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Abstract. Recent studies using observations, reanalysis data and climate model simulations
documented that 2m surface air temperature (T2m) has been amplified over the world’s hottest
and driest Sahara Desert and the Arabian Peninsula, referred to as desert amplification (DA).
This study presents a comprehensive analysis of hourly surface observations, radiosonde
measurements, and two latest state-of-the-art reanalysis products for the period 1979-2018 to
examine the diurnal and vertical variations of DA and their connections with planetary boundary
layer height (PBLH). It focuses on the Arabian Peninsula (AP), where observations are relatively
abundant compared to the data scarce Sahara regions. Both observational and reanalysis data
show that the diurnal cycle of surface warming rate depends, to some extent, inversely on the
magnitude of climatological PBLH, and so DA has a distinct diurnal asymmetry with a stronger
warming for a shallower PBLH. Results of upper air profiles reveal that DA is a bottom-heavy
warming profile, which maximizes near the surface, decreases quickly with height, and is limited
to the lower troposphere (>700 hPa) and surface. The major PBLH biases could explain, at least
partially, some of the diurnal and vertical warming/cooling biases in the reanalyses. These results
suggest that besides the surface radiative forcing, the PBLH may play an important role in
modulating the diurnal and vertical structure of DA over the AP through heat redistributing via

turbulent mixing.

Key words: Global warming, desert amplification, planetary boundary layer, diurnal asymmetry
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1. Introduction

Deserts make up approximately 1/3 of the global land surface area (Zhou, 2016; Wei et al.,
2017a). The Sahara and Arabian deserts, the world’s two largest hot deserts, are formed in the
subtropical subsiding branch of the Hadley cells and so generally associated with dry and
cloudless weather conditions (Wu et al., 2009). The Sahara Desert and the Arabian Peninsula
(SDAP) are among the driest and hottest regions on Earth and considered to be a hotspot in terms
of climate change and impacts from regional to global scales through the influence of dust
aerosols and atmospheric circulation (Knippertz and Todd, 2012; Vizy and Cook, 2017; Thomas
and Nigam, 2018). Observations and climate model simulations indicate adverse impacts of
increasing warming and drought on fragile desert ecosystems in response to elevated greenhouse

gas (GHG) concentrations (Huang et al., 2016; Thomas and Nigam, 2018).

By analyzing observational, reanalysis and projected land surface 2m air temperatures (referred
to as T2m hereafter), several recent studies documented that T2m in mid- and low- latitudes has
warmed the most over the SDAP. Zhou et al. (2015; 2016) examined the observational,
reanalysis, and modeled T2m trends in 50°S-50°N by large-scale ecoregion for the period 1979-
2012 and found dramatically increased warming rates with increasing surface aridity and the
strongest warming over the driest and least vegetated SDAP. Cook & Vizy (2015) evaluated
annual mean T2m of three reanalyses and two observational gridded datasets for the period
1979-2012 and showed 2-4 times more warming over the Sahara than over the whole tropics.
Evan et al (2015) examined in-situ observations of three stations and one atmospheric reanalysis

for the months of July and August during the period of 1979-2012 and identified amplified
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warming in summer over the Western Sahara Desert. Zhou (2016) further examined T2m
changes in historical and projected simulations (1950-2100) from the Coupled Model
Intercomparison Project phase 5 (CMIP5) and found strongest surface warming consistently and
persistently seen over the SDAP during various 30-year periods after the 1980s, pointing to
desert amplification (DA) in a warming climate. This work also showed that the magnitude of
DA increased linearly with the global mean radiative forcing due to increasing GHGs. DA was
reproduced by CMIPS historical “all forcings” simulations, but was absent if only natural
forcings were used, suggesting human influence (Zhou et al., 2015; 2016; Zhou, 2016). Using
multiple satellite datasets, Wei et al. (2017a) indicated that DA was strongest at the surface,
decreased with height, and mostly disappeared in the upper troposphere. The essential features of
DA remained robust across all seasons, although the magnitude of DA was greater during
summer months (Zhou et al., 2016; Vizy and Cook, 2017; Wei et al., 2017a). These results
suggest that DA is a fundamental feature of global warming patterns in mid- and low- latitudes

and intensifies with increasing GHGs.

DA is conceptually similar to the well-known arctic amplification (AA), a subject of intensive
research for several decades (e.g., Serreze and Barry, 2011). AA has been attributed to feedbacks
associated with surface albedo, water vapor, cloud, and lapse rate, and to changes in atmospheric
and oceanic heat transport (IPCC, 2007; 2013). In contrast, DA is an emerging new concept and
its causes are largely unknown. Several recent studies suggested that DA may result mainly from
large-scale greenhouse effects in a warming climate over the SDAP associated with increasing
water vapor (Cook & Vizy 2015; Zhou et al. 2016; Zhou 2016; Wei et al., 2017a; Evan et al.,

2017). This attribution was proposed from the local surface energy budget perspective, based on
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the results that the desert warming rate is well correlated spatially and temporally with enhanced
downward longwave radiation (DLR) at the surface as a result of a warmer and moister
atmosphere. It is suggested that DA may alter regional-scale climate and circulation over the
deserts and surroundings and thus have significant environmental, societal, and economic
consequences (Zhou 2016; Vizy and Cook 2017). Hence, understanding major processes that

control DA is essential for a complete assessment of climate change and impacts.

One distinct feature of hot desert climate is the pronounced diurnal cycle. The SDAP is
characterized by extremely high temperatures during daytime and very low temperatures during
nighttime, which creates the largest diurnal temperature range (DTR) in the world (Zhou et al.
2007; 2009; 2010). It is also marked by a large diurnal cycle in the atmospheric planetary
boundary layer (PBL). Turbulent mixing in the PBL governs the vertical exchange of heat,
moisture, momentum, and aerosols in the surface-atmosphere interface and thus strongly
influences the atmospheric temperature, moisture, and wind (Stull, 1988). The PBL height
(PBLH) represents the maximum height of the free atmosphere that is directly influenced by the
Earth’s surface and responds to surface impacts. On the diurnal time scale, the development of
PBL typically consists of the deep convective boundary layer (CBL) during the day, the shallow
stable boundary layer (SBL) at night, and their transition stages in the morning and evening
periods. In general, PBLH depends proportionally on the intensity of surface heating over dry
regions, and so the global PBL climatology shows the maximum PBLH in the SDAP, up to 3.5
km in summer months (Ao et al., 2012). Among various climate zones worldwide, the SDAP

generally has the deepest and well-mixed PBL at daytime but the shallowest and most stably
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stratified PBL at nighttime, with the strongest diurnal asymmetry in PBLH (Gamo, 1996;

Messager et al., 2010; Garcia-Carreras et al., 2015; Davy, 2018).

It is interesting to note that the spatial pattern of DA is coupled geographically well with that of
the climatological DTR and PBLH over the SDAP, which are strongly connected with the unique
diurnal features of desert land surface and PBL processes. Besides the positive radiative forcing
at the surface, recent studies indicated that the PBLH modulates the T2m response to the surface
forcing and is a stronger predictor of the diurnal asymmetry in surface warming (McNider et al.
2012; Davy and Esau, 2016; Davy et al., 2016). This implies that the strong diurnal cycle of
PBLH over the SDAP may result in a diurnal asymmetry in DA. Also, the amplified surface
warming associated with DA could modify the vertical warming profile or lapse rate over deserts
via strong turbulent mixing in the PBL. However, recent detection and attribution of DA have
been limited to the seasonal and annual features of daily mean T2m (Zhou et al., 2015; Cook &
Vizy 2015; Zhou et al. 2016; Zhou 2016; Wei et al., 2017a; Evan et al., 2017; Vizy and Cook
2017), little attention is given to understand how DA varies diurnally and vertically. Hence,
understanding the diurnal and vertical features of DA and their connections with PBLH is an

important next step.

The diurnal variation is one of the most fundamental modes of variability of the global climate
system and may function as a bridge between weather and climate (Yang and Slingo, 2001;
Ruppert, 2016). Changes in surface temperatures such as daily maximum (Tmax), daily minimum
(Tmin), and the DTR have been examined intensively to study climate change and variability

(IPCC, 2007; 2013). Associated with global warming is a greater warming in Tmin than Tmax, and
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thus a substantial reduction in the DTR observed over many land areas since 1950 (Vose et al.,
2005; IPCC, 2007; 2013). The DTR calculated from Tmin and Tmax (DTR=Tmax - Tmin) are often
analyzed to describe the diurnal cycle, but the full diurnal cycle is far more complex than the
simple difference in the two numbers and needs analysis of high temporal resolution data (e.g.,

Vinnikov et al., 2002; Davy et al., 2017).

Despite its importance to Earth’s climate, the Sahara has one of the sparsest networks of routine
meteorological measurements of any landmass on Earth, with most measurements only available
at the periphery of the desert (Marsham et al., 2013). This data gap fundamentally limits our
understanding of the Saharan climate because of insufficient observations available for data
collection, assimilation or model validation (Garcia-Carreras et al., 2015; Wei et al., 2017a;
2017b). Also, weather and climate models have difficulties in realistically simulating the
magnitude and diurnal evolution of PBLH and T2m, particularly over dry climates (Christensen
et al., 2008; McNider et al. 2012; Boberg and Christensen, 2012; Lewis and Karoly, 2013; Davy
and Esau, 2016; Davy et al., 2017; Wei et al., 2017b; Davy, 2018). These data limitations and
model deficiencies cast doubt on detecting and attributing DA. Further validation of DA using in

situ observations is essential.

Surface and atmospheric observations in the Arabian Peninsula (AP) are relatively abundant
compared to significant data gaps in the Sahara Desert. DA is a continental-scale warming
pattern covering the entire SDAP and so the warming features in the AP are representative of
DA. In addition, high temporal and spatial resolution reanalysis products have been released

recently with improved quality. This provides a great opportunity to further understand and
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validate DA using in-situ observations and advanced reanalysis data over the AP. The present
paper analyzes high resolution data from surface and radiosonde observations and two widely
used reanalysis data to examine the diurnal cycle and vertical structure of DA and its potential
drivers over the AP. It focuses on the modern satellite data era for the period 1979-2018 to
maximize spatial coverage of measurements that are assimilated into reanalysis products. This

era also corresponds to the period when the observed DA signal is most significant.

The motivation for this study is threefold. The first goal is to search for more observational
evidence of DA. The second goal is to examine the diurnal variation in surface warming
associated with DA and potential drivers using hourly data, rather than the DTR as done
previously. The third goal is to link the diurnal cycle of DA with that in the upper air. Climate
change research has focused dominantly on T2m, including the detection and attribution of DA,
but temperature changes are not limited to the Earth surface and can be extended into the free
atmosphere (Brocard et al, 2013). The vertical structure of temperature changes can tell a whole
story of climate change, and in this case, can improve our understanding of the diurnal coupling

of surface and air temperatures over deserts.

2. Data and Methods

2.1. Study region

This study focuses on the AP and surrounding areas, where high-quality surface and radiosonde

observations are available. It is worth noting that the spatial coverage of observational network
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in the AP is sparser than that in North America and Europe but is relatively abundant for large-
scale analysis in comparison to the other SDAP regions. The study domain, depicted as the
rectangle box (16.5°N-32.5°N, 34.5°E-50°E) in Fig. 1, covers most of the AP countries and part
of several neighboring states such as Egypt, Sudan, Iraq, Iran, and Israel. It includes the Arabian
Desert, which occupies almost the entire AP, but excludes the relatively humid southern part of

the AP affected by convective processes and clouds (Hassan et al., 2016; Patlakas et al., 2019).

The climate of the AP is extremely hot and dry, with infrequent low rainfall (Chowdhury and Al-
Zahrani, 2013; Patlakas et al., 2019). The landscape consists of highlands in the western and
southwestern regions, the vast arid and extra arid lands of the interior (Najd), the world’s largest
continuous bodies of sand deserts, and the Rub Al-Khali in the southeast (Patlakas et al., 2019).
Despite sharing similar large-scale climate features, the AP also demonstrates some level of
heterogeneity at local to regional scales due to variations in vegetation, topography, proximity to
sea, and regional circulation patterns (Ahmed, 1997; Krishna, 2014). Among the AP countries,
Saudi Arabia occupies ~4/5 of the AP and a large part of the Arabian Desert lies within the
country. It is among the hottest countries with very low humidity in the world and average
temperature ranging from 27°C-43°C in inland regions and 27-38°C in coastal regions (Krishna,
2014). For example, the highest (lowest) temperature of 52°C (-10°C) are recorded in two
stations in Saudi Aribia (Almazroui et al. 2014). Saudi Arabia provides most of the station-based
observations used in this study and is relatively well studied in terms of climate change

compared to the Sahara Desert.

2.2. Observational and reanalysis data
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2.2.1. Integrated global daily radiosonde data

Daily weather data for the atmosphere have been regularly obtained from radiosondes and pilot
balloons dating back to 1905. The Integrated Global Radiosonde Archive Version 2 (IGRA2)
from the U.S. National Climatic Data Center (NCDC) consists of quality-controlled sounding
observations from various sources at >1500 global stations with varying periods of record (Durre
et al., 2006). Measurements include atmospheric vertical profiles of temperature, humidity, wind
and other variables at mandatory pressure levels. The IGRA2 has applied a comprehensive set of
quality control procedures to the data to remove gross errors. So far, it is the largest and most
complete dataset of quality-assured radiosonde observations freely available. Its temporal and
spatial coverage is most complete over the U.S., Western Europe, Russia and Australia. The
vertical resolution and extent of soundings improve significantly over time, with nearly three-
quarters of all soundings reaching up to at least 100 hPa by 2003. However, the IGRA2 data
have not been adjusted for inhomogeneities due to changes in instrumentation, observing

practice, or station location.

It is well recognized that radiosonde data need bias correction for homogeneity before they can
be used for trend analysis in climatic research (Thorne et al., 2011; Haimberger et al., 2012). One
of the widely used homogeneity-adjusted radiosonde datasets based on the IGRA2 is the
homogenization of global radiosonde temperatures with the Radiosonde Observation Correction
Using Reanalyses (RAOBCORE) and the Radiosonde Innovation Composite Homogenization

(RICH) (Haimberger, 2007; Haimberger et al., 2008). The RAOBCORE homogenization method
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detected shifts in existing radiosonde observation time series and estimated the size of the shifts
using background forecast time series from ERA-40 (1958-1978) and ERA-Interim (1979
onwards) as reference for break detection. However, the background forecasts may be influenced
by biases in the radiosonde data, and by uncertainty from other observing systems, most notably
satellites, and reanalysis models (Haimberger et al., 2012). To avoid this problem, the RICH
homogenization method created reference series from neighboring radiosonde stations for
breakpoint adjustment. It works well if the radiosonde network is not too sparse and only
homogeneous pieces of the neighboring time series are used. Note that homogeneity adjustments

were only made to radiosonde-based temperature measurements.

This study used the latest version v1.74 of the RICH dataset on 16 pressure levels for several
reasons: (1) it has the longest data record with most stations compared to other homogeneity-
adjusted radiosonde datasets over the AP; (2) it has homogeneity-adjusted measurements at both
daytime and nighttime (00 and 12 Coordinated Time Universal or UTC); (3) it exhibits the
closest match to the latest satellite observations in the tropics (Thorne et al., 2011). Note that the
RAOBCORE adjusted data is assimilated into the ERAS, which is used in this study, while

RICH adjusted data is not used for the ERAS.

Here the subdaily and daily temperatures from the RICH were downloaded for the period 1979-
2018. Eight radiosonde stations over the study region were chosen following the data selection
criteria (section 2.3.1). To estimate the climatology of PBLH for the same period, the original

radiosonde soundings from the IGRA2 were also used (section 2.3.3).
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2.2.2. Integrated global hourly surface observations

Hourly surface-based meteorological observations are available from the global-scale, quality-
controlled integrated surface hourly dataset (DS3505) archived in the U.S. NCDC

(https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd). The DS3505 consists of numerous global

hourly and synoptic observations for regular weather parameters (e.g., temperature, dew point,
wind, etc.) into a common format and data model, and thus provides a single collection of global
hourly data with continuous updates. The primary data sources include the Automated Surface
Observing System (ASOS), Automated Weather Observing System (AWOS), and various others
from more than 35,000 stations worldwide for the period 1901-present. The data spatial and
temporal coverage in the DS3505 is however not even. The best spatial coverage is evident in
North America, Europe, Australia, and parts of Asia, but only a limited number of stations is in
the Southern Hemisphere and the African Continent. Some stations have data as far back as
1901, but there is a substantial increase in data volume starting in the late 1970s. In terms of data
continuity, some stations have over 50 years of continuous records, while others have “breaks” in

the period of record (Smith et al., 2011).

Besides internal quality control (QC) procedures applied to several major input datasets to the
DS3505, there have been continued incremental improvements in automated QC software since
2003 (Smith et al., 2011). The input data sources were first processed through automated and
some manual QC and then additional QC software was developed and applied to the entire
archive. The QC process included 54 QC algorithms checking for proper data format for each

field, extreme values and limits, consistency between parameters, and continuity between
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observations. The standardized and consistent QC procedure in the DS3505 was designed to
eliminate obvious errors in the data, minimize overflagging of data, and ensure delivery of
spatially variable, research-quality data. Detailed information regarding the QC process is

described in Smith et al. (2011).

This study used the subhourly and hourly T2m from the DS3505 for the period 1979-2018. 21

surface stations over the AP were chosen following the data selection criteria (section 2.3.1).

2.2.3. High-resolution reanalysis products

This study used two of the latest state-of-the-art reanalysis products that provide hourly or 6-

hourly analysis fields at relatively high spatial resolutions for the period 1979-2018.

ECMWF Reanalysis 5th Generation (ERAS) gives a numerical description of the recent climate,
produced by combining vast amounts of historical observations into global estimates using
advanced modelling and data assimilation systems (C3S, 2017). This climate reanalysis provides
hourly estimates of many atmospheric, land and oceanic climate variables covering the period
1979 to present. The data cover the Earth on a 30 km grid and resolve the atmosphere using 137
levels from the surface up to a height of 80 km. The monthly mean data of analyzed
meteorological fields: (1) hourly averaged temperature, humidity, wind speed, geopotential
height on pressure levels, and (2) hourly averaged surface pressure and PBLH, at a spatial
resolution of 0.5° longitude x0.5° latitude are used in this study. Hourly averaged T2m, surface

humidity, and surface fluxes at the same spatial resolution are provided by the ERAS5-Land (C3S,
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2019). The ERA5-Land is a replay of the land component of the ERAS climate reanalysis for the
period 1981-present. It is produced to meet the needs of users for a more accurate surface dataset
using the tiled ECMWF Scheme for Surface Exchanges over Land incorporating the land surface

hydrology (H-TESSEL) model. All available ERAS5 and ERAS5-land datasets are detailed at

https://cds.climate.copernicus.eu/#!/search?text=ER A5 &type=dataset.

The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is a
NASA atmospheric reanalysis that begins in 1980 with the enhanced use of satellite observations
(Gelaro et al., 2017). The MERRA-2 data are provided on the same horizontal grid of 0.625°
longitude x0.5° latitude at 42 pressure levels. The monthly mean data of analyzed meteorological
fields: (1) 6-hourly (00, 06, 12 and 18 UTC) instantaneous temperature, humidity, wind speed,
geopotential height on pressure levels, and (2) hourly averaged variables of T2m, surface
humidity, surface pressure, PBLH, and surface fluxes, are examined in this study. Note that the
hourly analyzed sounding data is not provided in the MERRA-2. A comprehensive list of

available variables is detailed at https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

2.3. Data processing and methods

The above four datasets have different temporal resolutions. The surface observations in the
DS3505 have subhourly and hourly data; the radiosonde observations in the RICH contain
subdaily and daily data; the two reanalysis products consist of monthly means of hourly averaged
or 6-hourly instantaneous data. Since the signal of DA is limited to the surface and lower

troposphere, the four datasets are processed into two types: (1) the hourly-averaged data near the
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surface (e.g., T2m, PBLH, and surface fluxes) and (2) the sounding data at 00 and 12 UTC (e.g.,
air temperature and humidity). The latter only considers the 10 “mandatory reporting” pressure
levels at and below 100 hPa shared by both radiosonde and reanalysis data: 1000, 925, 850, 700,
500, 400, 300, 250, 200, 150, and 100 hPa. Because the annual mean surface pressure over the
study region is 948 hPa in the MERRA-2 and 952 hPa in the ERAS, the sounding results on 1000

hPa are excluded.

This work mainly analyzes temperature trends considering the arid nature of the AP climate as
rainfall occurs only on a few days per year for most stations and humidity is persistently very
low (Almazroui, 2014). Also, observed temperatures are of relatively high-quality, have much
fewer missing data than other variables in the DS3505, and are homogeneity adjusted in the
RICH. Only the annual mean data are examined to maximize the data coverage as seasonal mean
data have a smaller sample size with a relatively higher ratio of missing data. Doing so will not
bias the results with seasonality as DA is a large-scale warming pattern across all seasons (Vizy
and Cook, 2017; Wei et al., 2017a). Because every variable analyzed here is an annual mean

quantity, the term “annual mean” will be often omitted for brevity for the remainder of this

paper.

2.3.1. Data processing for near surface and atmospheric air temperatures

The first task is to create annual mean anomalies for hourly T2m and for atmospheric

temperatures at 00 and 12 UTC for the study period following the five steps detailed next. The

first step is to create the daily hourly mean data. For each day, the subhourly and hourly data are
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aggregated into hourly averaged data. This step is applied only to the surface station observations
from the DS3505. The second step is to create the monthly mean data. For each month, the daily
data are averaged to create the monthly mean. For every month, at least 10 days of data are
required for the monthly averaging. Otherwise, missing data is assigned for that month. This step
is applied to both the surface and radiosonde observations. The third step is to create the monthly
mean anomalies by subtracting the long-term monthly mean (climatology) from the monthly
mean data. The fourth step is to create the annual mean anomalies. For every year, the monthly
mean anomalies are averaged to create the annual mean anomalies, and at least 6 months of data
are required for the annual averaging. The fifth step is to create the long-term annual mean
anomalies. At least 28 years (70%) of data for the study period 1979-2018 are required. The third
to fifth steps are applied to all four datasets. The use of thresholds of 10 days per month (e.g., Li
et al., 2020), 6 months per year (e.g., Wang and Wang, 2016), and 70% of the temporal coverage
(e.g., Gertler and O’Gorman, 2019) is a reasonable compromise between the data length,

completeness, and spatial coverage.

The second task is to identify radiosonde stations in the RICH and surface stations in the DS3505
from all available stations over the AP that having valid observations. There are 8 radiosonde
stations and 21 surface stations in the study domain meeting the above data selection criteria.
Most chosen stations are located within the airport premises, which are isolated from urban
centers or industrial areas and comply with the World Meteorological Organization (WMO)
standards (Almazroui et al., 2014). The name, WMO identifier number, and location for these

stations are listed in Tables 1-2 and illustrated in Fig. 1a.
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The third task is to estimate the linear trend of annual mean temperature anomaly time series
over the study period using least squares fitting. A two-tailed student’s 7 test is used to quantify
the probability of whether the trend is statistically significant from zero. Before the trend
analysis, a three-hour smoothing is applied to the surface hourly data for three reasons. First, the
sample size among individual hours in the DS3505 varies largely for some stations due to
irregular missing data and so the smoothing helps to reduce the sampling inhomogeneity.
Second, the study domain spans 15.5° in longitude (34.5°E-50°E) covering two time zones in
local solar time, and so the smoothing helps to reduce the small phase difference in the diurnal
cycle of data among different grids when spatial averaging is applied. Third, the reanalysis
hourly averaged data consist of a continuous sequence of data averaged over the indicated
interval and time stamped at 00:30 UTC, 01:30 UTC, ..., 23:30 UTC, while the reanalysis
instantaneous data contain snapshots at synoptic times (00 and 12 UTC). The 3-hourly averaging
helps to smooth out the timing difference among the data with different temporal resolutions.
However, this three-hourly smoothing has limited impact if the data is smooth in the diurnal
cycle. Trend analysis is performed at every station for the observations, every grid for the

reanalysis, or for the spatially aggregated data.

2.3.2. Data processing for other variables

The above data processing calculates the climatology and linear trends in the annual mean data

of () T2m at the hourly time scale and (ii) vertical temperature profiles at 00 and 12 UTC. The

monthly means of daily Tmax, Tmin and DTR were composited from the hourly T2m values and

their annual mean trends are estimated accordingly. Similarly, the monthly means of hourly
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averaged surface fluxes: sensible heat, latent heat, DLW, downward shortwave radiation (DSR),
net shortwave and longwave radiation, and upward shortwave and longwave radiation, are
processed and the linear trends of annual mean anomalies of these variables are also calculated
for the MERRA-2 and ERAS. For simplicity, the trends of T2m, DLR and DSR, three frequently
used variables, are referred to as T2muend (C/decade), DLRiend (W/m?/decade), and DSRirend

(W/m?*/decade) hereafter, respectively.

2.3.3. Creating climatological PBLH

Both ERAS and MERRA-2 provide the monthly mean of hourly averaged PBLH. The reanalysis
PBLH is derived based on the bulk Richardson number in the ERAS (C3S, 2017) following the
conclusions of Seidel et al. (2012) and the total eddy diffusion coefficient of heat with a
threshold value of 2 m?s! in the MERRA-2 (Salmun et al., 2018). The monthly means of hourly
averaged PBLH from the reanalysis are averaged to create the long-term climatology of PBLH,

referred to as PBLHclimate.

The reanalysis-derived PBLH is a model-based estimate with large uncertainties and different
PBLH estimation methods can produce substantially different values (section 3.5). To validate
and intercompare the reanalysis PBLH, the bulk Richardson number (Ri) method (Vogelezang
and Holtslag, 1996) is chosen to consistently diagnose the PBLH directly from the atmospheric
soundings among different datasets. The Ri methods have proven to work reasonably well for

both stable and convective boundary layers, and don’t strongly depend on the sounding vertical
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resolutions (e.g., Seidel et al., 2012; Zhang et al., 2013). The Ri is the ratio of turbulence

associated with buoyancy to that associated with mechanical shear (Seidel et al., 2012):

Rl(Z) _ (90/0vs)(8yz—0ys)(Zz—2s) (1)

T (uz—us)?+(vy—vs)?

where gy is the acceleration of gravity, z is height, and s denotes the surface at the 2 m level, 0y is

virtual potential temperature, u and v are the zonal and meridional wind speed.

This study followed exactly the steps detailed in Seidel et al. (2012) to diagnose the PBLH for
the radiosonde observations (IGRA2) and reanalysis datasets (ERAS and MERRA-2). Due to the
lack of observational winds at 2m, Ri is calculated by setting the surface winds to zero in the
reanalyses for consistency with the radiosonde observations. With these assumptions, the PBLH
is designed as the lowest level at which the bulk Ri reaches the critical value of 0.25. Scanning
the Ri profile upward from the surface (at 2 m), the first level with Ri >0.25 is identified, and
linear interpolation between that level and the next lowest level provides an estimate of z(Rio.25).
The PBLH estimated based on z(Rio»s) is referred to as PBLH Rigps. Note that all PBLH

estimates in this study are measured in meters above ground level (AGL).

2.3.4. Multiple linear regression analysis

For the reanalysis data, T2myends are found to be mostly related to DLRend and DSRyrend, which
represent the surface longwave and shortwave radiative forcing, and PBLHciimae, which

modulates the T2m response to the surface forcing. Next, these three variables are used as
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independent variables in a multiple linear regression to quantify their relative contributions to the

spatial and/or diurnal variation in T2mgend over the study domain:

1

PBLHlimate + ﬁZ * DLRtTend + ﬁ3 * DSRtrenda (2)

T2Mirena = ﬁo + Bl *

where 1 through B3 are the partial regression coefficients estimated based on least squares
fitting. Each coefficient represents the change in T2mgenq to a one-unit change in the respective
independent variable, holding all other variables constant. Its sign determines if the independent
variable affects T2muena positively or negatively. Statistical t and F tests can be performed to
assess the statistical significance of each regression coefficient and the overall regression model,
respectively. The adjusted R-squared (RZdgjusted) measures the percentage of variance in T2myrend
that can be explained by the three variables after adjusting the statistic based on the number of

independent variables in the regression model.

2.3.5. Obtaining large-scale features

Besides the large-scale radiative forcing, T2mwenq at individual stations is influenced by local
factors and thus demonstrates some level of inter-station differences (section 2.1). In order to
maximize large-scale warming patterns and minimize station-scale temperature variability,
spatial averaging is applied at two spatial scales: (1) station mean and (2) regional mean. The
former is simply an arithmetic mean of individual station data and is used for both the
observational and reanalysis data. For the reanalysis, the station level data are obtained from the

grid boxes where the chosen stations are located based on their geographic location (latitude and
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longitude). The regional mean is applied only to the reanalysis fields using area-weighted
averaging over the land grids within the rectangle study domain (16.5°N-32.5°N, 34.5°E-50°E)

depicted in Fig.1.

The regional mean cannot be done for the observations because of limited stations available in
the study domain and the non-uniform distribution of stations. As an alternative, an empirical
orthogonal function (EOF) analysis is performed on the observed surface and radiosonde data to
emulate their regional mean data that could be compared with the regional mean reanalysis data.
EOF decomposes the data in terms of orthogonal basis functions and finds both spatial patterns
(called EOF) and associated time series to extract the space—time modes of climate variability
(Bjornsson and Venegas, 1997). The first EOF explains the greatest fraction of the total variance,
the second for the largest part of the remaining variance, and so on. The EOF analysis helps to
identify the most important modes of data variability, which describe the degree of coherence of
spatial variation. A new temperature time series can be reconstructed based on the first EOF

pattern to quantify the dominant large-scale warming patterns shared among all stations.

3. Results and discussion

3.1. Hourly T2m trends in surface observations

Figure 2 shows the diurnal cycle of T2myend during 1979-2018, along with the diurnal cycle of

climatological T2m, for the 21 surface stations in the DS3505. For each station, the T2myrend 1S

positive at every hour and exhibits a strong diurnal pattern. Among the 504 (24 hours * 21
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stations) trends, 501 are statistically significant (p<0.05). The warming rate is generally in
opposite phase with the climatological T2m value but with a lag of few hours. The
largest/smallest warming is mostly seen around the transitions between day and night, with the
largest warming in the early morning and the smallest warming in the late afternoon to the early
evening. Among the 21 stations, the 24-hour averaged warming rate ranges from 0.39 to 0.93

°C/decade, and the diurnal range of the hourly warming rate is 0.20 to 0.77 °C/decade.

To focus on the large-scale warming features, Fig. 3a shows the diurnal cycle of station mean
hourly T2myend. The hourly warming rate ranges 0.45-0.73 °C/decade, with a diurnal range of
0.28 °C/decade and a 24-hour average of 0.59 °C/decade. As stated previously, the leading EOF
modes can capture the large-scale features shared among all individual stations. The
reconstructed T2mgyend from EOF1 (Fig. 3b), which can explain 79.6% of the total data variance
from the original 21 stations, resembles Fig. 3a but in a slightly smaller magnitude. The hourly
warming rate ranges 0.38-0.60 °C/decade, with a 24-hour average of 0.50 °C/decade. The
climatology of T2m reaches the minimum of 18.7 °C at 03 UTC and the maximum of 30.0 °C at
12 UTC, while the warming trend maximizes at 05 UTC in the early morning and minimizes at
15 UTC around the sunsets. Like individual stations (Fig. 2), the diurnal cycle of station mean
warming rate generally depends inversely on that of the climatological T2m value, but with a lag
of few hours. Previous studies (e.g., Seidel et al., 2005) showed that the diurnal cycle of
temperature peaks a few hours after local solar noon at the surface. Note that local solar time in

Saudi Arabia = UTC + 3 hours.
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Figure 4a shows interannual variations of station mean time series of T2m anomalies at 00 and
12 UTC from 1979 to 2018 averaged over the 21 surface stations in the DS3505. T2m at both
UTC times exhibits a persistent and statistically significant (p<0.001) upward trend and similar
interannual variability. The warming trend is 0.60 °C/decade at 00 UTC, and 0.57 °C/decade at
12 UTC, indicating stronger warming rates at nighttime than daytime. Note that the T2myend
difference between 00 and 12 UTC is not large because both UTC times do not correspond to the

times with the maximum/minimum warming rates.

There are no warming trends reported at hourly time scales over the AP in the literature. Despite
some seasonal and spatial variations in magnitude, warming has been consistently observed
across stations and seasons in Saudi Arabia (Rehman and Al-Hadhrami, 2012; Almazroui et al.,
2012; 2014; Alghamdi and Moore, 2014; Athar, 2014; Krishna, 2014; Tarawneh and
Chowdhury, 2018). Here several recent studies that reported daily mean, Tmax, and Tmin trends in
Saudi Arabia are used to partially validate the results in Figs 2-3. Krishna (2014) analyzed
annual mean T2m trends for the period 1984-2013 for 4 stations representing 4 different climatic
zones of Saudi Arabia, and estimated significant warming trends of 0.52-0.69, 0.31-0.62, and
0.48-0.71 °C/decade for the daily mean, Tmax, and Tmin. Alghamdi and Moore (2014) compared
warming trends over the period 1985-2010 at two weather stations (urban vs. rural) in Riyadh
city, Saudi Arabia. The rural station showed a warming trend of 0.69 and 0.83°C/decade for the
Tmax and Tmin, respectively. The corresponding values for the urban station are 0.45 and 0.68
°C/decade. Tarawneh and Chowdhury (2018) calculated T2m changes during the period 1984-
2013 for three stations representing the central, northern and southwest regions of Saudi Arabia,

and documented the overall warming rates of 0.58—1.25 °C/decade in summer and 0.43-0.66

23



523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

°C/decade in winter. To compare with these previous estimates, the annual mean Tmax, Tmin, and
DTR trends for the 21 surface stations in the DS3503 were estimated. Their station mean trends
(Table 3) are found to be 0.56, 0.72, and -0.16 °C/decade, respectively, and all are statistically
significant (p<0.05), indicating a stronger warming rate in Tmin than Tmax and thus a decline in
DTR. Evidently, the T2m trends shown in Figs. 2-3 and Table 3 are in the range of recent

observation-based estimates over the AP.

3.2. Temperature trends in radiosonde observations

Figure 5 shows the vertical profile of temperature trends from 850 to 100 hPa during the period
1979-2018 for the 8 radiosonde stations in the RICH. Note that the RICH data below 850 hPa are
not analyzed due to poor quality as done by others (e.g., Thorne et al., 2011). Despite some
differences, all stations show generally consistent results: cooling trends above 200 hPa and
warming trends downward in the troposphere. Among the 144 trends (9 pressure levels * 2 UTC
times * 8 stations), 77 are statistically significant at p <0.05, and so are all the trends in the
lowest three layers (500, 700, and 850 hPa). The largest warming trend is 0.65 °C/decade at 850
hPa and the biggest cooling rate is -0.34 °C/decade at 100 hPa. The trends at 00 and 12 UTC
differ slightly in the free atmosphere but stronger warming is mostly seen at 00 UTC than 12
UTC in the lower troposphere. In general, there are two warming maxima in the profile, a strong

one at 850 hPa and a very weaker one centered at 200-300 hPa.

Like the surface observations, the station mean results are examined to focus on the large-scale

warming features. Fig 6a shows the vertical trend profile of station mean temperature averaged
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over the 8 radiosonde stations in the RICH at 00 and 12 UTC for 100-850 hPa. The trend is
negative above 200 hPa but is positive and increases downward in the entire troposphere, with a
maximum of 0.43 °C/decade at 850 hPa. Among the 18 trends (9 pressure levels * 2 UTC times),
13 are statistically significant at p <0.05, including the lowest three layers (500, 700, and 850
hPa). The corresponding mean T2myend, for the 8 radiosonde stations, 0.68 °C/decade (00 UTC)
and 0.48 °C/decade (12 UTC) from the DS3505, is also plotted in Fig. 6a. Figure 6b shows the
reconstructed warming profile based on EOF analysis to capture the large-scale features shared
among all individual radiosonde stations. The first EOF explains 54.3% (00 UTC) and 49.8% (12
UTC) of the total data variance from the original 8 stations. The vertical profile in Fig. 6b is very
similar to that in Fig. 6a. Again, the station mean profiles exhibit two warming maxima (i.e., R-
shaped): a very weaker top-heavy one centered at 250 hPa and a strong bottom-heavy one
maximizing at the surface. The former represents the well-known warming profile peaking in the
tropical upper troposphere associated with the positive water vapor feedback in a warming
climate (Held and Soden, 2000; IPCC, 2007; 2013). The latter represents the signal of DA that
maximizes at the surface and decreases with height as also documented by multiple satellite

measurements (Wei et al., 2017a).

The warming trend is consistently larger at 00 UTC than 12 UTC in the lower troposphere and
this day-night warming difference increases with pressure and maximizes at the surface (Fig. 6).
This diurnal warming asymmetry is small between 500-700 hPa and become more evident for
the layers > 700 hPa. As the station mean PBLH at 12 UTC over the AP is ~2.1 km (Table 4), it
is reasonable to believe that the diurnal signal of DA is limited to the lower troposphere below

700 hPa. The free atmosphere in the tropics has relatively small diurnal variations because the
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atmosphere is dynamically well mixed (Sherwood et al., 2005; Byrne and O’Gorman, 2016;
2018). For example, Seidel and Free (2009) analyzed the amplitude and phase of the
climatological diurnal cycle of upper-air temperatures based on four-times-daily radiosonde data
from 53 stations and found that the amplitude of the annual-average diurnal cycle (half the DTR)
is largest (1 to 4 °C) at the surface, decreases with height quickly, and becomes very small (<0.4
°C) at 700 hPa and above. Brocard et al. (2013) analyzed the phase and amplitude of the diurnal
temperature cycle based on 53 years of radiosonde measurements from a station in Switzerland
and showed a strongly decreasing amplitude with height from about 3 °C at the surface to 0.2 °C
at 700 hPa and above. These results suggest that the diurnal warming asymmetry may exist

mainly in the lower troposphere (> 700 hPa) and at the surface.

There are no radiosonde-based diurnal warming trends reported previously in the AP. One key
question is whether the warming profiles in Figs 5-6 are robust? Historically there were some
disagreements on the tropospheric warming rates observed and modeled, particularly in the
tropics. Thorne et al. (2011) comprehensively assessed recent homogenized radiosonde and
satellite observing systems and model results and reported an overall agreement between
modeled and observed throughout the tropospheric column because of considerable progresses
made recently in treating uncertainties in both. Also, among the several radiosonde datasets used,
the RICH showed the best match with satellite observations. The large-scale warming profile in
the tropics (Fig. 8 in Thorne et al., 2011) highlighted the cooling in the stratosphere, the overall
warming through the entire troposphere, and the largest warming in the upper troposphere
centered at 200-300 hPa, consistent with the estimates in the middle and upper troposphere (Fig.

6) in this study. It differs largely in the lower troposphere from the bottom-heavy warming
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profile over the AP, because it is averaged from the entire tropical regions dominated by oceans
and the latter is from the moisture-limited deserts only. The bottom-heavy profile associated with
DA was also documented by comparing the warming profile between rainforests and deserts
using multiple satellite datasets (Wei et al. (2017a). Similar bottom-heavy warming profiles are

also reported over Armenia with a dry highland continental climate (Gevorgyan, 2014).

3.3. Temperature trends in ERAS and MERRA-2

It is essential that the reanalyses can capture some major T2m features observed before being
used for analysis. Figure 4a shows interannual variations of station mean T2m anomalies at 00
and 12 UTC for 1979-2018 averaged over the 21 surface stations from the DS3505. The
corresponding station mean T2m anomalies calculated from the ERAS5-land and MERRA-2 are
shown in Figs. 4b and 4c. Both reanalyses show warming trends that are statistically significant
(p<0.0001) at both UTC times. For the ERAS, the warming trend is 0.44 °C/decade at 00 UTC
and 0.41 °C/decade at 12 UTC. The corresponding values for the MERRA-2 are 0.39 °C/decade
and 0.36 °C/decade, respectively. Evidently, the reanalyese capture well the major observed
features of interannual variability and overall warming trends, but have a cooling bias, compared
to the observed warming rate of 0.60 °C/decade at 00 UTC and 0.57 °C/decade at 12 UTC. As
discussed previously, the surface warming rate difference (00 vs. 12 UTC) is not large because

both UTC times do not correspond to the times with the maximum/minimum warming rate in

T2m (Figs. 2-3).
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The spatial patterns of T2m trend at 00 and 12 UTC from the ERAS5-land (1981-2018) and
MERRA-2 (1980-2018) over the SDAP and surrounding areas are shown in Fig. 7 to illustrate
the large-scale warming patterns of DA and so the warming in the AP can be put in a proper
context. Significant warming (p<0.05) is widespread at both UTC times and the strongest trends
at ~0.5 °C/decade are seen over a broad contiguous swath of land covering the entire Sahara and
Arabian deserts. The warming is larger at 00 UTC than 12 UTC. These warming features are
similar in the ERAS5-land and MERRA-2. Again, the reanalyses have a systematic cooling bias in

the warming rates but capture well the essential spatial features of DA (Zhou et al., 2015; 2016).

Figure 8 shows the diurnal cycle of T2muend and climatological T2m from the ERAS5-land (1981-
2018) and MERRA-2 (1980-2018), at the station and regional mean levels over the AP. All
hourly trends are statistically significant at p<0.05. For the station mean T2m from the ERAS-
land (Fig. 8a), the hourly warming trend ranges 0.41-0.45 °C/decade, with a diurnal range of
0.04 °C/decade and a 24-hour average of 0.43 °C/decade. The climatology of T2m has a
minimum value of 17.4 °C at 02 UTC and a maximum value of 29.8 °C at 11 UTC, while the
warming trend maximizes at 21 UTC and minimizes at 14 UTC. Similar diurnal features are seen

for the regional mean T2m (Fig. 8c). For the station mean T2m from the MERRA-2 (Fig. 8b),
the warming trend ranges 0.36-0.39 °C/decade, with a diurnal range of 0.03 °C/decade and a 24-
hour average of 0.38 °C/decade; the climatology of T2m has a minimum value of 17.9 °C at 02
UTC and a maximum value of 31.4 °C at 11 UTC, while the warming trend maximizes at 00

UTC and minimizes at 08 UTC. The regional mean plot (Fig. 8d) shows similar features to the

station mean plot except the minimum warming trend at 09 UTC.
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Clearly, the reanalyses (Fig. 8) underestimate the observed warming rates (Fig. 3a), particularly
the maximum warming rate and the diurnal asymmetry of warming. The observed climatology of
T2m reaches the minimum of 18.7 °C at 03 UTC and the maximum of 30.0 °C at 12 UTC, while
the warming trend maximizes at 05 UTC and minimizes at 15 UTC. The reanalysis climatology
in T2m reproduces the observed diurnal range but differs by 1-2 hours in the minimum and
maximum values than observed. Like the observations (Fig. 3), the reanalysis warming rate is
generally in opposite phase with the climatological T2m values, indicating that the largest
warming at nighttime and the smallest warming at daytime. However, the reanalyses differ by
several hours in the maximum/minimum from the observations and from each other. These
discrepancies are likely due to the differences in spatial resolution (point measurements versus
coarse-resolution grid averaged data) and reanalysis deficiencies in modeling the surface

radiative forcing, surface energy partitioning, and PBL mixing (section 3.5).

To compare with recent T2m trend estimates available over the AP (e.g., Alghamdi and Moore,
2014; Krishna, 2014; Tarawneh and Chowdhury, 2018), the annual mean climatology and trends
of daily Tmax, Tmin, and DTR in the two reanalyses were calculated for the 21 surface stations in
the AP (Table 3). Interestingly, the station mean reanalysis climatology is comparable to the
observed values. The station mean trends for the Tmax, Tmin, and DTR are 0.42, 0.44, and -0.02
°C/decade, for the ERAS-land, and 0.37, 0.39, and -0.02 °C/decade for the MERRA-2,
respectively. The corresponding observed trends are 0.56, 0.72, and -0.16 °C/decade, for the
DS3505. Note that all the trends except these for the reanalysis DTR are statistically significant
(p<0.05). As discussed previously, the reanalyses capture the observed diurnal cycle of T2m

warming and larger warming trends in Tmin than Tmax, but largely underestimate the warming
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rates, particularly at nighttime, and the magnitude of the diurnal asymmetry of warming. Also,
the reanalysis DTR trend is substantially smaller than observed. These reanalysis biases are more

pronounced in the MERRA-2 than the ERAS.

Figure 9 shows the vertical profile of temperature trend at 00 and 12 UTC from the ERAS (1979-
2018) and MERRA-2 (1980-2018), along with the corresponding T2m trends at the surface. The
reanalyses show cooling in the stratosphere above 200 hPa and increasing warming through the
entire troposphere, and two evident warming maxima in the vertical profile, one in the UT
around 250 hPa, and the other near the surface. Overall, the reanalysis profile (Fig. 9) exhibits
broadly similar vertical warming patterns (i.e., R-shaped) as observed (Fig. 6) over the AP.
However, the observations (Fig. 6) show small warming differences between 00 and 12 UTC
above 700 hPa, and stronger warming rate at 00 UTC than 12 UTC downward, while the
reanalyses exhibit stronger warming at 12 UTC than 00 UTC between 500-850 hPa and a
transition to the opposite below 900 hPa to the surface. Also, compared to the observations, the
reanalysis generally has warming biases in the middle and upper troposphere and cooling biases

in the lowest tropospheric layers, which are particularly evident in the MERRA-2.

3.4. Possible drivers of the diurnal and vertical warming features

The warming rate of T2m depends on surface radiative forcing and various response and
feedback processes. At the global scale, T2m has generally increased more over drier regions and
faster at nighttime than daytime in a warming climate, and this spatial and diurnal variability has
been mostly explained by large-scale greenhouse effects and local to regional changes in cloud

cover, precipitation, soil moisture, and vegetation (IPCC 2007; 2013; Zhou et al. 2007; 2009,
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2010; Dirmeyer et al. 2013; Lindvall and Svensson, 2015; Davy and Esau, 2016; Wei et al.,
2017b). For example, drier regions with less soil moisture and vegetation are associated with
higher Bowen ratios and tend to experience larger warming rates due to less local evaporative
cooling. These factors affect T2m differently by altering the land surface energy and
hydrological balances over different regions, but their effects on surface warming are limited
over the extremely dry and mostly cloud-free deserts. Land use change such as urbanization in
the AP could affect the diurnal warming asymmetry. Urbanization generally creates urban heat
island in most cities, but urban areas often exhibit cooler temperatures at day (urban cool island)
and warmer temperatures at night than suburbs over deserts (Bounoua et al., 2009; Lazzarini et
al., 2013; 2015). However, observational studies (Almazroui et al., 2013; Alghamdi and Moore,
2014) showed that urbanization lessened the warming rate in urban areas compared to
surrounding rural areas but has not substantially contributed to the large-scale warming trends

observed throughout Saudi Arabia.

Large-scale warming and moistening in response to increasing GHGs have been widely used to
explain surface and atmospheric warming (IPCC 2007; 2013). Increased DLR in a warming
climate associated with this global-scale greenhouse effect has been proposed as the primary
surface radiative forcing for the DA over the SDAP (Zhou et al., 2015; 2016; Cook and Vizy
2015; Zhou 2016; Evan et al., 2017; Wei et al., 2017a). In addition, the AP is one of significant
dust sources in the world, and changes in DSR associated with dust aerosols can affect local
temperature by modifying the radiative forcing via direct effects and feedback of desert dust

(Islam and Almazroui, 2012). It is very likely that the radiative forcing associated with changes
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in DLR and DSR may be the main drivers for the overall surface warming and its spatial and

diurnal variations associated with the DA.

Besides the radiative forcing at the surface, the diurnal cycle of T2m warming is also tightly
connected to the extent of turbulent mixing in the PBL, which is described by the PBLH
(McNider et al., 2012; Dirmeyer et al. 2013; Davy and Esau 2014a, 2014b; 2016; Svensson and
Lindvall, 2015; Wei et al., 2017b). As the lowest part of the atmosphere, the PBL controls and in
turn, responds to the diurnal evolution of near-surface thermodynamic variables through
turbulent exchanges of momentum, heat and moisture in the coupled land-atmosphere interface
(Wei et al., 2017b). Recent studies highlighted that the PBLH modulates the T2m response to
surface forcing and is a strong predictor of the strength of T2myend (McNider et al. 2012;
Dirmeyer et al. 2013; Davy and Esau 2014a, 2014b; 2016; Wei et al., 2017b). Davy et al. (2017)
proposed a PBL-response mechanism that for a given forcing, the surface warming rate depends
inversely on the PBLH and so is stronger for a shallower PBLH. It is interpreted as the forcing
efficacy determined by the effective heat capacity of the atmosphere, which is defined by the
PBLH. This mechanism helps to explain why the nighttime has warmed more rapidly than the
daytime in observations across different regions. Its effect is expected to be most pronounced in
regions such as the SDAP where there is a strong diurnal cycle in the PBLH, with an extremely
shallow SBL forming at night. Hence it is possible that the diurnal and vertical warming features

associated with the DA may be also tied to the diurnal evolution of PBLH over the AP.

Fig. 10 shows the station and regional mean diurnal cycle of climatological PBLH and T2m over

the AP from the ERAS and MERRA-2, respectively. In general, the diurnal phase of PBLH
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follows closely that of T2m, but with a delay of ~1 hour, and the PBLH differs little between the
station and regional mean results for each reanalysis. The PBL is deepest in the late afternoon at
12 UTC after the T2m reaches the daily maximum at 11 UTC. It is shallowest in the early
morning at 03-04 UTC, 1-2 hours after the T2m reaches the daily minimum at 02 UTC.
Combined with the relationship between T2myend and climatological T2m shown in Figs 3 and 8,
Fig. 10 supports generally the PBL-response mechanism that the diurnal cycle of surface
warming rate depends inversely on the climatological PBLH and DA has a distinct diurnal
asymmetry — the stronger warming rate for a shallower PBLH. To check this further, Fig. 11
shows the histogram of T2myenq as a function of PBLHclimaee from the ERAS-land (1981-2018)
and MERRA-2 (1980-2018). The PBLH for all grids over the rectangle study domain are divided
evenly into 10 bins based on a PBLH interval of 350 m in the ERAS and 300 m in the MERRA2.
Evidently, T2myend decreases with increasing PBLHciimate, indicating an inverse relationship

between T2myend and PBLH limate.

However, the T2muend demonstrates some level of spatiotemporal heterogeneity and so do the
PBLHciimate and surface radiative forcing over the AP. It is difficult to establish the main drivers
of T2muenda simply based on the station and regional mean diurnal cycle shown above, without
considering the confounding impacts of radiative forcings and PBLH. Next, a multiple regression
model (equation (2)) is used to explore the empirical relationships between the diurnal and
spatial variance in T2muend and three major contributing variables, DLRtend, DSRerend, and
PBLHciimate in the reanalyses. Note that a similar analysis cannot be done for the observations

due to the lack of surface radiative forcing data. The magnitude of the standardized partial
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regression coefficients 1 through B3 tell the relative contribution of the three variables to

T2muend and the sign of these coefficients tells the direction of their impacts on T2myreng.

Table 4 lists the statistical results for the regression model by considering the diurnal and/or
spatial variations in T2muend for three cases: (i) the diurnal data over all the land grids within the
study domain (i.e., the diurnal + spatial variation), (ii) the diurnal mean data over all the land
grids within the study domain (i.e., the spatial variation), and (iii) the spatial mean diurnal data
averaged over all the land grids within the study domain (i.e., the diurnal variation). The
different cases are used to seprate the contributions of the diurnal and spatial variations in the
regrssion. Also, two types of PBLH are conisdered: (i) the PBLH provided by the reanalysis and
(i) the PBLH diagnosed from the reanalysis using the Ri method (i.e., PBLH Rlp2s). It is
expected that PBLHclimate matters most in the diurnal domain and DLR¢end and DSRgend dominate

in the spatial domain.

In the ERAS, when the reanalysis-derived PBLH is used, the regression coefficients for case (i)
are 0.22, 0.85, and 0.22, for 1/PBLHciimte, DLRtend, and DSRyend, respectively, and are all
statistically significant (p<0.0001), indicating that the radiative forcing of DLR has the dominant
impact (positive) on T2myend, followed by 1/PBLHciimate (positive) and DSRyena (positive). For
case (i1), the radiative forcing of DLR has the dominant impact (positive) on T2mgend, followed
by DSRyend (positive), while PBLHciimate has a negligible effect. For case (iii), 1/PBLHciimate has
the dominant impact (positive) on T2mend, followed by DLRgend (positive), while DSRyend 18
negligible. When the PBLH_Rlo2s is used, the regression results are nearly identical to these

based on the reanalysis-derived PBLH. In the MERRAZ2, the results for all three cases agree
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mostly with those in the ERAS, except that the impact of PBLHciime 1s weaker and the effect of
DSRuend 1s slightly stronger. The F test indicates that the overall regression model is statistically
significant (p<0.0001) for all cases in Table 4. The R%ugjusted Value shows that 56%-99% of the
data variance in T2muend can be explained by the regression model. These statistical results
suggest that the radiative forcing of DLR has the dominant effect on T2muenda in the spatial
domain and PBLHciimate could have the most control of the strength of the temperature response

to the forcing in the diurnal domain.

The multiple regression results are generally consistent in the sign, magnitude, and significance
of the three regression coefficients between the two reanalyses. However, the diurnal timing of
maximum and minimum warming in T2m differs between observed and reanalyzed. Also the
reanalysis vertical profile shows some warming/cooling biases, and the PBLHciimate has a less
important role in explaining T2mgend in the MERRA-2 than in the ERAS. It is reasonable to
assume that the free atmosphere (and the DLR forcing as well) in the tropics has relatively
smaller diurnal variations than the PBLH because it is dynamically well mixed (Sherwood et al.,
2005; Byrne and O’Gorman, 2016; 2018). Hence the reanalysis diurnal and vertical

discrepancies may be tied more to the systematic biases in PBLH as described next.

3.5. Uncertainties in PBLH

A key question is whether the reanalysis PBLH diurnal cycle is reliable? So far, there are only

two papers reported the diurnal cycle of PBLH over the AP in the literature. Abdel-Aal and

Shonoda (2014) analyzed hourly meteorological data for the period 2009-2012 at Qurayyat
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Province in Saudi Arabia and showed a strong seasonal variation in PBLH, ranging 1.4-1.9 km
for the deepest CBL and 100-300 m for the shallowest SBL. Li (2019) used a high-resolution
mesoscale model to simulate the diurnal and seasonal cycle of PBLH for three representative
sites in Saudi Arabia and found a large seasonal variation of 0.6-3.8 km for the deepest CBL and
50-250 m for the shallowest SBL. However, these two studies also documented large diurnal,
seasonal and spatial variations in the phase and magnitude of PBLH in the AP due to differences
in local conditions. Hence, the estimated PBLHs from these two papers are inadequate to
validate the reanalysis results in Fig. 10. One major feature in Fig. 10 is the systematic higher
PBLH values in the MERRA-2 than the ERAS at every hour in a range from a few hundred
meters to over 1 km. The station-mean PBLH ranges 131-2211 m (790-2564 m), with a daily
mean of 763 m (1554 m), in the ERAS (MERRA-2). In particular, the MERRA-2 nocturnal
PBLH is much larger than any estimates reported over the AP (Abdel-Aal and Shonoda, 2014;
Li, 2019) and previous studies have documented that the MERRA-2 PBLH is biased high (e.g.,

Salmun et al., 2018; Ding et al., 2019).

It is difficult to judge the reliability of the reanalysis PBLH data because different methods are
used to estimate the PBLH. Next, the PBLH is diagnosed using the same RI method for
comparison among all three datasets. Table 5 lists the PBLH_Rio.s for the 8 radiosonde stations.
In general, the reanalysis derived PBLH in the ERAS is broadly comparable with PBLH_Rio.s at
00 and 12 UTC estimated from the IGRA2 and ERAS profiles. This is expected as the RI method
was also used in the ERA5 PBLH estimates although some adjustments were applied to this
method (C3S, 2017). The reanalysis derived PBLH in the MERRA-2 are broadly comparable

with PBLH Rio2s at 12 UTC, but systematically higher than the PBLH Rigp2s at 00 UTC

36



820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

estimated from the IGRA2 and MERRA-2 profiles. For example, the station mean PBLH_Rio.s
at 12 UTC is 2090 m in IGRA2, 2238 m in ERAS and 2665 m in MERRA-2, indicating a mean
overestimate of 148 m in the ERAS and by 575 m in the MERRA-2. The station mean
PBLH_Rip2sat 00 UTC is 102 m in IGRA2, 23 m in ERAS and 20 m in MERRA-2, which are
generally consistent with the reanalysis-derived PBLH of 129 m in ERAS but much lower than
849 m in the MERRA-2. The reanalysis PBLH Rip2s at 00 UTC may be underestimated
comparing to the IGRA2-based estimates due to the coarse vertical resolution of data used and
the difficulties in estimating the nocturnal shallow SBL over the deserts (see more discussion
later). Nevertheless, the reanalysis derived PBLH in the MERRA2 is systematically
overestimated as also indicated by previous estimates over deserts (e.g., McGrath-Spangler et al.,

2015; Wei et al., 2019b).

To examine this further, Fig. 12 shows the scatter plots of climatological PBLH between
reanalysis-derived versus PBLH_Rio s from the ERAS (1979-2018) and MERRA-2 (1980-2018)
by including all land grids within the study domain. For the ERAS, the correlation coefficient
R=0.97 is statistically significant (p<0.0001) for a sample size of 21,144, indicating very good
performance in the PBLH provided by the ERAS. For the MERRA-2, the corresponding R=0.83
is also statistically significant (p<0.0001) for a sample size of 2,884, indicating a good
performance in the PBLH provided by the MERRA-2 as well. However, the MERRA-2 has
much lower R, mainly due to significant overestimates of the PBLH at 00 UTC and 18 UTC than

PBLH_Rio.s, indicating systematic positive biases in the MERRA-2 PBLH at nighttime.
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The reanalysis PBLH is a model-based estimate and so is prone to biases due to model
deficiencies. Modeling tests by McGrath-Spangler and Molod (2014) and McGrath-Spangler et
al. (2015) showed large differences in the PBLH estimated by the two methods used in the ERAS
and MERRA-2, with maximum discrepancies in the nocturnal depth by as much as 1 km over
northern Africa, which are similar to the results in Fig. 10. In numerical models, PBLH biases
could manifest themselves as biases in surface warming and lapse rates in the troposphere
(McGrath-Spangler et al., 2009; McGrath-Spangler and Denning, 2010; Svensson and Lindvall
2015; Wei et al., 2017b). Therefore, the major PBLH biases in the reanalysis could explain, at
least partially, some of the afore-mentioned surface and atmospheric temperature trend biases in

the magnitude and phase. Next, two examples are used to establish this possibility.

The first example is related to the reanalysis biases in the vertical warming profile (Fig. 9). The
reanalyses generally have warming biases in the middle and upper troposphere and cooling
biases in the lowest tropospheric layers, and a faster warming rate at daytime than nighttime at
500-900 hPa, particularly in the MERRA-2. It is well known that the Earth is mainly warmed
bottom up, as most solar radiation is absorbed at the surface and this energy is transmitted
through the rest of the atmosphere via PBL processes. Over the desert, sensible heat dominates
and drives the PBL growth and there are strong correlations between PBLH and surface
temperatures (Wei et al., 2017b). Differences in turbulent mixing result in different vertical
redistributions of heat, which controls the vertical temperature profile or the lapse rate in the
atmosphere. During the daytime, when the PBLH is higher, the vertical turbulent mixing is
stronger and deeper and so more surface sensible heat can be transferred into upper atmospheric

layers, leading to a cooler surface and warmer atmosphere. During the nighttime, when the
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PBLH is higher, the downgradient turbulent diffusion is stronger and so more sensible heat will
be transferred downward into lower atmospheric layers and the ground, leading to a warmer
surface and a cooler atmosphere. The net effect of higher PBLH is to create a smaller DTR, a
warmer (cooler) middle and upper troposphere (lower troposphere and land surface), and a
warmer (cooler) daytime at daytime (nighttime) because the daytime impacts dominates. This
appears to explain well the warming and cooling biases in the reanalysis, particularly the
MERRA-2 because of its biased high PBLH. McGrath-Spangler and Molod (2014) indicated that
the bulk Richardson number method better represented the PBLH over the Sahara than the other
methods. This is also supported by the PBLH Rlp2s estimated in Table 5, implying that the
PBLH is more realistic in the ERAS5 than in the MERRA-2 over the AP. As expected, the
warming rates near the surface and in the atmosphere in the ERAS are closer to those observed

than the MERRA-2.

The second example is related to the reanalysis warming biases in T2m at nighttime when the
reanalysis PBLH differs most. As shown previously, the reanalyses substantially underestimate
nighttime warming and thus the diurnal warming asymmetry. For example, the station mean
maximum warming rate is 0.73 °C/decade for the observations, 0.45 °C/decade for the ERAS,
and 0.39 °C/decade for the MERRA-2. The biased high PBLH in the MERRA-2 will, according
to the PBL-response mechanism, result in a biased low warming rate as shown in Fig. 8. Similar
findings of overestimated PBLH under stable stratification and consequentially underestimated
temperature trends are also reported in other observational and modeling studies (Seidel et al.,

2012; McNider et al., 2012; Davy and Esau, 2016; Davy et al., 2017).
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Accurate modeling of PBL processes is important in describing land-atmosphere interactions and
the diurnal and vertical temperatures. PBLH is one key measure of the strength of these
processes but lacks a unified definition and different PBLH estimation methods can produce
substantially different values, even for the same atmospheric profile (e.g., Seidel et al., 2010;
McGrath-Spangler and Molod, 2014). For example, McGrath-Spangler and Molod (2014)
compared seven PBLH estimation methods in the Goddard Earth Observing System (GEOS-5)
atmospheric general circulation model over land and identified the largest variations in the
nocturnal PBLH. McGrath-Spangler et al. (2015) further quantified the impacts of different
PBLH estimates within the GEOS-5 model on the turbulent length scale and the simulated
climate, and found that near-surface variables such as wind, temperature and humidity were
sensitive to the PBLH differences and such sensitivity was spatially and temporally
heterogeneous. Unfortunately, current numerical models have difficulties and large uncertainties
in representing key PBL processes, particularly in extreme and complex PBL conditions such as
the SDAP (Cuesta et al., 2009; Garcia-Carreras et al. 2013; Holtslag et al. 2013; Wei et al.,
2017b; Ao et al., 2017). For example, Garcia-Carreras et al. (2015) detailed a very complicated
picture of the vertical structure and diurnal evolution of the Saharan PBL using aircraft and
radiosonde measurements and a large-eddy simulation model; Gamo (1996) showed that the
thick CBL often has a weakly stable and nearly neutral stratification in the Sahara in the whole;
Flamant et al. (2007) found that the Saharan residual layer can be maintained for a whole day
sometimes. The subtle vertical structure of the Saharan PBL, particularly the small temperature
inversion and deep near-neutral residual layer, and its diurnal evolution, add further challenges
for PBL modeling (Cuesta et al., 2009; Couvreux et al. 2014). These complex PBL features are

identified in the Sahara, and possibly apply to the AP and other hot deserts as well. For example,
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Ao et al. (2017) analyzed the diurnal variation of PBLH from two intense observation periods of
experiments in summer of the Badain Jaran Desert and found that the deep CBL showed a
diurnal variation of three- to five-layer structure in clear days and five-layer structure often
around sunset or sunrise. Hence, the deficiencies and uncertainties in the reanalysis PBL
processes can result in temperature biases and the timing differences in maximum and minimum

warming.

The surface and atmospheric temperature changes in response to external forcings are a result of
complex interactions among the atmosphere, PBL and land surface. Considering the complexity
of turbulent mixing and the challenges in observing and modeling the PBL processes, it is very
difficult to attribute the reanalysis biases in the fully coupled land-atmosphere system. For
example, one major reanalysis bias discussed previously is the systematic underestimation of
DTR and nighttime temperature trend in T2m. Although the ERAS has more realistic PBLH than
the MERRA-2, this systematic bias is smaller but still there. This is a long-standing issue in
reanalysis and numerical models despite intensive attribution studies on this topic (e.g., Vose et
al., 2005; Zhou et al., 2007; 2009; 2010; IPCC, 2007; 2013; Christensen et al., 2008; Boberg and
Christensen, 2012; Lewis and Karoly, 2013; Wei et al., 2017a; 2017b; Du et al., 2018; Davy,
2018). In addition, other non-PBL processes may modulate the diurnal and vertical features of
DA as well. For example, the reanalysis data represents a mean over the model grid-box on the
order of hundreds of squared kilometers, while the station data come from point measurements
by instruments over standard grass plots. Also, the surface elevation differs largely between the
station sites and the model grids (Table 2). As the focus of the present study is the detection of

DA in the context of AP, further attribution, however, is beyond the scope of this study.
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4. Conclusions

This paper presents a comprehensive analysis of hourly surface observations, radiosonde
temperature measurements, and two latest state-of-the-art reanalysis products (ERAS5 and
MERRA-2) for the period 1979-2018 to understand the diurnal cycle and vertical structure of
DA over the AP. The diurnal cycle of T2m, PBLH, and surface fluxes and the atmospheric
warming profiles from near surface (2m) to 100 hPa are analyzed. Observational and reanalysis
data show consistently that DA is a bottom-heavy warming profile with a distinct diurnal
asymmetry, which maximizes near the surface and decreases quickly with height and is limited

to the lower troposphere and surface. The main findings are summarized as follows:

1. Observed and reanalysis data reveal consistent warming trends in T2m that are statistically
significant for all stations and during every hour of day. The station mean surface warming rates
in T2m are 0.59 °C/decade, with a strong diurnal range of 0.45-0.73 °C/decade for the
observations. The corresponding values are 0.43 °C/decade, with a weak diurnal range of 0.41-
0.45 °C/decade, for the ERAS, and 0.38 °C/decade, with a weaker diurnal range of 0.36-0.39
°C/decade for the MERRA-2. The reanalysis data capture well the overall warming and
interannual variability but underestimate the warming rates and the diurnal asymmetry of

warming.

2. Observed and reanalysis T2m data show the diurnal asymmetry of warming associated with

PBLH over the AP. In general, the diurnal cycle of surface warming rate depends, to some

42



957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

extent, inversely on the magnitude of climatological PBLH, which follows closely the diurnal
cycle of T2m, but differ by several hours in the diurnal phase. The surface observations show the
largest/smallest warming mostly around the transitions between day and night, while the

reanalysis data indicate the largest/smallest warming at nighttime/daytime.

3. Both surface and radiosonde observations indicate that DA is a bottom-heavy warming profile
limited to the lower troposphere and surface, and has a distinct diurnal asymmetry that
maximizes near the surface, decreases with height, and is mostly invisible above 700 hPa. The

reanalysis data capture this vertical warming profile but exhibit some biases.

4. The diurnal and vertical warming features could be, at least partially explained by a PBL-
response mechanism (Davy et al., 2017): for a given forcing, the surface warming rate depends
inversely on the PBLH and so is stronger for a shallower PBLH. The diurnal phase and the
magnitude of PBLH over the AP generally determines the diurnal warming asymmetry and its

vertical structure.

5. The major PBLH biases in the reanalysis could cause, at least partially, some of the surface
and atmospheric temperature trend biases in the magnitude and phase. In particular, the PBLH
estimated from the MERRA-2 is systematically higher than that from the ERAS, which could
help to explain some the warming biases in the middle and upper troposphere and cooling biases

in the lowest tropospheric layers.
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These results suggest that besides the surface radiative forcing, the PBL turbulent mixing may
play an important role in modulating the diurnal and vertical structure of DA over the AP. The
reported warming trends and results of PBLH are in good agreement with theory and previous
findings in the literature. While other factors may have also asymmetrically affect the diurnal
temperature trends, this study concentrates on the PBLH as the PBL-response mechanism is
expected to maximize over the SDAP with the world’s deepest daytime PBL and shallowest
nocturnal PBL (Davy et al., 2017). The role of PBL is to amplify the diurnal surface warming

stronger for a shallower PBLH over the deserts through heat redistributing via turbulent mixing.

To the best of my knowledge, this work is the very first comprehensive study to examine the
diurnal and vertical variations of warming trends over the AP and establish their relationships
with the PBLH. It highlights the importance and need for accurate descriptions of the PBL
processes with respect to the turbulent mixing in order to better characterize the temperature
diurnal cycle changes in reanalysis products and numerical models (Wei et al., 2017b). However,
the interactive mechanisms between near-surface temperatures and PBL processes are very
complex and it has been very challenging to establish cause and effect for a fully coupled land-
atmosphere system. The present work links the diurnal cycle warming rate to PBLH in a
statistical framework but there are large uncertainties in observational and reanalysis PBLH
estimates. Further attribution studies are needed to confirm its findings by conducting carefully

defined modeling sensitivity experiments.

The reported findings have important implications as DA may accelerate over the arid and semi-

arid regions in the context of global warming and has the strongest impacts on the SDAP (Zhou,
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2016). Climate change is an important factor for sustainable water resource management and is
an essential component for strategic water resource management in arid and semi-arid countries
(Tarawneh and Chowdhury, 2018). The long, hot and dry weather, along with extreme
temperatures, impose a significant strain on water resources as warming enhances evaporation
from open reservoirs and domestic water demand. The climate of the AP is extremely arid, with
high temperature variability, low annual rainfall, no natural perennial flow and limited
groundwater reserves (Attada et al., 2017). As a result, the AP is extremely sensitive to climate
fluctuations and is also highly vulnerable to climate change impacts (Almazroui et al., 2013;
Attada et al., 2017). Understanding and predicting the AP climate can be beneficial for practical
purposes in many different sectors, including water resources, agriculture, power generation,

biodiversity, tourism, ecosystems, migration and food security (Almazroui et al., 2012; 2014).
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1246  Table 1. Surface weather stations used in this study from the DS3505 dataset

Station Name WMO code | Latitude | Longitude | Elevation
CN) (E) (m)
Ben Gurion Intl Airport, Israel 401800 32.011 34.887 41
Kuwait Intl Airport, Kuwait 405820 29.227 47.969 63
ARAR, Saudi Arabia 403570 30.907 41.138 553
Al Jouf, Saudi Arabia 403610 29.785 40.100 689
Hail, Saudi Arabia 403940 27.438 41.686 1015
Gassim, Saudi Arabia 404050 26.300 43.767 648
Al Ahsa, Saudi Arabia 404200 25.285 49.485 179
King Khaled Intl Airport, Saudi Arabia 404370 24.958 46.699 625
King Abdulaziz Intl Airport, Saudi Arabia 410240 21.680 39.157 15
Al Baha, Saudi Arabia 410550 20.296 41.634 1672
Bisha, Saudi Arabia 410840 19.984 42.621 1185
ABHA, Saudi Arabia 411120 18.240 42.657 2090
King Khaled Ab, Saudi Arabia 411140 18.297 42.804 2066
King Abdullah Bin Abdulaziz, Saudi Arabia 411400 16.901 42.586 6
Turaif, Saudi Arabia 403560 31.693 38.731 854
Qaisumah, Saudi Arabia 403730 28.335 46.125 358
Tabuk, Saudi Arabia 403750 28.365 36.619 778
Prince Mohammad Bin Abdulaziz, Saudi Arabia | 404300 24.553 39.705 656
Riyadh Ab, Saudi Arabia 404380 24.71 46.725 635
Taif, Saudi Arabia 410360 21.483 40.544 1478
Nejran, Saudi Arabia 411280 17.611 44.419 1214
1247
1248  Table 2. Radiosonde stations used in this study from the RICH dataset
Station Name WMO code Latitude | Longitude | Elevation*
CN) CE) (m)
Bet Dagan, Israel ISM00040179 32.000 34.817 35 (414, 281)
Kuwait Intl Airport, Kuwait KUMO00040582 | 29.243 47.971 56 (397, 174)
Al-Qaisumah, Saudi Arabia SAMO00040373 | 28.317 46.133 358 (753, 339)
Tabuk, Saudi Arabia SAMO00040375 | 28.383 36.600 778 (584, 875)
Hail, Saudi Arabia SAMO00040394 | 27.433 41.683 1015 (943, 969)
Al-Madinah, Saudi Arabia SAM00040430 | 24.550 39.700 654 (936, 846)
King Khaled Intl Airport, Saudi Arabia | SAM00040437 | 24.933 46.717 614 (693, 637)
Jeddah, Saudi Arabia SAMO00041024 | 21.700 39.183 15 (905, 593)
1249 Note: *Elevation in parenthsis refers to the corresponding grid-averaged elevation in the ERAS (first column)
1250 and MERRA?2 (second column) reanalysis.
1251
1252
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Table 3. Station means of the climatology (°C) and trends (°C/decade) of daily maximum T2m,
minimum T2m, and DTR averaged over the 21 surface stations (Fig. 1a) from the DS3505
(1979-2018), ERAS5-land (1981-2018), and MERRA-2 (1980-2018)

dataset T max Tmin DTR
climatology trend climatology trend climatology trend
DS3505 30.1 0.56 18.6 0.72 11.5 -0.16
ERAS5-land 30.1 0.42 17.0 0.44 13.0 -0.02
MERRA-2 31.6 0.37 17.5 0.39 14.1 -0.02

Note: Tmax — maximum T2m, Tmin — minimum T2m, DTR — diurnal temperature rang of T2m. Trends
(°C/decade) in bold and italics are statistically signifcant at the 5% level.

Table 4. Statistical results for the multiple linear regression in equation (2)

Scale PBLH sztrend = BO+ Bl*l/PBLHclim + BZ * DLRtrend + B3 * DSRtrend

type NONY [ B [ B | Bs | Rlagusea | F_pval
ERAS

spatial + PBLH 21144 (3299) 0.22 0.85 | 0.22 0.58 <0.01
diurnal | PBLH Rlgos | 21144 (3863) 0.22 0.81 | 0.21 0.58 <0.01
PBLH 881 0.02 1.15 | 0.52 0.73 <0.01

spatial | PBLH Rlo.s 881 0.11 1.10 | 0.48 0.74 <0.01
PBLH 24 2.53 1.70 | 0.06 0.95 <0.01

diurnal | PBLH Rlg.2s 24 2.05 1.24 | 0.03 0.89 <0.01

MERRA-2

spatial + PBLH 17304 (2690) 0.00 0.74 | 0.26 0.56 <0.01
diurnal | PBLH Rlg.2s 2884 0.05 0.72 | 0.29 0.60 <0.01
PBLH 721 0.06 0.72 | 0.37 0.66 <0.01

spatial | PBLH Rlo.s 721 -0.02 0.75 | 0.37 0.68 <0.01
PBLH 24 0.75 0.06 | 0.30 0.99 <0.01

diurnal PBLH_RI(),25 4 - - - - -

Note: PBLH and PBLH Rl ,sare defined in Table 5. N is the sample size of the regression for
the ERA5-land and MERRA-2 data over the study domain, consisting of spatial (grid box) and
diurnal (hourly or 6-hourly) temporal scales. N* is the effetcive degree of freedom after
considering the spatial correlation between grid boxes. F_pval denotes the statistical significance
(p value) of the F-test. The partial regression coefficents, 1, B2, and (3, are standardized and so
can be compared to determine the relative contribution to T2myend. The values in bold and italics
are statistically signifcant at p=0.01 and p=0.05, respecively.
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1268  Table 5. PBLH (m) for the 8 radiosonde stations from the IRGA2, ERA5 and MERRA-2
1269  datasets

WMO code IGRA2 ERAS MERRA-2
PBLH Rlp2s PBLH PBLH Rlp2s PBLH PBLH Rlp»s
00 UTC
ISM00040179 84.3 106.7 20.1 432.5 21.5
KUMO00040582 127.4 167.4 36.6 844.5 31.8
SAMO00040373 100.6 134.5 21.7 1142.1 22.2
SAMO00040375 87.5 127.5 16.1 563.5 9.5
SAM00040394 88.6 137.9 22.3 1252.3 12.1
SAM00040430 122.7 110.0 17.6 889.1 18.5
SAM00040437 104.8 130.0 20.1 1330.7 19.6
SAM00041024 101.7 116.7 26.5 335.6 22.4
Station mean 102.2 128.8 22.6 848.8 19.7
12 UTC
ISM00040179 1199.3 1137.7 1075.8 1575.7 1570.7
KUMO00040582 1784.4 2033.2 1885.0 2263.4 2147.5
SAM00040373 2275.5 2096.3 2226.9 2393.7 2380.4
SAMO00040375 2131.4 2115.7 2395.7 2642.9 2870.0
SAM00040394 2793.8 2626.2 2809.3 2978.7 3022.2
SAM00040430 2774.0 28474 3136.5 3223.7 3600.8
SAM00040437 2520.9 2506.1 2720.2 2772.4 2851.0
SAM00041024 1240.3 1313.6 1650.5 2524.9 2877.5
Station mean 2089.9 2084.5 2237.5 2546.9 2665.0
1270 Note: PBLH referes to the PBLH provided by the reanalysis. PBLH Rl s referes to the PBLH diagnosed
1271 directly from the atmopsheric profiles using the bulk Richardson (Ri) number method (Eq. (1)), with the
1272 threshold value of Z(Ri=0.25).
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Fig. 1. (a) Surface (in red) and radiosonde (in green) stations used over the Arabian Peninsula
(AP). The AMO identifier # for every radiosonde (11-digtial) and surface (6-digital) station is
shown. The geographic location and elevation for each station are listed in Tables 1 and 2. The
rectangle box (16.5°N-32.5°N, 34.5°E-50.0°E) depicts the land area over which the regional
mean is averaged for the reanalysis data. (b) The corresponding true-color satellite image on
August 6, 2020 covering the same area as (a) obtained from the NASA EOSDIS worldview
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website: https://worldview.earthdata.nasa.gov/.
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Fig. 2. The diurnal cycle of linear trend (°C/decade) of T2m (left y-axis, in red) for the period
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the 21 surface stations labeled in Fig. 1a. The T2m trends are statistically significant at p <0.05
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1369
1370

1371  Fig 5. The vertical profile of linear trend (°C/decade) of atmospheric air temperature at 00 (in
1372 red) and 12 UTC (in blue) during the period 1979-2018 for the 8 radiosonde stations labeled in
1373 Fig. la in the RICH dataset. The trends are statistically significant at p <0.05 (in circle).
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Fig 6. Same as Fig. 5 but for the station mean: (a) original temperature, and (b) reconstructed
temperature using the first EOF, which explains 54.3% (00 UTC) and 49.8% (12 UTC) of the
data variance. The corresponding station mean T2mgend at 00 and 12 UTC from the DS3505 are
also shown at the bottom of the plot.
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Fig. 8. The diurnal cycle of linear trend (°C/decade) of T2m (left y-axis), along with the diurnal
cycle of climatological T2m (°C, right y-axis, in black), from the ERA5-land (1981-2018) and
MERRA-2 (1980-2018): (a, b) station mean averaged over the 21 surface stations labeled in Fig.
la, and (c, d) regional mean averaged over the rectangle domain depicted in Fig.1a. The T2m
trends are statistically significant at p <0.05 (in red). The daily mean, along with the maximum
and minimum (in parentheses), of the 24-hourly values for the T2m trend (left) and the T2m
climatology (right) are listed in each panel. The vertical line in each panel indicates the station or
regional mean local solar noon.
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Fig. 9. The vertical profile of linear trend (°C /decade) of atmospheric air temperature and
surface T2m at 00 (in red) and 12 UTC (in blue) from the ERAS (1979-2018) and MERRA-2
(1980-2018): (a, b) station mean for the 8 radiosonde stations labeled in Fig. la, and (c, d)
regional mean for the rectangle domain depicted in Fig.1a. The trends are statistically significant
at p <0.05 (in circle). The corresponding station mean T2m trends (°C/decade) are also plotted.
For comparison purpose, the station mean profiles observed in Fig. 6a are also shown.
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Fig. 10. The diurnal cycle of climatological PBLH (m, left y-axis, in red) and T2m (°C, right y-
axis, in black) from the ERA5-land (1981-2018) and MERRA-2 (1980-2018): (a, b) station mean
for the 21 surface stations labeled in Fig. 1a, and (c, d) regional mean for the rectangle domain
depicted in Fig.1a. The daily mean, along with the maximum and minimum (in parentheses), of
the 24-hourly values for the PBLH (left) and the T2m climatology (right) are listed in each panel.
The vertical line in each panel indicates the station or regional mean local solar noon.
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Fig. 11. The histogram of hourly T2m trend (°C/decade, y-axis) plus one standard deviation
(STD) as a function of climatological hourly PBLH (m, x-axis) from (a) ERAS-land (1981-2018)
and (b) MERRA-2 (1980-2018). All the PBLHs over the land grids with the rectangle domain
depicted in Fig. 1a are divided evenly into 10 bins based on a PBLH interval of 350 m in ERAS
and 300 m in MERRA2.
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Fig. 12. Scatter plots of climatological hourly PBLH (m) derived by the reanalysis (x-axis) and
diagnosed using the Richard number method, referred to as PBLH_Rio2s (m, y-axis), from the
ERAS (1979-2018) and MERRA-2 (1980-2018) over all land grids within the rectangle domain
depicted in Fig.la. The correlation coefficient R, its statistical significance (p value) and sample
size (n) are listed on the top in each panel.
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