 C at the surface to 0.2 C 576 

at 700 hPa and above. These results suggest that the diurnal warming asymmetry may exist 577 

mainly in the lower troposphere (> 700 hPa) and at the surface. 578 

 579 

There are no radiosonde-based diurnal warming trends reported previously in the AP. One key 580 

question is whether the warming profiles in Figs 5-6 are robust? Historically there were some 581 

disagreements on the tropospheric warming rates observed and modeled, particularly in the 582 

tropics. Thorne et al. (2011) comprehensively assessed recent homogenized radiosonde and 583 

satellite observing systems and model results and reported an overall agreement between 584 

modeled and observed throughout the tropospheric column because of considerable progresses 585 

made recently in treating uncertainties in both. Also, among the several radiosonde datasets used, 586 

the RICH showed the best match with satellite observations. The large-scale warming profile in 587 

the tropics (Fig. 8 in Thorne et al., 2011) highlighted the cooling in the stratosphere, the overall 588 

warming through the entire troposphere, and the largest warming in the upper troposphere 589 

centered at 200-300 hPa, consistent with the estimates in the middle and upper troposphere (Fig. 590 

6) in this study. It differs largely in the lower troposphere from the bottom-heavy warming 591 
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profile over the AP, because it is averaged from the entire tropical regions dominated by oceans 592 

and the latter is from the moisture-limited deserts only. The bottom-heavy profile associated with 593 

DA was also documented by comparing the warming profile between rainforests and deserts 594 

using multiple satellite datasets (Wei et al. (2017a). Similar bottom-heavy warming profiles are 595 

also reported over Armenia with a dry highland continental climate (Gevorgyan, 2014). 596 

 597 

3.3. Temperature trends in ERA5 and MERRA-2 598 

 599 

It is essential that the reanalyses can capture some major T2m features observed before being 600 

used for analysis. Figure 4a shows interannual variations of station mean T2m anomalies at 00 601 

and 12 UTC for 1979-2018 averaged over the 21 surface stations from the DS3505. The 602 

corresponding station mean T2m anomalies calculated from the ERA5-land and MERRA-2 are 603 

shown in Figs. 4b and 4c. Both reanalyses show warming trends that are statistically significant 604 

(p<0.0001) at both UTC times. For the ERA5, the warming trend is 0.44 C/decade at 00 UTC 605 

and 0.41 C/decade at 12 UTC. The corresponding values for the MERRA-2 are 0.39 C/decade 606 

and 0.36 C/decade, respectively. Evidently, the reanalyese capture well the major observed 607 

features of interannual variability and overall warming trends, but have a cooling bias, compared 608 

to the observed warming rate of 0.60 C/decade at 00 UTC and 0.57 C/decade at 12 UTC. As 609 

discussed previously, the surface warming rate difference (00 vs. 12 UTC) is not large because 610 

both UTC times do not correspond to the times with the maximum/minimum warming rate in 611 

T2m (Figs. 2-3).  612 

 613 
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The spatial patterns of T2m trend at 00 and 12 UTC from the ERA5-land (1981-2018) and 614 

MERRA-2 (1980-2018) over the SDAP and surrounding areas are shown in Fig. 7 to illustrate 615 

the large-scale warming patterns of DA and so the warming in the AP can be put in a proper 616 

context. Significant warming (p<0.05) is widespread at both UTC times and the strongest trends 617 

at ~0.5 C/decade are seen over a broad contiguous swath of land covering the entire Sahara and 618 

Arabian deserts. The warming is larger at 00 UTC than 12 UTC. These warming features are 619 

similar in the ERA5-land and MERRA-2. Again, the reanalyses have a systematic cooling bias in 620 

the warming rates but capture well the essential spatial features of DA (Zhou et al., 2015; 2016). 621 

 622 

Figure 8 shows the diurnal cycle of T2mtrend and climatological T2m from the ERA5-land (1981-623 

2018) and MERRA-2 (1980-2018), at the station and regional mean levels over the AP. All 624 

hourly trends are statistically significant at p<0.05. For the station mean T2m from the ERA5-625 

land (Fig. 8a), the hourly warming trend ranges 0.41-0.45 C/decade, with a diurnal range of 626 

0.04 C/decade and a 24-hour average of 0.43 C/decade. The climatology of T2m has a 627 

minimum value of 17.4 C at 02 UTC and a maximum value of 29.8 C at 11 UTC, while the 628 

warming trend maximizes at 21 UTC and minimizes at 14 UTC. Similar diurnal features are seen 629 

for the regional mean T2m (Fig. 8c). For the station mean T2m from the MERRA-2 (Fig. 8b), 630 

the warming trend ranges 0.36-0.39 C/decade, with a diurnal range of 0.03 C/decade and a 24-631 

hour average of 0.38 C/decade; the climatology of T2m has a minimum value of 17.9 C at 02 632 

UTC and a maximum value of 31.4 C at 11 UTC, while the warming trend maximizes at 00 633 

UTC and minimizes at 08 UTC. The regional mean plot (Fig. 8d) shows similar features to the 634 

station mean plot except the minimum warming trend at 09 UTC.  635 

 636 
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Clearly, the reanalyses (Fig. 8) underestimate the observed warming rates (Fig. 3a), particularly 637 

the maximum warming rate and the diurnal asymmetry of warming. The observed climatology of 638 

T2m reaches the minimum of 18.7 C at 03 UTC and the maximum of 30.0 C at 12 UTC, while 639 

the warming trend maximizes at 05 UTC and minimizes at 15 UTC. The reanalysis climatology 640 

in T2m reproduces the observed diurnal range but differs by 1-2 hours in the minimum and 641 

maximum values than observed. Like the observations (Fig. 3), the reanalysis warming rate is 642 

generally in opposite phase with the climatological T2m values, indicating that the largest 643 

warming at nighttime and the smallest warming at daytime. However, the reanalyses differ by 644 

several hours in the maximum/minimum from the observations and from each other. These 645 

discrepancies are likely due to the differences in spatial resolution (point measurements versus 646 

coarse-resolution grid averaged data) and reanalysis deficiencies in modeling the surface 647 

radiative forcing, surface energy partitioning, and PBL mixing (section 3.5).  648 

 649 

To compare with recent T2m trend estimates available over the AP (e.g., Alghamdi and Moore, 650 

2014; Krishna, 2014; Tarawneh and Chowdhury, 2018), the annual mean climatology and trends 651 

of daily Tmax, Tmin, and DTR in the two reanalyses were calculated for the 21 surface stations in 652 

the AP (Table 3). Interestingly, the station mean reanalysis climatology is comparable to the 653 

observed values. The station mean trends for the Tmax, Tmin, and DTR are 0.42, 0.44, and -0.02 654 

°C/decade, for the ERA5-land, and 0.37, 0.39, and -0.02 °C/decade for the MERRA-2, 655 

respectively. The corresponding observed trends are 0.56, 0.72, and -0.16 °C/decade, for the 656 

DS3505. Note that all the trends except these for the reanalysis DTR are statistically significant 657 

(p<0.05). As discussed previously, the reanalyses capture the observed diurnal cycle of T2m 658 

warming and larger warming trends in Tmin than Tmax, but largely underestimate the warming 659 
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rates, particularly at nighttime, and the magnitude of the diurnal asymmetry of warming. Also, 660 

the reanalysis DTR trend is substantially smaller than observed. These reanalysis biases are more 661 

pronounced in the MERRA-2 than the ERA5.  662 

 663 

Figure 9 shows the vertical profile of temperature trend at 00 and 12 UTC from the ERA5 (1979-664 

2018) and MERRA-2 (1980-2018), along with the corresponding T2m trends at the surface. The 665 

reanalyses show cooling in the stratosphere above 200 hPa and increasing warming through the 666 

entire troposphere, and two evident warming maxima in the vertical profile, one in the UT 667 

around 250 hPa, and the other near the surface. Overall, the reanalysis profile (Fig. 9) exhibits 668 

broadly similar vertical warming patterns (i.e., R-shaped) as observed (Fig. 6) over the AP. 669 

However, the observations (Fig. 6) show small warming differences between 00 and 12 UTC 670 

above 700 hPa, and stronger warming rate at 00 UTC than 12 UTC downward, while the 671 

reanalyses exhibit stronger warming at 12 UTC than 00 UTC between 500-850 hPa and a 672 

transition to the opposite below 900 hPa to the surface. Also, compared to the observations, the 673 

reanalysis generally has warming biases in the middle and upper troposphere and cooling biases 674 

in the lowest tropospheric layers, which are particularly evident in the MERRA-2. 675 

 676 

3.4. Possible drivers of the diurnal and vertical warming features 677 

 678 

The warming rate of T2m depends on surface radiative forcing and various response and 679 

feedback processes. At the global scale, T2m has generally increased more over drier regions and 680 

faster at nighttime than daytime in a warming climate, and this spatial and diurnal variability has 681 

been mostly explained by large-scale greenhouse effects and local to regional changes in cloud 682 

cover, precipitation, soil moisture, and vegetation (IPCC 2007; 2013; Zhou et al. 2007; 2009, 683 
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2010; Dirmeyer et al. 2013; Lindvall and Svensson, 2015; Davy and Esau, 2016; Wei et al., 684 

2017b). For example, drier regions with less soil moisture and vegetation are associated with 685 

higher Bowen ratios and tend to experience larger warming rates due to less local evaporative 686 

cooling. These factors affect T2m differently by altering the land surface energy and 687 

hydrological balances over different regions, but their effects on surface warming are limited 688 

over the extremely dry and mostly cloud-free deserts. Land use change such as urbanization in 689 

the AP could affect the diurnal warming asymmetry. Urbanization generally creates urban heat 690 

island in most cities, but urban areas often exhibit cooler temperatures at day (urban cool island) 691 

and warmer temperatures at night than suburbs over deserts (Bounoua et al., 2009; Lazzarini et 692 

al., 2013; 2015). However, observational studies (Almazroui et al., 2013; Alghamdi and Moore, 693 

2014) showed that urbanization lessened the warming rate in urban areas compared to 694 

surrounding rural areas but has not substantially contributed to the large-scale warming trends 695 

observed throughout Saudi Arabia. 696 

 697 

Large-scale warming and moistening in response to increasing GHGs have been widely used to 698 

explain surface and atmospheric warming (IPCC 2007; 2013). Increased DLR in a warming 699 

climate associated with this global-scale greenhouse effect has been proposed as the primary 700 

surface radiative forcing for the DA over the SDAP (Zhou et al., 2015; 2016; Cook and Vizy 701 

2015; Zhou 2016; Evan et al., 2017; Wei et al., 2017a). In addition, the AP is one of significant 702 

dust sources in the world, and changes in DSR associated with dust aerosols can affect local 703 

temperature by modifying the radiative forcing via direct effects and feedback of desert dust 704 

(Islam and Almazroui, 2012). It is very likely that the radiative forcing associated with changes 705 
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in DLR and DSR may be the main drivers for the overall surface warming and its spatial and 706 

diurnal variations associated with the DA.  707 

 708 

Besides the radiative forcing at the surface, the diurnal cycle of T2m warming is also tightly 709 

connected to the extent of turbulent mixing in the PBL, which is described by the PBLH 710 

(McNider et al., 2012; Dirmeyer et al. 2013; Davy and Esau 2014a, 2014b; 2016; Svensson and 711 

Lindvall, 2015; Wei et al., 2017b). As the lowest part of the atmosphere, the PBL controls and in 712 

turn, responds to the diurnal evolution of near-surface thermodynamic variables through 713 

turbulent exchanges of momentum, heat and moisture in the coupled land-atmosphere interface 714 

(Wei et al., 2017b). Recent studies highlighted that the PBLH modulates the T2m response to 715 

surface forcing and is a strong predictor of the strength of T2mtrend (McNider et al. 2012; 716 

Dirmeyer et al. 2013; Davy and Esau 2014a, 2014b; 2016; Wei et al., 2017b). Davy et al. (2017) 717 

proposed a PBL-response mechanism that for a given forcing, the surface warming rate depends 718 

inversely on the PBLH and so is stronger for a shallower PBLH. It is interpreted as the forcing 719 

efficacy determined by the effective heat capacity of the atmosphere, which is defined by the 720 

PBLH. This mechanism helps to explain why the nighttime has warmed more rapidly than the 721 

daytime in observations across different regions. Its effect is expected to be most pronounced in 722 

regions such as the SDAP where there is a strong diurnal cycle in the PBLH, with an extremely 723 

shallow SBL forming at night. Hence it is possible that the diurnal and vertical warming features 724 

associated with the DA may be also tied to the diurnal evolution of PBLH over the AP.  725 

 726 

Fig. 10 shows the station and regional mean diurnal cycle of climatological PBLH and T2m over 727 

the AP from the ERA5 and MERRA-2, respectively. In general, the diurnal phase of PBLH 728 
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follows closely that of T2m, but with a delay of ~1 hour, and the PBLH differs little between the 729 

station and regional mean results for each reanalysis. The PBL is deepest in the late afternoon at 730 

12 UTC after the T2m reaches the daily maximum at 11 UTC. It is shallowest in the early 731 

morning at 03-04 UTC, 1-2 hours after the T2m reaches the daily minimum at 02 UTC. 732 

Combined with the relationship between T2mtrend and climatological T2m shown in Figs 3 and 8, 733 

Fig. 10 supports generally the PBL-response mechanism that the diurnal cycle of surface 734 

warming rate depends inversely on the climatological PBLH and DA has a distinct diurnal 735 

asymmetry – the stronger warming rate for a shallower PBLH. To check this further, Fig. 11 736 

shows the histogram of T2mtrend as a function of PBLHclimate from the ERA5-land (1981-2018) 737 

and MERRA-2 (1980-2018). The PBLH for all grids over the rectangle study domain are divided 738 

evenly into 10 bins based on a PBLH interval of 350 m in the ERA5 and 300 m in the MERRA2. 739 

Evidently, T2mtrend decreases with increasing PBLHclimate, indicating an inverse relationship 740 

between T2mtrend and PBLHclimate. 741 

 742 

However, the T2mtrend demonstrates some level of spatiotemporal heterogeneity and so do the 743 

PBLHclimate and surface radiative forcing over the AP. It is difficult to establish the main drivers 744 

of T2mtrend simply based on the station and regional mean diurnal cycle shown above, without 745 

considering the confounding impacts of radiative forcings and PBLH. Next, a multiple regression 746 

model (equation (2)) is used to explore the empirical relationships between the diurnal and 747 

spatial variance in T2mtrend and three major contributing variables, DLRtrend, DSRtrend, and 748 

PBLHclimate in the reanalyses. Note that a similar analysis cannot be done for the observations 749 

due to the lack of surface radiative forcing data. The magnitude of the standardized partial 750 
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regression coefficients 1 through 3 tell the relative contribution of the three variables to 751 

T2mtrend and the sign of these coefficients tells the direction of their impacts on T2mtrend.  752 

 753 

Table 4 lists the statistical results for the regression model by considering the diurnal and/or 754 

spatial variations in T2mtrend for three cases: (i) the diurnal data over all the land grids within the 755 

study domain (i.e., the diurnal + spatial variation), (ii) the diurnal mean data over all the land 756 

grids within the study domain (i.e., the spatial variation), and (iii) the spatial mean diurnal data 757 

averaged over all the land grids within the study domain (i.e., the diurnal variation). The 758 

different cases are used to seprate the contributions of the diurnal and spatial variations in the 759 

regrssion. Also, two types of PBLH are conisdered: (i) the PBLH provided by the reanalysis and 760 

(ii) the PBLH diagnosed from the reanalysis using the Ri method (i.e., PBLH_RI0.25). It is 761 

expected that PBLHclimate matters most in the diurnal domain and DLRtrend and DSRtrend dominate 762 

in the spatial domain.   763 

 764 

In the ERA5, when the reanalysis-derived PBLH is used, the regression coefficients for case (i) 765 

are 0.22, 0.85, and 0.22, for 1/PBLHclimte, DLRtrend, and DSRtrend, respectively, and are all 766 

statistically significant (p<0.0001), indicating that the radiative forcing of DLR has the dominant 767 

impact (positive) on T2mtrend, followed by 1/PBLHclimate (positive) and DSRtrend (positive). For 768 

case (ii), the radiative forcing of DLR has the dominant impact (positive) on T2mtrend, followed 769 

by DSRtrend (positive), while PBLHclimate has a negligible effect.  For case (iii), 1/PBLHclimate has 770 

the dominant impact (positive) on T2mtrend, followed by DLRtrend (positive), while DSRtrend is 771 

negligible. When the PBLH_RI0.25 is used, the regression results are nearly identical to these 772 

based on the reanalysis-derived PBLH. In the MERRA2, the results for all three cases agree 773 



 

 

 

35 

mostly with those in the ERA5, except that the impact of PBLHclimte is weaker and the effect of 774 

DSRtrend is slightly stronger. The F test indicates that the overall regression model is statistically 775 

significant (p<0.0001) for all cases in Table 4. The R2
adjusted value shows that 56%-99% of the 776 

data variance in T2mtrend can be explained by the regression model. These statistical results 777 

suggest that the radiative forcing of DLR has the dominant effect on T2mtrend in the spatial 778 

domain and PBLHclimate could have the most control of the strength of the temperature response 779 

to the forcing in the diurnal domain.   780 

 781 

The multiple regression results are generally consistent in the sign, magnitude, and significance 782 

of the three regression coefficients between the two reanalyses. However, the diurnal timing of 783 

maximum and minimum warming in T2m differs between observed and reanalyzed. Also the 784 

reanalysis vertical profile shows some warming/cooling biases, and the PBLHclimate has a less 785 

important role in explaining T2mtrend in the MERRA-2 than in the ERA5. It is reasonable to 786 

assume that the free atmosphere (and the DLR forcing as well) in the tropics has relatively 787 

smaller diurnal variations than the PBLH because it is dynamically well mixed (Sherwood et al., 788 

2005; Byrne and O’Gorman, 2016; 2018). Hence the reanalysis diurnal and vertical 789 

discrepancies may be tied more to the systematic biases in PBLH as described next.   790 

 791 

3.5. Uncertainties in PBLH 792 

 793 

A key question is whether the reanalysis PBLH diurnal cycle is reliable? So far, there are only 794 

two papers reported the diurnal cycle of PBLH over the AP in the literature. Abdel-Aal and 795 

Shonoda (2014) analyzed hourly meteorological data for the period 2009-2012 at Qurayyat 796 
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Province in Saudi Arabia and showed a strong seasonal variation in PBLH, ranging 1.4-1.9 km 797 

for the deepest CBL and 100-300 m for the shallowest SBL. Li (2019) used a high-resolution 798 

mesoscale model to simulate the diurnal and seasonal cycle of PBLH for three representative 799 

sites in Saudi Arabia and found a large seasonal variation of 0.6-3.8 km for the deepest CBL and 800 

50-250 m for the shallowest SBL. However, these two studies also documented large diurnal, 801 

seasonal and spatial variations in the phase and magnitude of PBLH in the AP due to differences 802 

in local conditions. Hence, the estimated PBLHs from these two papers are inadequate to 803 

validate the reanalysis results in Fig. 10. One major feature in Fig. 10 is the systematic higher 804 

PBLH values in the MERRA-2 than the ERA5 at every hour in a range from a few hundred 805 

meters to over 1 km. The station-mean PBLH ranges 131-2211 m (790-2564 m), with a daily 806 

mean of 763 m (1554 m), in the ERA5 (MERRA-2). In particular, the MERRA-2 nocturnal 807 

PBLH is much larger than any estimates reported over the AP (Abdel-Aal and Shonoda, 2014; 808 

Li, 2019) and previous studies have documented that the MERRA-2 PBLH is biased high (e.g., 809 

Salmun et al., 2018; Ding et al., 2019). 810 

 811 

It is difficult to judge the reliability of the reanalysis PBLH data because different methods are 812 

used to estimate the PBLH. Next, the PBLH is diagnosed using the same RI method for 813 

comparison among all three datasets. Table 5 lists the PBLH_Ri0.25 for the 8 radiosonde stations. 814 

In general, the reanalysis derived PBLH in the ERA5 is broadly comparable with PBLH_Ri0.25 at 815 

00 and 12 UTC estimated from the IGRA2 and ERA5 profiles. This is expected as the RI method 816 

was also used in the ERA5 PBLH estimates although some adjustments were applied to this 817 

method (C3S, 2017). The reanalysis derived PBLH in the MERRA-2 are broadly comparable 818 

with PBLH_Ri0.25 at 12 UTC, but systematically higher than the PBLH_Ri0.25 at 00 UTC 819 
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estimated from the IGRA2 and MERRA-2 profiles. For example, the station mean PBLH_Ri0.25 820 

at 12 UTC is 2090 m in IGRA2, 2238 m in ERA5 and 2665 m in MERRA-2, indicating a mean 821 

overestimate of 148 m in the ERA5 and by 575 m in the MERRA-2. The station mean 822 

PBLH_Ri0.25 at 00 UTC is 102 m in IGRA2, 23 m in ERA5 and 20 m in MERRA-2, which are 823 

generally consistent with the reanalysis-derived PBLH of 129 m in ERA5 but much lower than 824 

849 m in the MERRA-2. The reanalysis PBLH_Ri0.25 at 00 UTC may be underestimated 825 

comparing to the IGRA2-based estimates due to the coarse vertical resolution of data used and 826 

the difficulties in estimating the nocturnal shallow SBL over the deserts (see more discussion 827 

later). Nevertheless, the reanalysis derived PBLH in the MERRA2 is systematically 828 

overestimated as also indicated by previous estimates over deserts (e.g., McGrath‐Spangler et al., 829 

2015; Wei et al., 2019b).  830 

 831 

To examine this further, Fig. 12 shows the scatter plots of climatological PBLH between 832 

reanalysis-derived versus PBLH_Ri0.25 from the ERA5 (1979-2018) and MERRA-2 (1980-2018) 833 

by including all land grids within the study domain. For the ERA5, the correlation coefficient 834 

R=0.97 is statistically significant (p<0.0001) for a sample size of 21,144, indicating very good 835 

performance in the PBLH provided by the ERA5. For the MERRA-2, the corresponding R=0.83 836 

is also statistically significant (p<0.0001) for a sample size of 2,884, indicating a good 837 

performance in the PBLH provided by the MERRA-2 as well. However, the MERRA-2 has 838 

much lower R, mainly due to significant overestimates of the PBLH at 00 UTC and 18 UTC than 839 

PBLH_Ri0.25, indicating systematic positive biases in the MERRA-2 PBLH at nighttime.  840 

 841 
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The reanalysis PBLH is a model-based estimate and so is prone to biases due to model 842 

deficiencies. Modeling tests by McGrath-Spangler and Molod (2014) and McGrath‐Spangler et 843 

al. (2015) showed large differences in the PBLH estimated by the two methods used in the ERA5 844 

and MERRA-2, with maximum discrepancies in the nocturnal depth by as much as 1 km over 845 

northern Africa, which are similar to the results in Fig. 10. In numerical models, PBLH biases 846 

could manifest themselves as biases in surface warming and lapse rates in the troposphere 847 

(McGrath-Spangler et al., 2009; McGrath-Spangler and Denning, 2010; Svensson and Lindvall 848 

2015; Wei et al., 2017b). Therefore, the major PBLH biases in the reanalysis could explain, at 849 

least partially, some of the afore-mentioned surface and atmospheric temperature trend biases in 850 

the magnitude and phase. Next, two examples are used to establish this possibility.  851 

 852 

The first example is related to the reanalysis biases in the vertical warming profile (Fig. 9). The 853 

reanalyses generally have warming biases in the middle and upper troposphere and cooling 854 

biases in the lowest tropospheric layers, and a faster warming rate at daytime than nighttime at 855 

500-900 hPa, particularly in the MERRA-2. It is well known that the Earth is mainly warmed 856 

bottom up, as most solar radiation is absorbed at the surface and this energy is transmitted 857 

through the rest of the atmosphere via PBL processes. Over the desert, sensible heat dominates 858 

and drives the PBL growth and there are strong correlations between PBLH and surface 859 

temperatures (Wei et al., 2017b). Differences in turbulent mixing result in different vertical 860 

redistributions of heat, which controls the vertical temperature profile or the lapse rate in the 861 

atmosphere. During the daytime, when the PBLH is higher, the vertical turbulent mixing is 862 

stronger and deeper and so more surface sensible heat can be transferred into upper atmospheric 863 

layers, leading to a cooler surface and warmer atmosphere. During the nighttime, when the 864 
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PBLH is higher, the downgradient turbulent diffusion is stronger and so more sensible heat will 865 

be transferred downward into lower atmospheric layers and the ground, leading to a warmer 866 

surface and a cooler atmosphere. The net effect of higher PBLH is to create a smaller DTR, a 867 

warmer (cooler) middle and upper troposphere (lower troposphere and land surface), and a 868 

warmer (cooler) daytime at daytime (nighttime) because the daytime impacts dominates. This 869 

appears to explain well the warming and cooling biases in the reanalysis, particularly the 870 

MERRA-2 because of its biased high PBLH. McGrath-Spangler and Molod (2014) indicated that 871 

the bulk Richardson number method better represented the PBLH over the Sahara than the other 872 

methods. This is also supported by the PBLH_RI0.25 estimated in Table 5, implying that the 873 

PBLH is more realistic in the ERA5 than in the MERRA-2 over the AP. As expected, the 874 

warming rates near the surface and in the atmosphere in the ERA5 are closer to those observed 875 

than the MERRA-2.  876 

 877 

The second example is related to the reanalysis warming biases in T2m at nighttime when the 878 

reanalysis PBLH differs most. As shown previously, the reanalyses substantially underestimate 879 

nighttime warming and thus the diurnal warming asymmetry. For example, the station mean 880 

maximum warming rate is 0.73 C/decade for the observations, 0.45 C/decade for the ERA5, 881 

and 0.39 C/decade for the MERRA-2. The biased high PBLH in the MERRA-2 will, according 882 

to the PBL-response mechanism, result in a biased low warming rate as shown in Fig. 8. Similar 883 

findings of overestimated PBLH under stable stratification and consequentially underestimated 884 

temperature trends are also reported in other observational and modeling studies (Seidel et al., 885 

2012; McNider et al., 2012; Davy and Esau, 2016; Davy et al., 2017).  886 

 887 



 

 

 

40 

Accurate modeling of PBL processes is important in describing land-atmosphere interactions and 888 

the diurnal and vertical temperatures. PBLH is one key measure of the strength of these 889 

processes but lacks a unified definition and different PBLH estimation methods can produce 890 

substantially different values, even for the same atmospheric profile (e.g., Seidel et al., 2010; 891 

McGrath-Spangler and Molod, 2014). For example, McGrath-Spangler and Molod (2014) 892 

compared seven PBLH estimation methods in the Goddard Earth Observing System (GEOS-5) 893 

atmospheric general circulation model over land and identified the largest variations in the 894 

nocturnal PBLH. McGrath-Spangler et al. (2015) further quantified the impacts of different 895 

PBLH estimates within the GEOS-5 model on the turbulent length scale and the simulated 896 

climate, and found that near-surface variables such as wind, temperature and humidity were 897 

sensitive to the PBLH differences and such sensitivity was spatially and temporally 898 

heterogeneous. Unfortunately, current numerical models have difficulties and large uncertainties 899 

in representing key PBL processes, particularly in extreme and complex PBL conditions such as 900 

the SDAP (Cuesta et al., 2009; Garcia-Carreras et al. 2013; Holtslag et al. 2013; Wei et al., 901 

2017b; Ao et al., 2017). For example, Garcia-Carreras et al. (2015) detailed a very complicated 902 

picture of the vertical structure and diurnal evolution of the Saharan PBL using aircraft and 903 

radiosonde measurements and a large-eddy simulation model; Gamo (1996) showed that the 904 

thick CBL often has a weakly stable and nearly neutral stratification in the Sahara in the whole; 905 

Flamant et al. (2007) found that the Saharan residual layer can be maintained for a whole day 906 

sometimes. The subtle vertical structure of the Saharan PBL, particularly the small temperature 907 

inversion and deep near-neutral residual layer, and its diurnal evolution, add further challenges 908 

for PBL modeling (Cuesta et al., 2009; Couvreux et al. 2014). These complex PBL features are 909 

identified in the Sahara, and possibly apply to the AP and other hot deserts as well. For example, 910 
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Ao et al. (2017) analyzed the diurnal variation of PBLH from two intense observation periods of 911 

experiments in summer of the Badain Jaran Desert and found that the deep CBL showed a 912 

diurnal variation of three- to five-layer structure in clear days and five-layer structure often 913 

around sunset or sunrise. Hence, the deficiencies and uncertainties in the reanalysis PBL 914 

processes can result in temperature biases and the timing differences in maximum and minimum 915 

warming. 916 

 917 

The surface and atmospheric temperature changes in response to external forcings are a result of 918 

complex interactions among the atmosphere, PBL and land surface. Considering the complexity 919 

of turbulent mixing and the challenges in observing and modeling the PBL processes, it is very 920 

difficult to attribute the reanalysis biases in the fully coupled land-atmosphere system. For 921 

example, one major reanalysis bias discussed previously is the systematic underestimation of 922 

DTR and nighttime temperature trend in T2m. Although the ERA5 has more realistic PBLH than 923 

the MERRA-2, this systematic bias is smaller but still there. This is a long-standing issue in 924 

reanalysis and numerical models despite intensive attribution studies on this topic (e.g., Vose et 925 

al., 2005; Zhou et al., 2007; 2009; 2010; IPCC, 2007; 2013; Christensen et al., 2008; Boberg and 926 

Christensen, 2012; Lewis and Karoly, 2013; Wei et al., 2017a; 2017b; Du et al., 2018; Davy, 927 

2018). In addition, other non-PBL processes may modulate the diurnal and vertical features of 928 

DA as well. For example, the reanalysis data represents a mean over the model grid-box on the 929 

order of hundreds of squared kilometers, while the station data come from point measurements 930 

by instruments over standard grass plots. Also, the surface elevation differs largely between the 931 

station sites and the model grids (Table 2). As the focus of the present study is the detection of 932 

DA in the context of AP, further attribution, however, is beyond the scope of this study.   933 
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 934 

4. Conclusions 935 

 936 

This paper presents a comprehensive analysis of hourly surface observations, radiosonde 937 

temperature measurements, and two latest state-of-the-art reanalysis products (ERA5 and 938 

MERRA-2) for the period 1979-2018 to understand the diurnal cycle and vertical structure of 939 

DA over the AP. The diurnal cycle of T2m, PBLH, and surface fluxes and the atmospheric 940 

warming profiles from near surface (2m) to 100 hPa are analyzed. Observational and reanalysis 941 

data show consistently that DA is a bottom-heavy warming profile with a distinct diurnal 942 

asymmetry, which maximizes near the surface and decreases quickly with height and is limited 943 

to the lower troposphere and surface. The main findings are summarized as follows: 944 

 945 

1. Observed and reanalysis data reveal consistent warming trends in T2m that are statistically 946 

significant for all stations and during every hour of day. The station mean surface warming rates 947 

in T2m are 0.59 C/decade, with a strong diurnal range of 0.45-0.73 C/decade for the 948 

observations. The corresponding values are 0.43 C/decade, with a weak diurnal range of 0.41-949 

0.45 C/decade, for the ERA5, and 0.38 C/decade, with a weaker diurnal range of 0.36-0.39 950 

C/decade for the MERRA-2. The reanalysis data capture well the overall warming and 951 

interannual variability but underestimate the warming rates and the diurnal asymmetry of 952 

warming.  953 

 954 

2. Observed and reanalysis T2m data show the diurnal asymmetry of warming associated with 955 

PBLH over the AP. In general, the diurnal cycle of surface warming rate depends, to some 956 
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extent, inversely on the magnitude of climatological PBLH, which follows closely the diurnal 957 

cycle of T2m, but differ by several hours in the diurnal phase. The surface observations show the 958 

largest/smallest warming mostly around the transitions between day and night, while the 959 

reanalysis data indicate the largest/smallest warming at nighttime/daytime.  960 

 961 

3. Both surface and radiosonde observations indicate that DA is a bottom-heavy warming profile 962 

limited to the lower troposphere and surface, and has a distinct diurnal asymmetry that 963 

maximizes near the surface, decreases with height, and is mostly invisible above 700 hPa. The 964 

reanalysis data capture this vertical warming profile but exhibit some biases. 965 

 966 

4. The diurnal and vertical warming features could be, at least partially explained by a PBL-967 

response mechanism (Davy et al., 2017): for a given forcing, the surface warming rate depends 968 

inversely on the PBLH and so is stronger for a shallower PBLH. The diurnal phase and the 969 

magnitude of PBLH over the AP generally determines the diurnal warming asymmetry and its 970 

vertical structure. 971 

 972 

5. The major PBLH biases in the reanalysis could cause, at least partially, some of the surface 973 

and atmospheric temperature trend biases in the magnitude and phase. In particular, the PBLH 974 

estimated from the MERRA-2 is systematically higher than that from the ERA5, which could 975 

help to explain some the warming biases in the middle and upper troposphere and cooling biases 976 

in the lowest tropospheric layers. 977 

 978 
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These results suggest that besides the surface radiative forcing, the PBL turbulent mixing may 979 

play an important role in modulating the diurnal and vertical structure of DA over the AP. The 980 

reported warming trends and results of PBLH are in good agreement with theory and previous 981 

findings in the literature. While other factors may have also asymmetrically affect the diurnal 982 

temperature trends, this study concentrates on the PBLH as the PBL-response mechanism is 983 

expected to maximize over the SDAP with the world’s deepest daytime PBL and shallowest 984 

nocturnal PBL (Davy et al., 2017). The role of PBL is to amplify the diurnal surface warming 985 

stronger for a shallower PBLH over the deserts through heat redistributing via turbulent mixing.  986 

 987 

To the best of my knowledge, this work is the very first comprehensive study to examine the 988 

diurnal and vertical variations of warming trends over the AP and establish their relationships 989 

with the PBLH. It highlights the importance and need for accurate descriptions of the PBL 990 

processes with respect to the turbulent mixing in order to better characterize the temperature 991 

diurnal cycle changes in reanalysis products and numerical models (Wei et al., 2017b). However, 992 

the interactive mechanisms between near-surface temperatures and PBL processes are very 993 

complex and it has been very challenging to establish cause and effect for a fully coupled land-994 

atmosphere system. The present work links the diurnal cycle warming rate to PBLH in a 995 

statistical framework but there are large uncertainties in observational and reanalysis PBLH 996 

estimates. Further attribution studies are needed to confirm its findings by conducting carefully 997 

defined modeling sensitivity experiments. 998 

 999 

The reported findings have important implications as DA may accelerate over the arid and semi-1000 

arid regions in the context of global warming and has the strongest impacts on the SDAP (Zhou, 1001 
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2016). Climate change is an important factor for sustainable water resource management and is 1002 

an essential component for strategic water resource management in arid and semi-arid countries 1003 

(Tarawneh and Chowdhury, 2018). The long, hot and dry weather, along with extreme 1004 

temperatures, impose a significant strain on water resources as warming enhances evaporation 1005 

from open reservoirs and domestic water demand. The climate of the AP is extremely arid, with 1006 

high temperature variability, low annual rainfall, no natural perennial flow and limited 1007 

groundwater reserves (Attada et al., 2017). As a result, the AP is extremely sensitive to climate 1008 

fluctuations and is also highly vulnerable to climate change impacts (Almazroui et al., 2013; 1009 

Attada et al., 2017). Understanding and predicting the AP climate can be beneficial for practical 1010 

purposes in many different sectors, including water resources, agriculture, power generation, 1011 

biodiversity, tourism, ecosystems, migration and food security (Almazroui et al., 2012; 2014).  1012 
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Table 1. Surface weather stations used in this study from the DS3505 dataset 1246 

Station Name WMO code Latitude 

(N) 

Longitude 

(E) 

Elevation 

(m) 

Ben Gurion Intl Airport, Israel 401800 32.011 34.887 41 

Kuwait Intl Airport, Kuwait 405820 29.227 47.969 63 

ARAR, Saudi Arabia 403570 30.907 41.138 553 

Al Jouf, Saudi Arabia 403610 29.785 40.100 689 

Hail, Saudi Arabia 403940 27.438 41.686 1015 

Gassim, Saudi Arabia 404050 26.300 43.767 648 

Al Ahsa, Saudi Arabia 404200 25.285 49.485 179 

King Khaled Intl Airport, Saudi Arabia 404370 24.958 46.699 625 

King Abdulaziz Intl Airport, Saudi Arabia 410240 21.680 39.157 15 

Al Baha, Saudi Arabia 410550 20.296 41.634 1672 

Bisha, Saudi Arabia 410840 19.984 42.621 1185 

ABHA, Saudi Arabia 411120 18.240 42.657 2090 

King Khaled Ab, Saudi Arabia 411140 18.297 42.804 2066 

King Abdullah Bin Abdulaziz, Saudi Arabia 411400 16.901 42.586 6 

Turaif, Saudi Arabia 403560 31.693 38.731 854 

Qaisumah, Saudi Arabia 403730 28.335 46.125 358 

Tabuk, Saudi Arabia 403750 28.365 36.619 778 

Prince Mohammad Bin Abdulaziz, Saudi Arabia 404300 24.553 39.705 656 

Riyadh Ab, Saudi Arabia 404380 24.71 46.725 635 

Taif, Saudi Arabia 410360 21.483 40.544 1478 

Nejran, Saudi Arabia 411280 17.611 44.419 1214 

 1247 

Table 2. Radiosonde stations used in this study from the RICH dataset 1248 

Station Name WMO code  Latitude 

(N) 

Longitude 

(E) 

Elevation*  

(m) 

Bet Dagan, Israel ISM00040179 32.000 34.817 35 (414, 281) 

Kuwait Intl Airport, Kuwait KUM00040582 29.243 47.971 56 (397, 174) 

Al-Qaisumah, Saudi Arabia SAM00040373 28.317 46.133 358 (753, 339) 

Tabuk, Saudi Arabia SAM00040375 28.383 36.600 778 (584, 875) 

Hail, Saudi Arabia SAM00040394 27.433 41.683 1015 (943, 969) 

Al-Madinah, Saudi Arabia SAM00040430 24.550 39.700 654 (936, 846) 

King Khaled Intl Airport, Saudi Arabia SAM00040437 24.933 46.717 614 (693, 637) 

Jeddah, Saudi Arabia SAM00041024 21.700 39.183 15 (905, 593) 

Note: *Elevation in parenthsis refers to the corresponding grid-averaged elevation in the ERA5 (first column) 1249 
and MERRA2 (second column) reanalysis. 1250 

 1251 

  1252 
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Table 3. Station means of the climatology (C) and trends (C/decade) of daily maximum T2m, 1253 

minimum T2m, and DTR averaged over the 21 surface stations (Fig. 1a) from the DS3505 1254 

(1979-2018), ERA5-land (1981-2018), and MERRA-2 (1980-2018) 1255 

dataset Tmax Tmin DTR 

climatology trend climatology trend climatology trend 

DS3505 30.1 0.56 18.6 0.72 11.5 -0.16 

ERA5-land 30.1 0.42 17.0 0.44 13.0 -0.02 

MERRA-2 31.6 0.37 17.5 0.39 14.1 -0.02 

Note: Tmax – maximum T2m, Tmin – minimum T2m, DTR – diurnal temperature rang of T2m. Trends 1256 

(C/decade) in bold and italics are statistically signifcant at the 5% level.  1257 

 1258 

Table 4. Statistical results for the multiple linear regression in equation (2)   1259 

Scale PBLH 

type 
T2mtrend = 0 + 1*1/PBLHclim + 2 * DLRtrend + 3 * DSRtrend 

N (N*) 1 2 3 R2
adjusted F_pval 

ERA5 

spatial + 

diurnal 

PBLH 21144 (3299) 0.22 0.85 0.22 0.58 <0.01 

PBLH_RI0.25 21144 (3863) 0.22 0.81 0.21 0.58 <0.01 

spatial 

PBLH 881 0.02 1.15 0.52 0.73 <0.01 

PBLH_RI0.25 881 0.11 1.10 0.48 0.74 <0.01 

diurnal 

PBLH 24 2.53 1.70 0.06 0.95 <0.01 

PBLH_RI0.25 24 2.05 1.24 0.03 0.89 <0.01 

MERRA-2 

spatial + 

diurnal 

PBLH 17304 (2690) 0.00 0.74 0.26 0.56 <0.01 

PBLH_RI0.25 2884 0.05 0.72 0.29 0.60 <0.01 

spatial 

PBLH 721 0.06 0.72 0.37 0.66 <0.01 

PBLH_RI0.25 721 -0.02 0.75 0.37 0.68 <0.01 

diurnal 

PBLH 24 0.75 0.06 0.30 0.99 <0.01 

PBLH_RI0.25 4 - - - - - 

Note: PBLH and PBLH_RI0.25 are defined in Table 5. N is the sample size of the regression for 1260 
the ERA5-land and MERRA-2 data over the study domain, consisting of spatial (grid box) and 1261 
diurnal (hourly or 6-hourly) temporal scales. N* is the effetcive degree of freedom after 1262 
considering the spatial correlation between grid boxes. F_pval denotes the statistical significance 1263 
(p value) of the F-test. The partial regression coefficents, 1, 2, and 3, are standardized and so 1264 
can be compared to determine the relative contribution to T2mtrend. The values in bold and italics 1265 
are statistically signifcant at p=0.01 and p=0.05, respecively. 1266 

  1267 
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Table 5. PBLH (m) for the 8 radiosonde stations from the IRGA2, ERA5 and MERRA-2 1268 

datasets 1269 

WMO code  IGRA2 ERA5 MERRA-2 

PBLH_RI0.25 PBLH PBLH_RI0.25 PBLH PBLH_RI0.25 

00 UTC 

ISM00040179 84.3 106.7 20.1 432.5 21.5 

KUM00040582 127.4 167.4 36.6 844.5 31.8 

SAM00040373 100.6 134.5 21.7 1142.1 22.2 

SAM00040375 87.5 127.5 16.1 563.5 9.5 

SAM00040394 88.6 137.9 22.3 1252.3 12.1 

SAM00040430 122.7 110.0 17.6 889.1 18.5 

SAM00040437 104.8 130.0 20.1 1330.7 19.6 

SAM00041024 101.7 116.7 26.5 335.6 22.4 

Station mean 102.2 128.8 22.6 848.8 19.7 

12 UTC 

ISM00040179 1199.3 1137.7 1075.8 1575.7 1570.7 

KUM00040582 1784.4 2033.2 1885.0 2263.4 2147.5 

SAM00040373 2275.5 2096.3 2226.9 2393.7 2380.4 

SAM00040375 2131.4 2115.7 2395.7 2642.9 2870.0 

SAM00040394 2793.8 2626.2 2809.3 2978.7 3022.2 

SAM00040430 2774.0 2847.4 3136.5 3223.7 3600.8 

SAM00040437 2520.9 2506.1 2720.2 2772.4 2851.0 

SAM00041024 1240.3 1313.6 1650.5 2524.9 2877.5 

Station mean 2089.9 2084.5 2237.5 2546.9 2665.0 

Note: PBLH referes to the PBLH provided by the reanalysis. PBLH_RI0.25 referes to the PBLH diagnosed 1270 
directly from the atmopsheric profiles using the bulk Richardson (Ri) number method (Eq. (1)), with the 1271 
threshold value of Z(Ri=0.25).     1272 
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Fig. 1. (a) Surface (in red) and radiosonde (in green) stations used over the Arabian Peninsula 1310 

(AP). The AMO identifier # for every radiosonde (11-digtial) and surface (6-digital) station is 1311 

shown. The geographic location and elevation for each station are listed in Tables 1 and 2. The 1312 

rectangle box (16.5N-32.5N, 34.5E-50.0E) depicts the land area over which the regional 1313 

mean is averaged for the reanalysis data. (b) The corresponding true-color satellite image on 1314 

August 6, 2020 covering the same area as (a) obtained from the NASA EOSDIS worldview 1315 

website: https://worldview.earthdata.nasa.gov/.  1316 
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 1318 
 1319 

Fig. 2. The diurnal cycle of linear trend (C/decade) of T2m (left y-axis, in red) for the period 1320 

1979-2018, along with the diurnal cycle of climatological T2m (C, right y-axis, in black), for 1321 

the 21 surface stations labeled in Fig. 1a. The T2m trends are statistically significant at p ≤0.05 1322 

(in red). The daily mean, as well as the maximum and minimum (in parentheses) of the hourly 1323 

T2m trend, are listed on the top of each panel. The vertical line in each panel indicates the local 1324 

solar noon. 1325 



 

 

 

62 

 1326 

 1327 

 1328 

 1329 

 1330 

 1331 

 1332 

 1333 

 1334 

 1335 

 1336 

 1337 

 1338 

 1339 

 1340 

 1341 

 1342 

 1343 

 1344 

 1345 

 1346 

 1347 

 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 

Fig 3. Same as Fig. 2 but for the station mean: (a) original T2m, and (b) reconstructed T2m using 1355 

the first EOF, which explains 79.6% of the total data variance. The vertical line in each panel 1356 

indicates the station mean local solar noon.  1357 
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Fig 4. Interannual variations in station mean T2m anomalies (C) at 00 and 12 UTC averaged 1362 

over the 21 surface stations labeled in Fig. 1a from: (a) DS3505 (1979-2018), (b) ERA5-land 1363 

(1981-2018), and (c) MERRA-2 (1980-2018). Linear trend (C/decade) plus one standard 1364 

deviation, along with its significance level (p value), are shown. 1365 

 1366 

 1367 

  1368 
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Fig 5. The vertical profile of linear trend (C/decade) of atmospheric air temperature at 00 (in 1371 

red) and 12 UTC (in blue) during the period 1979-2018 for the 8 radiosonde stations labeled in 1372 

Fig. 1a in the RICH dataset. The trends are statistically significant at p <0.05 (in circle).  1373 
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Fig 6. Same as Fig. 5 but for the station mean: (a) original temperature, and (b) reconstructed 1396 

temperature using the first EOF, which explains 54.3% (00 UTC) and 49.8% (12 UTC) of the 1397 

data variance. The corresponding station mean T2mtrend at 00 and 12 UTC from the DS3505 are 1398 

also shown at the bottom of the plot.  1399 
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Fig. 7. Spatial patterns of linear trend (C /decade) of T2m from ERA5-land (1981-2018) and 1433 

MERRA-2 (1980-2018) over North Africa and the Arabian Peninsula: (a, c) at 00 UTC, and (b, 1434 

d) at 12 UTC. Stippling indicates regions where the trend is statistically significant at p<0.05. 1435 
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 1436 

Fig. 8. The diurnal cycle of linear trend (C/decade) of T2m (left y-axis), along with the diurnal 1437 

cycle of climatological T2m (C, right y-axis, in black), from the ERA5-land (1981-2018) and 1438 

MERRA-2 (1980-2018): (a, b) station mean averaged over the 21 surface stations labeled in Fig. 1439 

1a, and (c, d) regional mean averaged over the rectangle domain depicted in Fig.1a. The T2m 1440 

trends are statistically significant at p <0.05 (in red). The daily mean, along with the maximum 1441 

and minimum (in parentheses), of the 24-hourly values for the T2m trend (left) and the T2m 1442 

climatology (right) are listed in each panel. The vertical line in each panel indicates the station or 1443 

regional mean local solar noon.  1444 
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Fig. 9. The vertical profile of linear trend (C /decade) of atmospheric air temperature and 1480 

surface T2m at 00 (in red) and 12 UTC (in blue) from the ERA5 (1979-2018) and MERRA-2 1481 

(1980-2018): (a, b) station mean for the 8 radiosonde stations labeled in Fig. 1a, and (c, d) 1482 

regional mean for the rectangle domain depicted in Fig.1a. The trends are statistically significant 1483 

at p <0.05 (in circle). The corresponding station mean T2m trends (C/decade) are also plotted.  1484 

For comparison purpose, the station mean profiles observed in Fig. 6a are also shown.  1485 
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 1487 

Fig. 10. The diurnal cycle of climatological PBLH (m, left y-axis, in red) and T2m (C, right y-1488 

axis, in black) from the ERA5-land (1981-2018) and MERRA-2 (1980-2018): (a, b) station mean 1489 

for the 21 surface stations labeled in Fig. 1a, and (c, d) regional mean for the rectangle domain 1490 

depicted in Fig.1a. The daily mean, along with the maximum and minimum (in parentheses), of 1491 

the 24-hourly values for the PBLH (left) and the T2m climatology (right) are listed in each panel. 1492 

The vertical line in each panel indicates the station or regional mean local solar noon.  1493 
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Fig. 11. The histogram of hourly T2m trend (C/decade, y-axis) plus one standard deviation 1494 

(STD) as a function of climatological hourly PBLH (m, x-axis) from (a) ERA5-land (1981-2018) 1495 

and (b) MERRA-2 (1980-2018). All the PBLHs over the land grids with the rectangle domain 1496 

depicted in Fig. 1a are divided evenly into 10 bins based on a PBLH interval of 350 m in ERA5 1497 

and 300 m in MERRA2.  1498 

  1499 
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 1500 

Fig. 12. Scatter plots of climatological hourly PBLH (m) derived by the reanalysis (x-axis) and  1501 

diagnosed using the Richard number method, referred to as PBLH_Ri0.25 (m, y-axis), from the 1502 

ERA5 (1979-2018) and MERRA-2 (1980-2018) over all land grids within the rectangle domain 1503 

depicted in Fig.1a. The correlation coefficient R, its statistical significance (p value) and sample 1504 

size (n) are listed on the top in each panel.  1505 


