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Abstract

We use general Markov additive processes (Markov modulated Lévy processes) to integrally

handle the complexity of degradation including internally- and externally-induced stochastic

properties with complex jump mechanisms. The background component of the Markov additive

process is a Markov chain defined on a finite state space; the additive component evolves as a Lévy

subordinator under a certain background state, and may have instantaneous nonnegative jumps

occurring at the time the background state switches. We derive the Fokker-Planck equations for

such Markov modulated processes, based on which we derive Laplace expressions for reliability

function and lifetime moments, represented by the infinitesimal generator matrices of Markov

chain and the Lévy measure of Lévy subordinator. The superiority of our models is their flexibility

in modeling degradation data with jumps under dynamic environments. Numerical experiments

are used to demonstrate that our general models perform well.
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1. Introduction

Reliability of systems is one of the major concerns in many fields including energy, health,

aerospace, national defense, etc. In investigating reliability, unavoidable degradation is one of the

major failure mechanisms of the systems, taking the form of damage, corrosion, erosion, fatigue

crack, deterioration or wear, etc. During the life of many critical systems (e.g., wind turbines,

drilling equipment, power/smart grids, and mechanical devices, etc.), there are some external

time-varying variables/factors that continuously govern the progress of the stochastic degradation

of the systems. Such variables are called stochastic covariates (e.g., dynamic environments

such as temperature, humidity, or vibration). Incorporating this externally-induced uncertainty

together with internally-induced uncertainty in modeling degradation is a challenging research

work, especially when there are many complex jumps stemming from both internal features

(mechanical, thermal, electrical, or chemical) of the system and instantaneous state changes of

external variables/factors. The majority of published research in stochastic degradation modeling

has assumed that the degradation evolves under a deterministic environment. Considering external

factors, Wiener-based stochastic covariate models in Ebrahimi [12], Markov modulated linear

processes and Markov modulated compound Poisson processes in Kharoufeh et al. [20–24] were

studied recently. Poisson process is a special case of Lévy process, thus the linear- and Poisson-

based stochastic models are not flexible in general cases (Shu et al. [31–33]).

To integrally handle the complexities of degradation including both internally- and externally-

induced stochastic properties with complex jump mechanisms, we propose to develop degradation

models under dynamic environments using a broad class of general Markov additive processes

(Markov modulated Lévy processes), where the background component is a Markov chain with
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finite states, the additive component evolves as a Lévy subordinator under a certain background

state, and may have instantaneous nonnegative jumps occurring at the time the background state

switches. We develop the Fokker-Planck equations of such analytically appealing stochastic

processes in order to derive reliability characteristics. We also develop systematic procedures

for deriving and obtaining the explicit and powerful results, represented by infinitesimal generator

matrices and Lévy measures. Using Markov modulated Lévy processes, the superiority of our

general models stems from their flexibility in modeling stylized features of degradation data series

under dynamic environments such as jumps fluctuation, symmetry/asymmetry, and light/heavy

tails. Our results are expected to provide accurate reliability prediction and estimation, by realizing

multiple uncertainty sources of degradation mechanisms.

Without considering external factors, stochastic processes such as Wiener processes, gamma

processes and compound Poisson processes are directly used to represent degradation processes

when the degradation is observable (see [13, 25, 35, 37, 38]). To conduct reliability analysis, the

failure time is defined as the first passage time of the degradation process. When the degradation

is unobservable, it is treated as a latent process, measured and tracked by internal stochastic

covariates that are observable marker processes (see [16, 26, 30, 34, 39]). These markers (e.g.,

diagnostic factors such as mileage traveled of an auto) provide information about the progress of

degradation processes that can be used to infer the reliability function or the hazard function. To

conduct reliability/survival analysis, Lee et al. [26] and Whitmore et al. [39] used a bivariate

Wiener process to describe the correlation of the degradation process and the marker process, and

then formulated the reliability function based on the first passage time of the Wiener process.

Some models directly defined the hazard function as an explicit function of the marker process

(see [16, 30, 34]).
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In biostatistics, the marker processes are stochastic processes representing time-varying

covariates that track the health of a system under study in the language of Kalbfleisch and

Prentice [19]. Jewell et al. [16, 17] considered the marker processes as associated variables that

continuously measure the progress of an individual towards the final expression of the disease

(failure). Assuming a simple additive model for the relationship between the marker process

and the hazard function, the survival distribution of time to failure was expressed, where the

Poisson process was used to represent the marker process. Yashin and Manton [40] reviewed

models in survival analysis under the framework that the hazard function explicitly represents the

effects of markers. Typically they discussed the model where the marker processes are Wiener-

based diffusion processes, where the relationship between the hazard function and the markers is

quadratic. Fusaro et al. [15] constructed the model using a nonparametric frame to describe the

dependency of the hazard on marker variables. Regarding the efficient use of marker information,

Malani [27] proposed a heuristic approach in estimating parameters of survival functions. Shi et

al. [30] studied the distributions of the residual time in acquired immune deficiency syndrome

diagnosis based on markers that carry valuable information about disease progression. They

derived the residual time distribution for several combinations of marker processes and marker-

dependent hazard functions. However, all these stochastic models just represent internally-induced

uncertainty with temporal variability.

Considering the effects of external factors, Ebrahimi [12] presented a stochastic covariate

failure model for assessing system reliability, where external stochastic covariates were modeled

by Wiener-based diffusion processes. The life distribution was assumed to be explicitly related to

such stochastic covariates. However, this work cannot handle the random jumps in degradation.

Markov additive processes are a class of binary stochastic processes with one component as an
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additive process (e.g., Lévy process) that is modulated by the other component, which is a standard

Markov process (see Çinlar [7–9]). They can integrally handle the complexities of degradation

processes under dynamic environments. Special Markov additive processes, including Markov

modulated linear processes and Markov modulated compound Poisson processes, have been used

to represent the linear deterministic degradation with Poisson-type jumps under discrete and finite

state Markov environments (see Kharoufeh et al. [20–24]. The explicit results were derived based

on the nature of the Poisson process. We propose an extension of such models using Markov

modulated Lévy processes.

The organization of this paper is as follows. In Section 2, we describe the model construction.

In Section 3, we derive the Fokker-Planck equations of general Markov additive processes. In

Section 4, we derive the explicit expressions of reliability function and lifetime moments for

systems subject to degradation under the dynamic environment. Numerical examples are illustrated

in Section 5, and conclusions are given in Section 6.

2. Preliminaries

In this section, we introduce some mathematical fundamentals related to Lévy processes,

followed by model construction for degradation phenomenon under dynamic environments based

on Markov modulated Lévy processes.

2.1. Lévy-Itô decomposition

Lévy processes provide a potential candidate to describe a broad class of degradation with

random jumps. The theories of Lévy processes have been well introduced in Applebaum [3] and

Sato [29], and they have been widely applied in the fields of economics and finance (see [11, 14]).

5



Abdel-Hameed [2] studied the life distribution properties of devices subject to Lévy degradation.

Under deterministic environments, Shu et al. [31, 32] gave explicit results of reliability function

for degradation described by Lévy subordinators and their functional extensions as a class of non-

decreasing processes. Their results demonstrated the advantage of using Lévy subordinators as a

realistic model for many physical degradation phenomena.

The stochastic processes are defined on a complete probability space (Ω,F ,P) with a standard,

right-continuous and augmented filtration F = {Ft, t ≥ 0}. Let Rd denote the Euclidean space of

dimension d, R+ denote [0,∞) and |x| =
√
x · x denote the Euclidean norm for x ∈ Rd. We begin

with the definition of Poisson random measure on R+ × Rd with mean Leb× ν, where Leb is the

Lebesgue measure and ν is a Lévy measure, that is, ν{0} = 0 and
∫
Rd(|x|

2 ∧ 1)ν(dx) < ∞. Let

θ = {θt, t ≥ 0} be a semigroup of time-shift operator θt : ω 7→ θtω from Ω to Ω such that θ0ω = ω

and θu(θtω) = θu+tω.

Definition 1 ([10]). A random measure N on R+ × Rd is called a Poisson random measure with

Lévy measure ν if

• For every Borel subset A of [0, t]× Rd, N(A) is Ft measurable;

• N(θtω,B) = N(ω,Bt) for every ω ∈ Ω, t ≥ 0 and Borel subset B of R+ × Rd, where

Bt = {(t+ u) : (u, x) ∈ B}; and

• N is Poisson with mean Leb× ν.

The Poisson random measure N is said to have the intensity measure Leb × ν with values

in Z̄+ = {0, 1, 2, . . . ,+∞}. Let B = {x ∈ Rd : |x| ≤ 1} be the closed unit ball in Rd, and

Bc = {x ∈ Rd : |x| > 1} be its complement. The following theorem describes the celebrated

Lévy-Itô decomposition [10]:
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Theorem 1 (The Lévy-Itô Decomposition [10]). A processX on (Ω,F ,P) is a Lévy process if and

only if for every t ∈ R+,

X(t) = bt+ aW (t) +

∫
[0,t]×B

x
{
N(s, dx)− dsν(dx)

}
+

∫
[0,t]×Bc

xN(s, dx),

for some b ∈ Rd, some d× d′ covariance matrix a, some d′-dimensional Wiener process W , and a

Poisson random measure N on R+ × Rd with some Lévy measure ν that is independent of W .

A Lévy subordinator is a one-dimensional Lévy process that is non-decreasing almost surely.

Using Lévy-Khintchine formula [29], a Lévy subordinator has the following property:

Corollary 1 ([29]). Let d=1. A Lévy process is a subordinator if and only if a = 0, ν(−∞, 0] = 0,

∫ ∞
0

(x ∧ 1)ν(dx) <∞, and the drift b̄ ≡ b−
∫ 1

0

xν(dx) ≥ 0.

By Theorem 1 (the Lévy-Itô decomposition) and Corollary 1, a Lévy subordinator X(t) can be

written as

X(t) = b̄ t+

∫
[0,1]×(0,∞)

xN(ds, dx).

2.2. Model construction

We consider a system subject to degradation with random jumps, which is a process of

stochastically continuous degradation with sporadic jumps that occur at random times and have

random sizes. In addition, the degradation process is modulated by the environment process.

To model the evolution of this type of degradation process, we use Markov additive processes

{X(t), E(t)} as follows. The cumulative degradation by time t is represented by a nondecreasing
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continuous time càdlàg (right continuous with left limits) Markov modulated Lévy process X(t),

and the modulating process is the environment process, represented by a temporally homogeneous

continuous time càdlàg Markov jump process E(t) with finite state space E = {0, 1, · · · , n}. Let

G = (rij), rii = −
∑
j 6=i

rij, i, j ∈ E denote the transition rate matrix (infinitesimal generator matrix)

of E(t).

More precisely, the bivariate process {X(t), E(t)} is a Markov additive process, where

conditional on E(t), the conditional law of X(t) evolves as a non-decreasing Lévy process, i.e., a

Lévy subordinator. Given E(t) = i ∈ E during an interval [t, t+ s), the characteristics of X(t) are

functions of E(t), modeled as

bE(t) = b(E(t)) = b(i), νE(t)(x) = νi(x) = ν(i, x).

In practice, the changes of environment states, such as instantaneous temperature increase or

decrease, can induce certain damages to the system, modeled by the jumps in the degradation

process. Therefore, we assume there is an additional random nonnegative jump in X(t) when

the state of E(t) changes. When E(t) changes from state i to state j, the distribution of the

jump is denoted as Dij(z), defined on R+. For i = j, Dij(dz) = δz(0), which is a Dirac delta

function. When the state space E is finite, the class of Markov additive process {X(t), E(t)} is well

understood (see [4]). Without the loss of generalization, assume the initial state X(0) = 0, E(0) =

0 a.s., and it is easy to extend the results to the case when X(0) = c, E(0) = k, c ∈ R+, k ∈ E .

To integrally handle internally- and externally-induced stochastic properties with complex
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jump mechanisms, X(t) can be expressed as:

X(t) =

∫ t

0

b(E(ξ−))dξ +

∫ t

0

∫
0<x≤1

x
(
N (E(ξ−), dξ, dx)− ν (E(ξ−), dx) dξ

)
+

∫ t

0

∫
y>1

xN (E(ξ−), dξ, dx) +
∑
ξ∈[0,t]

ME(ξ−),E(ξ),

where ME(ξ−),E(ξ) is a random variable following the distribution DE(ξ−),E(ξ)(z), and independent

of E(ξ), for all ξ ∈ [0, t]. In X(t), under a certain state of E(t), the internally-induced stochastic

properties is modeled by a certain Lévy process. One of the most important advantages of using

Lévy processes is that their jump parts represented by Lévy measures can model a great deal of

jump mechanisms in degradation. At different states ofE(t), X(t) may evolve in different patterns

with different jump mechanisms that can be modeled by different Lévy processes, representing

externally-induced stochastic properties. In addition, instantaneous nonnegative jumps induced by

the change inE(t) are also properly modeled by a random distribution (see Figure 1). As illustrated

in Figure 1, whenE(t) = i,X(t) evolves as a linear process (LP); whenE(t) = j,X(t) evolves as

a compound Poisson process (CP); when E(t) = k, X(t) evolves as an inverse Gaussian process

(IG); when E(t) = l, X(t) evolves as a gamma process (G); and when E(t) = m, X(t) evolves as

a stable process (S).

[Figure 1 about here.]

3. Fokker-Planck equations for Markov additive processes

As the partial differential equation of the probability density function, the Fokker-Planck

equation describes the time evolution of probability density for stochastic processes, and is thus

useful in quantifying random phenomena such as uncertainty propagation (see [28, 36]). It

9



provides us a way to analyze the probability laws for stochastic processes of interests, especially

for those without closed-form distributions.

Without an analytical expression of the probability law for {X (t) , E (t)}, the development of

the characteristics for such processes and the subsequent reliability function is a nontrivial work,

even for simple cases. The difficulty stems from 1) the stochastic evolution of degradation has

complex mechanisms such as random jumps, 2) the stochastic nature of environment, and 3) the

distributional derivation for the first passage time. We overcome this challenge by deriving the

Fokker-Planck equation of {X (t) , E (t)}.

Under the model construction of our Markov additive processes {(X(t), E(t))}, the

environmental process E(t) is a continuous-time homogeneous Markov Chains with finite state

space. We further assume that E(t) is a regular jump process so that whenever it jumps to a new

state, it can stay at the new state at least for a short random duration. A jump process is a regular

jump process if it only has finite many jumps in [0, t] for every t > 0. This is a general class of

continuous-time Markov Chains that are very practical in applications. A regular jump process

is stable and conservative so that it has a density. Conditional on E(t), X(t) is a non-decreasing

Lévy process. We further assume a sufficient condition on the Lévy measure ν(·) to ensure the

existence and smoothness of the probability density for the Lévy process

lim inf
ε→0

∫
[−ε,ε] x

2ν(dx)

ε2−a
> 0,

for some 0 < a < 2; more details can be found in [29, Proposition 28.3, p190].

Under these model specifications and assumptions, there exists the joint probability density

function p(x, i, t) of the bivariate stochastic processes {X(t), E(t)}. We can then derive the
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Fokker-Planck equation as

∂p(x, i, t)

∂t
= L∗p(x, i, t),

where L∗ is the adjoint operator of the infinitesimal generator of {X(t), E(t)}, that is,

∫
R

Lf (x)g (x) dx =

∫
R

f (x)L∗g (x) dx.

It is important to derive the adjoint operator, and our main result is given in this section. The

Fokker-Planck equation is derived and presented in Theorem 2.

Theorem 2. For the Markov additive process {X(t), E(t)} described in Section 2.2, the Fokker-

Planck equation is

∂p(x, i, t)

∂t
= −b(i) ∂

∂x
p(x, i, t) +

∑
j∈E

rji

∫
R+

p (x− z, j, t)Dji(dz)

+

∫
R+

(
p(x− y, i, t)− p(x, i, t) + Iy∈(0,1)y

∂

∂x
p(x, i, t)

)
ν (i, dy).

Proof. Step 1: For each f ∈ C∞0 (R2) (f is a smooth function and compactly supported), and for

each t > 0, we aim to derive f(X(t+ ∆t), E(t+ ∆t))− f(X(t), E(t)).

Both X(t) and E(t) are càdlàg processes. We define X(ξ−) and E(ξ−) as the left limits at

the time point ξ, S = [t, t + ∆t], S1 = {ξ ∈ S : E(ξ) − E(ξ−) = 0}, and S2 = {ξ ∈ S :

E(ξ)− E(ξ−) 6= 0}. Then we have

f(X(t+ ∆t), E(t+ ∆t))− f(X(t), E(t)) =
∑
ξ∈S

f(X(ξ), E(ξ))− f(X(ξ−), E(ξ−))

=
∑
ξ∈S1

f(X(ξ), E(ξ))− f(X(ξ−), E(ξ)) +
∑
ξ∈S2

f(X(ξ), E(ξ))− f(X(ξ−), E(ξ−)).

(1)
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In a continuous time interval s ⊆ S1, if E(ξ) = e, ξ ∈ s, e ∈ E , dX(ξ) has a constant part

dXC(ξ) =
(
b(e) −

∫
0<y<1

yν (e, dy)
)
dξ, and a random jump part dXJ(ξ) =

∫
R+ yN (e, dξ, dy).

For XJ , we define τm, 0 ≤ m ≤ M,m ∈ N,M ∈ N as the time of the mth jump, τ0 = inf{ξ :

ξ ∈ s}, τm = inf{ξ : ξ > τm−1 & ∆XJ(ξ) > 0}, where ∆XJ(ξ) = XJ(ξ) − XJ(ξ−), and

τ = sup{ξ : ξ ∈ s}. Then

∑
ξ∈s

f(X(ξ), E(ξ))− f(X(ξ−), E(ξ))

= f (X (max{τM , τ−}), e)− f (X (τM), e) +
M∑
m=1

(
f (X (τm), e)− f (X (τm−1), e)

)
= f (X (max{τM , τ−}), e)− f (X (τM), e)

+
M∑
m=1

(
f (X (τm−) + ∆XJ (τm) , e)− f (X (τm−), e)

)
+

M∑
m=1

(
f (X (τm−), e)− f (X (τm−1), e)

)
.

Based on the stochastic integration (see Chapter 4 in [3]), we have

∑
ξ∈S1

f(X(ξ), E(ξ))− f(X(ξ−), E(ξ))

=

∫
ξ∈S1

b(E (ξ))
∂f

∂x
(X (ξ−) , E (ξ))dξ −

∫
ξ∈S1

∫
0<y<1

y
∂f

∂x
(X (ξ−) , E (ξ))ν (E (ξ) , dy) dξ

+

∫
ξ∈S1

∫
R+

(
f (X (ξ−) + y, E (ξ))− f (X (ξ−), E (ξ))

)
N (E (ξ) , dξ, dy) .
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Then (1) becomes

f(X(t+ ∆t), E(t+ ∆t))− f(X(t), E(t))

=

∫
ξ∈S1

b(E (ξ))
∂f

∂x
(X (ξ−) , E (ξ))dξ −

∫
ξ∈S1

∫
0<y<1

y
∂f

∂x
(X (ξ−) , E (ξ))ν (E (ξ) , dy) dξ

+

∫
ξ∈S1

∫
R+

(
f (X (ξ−) + y, E (ξ))− f (X (ξ−), E (ξ))

)
N (E (ξ) , dξ, dy)

+
∑
ξ∈S2

(
f(X(ξ−) +ME(ξ−),E(ξ), E(ξ))− f(X(ξ−), E(ξ−))

)
.

Notice that for ξ ∈ S1, both E(ξ) and X(ξ−) are predictable. Our calculus is in the Itô form.

Step 2: For each f ∈ C∞0 (R2), we aim to derive the infinitesimal generator L of {X(t), E(t)}:

Lf(x, i) = lim
∆t→0

E (f(X(t+ ∆t), E(t+ ∆t))|X(t) = x,E(t) = i)− f (x, i)

∆t
. (2)

AsE(t) has the transition rate matrix (infinitesimal generator matrix)G = (rij), rii = −
∑
j 6=i

rij ,

defining P (E(t+ ∆t) = j|E(t) = i) = Pij(∆t), we have

lim
∆t→0

E

(∑
ξ∈S2

(
f
(
X(ξ) +ME(ξ−),E(ξ), E (ξ)

)
− f (X(ξ−), E (ξ−))

)
|X(t) = x,E(t) = i

)
∆t

= lim
∆t→0

∑
j 6=i

∫
R+ (f (x+ z, j)− f (x, i))Dij(dz)Pij(∆t)

∆t

=
∑
j 6=i

rij

∫
R+

(f (x+ z, j)− f (x, i))Dij(dz)

=
∑
j∈E

rij

∫
R+

f (x+ z, j)Dij(dz).

Since the Poisson random measure N (dt, dy) has a Poisson distribution with mean ν (dy) dt,
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we have

Lf(x, i) = b(i)
∂

∂x
f(x, i)−

∫
0<y<1

y
∂

∂x
f(x, i)ν (i, dy)

+

∫
R+

(f(x+ y, i)− f(x, i))ν (i, dy) +
∑
j∈E

rij

∫
R+

f (x+ z, j)Dij(dz).

(3)

Step 3: We aim to derive L∗, the adjoint operator corresponding to the infinitesimal generator

L in (3): ∑
i∈E

∫
R+

Lf (x, i)p (x, i, t) dx =
∑
i∈E

∫
R+

f (x, i)L∗p (x, i, t) dx. (4)

Using integration by parts, as p(0, i, t) = 0, and p(∞, i, t) = 0, we have

∑
i∈E

∫
R+

b(i)
∂

∂x
f(x, i)p (x, i, t) dx =

∑
i∈E

∫
R+

b(i)p (x, i, t) df(x, i)

=
∑
i∈E

b(i)p (x, i, t) f(x, i)|R+ −
∑
i∈E

∫
R+

b(i)f (x, i) dp(x, i, t)

=
∑
i∈E

∫
R+

−b(i) ∂
∂x
p(x, i, t)f (x, i) dx,

(5)

and ∑
i∈E

∫
R+

∫
R+

(f(x+ y, i)− f(x, i))ν (i, dy)p (x, i, t) dx

−
∑
i∈E

∫
R+

∫
R+

Iy∈(0,1)y
∂

∂x
f(x, i)ν (i, dy)p (x, i, t) dx

=
∑
i∈E

∫
R+

∫
R+

(p(x− y, i, t)− p(x, i, t))ν (i, dy)f (x, i) dx

+
∑
i∈E

∫
R+

∫
R+

Iy∈(0,1)y
∂

∂x
p(x, i, t)ν (i, dy)f (x, i) dx.

(6)
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By swapping i and j, we have

∑
i∈E

∫
R+

∑
j∈E

rij

∫
R+

f (x+ z, j)Dij(dz)p (x, i, t) dx

=
∑
i∈E

∫
R+

∑
j∈E

rji

∫
R+

p (x− z, j, t)Dji(dz)f (x, i) dx.

(7)

Then from (5), (6) and (7), we have

L∗p (x, i, t) = −b(i) ∂
∂x
p(x, i, t) +

∑
j∈E

rji

∫
R+

p (x− z, j, t)Dji(dz)

+

∫
R+

(
p(x− y, i, t)− p(x, i, t) + Iy∈(0,1)y

∂

∂x
p(x, i, t)

)
ν (i, dy).

For each f ∈ C∞0 (R2), we denote u(t) = E (f(X(t), E(t))). Then based on (2), we have

Lu(t) = ∂
∂t
u(t) (see [36]), and

∑
i∈E

∫
R+

Lf(x, i)p (x, i, t) dx =
∑
i∈E

∫
R+

∂

∂t
(f(x, i)p(x, i, t))dx.

From (4), we have

∑
i∈E

∫
R+

f(x, i)L∗p (x, i, t) dx =
∑
i∈E

∫
R+

∂

∂t
(f(x, i)p(x, i, t))dx,

then

∂p(x, i, t)

∂t
= L∗p (x, i, t) .

To make comparison, Corollary 2 provides the Fokker-Planck equation of {X(t), E(t)} for the
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case that there is no jump in X(t) when the state of E(t) changes.

Corollary 2. For the Markov additive process {X(t), E(t)}, assuming there is no jump in X(t)

when the state of E(t) changes, the Fokker-Planck equation is

∂p(x, i, t)

∂t
= −b(i) ∂

∂x
p(x, i, t) +

∑
j∈E

rjip (x, j, t)

+

∫
R+

(
p(x− y, i, t)− p(x, i, t) + Iy∈(0,1)y

∂

∂x
p(x, i, t)

)
ν (i, dy).

4. Reliability function and lifetime moments

A system fails when the degradation process X(t) exceeds a failure threshold x. To simplify

the formula, we assume x is a constant, and it is straightforward to extend the model when the

failure threshold is a random variable. The lifetime of the system and its moments are defined

respectively as

Tx = inf{t : X(t) > x}, M(T n, x) = E(T nx ).

Since X(t) is nondecreasing, we have

{Tx ≥ t} ≡ {X(t) ≤ x},

then the reliability function can be defined as

R (x, t) = P (Tx ≥ t) = P (X (t) ≤ x) = FX(t) (x) .

In this section, for a degradation process under the dynamic environment described by the

Markov additive process {X(t), E(t)}, we derive the explicit expressions of R (x, t) and lifetime
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moments M(T n, x) in terms of Laplace transform, represented by the infinitesimal generator

matrix and the Lévy measure.

Laplace transform of p(x, i, t) with respect to (w.r.t.) t is defined to be

pL(x, i, ω) =

∫
R+

e−ωtp (x, i, t) dt, ω > 0.

Laplace transform of pL(x, i, ω) w.r.t. x is

pLL(u, i, ω) =

∫
R+

e−uxpL (x, i, ω)dx, u > 0.

The results are presented in Theorems 3 and 4.

Theorem 3. For a degradation process under the dynamic environment that is described by the

Markov additive process {X(t), E(t)} in Section 2.2, the Laplace expression of reliability function

is

RLL(u, ω) = u−1[1, 0, · · · , 0][A−B]−1[1, 1, · · · , 1]T ,

where A is a diagonal matrix with diagonal entries ω + b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), and

B = [rijd
L
ij], i, j ∈ E . In addition, b∗(i) ≥ 0, ν is the Lévy measure, rij, i, j ∈ E are entries of the

infinitesimal generator matrix of E(t), dLji(u) =
∫
R+ e

−uzDji(dz), [1, 0, · · · , 0] is a vector of size

n + 1, where the first element is 1 and all others are 0, and [1, 1, · · · , 1] is a vector of size n + 1,

where all the elements are 1.
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Proof. Based on Theorem 2, the Fokker-Planck equation for {X(t), E(t)} is

∂p(x, i, t)

∂t
= −b(i) ∂

∂x
p(x, i, t) +

∑
j∈E

rji

∫
R+

p (x− z, j, t)Dji(dz)

+

∫
R+

(
p(x− y, i, t)− p(x, i, t) + Iy∈(0,1)y

∂

∂x
p(x, i, t)

)
ν (i, dy).

(8)

For (8), we do Laplace transform of p(x, i, t) w.r.t. t for both sides,

ωpL(x, i, ω)− p (x, i, 0)

= −b(i)∂p
L(x, i, ω)

∂x
+
∑
j∈E

rji

∫
R+

pL (x− z, j, ω)Dji(dz)

+

∫
R+

(
pL(x− y, i, ω)− pL(x, i, ω) + Iy∈(0,1)y

∂pL(x, i, ω)

∂x

)
ν (i, dy) .

(9)

For (9), we do Laplace transform of pL(x, i, ω) w.r.t. x for both sides, then

ωpLL(u, i, ω)− Ii=0

= −b(i)upLL(u, i, ω) +
∑
j∈E

rji

∫
R+

e−uzpLL (u, j, ω)Dji(dz)

+

∫
R+

(
e−uypLL(u, i, ω)− pLL(u, i, ω) + Iy∈(0,1)yup

LL(u, i, ω)
)
ν (i, dy) .

Let b∗(i) = b(i)−
∫

0<y<1
yν (i, dy),

ωpLL(u, i, ω)− Ii=0 =

(
−b∗(i)u+

∫
R+

(
e−uy − 1

)
ν (i, dy)

)
pLL(u, i, ω)

+
∑
j∈E

rji

∫
R+

e−uzDji(dz)pLL (u, j, ω).
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Let dLji(u) =
∫
R+ e

−uzDji(dz), and then the matrix form is

pLL(u, ω)[A−B] = [1, 0, · · · , 0],

where pLL(u, ω) = [pLL(u, 0, ω), pLL(u, 1, ω), · · · , pLL(u, n, ω)], A is a diagonal matrix with

diagonal entries ω + b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), and B = [rijd

L
ij], i, j ∈ E .

We have

RLL(u, ω) = u−1[1, 0, · · · , 0][A−B]−1[1, 1, · · · , 1]T .

Remark 1. For (8), we do Laplace transform of p(x, i, t) w.r.t. x for both sides,

pL(u, i, t) =

∫
R+

e−uxp (x, i, t) dx, u > 0,

then
∂pL(u, i, t)

∂t
= −b(i)upL(u, i, t) +

∑
j∈E

rji

∫
R+

e−uzpL (u, j, t)Dji(dz)

+

∫
R+

(
e−uypL(u, i, t)− pL(u, i, t) + Iy∈(0,1)yup

L(u, i, t)
)
ν (i, dy)

=

(
−b∗(i)u+

∫
R+

(
e−uy − 1

)
ν (i, dy)

)
pL(u, i, t) +

∑
j∈E

rjid
L
jip

L (u, j, t).

Solving this ordinary differential equation, we have the solution in the matrix form:

pL(u, t) = [1, 0, · · · , 0] exp {t [B−A0]} ,

where A0 is a diagonal matrix with diagonal entries b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), i ∈ E .
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We use Theorem 3 to derive the Laplace expression for the moments of lifetime Tx as Theorem

4.

Theorem 4. For a degradation process under the dynamic environment that is described by the

Markov additive process {X(t), E(t)} in Section 2.2, the Laplace expression of lifetime moments

is

ML(T n, u) = n!u−1[1, 0, · · · , 0][A0 −B]−n[1, 1, · · · , 1]T ,

where A0 is a diagonal matrix with diagonal entries b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), and B =

[rijd
L
ij], i, j ∈ E . In addition, b∗(i) ≥ 0, ν is the Lévy measure, rij, i, j ∈ E are entries of the

infinitesimal generator matrix of E(t), dLji(u) =
∫
R+ e

−uzDji(dz), [1, 0, · · · , 0] is a vector of size

n + 1, where the first element is 1 and all others are 0, and [1, 1, · · · , 1] is a vector of size n + 1,

where all the elements are 1.

Proof. We have P (Tx < t) ≡ P̃ (x, t) = 1 − R(x, t). Then P̃ (dt, x) = −R(x, dt). The Laplace

transform of P̃ (dt, x) w.r.t t is

p̃L(x, ω) = −ωRL(x, ω) + u(x), (10)

where u(x) is the unit step function. For (10), we do Laplace transform w.r.t. x for both sides, then

p̃LL(u, ω) = −ωRLL(u, ω) + u−1.
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From Theorem 3, we have

p̃LL(u, ω) = −ωu−1[1, 0, · · · , 0][A−B]−1[1, 1, · · · , 1]T + u−1.

We denote

p̃LLn (u, ω) = (−1)n
∂np̃LL(u, ω)

∂ωn
,

and then the Laplace expression of lifetime moments is

ML(T n, u) = p̃LLn (u, 0) = (−1)n
[
∂np̃LL(u, ω)

∂ωn

]
ω=0

,

where

[
∂np̃LL(u, ω)

∂ωn

]
ω=0

= −u−1n

[
∂n−1

{
[1, 0, · · · , 0][A−B]−1[1, 1, · · · , 1]T

}
∂ωn−1

]
ω=0

,

and [
∂n−1

{
[1, 0, · · · , 0][A−B]−1[1, 1, · · · , 1]T

}
∂ωn−1

]
ω=0

= (−1)n−1 (n− 1)![1, 0, · · · , 0][A0 −B]−n[1, 1, · · · , 1]T .

Therefore, we have

ML(T n, u) = n!u−1[1, 0, · · · , 0][A0 −B]−n[1, 1, · · · , 1]T .

To make comparison, Corollaries 3 and 4 provide the Laplace expressions of reliability function
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and lifetime moments, respectively, assuming there is no jump in X(t) at the time the state of E(t)

changes.

Corollary 3. For a degradation process under the dynamic environment that is described by the

Markov additive process {X(t), E(t)}, assuming there is no jump in X(t) when the state of E(t)

changes, the Laplace expression of reliability function is

RLL(u, ω) = u−1[1, 0, · · · , 0][A−G]−1[1, 1, · · · , 1]T ,

where A is a diagonal matrix with diagonal entries ω + b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), i ∈ E ,

and G is the infinitesimal generator matrix of E(t).

Corollary 4. For a degradation process under the dynamic environment that is described by the

Markov additive process {X(t), E(t)}, assuming there is no jump in X(t) when the state of E(t)

changes, the Laplace expression of lifetime moments is

ML(T n, u) = n!u−1[1, 0, · · · , 0][A0 −G]−n[1, 1, · · · , 1]T ,

where A0 is a diagonal matrix with diagonal entries b∗(i)u−
∫
R+ (e−uy − 1)ν (i, dy), i ∈ E , and

G is the infinitesimal generator matrix of E(t).

5. Numerical examples

To illustrate our models, we consider two cases of {X (t) , E (t)}:

Case 1: There are no jumps in degradation X(t) when the states of environment E(t) changes;
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Case 2: There are random jumps in degradation X(t) when the states of environment E(t)

changes.

We use a Markov process with two states {0, 1} to model the environment, and its infinitesimal

generator matrix is

G =

 r00 r01

r10 r11

 .

In Case 2, we use a Lévy distribution to model the jumps when the environment switches from

state 0 to state 1:

D01(dz) =



√
ξ

2π
exp(− ξ

2(z−$)
)

(z −$)
3
2

for z > $ > 0

0 otherwise,

and then dL01(u) = e−u$−
√

2uξ. A gamma distribution is used to model the jumps when the

environment switches from state 1 to state 0:

D10(dz) =
βαzα−1e−βz

Γ (α)
, z > 0,

and then dL10(u) = ( β
β+u

)α.

We use a Lévy measure to model the Lévy degradation under the environment state 0:

ν(0, dy) =
δγ−2κ1κ1y

−κ1−1 exp(−1
2
γ2y)

Γ(κ1)Γ(1− κ1)
dy,

where y, δ > 0, 0 < κ1 < 1, γ ≥ 0, which represents a positive tempered stable process

PTS(κ1, δ, γ) [5].
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We use another Lévy measure to model the Lévy degradation under the environment state 1:

ν(1, dy) =
κ2

Γ(1− κ2)

1

yκ2+1
dy,

where y > 0, 0 < κ2 < 1, which represents a positive stable process PS(κ2) [5]. When κ1, κ2 are

close to 0, the corresponding stable processes propagate with big jumps; when κ1, κ2 are close to

1, the stable processes evolve with small jumps. Of note, in the case of stable Lévy process, it can

be easily checked that the conditions for Theorem 2 are satisfied.

For Case 1, the Laplace expression of reliability function based on Corollary 3 is

RLL(u, ω)

= u−1[1, 0]

 ω + b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00 −r01

−r10 ω + b∗(1)u+ uκ2 − r11


−1

[1, 1]T

= u−1 ω + b∗(1)u+ uκ2 − r11 + r01

(ω + b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00)(ω + b∗(1)u+ uκ2 − r11)− r01r10

.

The Laplace expression of lifetime moments based on Corollary 4 is

ML(T n, u) =n!u−1[1, 0]

 b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00 −r01

−r10 b∗(1)u+ uκ2 − r11


−n

[1, 1]T .

The first and second moments of lifetime for Case 1 are

ML(T 1, u) = u−1 b∗(1)u+ uκ2 − r11 + r01

(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00)(b∗(1)u+ uκ2 − r11)− r01r10

,

24



ML(T 2, u) = 2u−1 [b∗(1)u+ uκ2 − r11]2 + r01r10

[(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00)(b∗(1)u+ uκ2 − r11)− r01r10]2

+ 2u−1 r01[b∗(1)u+ uκ2 − r11] + r01[b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00]

[(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00)(b∗(1)u+ uκ2 − r11)− r01r10]2

.

For Case 2, the Laplace expression of reliability function based on Theorem 3 is

RLL(u, ω)

= u−1[1, 0]

 ω + b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00d

L
00 −r01d

L
01

−r10d
L
10 ω + b∗(1)u+ uκ2 − r11d

L
11


−1

[1, 1]T

= u−1 ω + b∗(1)u+ uκ2 − r11d
L
11 + r01d

L
01

(ω + b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00dL00)(ω + b∗(1)u+ uκ2 − r11dL11)− r01dL01r10dL10

.

The Laplace expression of lifetime moments based on Theorem 4 is

ML(T n, u)

= n!u−1[1, 0]

 b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00d

L
00 −r01d

L
01

−r10d
L
10 b∗(1)u+ uκ2 − r11d

L
11


−n

[1, 1]T .

The first and second moments of lifetime for Case 2 are

ML(T 1, u)

= u−1 b∗(1)u+ uκ2 − r11d
L
11 + r01d

L
01

(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00dL00)(b∗(1)u+ uκ2 − r11dL11)− r01dL01r10dL10

,
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ML(T 2, u)

= 2u−1 [b∗(1)u+ uκ2 − r11d
L
11]2 + r01d

L
01r10d

L
10

[(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00dL00)(b∗(1)u+ uκ2 − r11dL11)− r01dL01r10dL10]2

+ 2u−1 r01d
L
01[b∗(1)u+ uκ2 − r11d

L
11] + r01d

L
01[b∗(0)u− δγ + δ(γ

1
κ1 + 2u)

κ1
− r00d

L
00]

[(b∗(0)u− δγ + δ(γ
1
κ1 + 2u)

κ1
− r00dL00)(b∗(1)u+ uκ2 − r11dL11)− r01dL01r10dL10]2

.

The system fails when X(t) exceeds the threshold x. The inversion algorithms for Laplace

transform [1, 6] were implemented to invert the Laplace expressions in Theorems 3, 4 and

Corollaries 3, 4 in order to compute the values of reliability and lifetime moments.

The values for the parameters are given in Table 1. The parameters of a Markov additive process

can be estimated when a real degradation data set from dynamic environments is available. Since

the probability density function of a general Lévy subordinator is not available in a closed-form,

the traditional maximum likelihood estimation and Bayesian estimation are not convenient for

such general jump processes and their functional extensions. Based on the characteristic function

of Lévy subordinator we can use the cumulant M-estimator (CME) [18] to estimate the parameters.

The statistical inference method will be presented in a separate manuscript.

[Table 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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Figure 2 and 3 show the reliability w.r.t. time t and failure threshold x based on general Markov

additive processes. For both cases, the reliability decreases as the time increases, and it increases

as the threshold increases. Figure 4 shows the reliability w.r.t. time t when x = 15 and x = 20

for both cases. The reliability in Case 2 decreases faster than that in Case 1 at the same threshold.

Figure 5 and Figure 6 illustrate the first moments and the second moments of lifetime with respect

to failure threshold x for both cases. Both the first and the second moments of lifetime in Case 2

are less than that in Case 1 at the same threshold. Besides the Lévy measures used in this section,

we can specify different Lévy measures to fit the corresponding degradation data, and evaluate

their reliability function and lifetime moments.

6. Conclusions

In this paper, we developed new systematic procedures to derive powerful and compact results

for reliability analysis based on the degradation process under the dynamic environment:

Step 1: Derive the infinitesimal generator of the stochastic process of interests;

Step 2: Derive the adjoint operator corresponding to the infinitesimal generator, based on which

the Fokker-Planck equation of such stochastic process is developed;

Step 3: Derive the reliability characteristics of the system in terms of Laplace transform.

Our work in this paper is summarized as: 1) we model the degradation process under the

dynamic environment using the Markov additive process, while most models in the literature

were constructed for the deterministic environment; 2) we use the Lévy subordinator to model the

degradation under a certain environment state, and the corresponding Lévy measure can represent

different complex jump mechanisms including infinite activities and finite activities in degradation;
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3) our models are general to fit more types of degradation data than those based on gamma/Poisson

processes; and 4) we derive the Fokker-Planck equation for a class of general Markov additive

processes, and obtain the explicit expressions for reliability function and lifetime moments, which

provide a new methodology to deal with multiple dependent degradation processes under dynamic

environments.
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Table 1: Parameter values for the models.

x [0,30] α 0.2 κ2 0.9
r00 = −r01 -10 β 50 b∗(0) 0.02
r10 = −r11 15 δ 0.6 b∗(1) 0.01

ξ 0.0001 κ1 0.8
$ 0.01 γ 0.9
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Figure 1: A sample path of Markov additive process with a random jump when the environment states changes
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Figure 2: Reliability function w.r.t. time t and failure threshold x for Case 1
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Figure 3: Reliability function w.r.t. time t and failure threshold x for Case 2
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Figure 4: Reliability functions w.r.t. time t when x = 15 and x = 20 for both Case 1 and Case 2
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Figure 5: First moments of lifetime w.r.t. failure threshold x for both Case 1 and Case 2
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Figure 6: Second moments of lifetime w.r.t. failure threshold x for both Case 1 and Case 2
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