
1. Introduction
Despite decades of research and changes to management, degrading water quality is still one of the most ur-
gent issues for human society in the 21st century (Sutton et al., 2011; UNICEF, 2019; Vörösmarty et al., 2010). 
Water pollution causes ∼2 million deaths each year, and excess nutrients cause eutrophication in >50% of 
global freshwater and estuarine water bodies (Conley et al., 2009; Le Moal et al., 2018; Matthews, 2014). Hu-
man activities, such as agriculture, urbanization, and disturbance of natural ecosystems can deliver excess 
nutrients to aquatic ecosystems, triggering eutrophication (Bol et al., 2018; Jenny et al., 2016; Van Meter 
et al., 2017; Withers et al., 2014b). The harmful algae blooms and dead zones associated with eutrophica-
tion degrade human health, water supply, and recreational uses (Conley et al., 2009; Ward et al., 2018). 
These anthropogenic pressures on aquatic ecosystems are predicted to intensify through the middle of the 
century because of population growth, increasing food demand (particularly meat and dairy), and climate 
change (Frei et al., 2020; Ibarrola-Rivas et al., 2017; Seitzinger et al., 2010; Sinha et al., 2019). In response, 
national and international agencies worldwide have made substantial investments to establish water qual-
ity monitoring networks to identify pollution sources, and implement management measures that reduce 
pollutant losses from land to water at field to catchment scales (Hering et al., 2010; Skeffington et al., 2015; 
Wurtsbaugh et al., 2019).

Water flow and chemistry are highly variable in space and time, creating a substantial challenge to rep-
resentative monitoring and robust prediction of water quality in complex freshwater landscapes (Alilou 
et al., 2019; Guo et al., 2018; Lintern et al., 2018; Mentzafou et al., 2019). This inability to reliably measure 
or infer water quality has contributed to mixed results of water quality interventions (Abbott et al., 2018a; 
Jenny et al., 2016; Kleinman et al., 2019). Current monitoring approaches face two competing challenges: 
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the headwater conundrum and the sampling frequency conundrum (Abbott et al., 2018a; Cassidy & Jor-
dan, 2011; Johnes, 2007; Lloyd et al., 2015; Skeffington et al., 2015).

The headwater conundrum refers to the fact that current monitoring networks are mostly implemented 
in medium-to-large rivers, while most of the nutrient fluxes enter the watercourses from headwater catch-
ments (<50 km2) (Helton et al., 2018; Skeffington et al., 2015). Unlike the catchments larger than 100 km2, 
where riverine nutrient fluxes are strongly associated with the percentage of agricultural land use (Jordan 
et al., 1997; Strayer et al., 2003), nutrient fluxes in smaller catchments vary widely despite similar land use 
(Abbott et al., 2018a; Bol et al., 2018; Casquin et al., 2020; Lefebvre et al., 2007; Schilling et al., 2013). This 
relationship breakdown between nutrient flux and catchment characteristics emphasizes the need to better 
understand the nutrient sources, sinks, and pathways in headwater catchments, in which >90% of global 
stream length occurs (Bishop et al., 2008; Downing, 2012). At the same time, the sheer number of headwa-
ter streams makes continuous monitoring impractical, limiting the identification of nutrient sources at the 
scale where preventive actions could be most effective and tractable (Abbott et al., 2018a; Dupas et al., 2018; 
Thomas et al., 2016).

The sampling frequency conundrum results from temporal variability in riverine water chemistry on event, 
seasonal, and interannual time scales (Abbott et al., 2018a; Zarnetske et al., 2018). A significant share of 
the annual flux can be transported during just a few storm events, especially for phosphorus (P) and carbon 
(C; Cassidy & Jordan, 2011; Johnes, 2007; Kirchner & Neal, 2013; Lloyd et al., 2015; Shogren et al., 2020). 
Though there are fewer observations from small streams due to the headwater conundrum, variabili-
ty in water chemistry may be even greater in “flashy” headwaters compared to mesoscale rivers (Abbott 
et al., 2018a). To reveal nutrient dynamics and identify their potential sources within catchments, current 
monitoring networks conduct temporally intensive or sometimes nearly continuous sampling at selected 
locations (Bieroza et al., 2018; Bowes et al., 2015; Fovet et al., 2018; Rode et al., 2016; Yang et al., 2018). 
However, high-frequency sensors are often too expensive to be widely deployed, especially in developing 
countries where degraded water quality is most directly impacting public health (Crocker & Bartram, 2014; 
Landrigan et al., 2017).

This vision is nevertheless changing. Informed by landscape ecology and catchment hydrology, recent stud-
ies (Abbott et al., 2018a; Dupas et al., 2019; Frei et al., 2020; Shogren et al., 2019; Weller & Jordan, 2020) 
quantified the spatiotemporal variability of water chemistry in headwater stream networks by infrequent 
synoptic sampling and found that the spatial patterns of the stream water chemistry were unexpectedly 
persistent on seasonal to decadal time scales (Abbott et al., 2018a; Dupas et al., 2019; Shogren et al., 2019). 
If this spatial persistence (SP) of water chemistry patterns through time is widespread, it could resolve the 
monitoring conundrums described above by allowing reliable characterization of nutrient concentrations 
or even fluxes with infrequent synoptic sampling. SP results from the interaction between the spatial var-
iability of water chemistry among sites and the degree and synchronicity of temporal variations of water 
chemistry at each site. On the French national scale, e.g., a single sampling was found to capture 88% of 
the spatial variability of NO3

− across ecoregions with different climate and land-use conditions (Dupas 
et al., 2019).

While SP of water chemistry could provide a shortcut to effective water-quality diagnoses, the current meth-
od to calculate SP requires more data than is available in many areas of the world (Abbott et al., 2018a; 
Bogena et al., 2018). SP is typically calculated from Spearman's rank correlations between concentrations of 
individual sampling dates and long-term concentration metrics such as the flow-weighted mean concentra-
tion, flux, or various quantiles (Abbott et al., 2018a; Dupas et al., 2019). For catchments with only infrequent 
observations, the calculations of these long-term metrics introduce substantial uncertainty. In this context, 
we developed a new method to calculate the SP in water chemistry, by pair-wise Spearman rank correlations 
among sampling dates. If robust, this approach could lead to more efficient and widely applicable monitor-
ing approaches for quantifying and regulating water quality across spatial scales. We demonstrated this new 
method in an intensively cultivated mesoscale catchment (Yvel catchment, 375 km2) located in Brittany 
(western France), where we conducted repeated synoptic sampling of headwater subcatchments across flow 
conditions and seasons, with the main objectives to assess the seasonal variations in SP of water chemistry 
and to verify its controlling factors.
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2. Materials and Methods
2.1. Site Description and Hydrochemical Monitoring

The Yvel catchment (375 km2) is drained by a fifth order river that dis-
charges into the “Lac au Duc,” a 3  million  m3 recreational and drink-
ing water reservoir suffering from cyanobacteria blooms since the 1970s 
(ODEM, 2012). The mean discharge at the outlet of the catchment ranges 
from 0.52  L  s−1  km−2 in August to 18.67  L  s−1  km−2 in February. The 
climate is temperate oceanic with the average temperature ranging from 
7.1 °C in November and March to 17.1 °C in July and September, and a 
mean annual precipitation averaging 777  mm of which ∼50% falls be-
tween November and March (1998–2017). The catchment has shallow 
soils, with 70% of the catchment having soils <70-cm deep and the re-
maining 30% <1 m. Soils are Luvisols in the north and brown soils in the 
rest of the catchment. The land use consists of 54% arable fields (maize 
and winter cereals), 21% grassland (mostly leys in rotation), 18% forest, 
and 6% urban area. A more detailed catchment description can be found 
in Casquin et al. (2020).

We conducted repeated synoptic sampling from March 2018 to July 2019 
approximately every 2 weeks (31 sampling dates in total) in 22 selected 
headwater subcatchments within the Yvel catchment (Figure 1). The 31 
sampling dates covered all 10 deciles of long-term discharge (1998–2017), 
i.e., they captured the full range of water flow in the Yvel catchment. 
The 22 subcatchments were selected based on stream order (1–3), size 
(0.8–14.2 km2), accessibility, and representativeness of soil type/land use/
topography in the whole Yvel catchment. These 22 subcatchments repre-
sented 33.5% of the whole catchment area (see Table S1 for the detailed 
land use, soil properties, and topographic information).

Water samples were collected with a PVC cup equipped with a long alu-
minum handle during high flows and with 50 ml syringes when the water 
level was low. We were careful to avoid artificial resuspension of river 
sediments during sampling. We selected sampling locations that were 
immediately upstream of roads and bridges and allowed access to the 
sites. We measured 16 common and ecologically relevant water quality 
parameters for all water samples, including different forms of P (solu-
ble reactive phosphorus [SRP], total dissolved phosphorus [TDP], total 
phosphorus [TP], and particulate phosphorus [PP]), C species (dissolved 
organic carbon [DOC], dissolved inorganic carbon [DIC]), anions (NO3

−, 
NO2

−, F−, Br−, Cl−, SO4
2−), physicochemical parameters measured with 

in-situ sensors (pH, dissolved O2, conductivity), and specific ultraviolet 
absorbance at 254 nm (SUVA254). All water samples were filtered on site after sampling, using cellulose ace-
tate filters of 0.45 μm pore size for SRP and TDP, and 0.20 μm pore size for C, anions, and SUVA254 analyses, 
respectively. All filters were rinsed with 20 ml deionized water in the laboratory prior to use. An unfiltered 
subsample was collected for the analysis of TP. All samples were transported to the laboratory in a cooler 
and then refrigerated at 4 °C until analysis within 1 week.

SRP was determined colorimetrically by direct reaction with ammonium molybdate (Murphy & Ri-
ley, 1962). The same method was used for TDP and TP but after digestion in acidic potassium persulfate. 
The precision of SRP, TDP, and TP measurements was ±4, ±13, ±13 μg L−1, respectively. PP was calculated 
as TP minus TDP. DOC and DIC were analyzed with a total organic C analyzer (Shimadzu TOC-5050A; 
precision ±5%). SUVA254 values were calculated by dividing ultraviolet absorbance at 254 nm with the DOC 
concentration. Ultraviolet absorbance was measured with a Lambda 25 (PerkinElmer) spectrophotometer 
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Figure 1. Hydrographic network and sampling points in the Yvel 
catchment. Hatched areas show the monitored headwater subcatchments. 
Discharge was measured at the white dot, near the Yvel catchment outlet.
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using deionized water as a blank. Anions were quantified by ion chro-
matography (DionexTMDX 100; precision ±2.5%). Dissolved O2, pH, and 
conductivity were measured in situ by portable multiparameter probes 
(Multi 3430 SET F). Concentrations for most parameters were above their 
quantification limits during most sampling dates (Figure S1), except for 
NO2

−, whose concentrations were below the detection limit in ∼25% of 
all nitrite samples. We assigned the value of half the limit of nitrite quan-
tification (0.0076 mg L−1 in N) for those samples.

2.2. Estimation of Water Quality Metrics

The SP metric indicates the persistence of the water chemistry pattern 
(i.e., relative spatial differences) through time. It is commonly calcu-
lated with the Spearman's rank correlations between concentrations of 
individual sampling dates and long-term concentration metrics, which 
can introduce uncertainty in the estimation (Abbott et al., 2018a; Cassi-
dy & Jordan, 2011; Dupas et al., 2019). To reduce the dependence on un-
certain and often unavailable estimates of long-term metrics, we quanti-
fied SP by comparing the concentration rank of an individual sampling 
date with the concentration ranks of the other 30 sampling dates using 
Spearman's rank correlation and then used the median value of the 30 
correlation coefficients as the SP of this individual sampling date, as 
follows:

  pairsSP median ,t t tircorr C C (1)

where the SPpairs at an individual sampling date (t) is the median value of the Spearman's rank correlation 
coefficient (rcorr) between the concentrations of subcatchments at this sampling date (Ct) and the concen-
trations of the other 30 sampling dates ( t tiC ).

An SP value of 1 indicates that the sampling date perfectly predicts the relative water chemistry across all 
sites for at least half of the whole monitoring period. A detailed time series of SP provides useful informa-
tion about when synoptic sampling better represents the annual or long-term water quality at the catchment 
scale.

At a mathematical level, three nonexclusive factors contribute to the SP of water chemistry: the spatial and 
temporal variance of water chemistry and the temporal synchrony of water chemistry among subcatch-
ments (Figure 2). We quantified the spatial variability of water chemistry as the coefficient of variation (CV) 
of water chemistry at each date (hereafter referred to as Spatial CV)




Spatial CV t

t
 (2)

where t is the sampling date, σ is the standard deviation, and μ is the mean of concentrations at this date 
for all the sites.

We quantified the temporal variability of water chemistry as the CV of water chemistry at each site (hereaf-
ter referred to as Temporal CV)




Temporal CV s

s
 (3)

where s is the sampling site, σ is the standard deviation, and μ is the mean of concentrations at this site for 
all the dates. The temporal synchrony quantifies the similarity of subcatchments in response to changes in 
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Figure 2. Conceptual diagram of how water chemistry could vary through 
space and time. Each plane represents an individual sampling date. 
Dots on the plane represent the sampling sites, which have a variety of 
catchment areas and solute concentrations. Colored dots linked by lines 
represent the concentration time series for a specific sampling site. High 
spatial persistence of water chemistry could result from a much higher 
spatial coefficient of variation (CV) than the temporal CV, or from high 
temporal synchrony among subcatchments (i.e., concentrations move up 
and down synchronously). The diagram was inspired by Hammond and 
Kolasa (2014).
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factors controlling stream water chemistry. We quantified the temporal synchrony among subcatchments 
for each parameter at each site with Spearman's rank correlations between time series from pairs of sub-
catchments (22^2 pairs)

  Temporal synchrony median ,s sircorr C C (4)

where temporal synchrony of an individual site (s) is the median of the Spearman's rank correlation (rcorr) 
coefficients between set of concentrations at this site and all the 22 subcatchments (si).

For a given water quality parameter, spatial CV and SPpairs were determined for each date while temporal CV 
and synchrony were determined for each site (Figure 2 and Equations 1–4).

High SP of water chemistry could result from a much higher spatial CV among multiple sampling sites rela-
tive to the temporal CV of those sites (Botter et al., 2020; Hammond & Kolasa, 2014; McGuire et al., 2014). In 
this case, the curves representing time series of concentrations cross less and the relative rank of concentra-
tions would be preserved through time (Figure 2). High SP could also derive from high temporal synchrony 
among sampling sites. When water chemistry changes synchronously, the relative rank of concentrations 
would be more resilient to temporal concentration variations because concentrations move up and down 
together (Abbott et al., 2018a; Dupas et al., 2019; Erlandsson et al., 2008).

2.3. Statistical Analysis

Following Equations 1 and 2, we quantified the SPpairs and spatial CV for each sampling date for each pa-
rameter. We plotted SPpairs against time to reveal its seasonal variation (Section 3.1).

We also calculated the SP by the original method (SPFWC, Abbott et al., 2018a), and made comparison with 
the SPpairs from the new method (Section 3.1).

The SPFWC is calculated as follows:

 FWCSP ,trcorr c FWC (5)

where the SPFWC at an individual sampling date (t) is the Spearman's rank correlation coefficient (rcorr) 
between the concentrations of subcatchments at this sampling date (Ct) and the flow-weighted mean con-
centrations (FWC) across the whole monitoring period.

The FWC is calculated as follows:

 



FWC t t t

t t

C Q
Q (6)

where C is the concentration and Q is the discharge at the catchment outlet at the sampling date (t).

We correlated the FWC for each parameter at each subcatchments with the subcatchment characteristics 
(land use, topography, soil properties, etc.), to identify potential landscape drivers of the stream water chem-
istry (Section 3.2).

We calculated the mean values of SPpairs, spatial CV, temporal CV, and temporal synchrony for each pa-
rameter and computed pairwise correlations to identify linkages among those parameters. Finally, we used 
a multiple linear regression (MLR) model to explain the direct influence of spatial and temporal CV and 
temporal synchrony on SPpairs (Section 3.3).

All statistical analyses were performed with R version 3.6.1 (R Core Team, 2019). Correlations were consid-
ered significant at a confidence level of 0.05. We used the Akaike information criterion (AIC) to select the 
variables to be included in the final model, the model having the lowest AIC being the best model.
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3. Results
3.1. Variations of Spatial Persistence Across Seasons and Flow 
Conditions

The SPpairs was high for most parameters with values ranging from 0.60 
to 0.90 for most sampling dates (Figures 3 and S2), despite large changes 
in concentration during the studied period (Figure S1). DOC, F−, O2, and 
SUVA254 had relatively low and variable SPpairs, with average values be-
tween 0.40 and 0.52 as compared with 0.63–0.86 for the other parameters 
(Table 1). SPpairs was lower in the summer dry season than in the winter 
wet season when SPpairs was consistently high. This strong seasonality 
of SPpairs was true for most parameters, except F− and O2 whose SPpairs 
showed no seasonal signal during the study period. This seasonality of 
SPpairs was more pronounced for DOC than other parameters (Figures 3 
and S2).

The seasonality in SPFWC was similar as for SPpairs, but was higher in the 
wet season when most values ranged between 0.7 and 1.0 and decreased 
more rapidly in the dry season than SPpairs (Figure S3). This difference 
was further confirmed by the higher mean values and standard devia-
tions of SPFWC than SPpairs for most parameters (Table 1 and Figure S4). 
SPpairs was strongly correlated with SPFWC for all parameters, with Pearson 
correlation coefficients ranging between 0.69 and 0.98 (Figure S5).

3.2. Spatiotemporal Variations of Water Chemistry and the 
Influence From Catchment Characteristics

Spatial CV was substantially higher for all forms of C, N, and P, as well 
as for F− and SO4

2− during most sampling dates (Figure S6), with aver-
age values ranging between 0.34 and 0.85, than for the other parameters 
(ranging between 0.07 and 0.27, Table 1). For the different forms of N and 
P and for SO4

2−, spatial CV exhibited a marked seasonality with higher 
values in the dry season than that in the wet season (Figure S6). Similar 
to spatial CV, temporal CV was substantially higher for different forms of 
C, N, and P, as well as for F− and SO4

2− (Figure S6), with average values 
ranging between 0.27 and 0.77, than for the other parameters (ranging be-
tween 0.09 and 0.16, Table 1). Temporal synchrony varied greatly among 
parameters, from 0.32 for pH to 0.88 for O2 (Table 1 and Figure S6).

For all water quality parameters except DOC, PP, F−, and O2, the temporal 
CV was lower than the spatial CV, with ratios ranging between 0.47 and 

0.98, with the lowest values for SRP. For DOC, PP, F−, and O2, the ratios ranged between 1.01 and 1.56 and 
their SPpairs were generally lower than the other parameters.

Even though the studied subcatchments had highly diverse land properties and land use characteristics (Ta-
ble S1), the relationships between these characteristics and the FWC values of monitored water parameters 
were typically weak with nonsignificant or low correlations (│r│ < 0.6) (Figure S7). For different forms of 
C, N, and P, the strongest correlation appeared between the proportion of arable fields and NO3

− (r = 0.85). 
Land use composition, such as proportions of wetland, cultivated wetland, and pasture, had no relationship 
with most parameters. Mean soil depth and slope degree, together with proportions of Luvisols and forest 
were negatively correlated with FWC for most parameters. The other subcatchment landscape metrics, 
including proportions of arable land, winter crops, brown soil, and artificial drainage, all showed positive 
relationships with FWC for most parameters (Figure S7).
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Figure 3. Time series of the spatial persistence (SPpairs) for (a) total 
dissolved P (TDP), soluble reactive P (SRP), dissolved organic C (DOC), 
nitrate (NO3

−), and (b) total P (TP), particulate P (PP), dissolved inorganic 
C (DIC), and nitrite (NO2

−). (c) Daily discharge at the Yvel gauging station 
and dates of sampling (red dots). See Figure S1 for the same information 
for the other eight analyzed parameters.
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3.3. Controls of Spatial Persistence in Water Chemistry

Among parameters, SPpairs was unrelated to spatial and temporal CV and temporal synchrony (p > 0.26, 
Figure 4), demonstrating that the SPpairs could not be determined simply by the overall magnitude of tem-
poral and spatial variance or the synchrony of water chemistry variations among subcatchments. Similarly, 
temporal synchrony was not related to spatial or temporal CV (p > 0.89, Figure 4), suggesting the independ-
ence of water chemistry synchrony among subcatchments with magnitude of water chemistry temporal and 
spatial variance. Temporal CV was positively correlated with spatial CV (p < 0.001, Figure 4). The temporal 
CV was generally lower than spatial CV, as the ratio of temporal CV/spatial CV was smaller than 1 for 12 
out of 16 parameters (Table 1 and Figure 5).

The MLR model showed a good prediction of SP by a single predictor: the ratio of temporal CV/spatial CV, 
which explained 70% of the variance of SPpairs (Figure 5a, AIC = −77.4). The performance of the MLR model 
was slightly improved by adding the temporal synchrony as the second predictor, with the variance of SPpairs 
explained increasing to 74% (Figure 5b, AIC = −78.1).

4. Discussion
4.1. Spatial Persistence of Water Chemistry Across Seasons and Flow Conditions

In an effort to improve characterization of pollution sources in mesoscale catchments (i.e., 100–1,000 km2), 
we developed a new method to quantify the SP of water chemistry. The results demonstrated the value of oc-
casional synoptic sampling in characterizing long-term water chemistry, with an average SP of 0.68 among 
parameters during the study period and values higher for crucial water quality parameters including N and 
P species (Table 1). The SP values calculated from the new method (SPpairs) are similar to those obtained 
using the original method (SPFWC), but their standard deviations were smaller and the method does not de-
pend on the estimation of the long-term concentration or flux metrics, which are often uncertain or unavail-
able. This approach thus increases the ease, precision, and applicability of this method to characterize the 
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SPpairs SCV TCV Syn TCV/SCV SPFWC

TDP 0.71 (0.11) 0.79 (0.35) 0.47 (0.14) 0.59 (0.10) 0.60 0.78 (0.18)

SRP 0.74 (0.11) 0.85 (0.41) 0.40 (0.20) 0.64 (0.13) 0.47 0.82 (0.15)

DOC 0.46 (0.17) 0.34 (0.08) 0.39 (0.12) 0.59 (0.11) 1.13 0.58 (0.33)

NO3
− 0.80 (0.10) 0.64 (0.11) 0.41 (0.19) 0.60 (0.17) 0.64 0.83 (0.17)

TP 0.76 (0.11) 0.67 (0.24) 0.51 (0.14) 0.59 (0.12) 0.76 0.81 (0.14)

PP 0.63 (0.14) 0.76 (0.20) 0.77 (0.25) 0.38 (0.09) 1.01 0.73 (0.19)

DIC 0.79 (0.10) 0.47 (0.06) 0.37 (0.21) 0.64 (0.16) 0.78 0.85 (0.15)

NO2
− 0.78 (0.12) 0.55 (0.27) 0.53 (0.28) 0.70 (0.17) 0.98 0.83 (0.17)

F− 0.43 (0.18) 0.40 (0.21) 0.52 (0.23) 0.57 (0.06) 1.30 0.60 (0.25)

Br− 0.71 (0.16) 0.16 (0.03) 0.14 (0.05) 0.57 (0.15) 0.85 0.78 (0.22)

Cl− 0.80 (0.09) 0.15 (0.04) 0.09 (0.03) 0.53 (0.15) 0.60 0.85 (0.12)

SO4
2− 0.76 (0.16) 0.38 (0.08) 0.27 (0.10) 0.66 (0.17) 0.70 0.82 (0.17)

pH 0.68 (0.23) 0.08 (0.02) 0.05 (0.03) 0.33 (0.24) 0.57 0.69 (0.20)

O2 0.40 (0.11) 0.07 (0.04) 0.11 (0.03) 0.90 (0.07) 1.56 0.58 (0.21)

Cond. 0.86 (0.16) 0.27 (0.04) 0.13 (0.05) 0.46 (0.13) 0.50 0.87 (0.17)

SUVA254 0.52 (0.23) 0.19 (0.05) 0.16 (0.06) 0.46 (0.27) 0.87 0.66 (0.29)

Mean (SD) 0.68 (0.15) 0.42 (0.26) 0.33 (0.21) 0.58 (0.13) 0.83 (0.30) 0.76 (0.10)

Note. SPFWC is the SP calculated from flow-weighted mean concentration.

Table 1 
Mean (Standard Deviation) of Spatial Persistence (SPpairs) and Spatial CV (SCV) (Mean of All Dates), and of Temporal 
CV (TCV) and Temporal Synchrony (Syn) (Mean of All Sites) for Each Parameter
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spatiotemporal behavior of water chemistry. The high SP found for parameters like TDP, SRP, and NO3
− in 

the present study are consistent with previous research on the spatial patterns of water chemistry at season-
al to decadal time scales across ecoregions (Abbott et al., 2018a; Dupas et al., 2019; Frei et al., 2020; Shogren 
et al., 2019). The current study builds on this previous work by highlighting the mechanisms creating these 
persistent spatial patterns, and by revealing the influence of seasons and flow conditions on the SP of the 
16 parameters studied.

We found that the SPpairs is consistently high during the high-flow winter period (except for occasional storm 
events) but is low and more variable during the low-flow summer period for most parameters (Figures 3 
and S2). Three nonexclusive factors could explain the lower and more variable SPpairs during the low-flow 
period. First, fluctuations of solute sources that determine the chemistry of the water discharged into the 
stream network. For example, the drawdown of the groundwater level is known to disconnect the stream 
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Figure 4. Pairwise comparison among spatial persistence (SPpairs), spatial and temporal coefficient of variation (CV), and temporal synchrony (average per 
parameter). Error bars represent ±standard deviation.

Figure 5. Spatial persistence (average per parameter) as a function of (a) temporal CV/spatial CV (TCV/SCV) and (b) 
the multiple linear regression predictions based on TCV/SCV and temporal synchrony.
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from the shallow groundwater that drains the upland cultivated soils, switching the source of nutrients 
from cultivated soils to riparian wetlands and deep groundwater (Abbott et al., 2016; Gu et al., 2017; Li 
et al., 2021). This source fluctuation could create variability in stream water chemistry that could differ 
among parameters because shallow groundwater in this region is known, e.g., to be enriched in NO3

−, 
unlike riparian wetlands and deep groundwater which are mostly denitrified (Abbott et al., 2018b; Aubert 
et al., 2013; Kolbe et al., 2019). Second, the increasing importance of riparian and/or in-stream biogeochem-
ical processes during the low-flow season could contribute to spatial instability in water chemistry patterns 
(Moatar et al., 2017). Decreased discharge increases residence time of solutes in different components of the 
stream network (e.g., riparian wetlands and hyporheic zones), while simultaneously decreases mass flux, 
thus increasing the exposure time to biogeochemical transformations and capacity for the in-stream and 
hyporheic community to modify concentrations and fluxes (Casquin et al., 2020; Kolbe et al., 2019; Pinay 
et al., 2015; Wollheim et al., 2018). A recent study on the concentration-discharge relationship in stream 
water supported this hypothesis, finding a dominant biogeochemical control on the concentration-dis-
charge slope when the discharge is below the median discharge (Moatar et al., 2017). The biogeochemical 
alteration of solutes could create variability unrelated to source fluctuations, which could explain why SP 
was low during this period of time for biologically reactive parameters, such as DOC (Figure 3; Casas-Ruiz 
et al., 2017; Dong et al., 2017; Harjung et al., 2018; McGuire et al., 2014). Third, the increasing importance 
of point source contribution during low flow. Point sources, such as leaking septic tanks, animal farming 
buildings, and wastewater treatment plants, are heterogeneously distributed in the landscape. Their influ-
ence on the annual loads may be small but may dominate the stream water chemistry at low flow, especially 
for elements enriched in those point source discharges like SRP, DOC, Cl−, etc. (Casquin et al., 2020; Rich-
ards et al., 2016; Withers et al., 2014a).

During the high-flow winter period, the connectivity between solute sources in hillslopes and the stream 
network is high, leading to strong correlation between catchment solute sources and observed stream water 
chemistry (Covino, 2017; Pinay et al., 2018; Raymond et al., 2016). This creates high SP of water chemistry 
during this period. However, the hypothesis that the hydrological flux overwhelms biological factors during 
the high-flow period (Moatar et al., 2017; Raymond et al., 2016; Zarnetske et al., 2018) could differ among 
parameters, based on the timing of the drop in SP. The SP of more biologically reactive parameters (i.e., SRP, 
NO3

−, and DOC) decreased earlier than less reactive parameters (i.e., TDP, PP, and DIC) (Figure 3), which 
showed spatial reorganization as discharge decreased. These seasonally lagged spatial rearrangements in 
chemistry suggest parameter-specific dynamics, potentially associated with stoichiometrically regulated 
biological uptake and release, or complex multi-flow path sources (Casquin et al., 2020; Frei et al., 2020; 
Helton et al., 2015; Lannergård et al., 2020).

4.2. Controls on the Observed Spatial Persistence of Water Chemistry

We found that the high SPpairs for most parameters in the present study resulted from the combined con-
tribution of the spatiotemporal variations in water chemistry and subcatchment synchrony, with 74% of 
its variance explained by the combined effects of the ratio between temporal and spatial CV, and temporal 
synchrony (Figure 5). However, the MLR indicated that SPpairs is primarily controlled by the ratios between 
temporal and spatial CV (explained variance: 70%), in contrast with the weak influence of temporal syn-
chrony alone (explained variance: 4%). The larger variation in concentration among subcatchments at each 
date relative to the smaller temporal concentration variations at each site make the SPpairs relatively inde-
pendent of subcatchment synchrony, in line with previous findings (Dupas et al., 2019).

The pairwise correlations of SPpairs, spatial and temporal CV, and temporal synchrony for the 16 investigated 
parameters showed positive and significant correlations only between spatial CV and temporal CV (r2 = 0.7; 
Figure 4), which has not been observed in previous studies (Abbott et al., 2018a; Dupas et al., 2019; Shogren 
et  al.,  2019). One possible explanation is that the agricultural land use in a catchment is not randomly 
distributed but inherently determined by catchment characteristics such as geology, soil type, and topog-
raphy (Odgaard et al., 2013; Thomas et al., 2016; Zabel et al., 2014). For example, steep hillslopes are not 
well suited for agricultural cultivation and are more likely to remain undisturbed (e.g., forest), leading to a 
negative relationship between mean slope and FWC for most parameters (Figures S7 and S8). Conversely, 
brown soil makes good agricultural land due to high fertility and active soil fauna, resulting in the positive 
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relationships between brown soil and FWC for most parameters (Figure S7). This human-mediated link-
age between catchment attributes and water quality parameters appears widespread in the Anthropocene. 
Subcatchments with different agricultural land use will have different initial resilience to solute loading, 
though the nonrandom distribution of human disturbance can offset or nullify this initial template (Frei 
et al., 2020; Thomas et al., 2016), thus creating a land use-driven linkage between the spatial and temporal 
variations in water chemistry. Another possible explanation is that sources of anthropogenic solutes (N and 
P) are concentrated near the soil surface where they are applied (Abbott et al., 2018b; Botter et al., 2020; 
Sebilo et al., 2013; Van Meter et al., 2016), generating large vertical gradients of N and P content in the soil 
profile and vadose zone. Additionally, sources of these solutes are also spatially variable because the degree 
of agricultural intensification varies across the gradient from 100% forest to 100% agriculture. With the 
changes in water flow path on seasonal scales (wet versus dry seasons) or on event scales (stormflow versus 
baseflow), the convolution of high vertical variation with the large lateral variability could result in the high 
spatial and temporal CV of these solutes in stream water (e.g., all forms of N and P, Table 1). On the contrary, 
geogenic solute sources are more evenly distributed vertically and spatially, resulting in both low spatial and 
temporal CV for these solutes (Godsey et al., 2009).

4.3. Implications for Improved Characterization of Water Chemistry

By using pairwise rank correlations among sampling dates, the new method to quantify SP developed in the 
present study avoids using metrics calculated from medium-frequency monitoring data sets, which usually 
introduce large uncertainties (Cassidy & Jordan, 2011; Lloyd et al., 2015; Skeffington et al., 2015). An impor-
tant finding of the present study is that a synoptic sampling during the high-flow season increases the rep-
resentativeness of monitoring on the long-term spatial structure of water chemistry. If this pattern applies 
in other ecosystem types and land-use regimes, this will be of great practical importance for regions of the 
world with low density of monitoring networks and low frequency of monitoring, especially in developing 
countries where the water quality is degrading rapidly (Crocker & Bartram, 2014; Seitzinger et al., 2010). An 
implication of our findings is that specific monitoring campaigns should be done during low-flow periods, 
when spatial persistence is lower and nutrient sources are probably not the same as high-flow periods. In 
many regions, the symptoms of eutrophication such as cyanobacteria blooms and dead zones occur most 
frequently and intensely during periods of low flow. Likewise, human use of surface and groundwater is 
often higher during these periods, requiring additional monitoring and mitigation to avoid societal damages 
(Abbott et al., 2019).

Thus far, relatively high spatial persistence of nutrients and major ions has been observed in temperate 
oceanic ecoregions (Abbott et al., 2018a; this study; Frei et al., 2020), various other temperate ecoregions 
(Dupas et al., 2019; Weller & Jordan, 2020), and in the Boreal and Arctic (Shogren et al., 2019; Temnerud 
& Bishop, 2005). Additional research is needed in other ecoregions, including arid, semiarid, and wet/dry 
and wet tropics where most developing countries are located. Additionally, the current study confirmed 
the applicability of the SP concept to a broad suite of water quality parameters (including conductivity, 
pH, SUVA254, etc.), suggesting the potential utility of this metric in characterizing spatial patterns of other 
crucial parameters of concern, such as suspended sediments, and emerging contaminants (e.g., pharmaceu-
ticals, microplastics, and other novel micropollutants). We assessed the sensitivity of SPpairs to the number 
of sampling campaigns (Figure 6), by calculating the SPpairs with decreasing number of randomly selected 
sampling campaigns (out of the 31 samplings). According to our sensitivity analysis, verifying the SPpairs for 
new water quality parameters or in a different ecoregion would need 7–14 sampling dates (Figure 6). Once a 
high SPpairs is verified for a parameter of concern in a given context, it allows fast identification of source and 
sink subcatchments, as only one synoptic sampling can be representative of the long-term spatial structure 
of water chemistry (Abbott et al., 2018a; Dupas et al., 2019; this study).

Another important finding of the present study is that the spatial variability of a given parameter is correlat-
ed with its temporal variability (Figure 4). Trading “space for time” is a common method in hydrology and 
is a potentially crucial tool to advance water quality understanding and modeling (Singh et al., 2011). For 
example, a recent study has tried to draw guidelines on recommending sampling frequency as a function 
of temporal variability of the parameters of concern (e.g., TP, NO3

−, and DOC) (Moatar et al., 2020). Thus, 
an interesting application of the present work would be to draw guidelines on sampling spatial density 
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depending on the spatial variability and SP of the parameters of concern. Our findings have different impli-
cations for the monitoring of different water chemistry parameters. For parameters with a relatively high 
SPpairs and a spatial CV higher than temporal CV (e.g., all forms of N and P, Table 1), the influence of spatial 
heterogeneity on the overall variability of those parameters will be greater than the influence of temporal 
variation magnitude. A sampling strategy with higher spatial intensity but lower frequency will be sufficient 
to account for the variations of these parameters and provide adequate information about catchment-scale 
source identification. On the contrary, for parameters such as DOC, F−, and O2 that had a poor SPpairs and a 
spatial CV lower than temporal CV (Table 1), a sampling strategy with higher frequency at a certain spatial 
intensity would be more appropriate to account for the variations of these parameters. Overall, the present 
study could contribute to increasing the efficiency of management efforts, by optimizing the sampling strat-
egy of the water quality parameters that are of greater ecological concern.

5. Conclusions
We developed a new method to quantify the spatial persistence of water chemistry to reduce the depend-
ence on the uncertain estimation of long-term metrics. The test of this method in a mesoscale catchment 
resulted in high SP values for most parameters, confirming the value of an occasional synoptic sampling 
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Figure 6. Sensitivity of mean spatial persistence to the number of sampling dates for three parameters with low (DOC), high (TDP) and very high (NO3
−) 

spatial persistence. (a) Values of mean SPpairs for 500 random draws given the number of sampling dates (dots). The green dashed lines represent the mean SPpair 
computed on all the dates (same as Table 1) and the green ribbons represent an interval of ±0.1 around this value. (b) Proportions of values of SPpairs that fall 
within this interval according to the number of sampled dates. Blue dashed lines indicate the minimum number of dates to sample to have 90% of the SPpairs 
within this ±0.1 interval.
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in representing the spatial structure of water chemistry during a certain period for a broad suite of param-
eters. Spatial persistence of water chemistry varied seasonally for most of the parameters studied, being 
consistently high during the high-flow winter period and was low and variable during the low-flow sum-
mer period. Among variables, we found that the spatial persistence was ultimately controlled by the ratio 
between temporal and spatial CV with a weak influence from temporal synchrony. Overall, the seasonal 
pattern in spatial persistence of water chemistry revealed that a synoptic sampling during the high-flow 
season will better represent the long-term spatial structure of water chemistry, potentially contributing to 
the development of monitoring and management measures with higher efficiency, especially for develop-
ing countries.

Data Availability Statement
The data used to support these findings of this publication are available at: http://www.hydroshare.org/
resource/7c7d7f6dd1f14450883ae1c243c3c28f.
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