Markov Additive Processes for Degradation with Jumps under
Dynamic Environments

Yin Shu!, Qianmei Feng?*, Edward P.C. Kao?, David W. Coit*, Hao Liu®
1Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
2Department of Industrial Engineering, University of Houston, E206 Engineering Bldg.2, Houston, TX 77204, USA
3Department of Mathematics, University of Houston, Houston, TX 77204, USA
4Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA
5Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA

Abstract

We use general Markov additive processes (Markov modulated Lévy processes) to integrally
handle the complexity of degradation including internally- and externally-induced stochastic
properties with complex jump mechanisms. The background component of the Markov additive
process is a Markov chain defined on a finite state space; the additive component evolves as a Lévy
subordinator under a certain background state, and may have instantaneous nonnegative jumps
occurring at the time the background state switches. We derive the Fokker-Planck equations for
such Markov modulated processes, based on which we derive Laplace expressions for reliability
function and lifetime moments, represented by the infinitesimal generator matrices of Markov
chain and the Lévy measure of Lévy subordinator. The superiority of our models is their flexibility
in modeling degradation data with jumps under dynamic environments. Numerical experiments

are used to demonstrate that our general models perform well.
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1. Introduction

Reliability of systems is one of the major concerns in many fields including energy, health,
aerospace, national defense, etc. In investigating reliability, unavoidable degradation is one of the
major failure mechanisms of the systems, taking the form of damage, corrosion, erosion, fatigue
crack, deterioration or wear, etc. During the life of many critical systems (e.g., wind turbines,
drilling equipment, power/smart grids, and mechanical devices, etc.), there are some external
time-varying variables/factors that continuously govern the progress of the stochastic degradation
of the systems. Such variables are called stochastic covariates (e.g., dynamic environments
such as temperature, humidity, or vibration). Incorporating this externally-induced uncertainty
together with internally-induced uncertainty in modeling degradation is a challenging research
work, especially when there are many complex jumps stemming from both internal features
(mechanical, thermal, electrical, or chemical) of the system and instantaneous state changes of
external variables/factors. The majority of published research in stochastic degradation modeling
has assumed that the degradation evolves under a deterministic environment. Considering external
factors, Wiener-based stochastic covariate models in Ebrahimi [12], Markov modulated linear
processes and Markov modulated compound Poisson processes in Kharoufeh et al. [20-24] were
studied recently. Poisson process is a special case of Lévy process, thus the linear- and Poisson-
based stochastic models are not flexible in general cases (Shu et al. [31-33]).

To integrally handle the complexities of degradation including both internally- and externally-
induced stochastic properties with complex jump mechanisms, we propose to develop degradation
models under dynamic environments using a broad class of general Markov additive processes

(Markov modulated Lévy processes), where the background component is a Markov chain with



finite states, the additive component evolves as a Lévy subordinator under a certain background
state, and may have instantaneous nonnegative jumps occurring at the time the background state
switches. We develop the Fokker-Planck equations of such analytically appealing stochastic
processes in order to derive reliability characteristics. We also develop systematic procedures
for deriving and obtaining the explicit and powerful results, represented by infinitesimal generator
matrices and Lévy measures. Using Markov modulated Lévy processes, the superiority of our
general models stems from their flexibility in modeling stylized features of degradation data series
under dynamic environments such as jumps fluctuation, symmetry/asymmetry, and light/heavy
tails. Our results are expected to provide accurate reliability prediction and estimation, by realizing
multiple uncertainty sources of degradation mechanisms.

Without considering external factors, stochastic processes such as Wiener processes, gamma
processes and compound Poisson processes are directly used to represent degradation processes
when the degradation is observable (see [13, 25, 35, 37, 38]). To conduct reliability analysis, the
failure time is defined as the first passage time of the degradation process. When the degradation
is unobservable, it is treated as a latent process, measured and tracked by internal stochastic
covariates that are observable marker processes (see [16, 26, 30, 34, 39]). These markers (e.g.,
diagnostic factors such as mileage traveled of an auto) provide information about the progress of
degradation processes that can be used to infer the reliability function or the hazard function. To
conduct reliability/survival analysis, Lee et al. [26] and Whitmore et al. [39] used a bivariate
Wiener process to describe the correlation of the degradation process and the marker process, and
then formulated the reliability function based on the first passage time of the Wiener process.
Some models directly defined the hazard function as an explicit function of the marker process

(see [16, 30, 34]).



In biostatistics, the marker processes are stochastic processes representing time-varying
covariates that track the health of a system under study in the language of Kalbfleisch and
Prentice [19]. Jewell et al. [16, 17] considered the marker processes as associated variables that
continuously measure the progress of an individual towards the final expression of the disease
(failure). Assuming a simple additive model for the relationship between the marker process
and the hazard function, the survival distribution of time to failure was expressed, where the
Poisson process was used to represent the marker process. Yashin and Manton [40] reviewed
models in survival analysis under the framework that the hazard function explicitly represents the
effects of markers. Typically they discussed the model where the marker processes are Wiener-
based diffusion processes, where the relationship between the hazard function and the markers is
quadratic. Fusaro et al. [15] constructed the model using a nonparametric frame to describe the
dependency of the hazard on marker variables. Regarding the efficient use of marker information,
Malani [27] proposed a heuristic approach in estimating parameters of survival functions. Shi et
al. [30] studied the distributions of the residual time in acquired immune deficiency syndrome
diagnosis based on markers that carry valuable information about disease progression. They
derived the residual time distribution for several combinations of marker processes and marker-
dependent hazard functions. However, all these stochastic models just represent internally-induced
uncertainty with temporal variability.

Considering the effects of external factors, Ebrahimi [12] presented a stochastic covariate
failure model for assessing system reliability, where external stochastic covariates were modeled
by Wiener-based diffusion processes. The life distribution was assumed to be explicitly related to
such stochastic covariates. However, this work cannot handle the random jumps in degradation.

Markov additive processes are a class of binary stochastic processes with one component as an
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additive process (e.g., Lévy process) that is modulated by the other component, which is a standard
Markov process (see Cinlar [7-9]). They can integrally handle the complexities of degradation
processes under dynamic environments. Special Markov additive processes, including Markov
modulated linear processes and Markov modulated compound Poisson processes, have been used
to represent the linear deterministic degradation with Poisson-type jumps under discrete and finite
state Markov environments (see Kharoufeh et al. [20-24]. The explicit results were derived based
on the nature of the Poisson process. We propose an extension of such models using Markov
modulated Lévy processes.

The organization of this paper is as follows. In Section 2, we describe the model construction.
In Section 3, we derive the Fokker-Planck equations of general Markov additive processes. In
Section 4, we derive the explicit expressions of reliability function and lifetime moments for
systems subject to degradation under the dynamic environment. Numerical examples are illustrated

in Section 5, and conclusions are given in Section 6.

2. Preliminaries

In this section, we introduce some mathematical fundamentals related to Lévy processes,
followed by model construction for degradation phenomenon under dynamic environments based

on Markov modulated Lévy processes.

2.1. Lévy-Ito decomposition

Lévy processes provide a potential candidate to describe a broad class of degradation with
random jumps. The theories of Lévy processes have been well introduced in Applebaum [3] and

Sato [29], and they have been widely applied in the fields of economics and finance (see [11, 14]).



Abdel-Hameed [2] studied the life distribution properties of devices subject to Lévy degradation.
Under deterministic environments, Shu et al. [31, 32] gave explicit results of reliability function
for degradation described by Lévy subordinators and their functional extensions as a class of non-
decreasing processes. Their results demonstrated the advantage of using Lévy subordinators as a
realistic model for many physical degradation phenomena.

The stochastic processes are defined on a complete probability space (€2, F, P) with a standard,
right-continuous and augmented filtration F = {F;, ¢ > 0}. Let R? denote the Euclidean space of
dimension d, R* denote [0, o) and |z| = /7 - = denote the Euclidean norm for x € R?. We begin
with the definition of Poisson random measure on RT x R¢ with mean Leb x v, where Leb is the
Lebesgue measure and v is a Lévy measure, that is, {0} = 0 and [.(|z|> A 1)v(dz) < co. Let
0 = {6;,t > 0} be a semigroup of time-shift operator 6, : w — 6,w from 2 to {2 such that fpw = w

and Qu(etw) = 9u+tw.
Definition 1 ([10]). A random measure N on Rt x R? is called a Poisson random measure with
Lévy measure v if
e For every Borel subset A of [0,t] x RY, N(A) is F; measurable;
o N(bw,B) = N(w, B;) for every w € §Q, t > 0 and Borel subset B of RT x RY, where
B, ={(t+u): (u,z) € B}; and
o N is Poisson with mean Leb X v.

The Poisson random measure /N is said to have the intensity measure Leb x v with values
in Z, ={0,1,2,...,+00}. Let B = {x € R? : |z| < 1} be the closed unit ball in R?, and
B¢ = {z € R? : |z| > 1} be its complement. The following theorem describes the celebrated

Lévy-Itd decomposition [10]:



Theorem 1 (The Lévy-Itd Decomposition [10]). A process X on (2, F,P) is a Lévy process if and

only if for every t € R,

X(t) =0bt+aW(t) + /

[0,t]xB

x{N(s, dx) — dsu(d:n)} —i—/ xN (s, dr),

[0,t]xBe

for some b € R%, some d x d' covariance matrix a, some d'-dimensional Wiener process W, and a

Poisson random measure N on R* x R® with some Lévy measure v that is independent of W.

A Lévy subordinator is a one-dimensional Lévy process that is non-decreasing almost surely.

Using Lévy-Khintchine formula [29], a Lévy subordinator has the following property:

Corollary 1 ([29]). Let d=1. A Lévy process is a subordinator if and only if a = 0, v(—o0, 0] = 0,
00 B 1
/ (x A Dr(dr) < oo, and the drift b=10 — / zv(dx) > 0.
0 0

By Theorem 1 (the Lévy-Itd decomposition) and Corollary 1, a Lévy subordinator X (¢) can be

written as

X(t):bt—i—/ xN(ds, dz).
[0,1]x(0,00)

2.2. Model construction

We consider a system subject to degradation with random jumps, which is a process of
stochastically continuous degradation with sporadic jumps that occur at random times and have
random sizes. In addition, the degradation process is modulated by the environment process.
To model the evolution of this type of degradation process, we use Markov additive processes

{X(t), E(t)} as follows. The cumulative degradation by time ¢ is represented by a nondecreasing



continuous time cadlag (right continuous with left limits) Markov modulated Lévy process X (),

and the modulating process is the environment process, represented by a temporally homogeneous

continuous time cadlag Markov jump process E(t) with finite state space &€ = {0, 1,--- ,n}. Let

G = (14j), 14 = — >_ 145,14, J € € denote the transition rate matrix (infinitesimal generator matrix)
J#

of E(t).

More precisely, the bivariate process {X(¢), E(t)} is a Markov additive process, where
conditional on E/(t), the conditional law of X (¢) evolves as a non-decreasing Lévy process, i.e., a
Lévy subordinator. Given E(t) =i € £ during an interval [t, ¢ + s), the characteristics of X (¢) are

functions of E/(t), modeled as

In practice, the changes of environment states, such as instantaneous temperature increase or
decrease, can induce certain damages to the system, modeled by the jumps in the degradation
process. Therefore, we assume there is an additional random nonnegative jump in X (¢) when
the state of E(t) changes. When FE(t) changes from state i to state j, the distribution of the
jump is denoted as D;;(z), defined on R*. Fori = j, D;;(dz) = §,(0), which is a Dirac delta
function. When the state space £ is finite, the class of Markov additive process { X (¢), E(t)} is well
understood (see [4]). Without the loss of generalization, assume the initial state X (0) = 0, £(0) =
0 a.s., and it is easy to extend the results to the case when X (0) = ¢, E(0) = k,c € R,k € £.

To integrally handle internally- and externally-induced stochastic properties with complex



jump mechanisms, X () can be expressed as:

X(t) = / d£+//0<$<1 ),dg,dx)—y(E(g—),dx)dg)
// eN (B(6-),d¢,dx) + > Mpe ).

£€0,t]

where Mgy g 1s a random variable following the distribution D¢y g(e) (2), and independent
of E(¢), forall £ € [0,t]. In X (t), under a certain state of £/(¢), the internally-induced stochastic
properties is modeled by a certain Lévy process. One of the most important advantages of using
Lévy processes is that their jump parts represented by Lévy measures can model a great deal of
jump mechanisms in degradation. At different states of F(t), X (¢) may evolve in different patterns
with different jump mechanisms that can be modeled by different Lévy processes, representing
externally-induced stochastic properties. In addition, instantaneous nonnegative jumps induced by
the change in F(t) are also properly modeled by a random distribution (see Figure 1). As illustrated
in Figure 1, when E(t) = i, X (¢) evolves as a linear process (LP); when E(t) = j, X (t) evolves as
a compound Poisson process (CP); when E(t) = k, X (t) evolves as an inverse Gaussian process
(IG); when E(t) = I, X(t) evolves as a gamma process (G); and when E(t) = m, X (t) evolves as

a stable process (S).

[Figure 1 about here.]

3. Fokker-Planck equations for Markov additive processes

As the partial differential equation of the probability density function, the Fokker-Planck
equation describes the time evolution of probability density for stochastic processes, and is thus
useful in quantifying random phenomena such as uncertainty propagation (see [28, 36]). It
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provides us a way to analyze the probability laws for stochastic processes of interests, especially
for those without closed-form distributions.

Without an analytical expression of the probability law for { X (¢), F (t)}, the development of
the characteristics for such processes and the subsequent reliability function is a nontrivial work,
even for simple cases. The difficulty stems from 1) the stochastic evolution of degradation has
complex mechanisms such as random jumps, 2) the stochastic nature of environment, and 3) the
distributional derivation for the first passage time. We overcome this challenge by deriving the
Fokker-Planck equation of {X (¢), E (t)}.

Under the model construction of our Markov additive processes {(X(t), E(t))}, the
environmental process E(t) is a continuous-time homogeneous Markov Chains with finite state
space. We further assume that £(¢) is a regular jump process so that whenever it jumps to a new
state, it can stay at the new state at least for a short random duration. A jump process is a regular
jump process if it only has finite many jumps in [0, ¢] for every ¢ > 0. This is a general class of
continuous-time Markov Chains that are very practical in applications. A regular jump process
is stable and conservative so that it has a density. Conditional on E(¢), X () is a non-decreasing
Lévy process. We further assume a sufficient condition on the Lévy measure v(-) to ensure the
existence and smoothness of the probability density for the Lévy process

2?v(dx)
lim inf 25

>0
e—0 €2—a ’

for some 0 < a < 2; more details can be found in [29, Proposition 28.3, p190].
Under these model specifications and assumptions, there exists the joint probability density

function p(z,i,t) of the bivariate stochastic processes {X (), E(¢t)}. We can then derive the
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Fokker-Planck equation as

op(x,i,1)

at :L*p<x77/7t>7

where L* is the adjoint operator of the infinitesimal generator of { X (¢), F'(t)}, that is,

/Lf dx_/f ) L*g

It is important to derive the adjoint operator, and our main result is given in this section. The

Fokker-Planck equation is derived and presented in Theorem 2.

Theorem 2. For the Markov additive process {X (t), E(t)} described in Section 2.2, the Fokker-

Planck equation is

Op(,i,t)
T b() x,l,t +Zrﬂ/ Z], DJZ(dZ>

jee&

. . 0 . .
_'_/ <p($ - yalat> - p(l’,l,t) + IyG(O,l)ya_p(xazat))y <Z7 dy)
R+ z

Proof. Step 1: For each f € C5°(R?) (f is a smooth function and compactly supported), and for
each ¢ > 0, we aim to derive f(X (¢t + At), E(t + At)) — f(X(¢), E(t)).

Both X (t) and E(t) are cadlag processes. We define X ({—) and F(£{—) as the left limits at
the time point {, S = [t,t + At], S1 = {£ € S : E() — E({—) =0},and S, = {¢ € S :

E(§) — E({—) # 0}. Then we have

FX(t+ A1), E(t + A1) = f(X(1), E(t)) = Y F(X(€), B(©)) = f(X(£-), E(€-))

ges
(1)
=D FX(6), B(&) — F(X(E=), B©) + > F(X(E), E(©) — fF(X(6-), BE(E-)).
EES £€Ss
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In a continuous time interval s C Sy, if E(§) = e,§ € s,e € £, dX () has a constant part
dXc(€) = (b(e) ~ foeyr v (e dy) )dg, and a random jump part dX;(€) = [,.. yN (e, d€, dy).
For X ;, we define 7,,,0 < m < M,m € N, M € N as the time of the m*" jump, 7y = inf{¢:
€€ st T =nfl€: &> 1o & AX (E) > 0}, where AX (&) = X (&) — Xs(E—), and

T = sup{{ : & € s}. Then

Y FX(6), E() — [(X(€-), E(©))

£es

= £ (X (max{rag, =) e) = 1 (X (rar)se) + 32 (1 (X (7). ) = F (X (7))

m=1

(X (max{7a, 7—}), €) = [ (X (Tar), €)

Il
~

+
NE

Il
—

m

(£ (X (=) + DX (1) €)= £ (X (7). 0))
(

F(X (=), €) = £ (X (1), €)).

NE

+

3
I

Based on the stochastic integration (see Chapter 4 in [3]), we have

> FX(€).EB() - f(X(E-), B(©)

£es

_ O x (¢— v

= /&Sl b(E (€) 5 (X £))de — /5651 /O<y<1 ya (X E)v (E(E),dy)dE
s [ (rxernE©- f(X(f—),E(f)))N(E(f),d&dw-
£eS, JRT
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Then (1) becomes

J(X(t+At), B(t + At)) — f(X(t), B

_ of

- /&SIME(&)) (x )it - /EESI [ G ) BB i
s [ (FX e+ nE©) - T X €E)E©) )N (B (6). de,dy)
eSSy JRT

) (f =)+ Mpg-).me), E(f))—f(X(€—)>E(5_>)>‘

§€S2

Notice that for £ € Sy, both E () and X ({—) are predictable. Our calculus is in the It6 form.

Step 2: For each f € C5°(R?), we aim to derive the infinitesimal generator L of { X (¢), E(t)}:

Lot EUCE+A) B+ ADIX @) =0 B =) = f (@)
At—0 At
As E(t) has the transition rate matrix (infinitesimal generator matrix) G = (1), 75 = — > 7sj,

JF#i
defining P(E(t + At) = j|E(t) = i) = P;;(At), we have

E (g (F (X(©) + My 0, B (€)) = 1 (X(€-), B (6-))) X (1) = 2, B(t) = )

At—0 At
S Je (F (@4 2,9) = f (2,0)) Dig(dz) Py (A1)

— lim &

At—0 At
- 2/ (v +2,9) — f (2,1)) Dys(d2)

J#i
_ZT”/ f(x+27)D;(dz).

jEE

Since the Poisson random measure N (dt, dy) has a Poisson distribution with mean v (dy) dt,
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we have

Lfd) =) o) = [ i floio i)
" 3)
Ul = i)+ S [ (0200402,

Step 3: We aim to derive L*, the adjoint operator corresponding to the infinitesimal generator

Lin (3):

Z/ Lf (x,i)p (z,i,t) d:r;—z f x,1) L*p (x,1,t) d. %)
Rt

€€ €€

Using integration by parts, as p(0,7,t) = 0, and p(oco,i,t) = 0, we have

Z/m 8x (x,0)p (z,1i,t) d:c—Z/R p(x,i,t)df (x,1)

€€
—Zb (x,i,t) f IZ|R+—Z/ (x,1) dp(z,i,t) (5)
€€ i€€
:Z/ —b(i)=—p(z,i,t) f (x,7) dz,
€€ Rt

and

S [ [ et = s Gy o0 ds

€€

0 . . )
-3 / [ Bcwngef i Gy (a,i.0) do
R+ JR+ T

/R+ /B+ —y,i,t) — p(a,i,t)v (i,dy) f (v,7) dx

/ / yeo1)ya p(z, i, t)v (i,dy) f (z,i) dz.
Rt

(6)

€€

€€
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By swapping ¢ and j, we have

Z/R+Z7”z‘j/R+f(96+z,j)Dz-j(dz)p(x,z',t)dx

ic€ jee 7

- Z/+Zm/mp(x — 2, ) Dyi(d2) f (w,) da.

Then from (5), (6) and (7), we have

: L0 : :
L*p(z,i,t) = —b(@)%p(x, i,t) + eri/m p(x —2,4,t)Dj;(dz)

jee

0
+ / (p<x - Y, i? t) - p(l’, i? t) + IyG(O,l)ya_p(x7 i? t)) v (Z7 dy)
R+ x
For each f € C°(R?), we denote u(t) = FE (f(X(t),E(t))). Then based on (2), we have
Lu(t) = Zu(t) (see [36]), and
S [ pwipina =3 [ S ot i

From (4), we have

Z/m faLp @i =3 [ %(f(:c,i)p(x,z’,t))dx,

€€ €€

then
Op(z,i,t)

T L*p(z,1,t).

]

To make comparison, Corollary 2 provides the Fokker-Planck equation of { X (¢), E/(t)} for the
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case that there is no jump in X (¢) when the state of £(¢) changes.

Corollary 2. For the Markov additive process { X (t), E(t)}, assuming there is no jump in X (t)

when the state of E(t) changes, the Fokker-Planck equation is

op(x,i,t) 0 . .
T - b(l)axp(l’,l,t)—FZTﬂp(ZL’,],t)

j€E
. . 0 : :
+ p(ZE - Y1, t) - p(l’, ?, t) + ]ye(o,l)ya_])($7 2 t) v (Z7 dy)
R+ x
4. Reliability function and lifetime moments

A system fails when the degradation process X (¢) exceeds a failure threshold x. To simplify
the formula, we assume z is a constant, and it is straightforward to extend the model when the
failure threshold is a random variable. The lifetime of the system and its moments are defined

respectively as

T, = inf{t: X(t) >z}, M(T",z) = E(T").

Since X (t) is nondecreasing, we have
{T, >t} ={X(t) <z},
then the reliability function can be defined as

R(:c,t) IP(THC Zt) :P<X(t) Sl‘) :FX(t) (1})

In this section, for a degradation process under the dynamic environment described by the
Markov additive process { X (), E(t)}, we derive the explicit expressions of R (x,t) and lifetime
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moments M (7™, x) in terms of Laplace transform, represented by the infinitesimal generator
matrix and the Lévy measure.

Laplace transform of p(x, ¢,t) with respect to (w.r.t.) ¢ is defined to be

pH(z,4,w) = / e ¥ (z,i,t)dt, w > 0.
R+

Laplace transform of p’(z,i,w) w.r.t. z is

P (uy i, w) = / e "l (z,i,w)dx, u>0.
Rt

The results are presented in Theorems 3 and 4.

Theorem 3. For a degradation process under the dynamic environment that is described by the
Markov additive process { X (t), E(t)} in Section 2.2, the Laplace expression of reliability function
is

R (u,w) = w™'[1,0,--- ,0][A —B]*[1,1,---,1]7,

where A is a diagonal matrix with diagonal entries w + b*(i)u — [, (e™¥ — 1)v (i,dy), and
B = [rijdfj], i,j € &. In addition, b*(i) > 0, v is the Lévy measure, r;;,1,j € £ are entries of the
infinitesimal generator matrix of E(t), d5(u) = [, e7**Dji(dz), [1,0,--- ,0] is a vector of size
n + 1, where the first element is 1 and all others are 0, and [1,1,--- 1] is a vector of size n + 1,

where all the elements are 1.
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Proof. Based on Theorem 2, the Fokker-Planck equation for { X (¢), F(t)} is

Writ) ;)0 i)+ o[ pla 20Dl
jEE (8)

4 4 0 . .
+/ <p($ - y,Z,t) —p<1',’L,t) + IyG(O,l)ya_p(xaza t))” <Z7 d?/)
R+ X

For (8), we do Laplace transform of p(z, i, t) w.r.t. ¢ for both sides,

pr(ZE,i,W) —p(fL','L,O)

a )’ Yy y
= —p(i) L0 (@,i,w) Zrﬂ/ (= 2,j,w) Dji(dz) 9

je&

, , op*(x,i,w )
+ / (pL(x —y,i,w) —pH(z,i,w) + Iye(ovl)y%> v (i,dy) .
R+ x

For (9), we do Laplace transform of p”(z, i,w) w.r.t. x for both sides, then

LL(ua Z.a w) - ]i*O

wp

—b(i)up™* (u, i, w —i—Zrﬂ/ ~wEiptl (u, §,w)Dyji(d2)
je&

+/ (e*“prL(u, i,w) — pE(u, i, w) + [ye(o,l)yupLL(u, i,w))y (1,dy) .
R+
Let b*(i) = b(i) — [y, ey yv (i, dy),
prL(uv ia UJ) - [i:() = (—b*<Z)U + / (e—uy - 1)1/ (Z7 dy)) pLL(u7 Z.a W)
R+

+ Zrﬂ/ e "> Dy;(d2)p™* (u, j,w).

jeE
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Let dfi(u) = [ e7**Dji(dz), and then the matrix form is
pLL(uaw)[A - B] = [17 07 e 70]7

where prL(u,w) = [p"F(u,0,w), p"(u,1,w), -, pP*(u,n,w)], A is a diagonal matrix with
diagonal entries w + b*(i)u — [, (e7*¥ — 1)v (i,dy), and B = [r;;d}:],i,j € €.
We have

RY(u,w) = u 1,0, ,0][A —B]'[1,1,---,1)7.

Remark 1. For (8), we do Laplace transform of p(x,i,t) w.r.t. x for both sides,

p*(u,i,t) :/ e “p(x,i,t)dx, u>0,
Rt

then
op* (u,i,t) —uz)) :
T b( up u,z,t + E Tﬂ/ L U Jat)Dji(dZ)

Jj€eE&

+ / (e rp™ () = p(0,3,) + Lyegoyyup™(u,1.1) v (i, dy)
R+

= <_b*(i)u+/R+ (e“y—l)y(z’,dy)) (u,4,0) + > rjsdiip™ (u, 5, 1).

jeE

Solving this ordinary differential equation, we have the solution in the matrix form:
pY(u,t) = [1,0,---,0]exp {t [B — Agl},

where Ay is a diagonal matrix with diagonal entries b*(i)u — || g (€7 =1 (i, dy),i € &
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We use Theorem 3 to derive the Laplace expression for the moments of lifetime 7, as Theorem

Theorem 4. For a degradation process under the dynamic environment that is described by the
Markov additive process { X (t), E(t)} in Section 2.2, the Laplace expression of lifetime moments
is

M (T u) = nlu™[1,0,--- ,0][Ao — B]"[1,1,--- ,1]7,

where Ay is a diagonal matrix with diagonal entries b*(i)u — | re (€7 =D (i,dy), and B =
[rijdis],i,5 € E. In addition, b*(i) > 0, v is the Lévy measure, 15,1, € & are entries of the
infinitesimal generator matrix of E(t), d5(u) = [, e7**Dji(dz), [1,0,--- ,0] is a vector of size
n + 1, where the first element is 1 and all others are 0, and [1,1,--- 1] is a vector of size n + 1,

where all the elements are 1.

Proof. We have P(T, < t) = P(x,t) = 1 — R(z,t). Then P(dt,z) = —R(z,dt). The Laplace

transform of P(dt, z) w.rt t is

P (z,w) = —wR"(z,w) + u(z), (10)

where u(x) is the unit step function. For (10), we do Laplace transform w.r.t. « for both sides, then

P (u,w) = —wRM (u,w) +ut
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From Theorem 3, we have
P (u,w) = —wu1,0,--- 0][A = B] YL, 1, - 1 4wt

‘We denote

Pt (u,w) = (1)

and then the Laplace expression of lifetime moments is

MHT ) = EH0) = (1 [ZT )]

where

and

Therefore, we have

ME(T" u) = nlu™'[1,0,--- ,0][Ag — B]™"[1,1,--- ,1]7.

O

To make comparison, Corollaries 3 and 4 provide the Laplace expressions of reliability function
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and lifetime moments, respectively, assuming there is no jump in X (¢) at the time the state of F(t)

changes.

Corollary 3. For a degradation process under the dynamic environment that is described by the
Markov additive process { X (t), E(t)}, assuming there is no jump in X (t) when the state of E(t)

changes, the Laplace expression of reliability function is

RLL(uaw) = uil[laoa o 70][A - G]il[la 17 T 71]T>

where A is a diagonal matrix with diagonal entries w + b*(i)u — [, (e™ — L)v (i,dy),i € &,

and G is the infinitesimal generator matrix of E(t).

Corollary 4. For a degradation process under the dynamic environment that is described by the
Markov additive process { X (t), E(t)}, assuming there is no jump in X (t) when the state of E(t)

changes, the Laplace expression of lifetime moments is

M*(T",u) = nlu™[1,0,--- ,0][Ag — G]™"[1,1,--- , 1]7,

where Ay is a diagonal matrix with diagonal entries b*(i)u — [, (e™ — 1)v (i,dy),i € &, and

G is the infinitesimal generator matrix of E(t).

5. Numerical examples
To illustrate our models, we consider two cases of {X (t), E (t)}:

Case 1: There are no jumps in degradation X (¢) when the states of environment F(t) changes;
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Case 2: There are random jumps in degradation X (¢) when the states of environment F(t)

changes.

We use a Markov process with two states {0, 1} to model the environment, and its infinitesimal

generator matrix is

Too To1
G =

0o T11

In Case 2, we use a Lévy distribution to model the jumps when the environment switches from

/£ £
on exp(— 2(z—w) )

state O to state 1:

5 for z>w>0
0 otherwise,
and then df (u) = e @ V2¥ A gamma distribution is used to model the jumps when the
environment switches from state 1 to state O:
Baza—le—ﬁz
Dyy(dz) = ————,2 >0,
10(dz) T (a) Z

and then d’(u) = (2-)°.
We use a Lévy measure to model the Lévy degradation under the environment state 0:

5,}/—2.‘11 I{ly—ﬂl—l eXp<_%72y)

v(0,dy) = T(k1)(1 — k1)

dy,

where y,0 > 0,0 < k1 < 1,7 > 0, which represents a positive tempered stable process

PTS(k1,0,7) [5].
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We use another Lévy measure to model the Lévy degradation under the environment state 1:

) 1 d
(1 — ko) yratt Y

v(l,dy) =

where y > 0,0 < ko < 1, which represents a positive stable process P.S(ky) [5]. When k1, ko are
close to 0, the corresponding stable processes propagate with big jumps; when k1, ko are close to
1, the stable processes evolve with small jumps. Of note, in the case of stable Lévy process, it can
be easily checked that the conditions for Theorem 2 are satisfied.

For Case 1, the Laplace expression of reliability function based on Corollary 3 is

RYE (u, w)
~1
w+b"(0)u — 6y + 5(’7%1 + QU)M — 700 —ro1
=u '[L,0] [1,1]"
—T10 w+ b (Du+ u™ —
L wH b (Du+u™ —rig +rp

(w—+b*(0)u — oy + 5(7711 + QU)M —790)(w + b*(D)u + w2 —ry) — rmrm‘

The Laplace expression of lifetime moments based on Corollary 4 is

—-n
K1

b*(0)u — oy + 5(7’?11 +2u) =700 —To1
ME(T™ u) =nlu~'[1,0] [1,1]%.

—T10 b*(l)u + uf? — 11
The first and second moments of lifetime for Case 1 are

b*(l)u + ut? — 11 + To1
1 K1
(b*(O)u — 5")/ + 5(’7“1 + 2U) — T00)<b*(1)u + uf2 — 7"11) — To1T10

METY u) =u!

Y
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[*(1)u 4+ w™ — ri]* + roirio
[(5*(0)u — 0y + (771 +2u)  — 1o0) (0" (1) + w2 — 111) — ro1710)?
ror[b* (1w -+ a2 — 111] + o [ (0)u — 0 + 8(v1 + 2u)  — 7o)
[(5*(0)u — 8y + 8(v71 +2u) — 700) (b* (D)t 4+ w2 — 111) — rorrrio)?.

ME(T? u) = 2u™

+ 2yt

For Case 2, the Laplace expression of reliability function based on Theorem 3 is

R (u,w)
-1
w+b*(0)u — dy + (5(7é + 2u)’~€1 — rood, —rordly
— w1, 0] 1, 1"
—r10dE, w+b*(D)u + u2 — ridhy
B W+ b*(D)u + u? — rydE + rodb,

(w+ b (0)u — oy + (5(’yé + 2u) f roodio) (w + 0*(D)u + w2 — rydhy) — rmdélrlodfo'

The Laplace expression of lifetime moments based on Theorem 4 is

M, u)
b*(O)U — 5’7 + (5(’7"711 + 211,) ' — ’I“ood(l)b —’f’oldOLl
=nlu"[1,0] [1,1]%.
—7’10d1Lo b*(l)u + u? — Tlldﬁ

The first and second moments of lifetime for Case 2 are

-1 b*(l)u + u? — rlldfl + T01d51

(b*(0)u — 0y + §(y=1 + 2u) L roodls) (0% (D)u + w2 — rypdy) — rordlrodh
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ME(T? )
[0 (Du + ut® — rydb)? + roydsriodk,
[(6*(0)u — 0y + 6(7 ™1 +2u) — roodky)(b* (Du + w2 — riydBy) — rogdfyrigdhy )2
L rordb (Vw4 w2 — rydE] + rordf [0 (0)u — 5y + 5(7ﬁ + QU)N1 — roodb]
[(b*(0)w — 6y +8(77r +2u)  — roodly) (0" (L + urz — riydhy) — rordlyriodhy)?

=2y !

+ 2u~

The system fails when X (¢) exceeds the threshold x. The inversion algorithms for Laplace
transform [1, 6] were implemented to invert the Laplace expressions in Theorems 3, 4 and
Corollaries 3, 4 in order to compute the values of reliability and lifetime moments.

The values for the parameters are given in Table 1. The parameters of a Markov additive process
can be estimated when a real degradation data set from dynamic environments is available. Since
the probability density function of a general Lévy subordinator is not available in a closed-form,
the traditional maximum likelihood estimation and Bayesian estimation are not convenient for
such general jump processes and their functional extensions. Based on the characteristic function
of Lévy subordinator we can use the cumulant M-estimator (CME) [18] to estimate the parameters.

The statistical inference method will be presented in a separate manuscript.

[Table 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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Figure 2 and 3 show the reliability w.r.t. time ¢ and failure threshold x based on general Markov
additive processes. For both cases, the reliability decreases as the time increases, and it increases
as the threshold increases. Figure 4 shows the reliability w.r.t. time ¢ when x = 15 and x = 20
for both cases. The reliability in Case 2 decreases faster than that in Case 1 at the same threshold.
Figure 5 and Figure 6 illustrate the first moments and the second moments of lifetime with respect
to failure threshold x for both cases. Both the first and the second moments of lifetime in Case 2
are less than that in Case 1 at the same threshold. Besides the Lévy measures used in this section,
we can specify different Lévy measures to fit the corresponding degradation data, and evaluate

their reliability function and lifetime moments.

6. Conclusions

In this paper, we developed new systematic procedures to derive powerful and compact results

for reliability analysis based on the degradation process under the dynamic environment:

Step 1: Derive the infinitesimal generator of the stochastic process of interests;

Step 2: Derive the adjoint operator corresponding to the infinitesimal generator, based on which

the Fokker-Planck equation of such stochastic process is developed;

Step 3: Derive the reliability characteristics of the system in terms of Laplace transform.

Our work in this paper is summarized as: 1) we model the degradation process under the
dynamic environment using the Markov additive process, while most models in the literature
were constructed for the deterministic environment; 2) we use the Lévy subordinator to model the
degradation under a certain environment state, and the corresponding Lévy measure can represent
different complex jump mechanisms including infinite activities and finite activities in degradation;
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3) our models are general to fit more types of degradation data than those based on gamma/Poisson
processes; and 4) we derive the Fokker-Planck equation for a class of general Markov additive
processes, and obtain the explicit expressions for reliability function and lifetime moments, which
provide a new methodology to deal with multiple dependent degradation processes under dynamic

environments.
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Table 1: Parameter values for the models.

x
Too = —To1
o = —T11

§

w

[0,30]
-10
15
0.0001
0.01

(0%

g
)

K1
i

0.2
50
0.6
0.8
0.9

(0)
b (1)

0.9
0.02
0.01
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Figure 1: A sample path of Markov additive process with a random jump when the environment states changes
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Figure 2: Reliability function w.r.t. time ¢ and failure threshold x for Case 1
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Figure 3: Reliability function w.r.t. time ¢ and failure threshold x for Case 2
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Figure 5: First moments of lifetime w.r.t. failure threshold x for both Case 1 and Case 2
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Figure 6: Second moments of lifetime w.r.t. failure threshold x for both Case 1 and Case 2
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