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Abstract

Condition-based maintenance strategies are effective in enhancing reliability

and safety for complex engineering systems that exhibit degradation phenomena

with uncertainty. Such sequential decision-making problems are often modeled

as Markov decision processes (MDPs) when the underlying process has a Markov

property. Recently, reinforcement learning (RL) becomes increasingly efficient to

address MDP problems with large state spaces. In this paper, we model the

condition-based maintenance problem as a discrete-time continuous-state MDP

without discretizing the deterioration condition of the system. The Gaussian pro-

cess regression is used as function approximation to model the state transition and

the value functions of states in reinforcement learning. A RL algorithm is then

developed to minimize the long-run average cost (instead of the commonly-used

discounted reward) with iterations on the state-action value function and the state

value function, respectively. We verify the capability of the proposed algorithm by

simulation experiments and demonstrate its advantages in a case study on a bat-

tery maintenance decision-making problem. The proposed algorithm outperforms

the discrete MDP approach by achieving lower long-run average costs.

Keywords: Condition-based maintenance; Reinforcement learning; Gaussian pro-

cess regression; Markov decision process; Gaussian processes for reinforcement

learning; Function approximation

1



1 Introduction

Condition-based maintenance (CBM) has been effectively implemented to increase system

reliability, availability, and safety with reduced maintenance costs in many capital-intensive

industries, e.g., energy, oil and gas, and aerospace. In engineering systems that need to be

maintained preventively, degradation phenomena are often observed that possess a stochastic

nature with uncertainty. Markov decision processes (MDPs) are commonly adopted to model

such system dynamics and the related costs accrued in a probabilistic manner. Recently, rein-

forcement learning (RL) has been implemented as an effective approach for solving MDPs in

maintenance problems [1–7]. However, most RL algorithms applied to maintenance decision

making are restricted to discrete state and action spaces. In this research, we introduce the

Gaussian process (GP) function approximation in RL algorithms to handle the continuous

states for decision-making in CBM.

The early implementation of MDPs for preventive maintenance addresses a handful of

states either discretized from continuous state indicators or obtained from experts’ domain

knowledge [8–12]. In these studies, the traditional approaches to solve the MDP models were

used that can be summarized into two categories: dynamic programming (DP) and linear

programming (LP) [13]. Despite the advantages of these traditional solutions to MDPs

compared to exhaustive search, both DP and LP algorithms are too restrictive to be applied

to many practical problems that do not commonly satisfy the assumptions: a discrete-time

and finite state-action space, and the known system dynamics and reward structures. In

addition, the traditional methods have a polynomial complexity in terms of the number of

states and the number of actions [14]. The increase in the dimension of the state space makes

traditional methods prohibitively slow, i.e., the well-known “curse of dimensionality” [15]. To

overcome these limitations of original MDP models and their solutions, some extensions have

been made to MDPs, such as semi-MDPs and partially observable MDPs. Both approaches

have been used for maintenance decision-making [16, 17]. However, these extensions of MDPs

cannot handle a large or continuous state space due to their rigorous format.
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RL has recently been introduced to solve MDPs in maintenance planning problems [1–7].

Instead of assuming a strict MDP formulation, reinforcement learning treats the problem

as an agent interacting with a random environment, while maximizing the rewards accrued

along the process. Equipped with a set of modern approaches highlighted by techniques in-

cluding temporal difference (TD) learning and function approximation, reinforcement learn-

ing is able to solve MDP problems where the underlying state-transition dynamics is unknown

or the state and action spaces are extremely large. For multi-product inventory maintenance,

Das et al. [1] introduced the semi-Markov average reward technique to solve the general

semi-Markov process for maximizing the average reward. To prevent cascading failure and

blackout in smart grids, Zarrabian et al. [2] utilized a tabular Q-learning algorithm with a

Boltzmann exploration policy setting. To optimize control policies for the production and

maintenance of deteriorating manufacturing systems, Xanthopoulos et al. [3] implemented a

tabular state-action-reward-state-action (SARSA) algorithm with an average reward. Allen

et al. implemented a Bayesian RL algorithm in a cyber preventive maintenance problem [4].

In these studies of using RL for addressing maintenance problems, the continuous degrada-

tion states are discretized to avoid the burden of a large or continuous state space, which

inevitably leads to loss of accuracy in the analysis. In practical applications, however, the

degradation phenomena are often described in continuous metrics, e.g., the capacity loss of

rechargeable batteries [18], and the generator bearing temperature in wind turbines [19].

In this research, we explore the approach of function approximation in RL to handle the

continuous states for CBM decision-making. Specifically, we propose to use the Gaussian

process regression (GPR) as function approximation to model the state transition prob-

ability and the value function of states in our MDP. As a general nonparametric model,

Gaussian process regression gains a reputation for its universality and good utilization of

data, which is easy to implement as well [20]. Gaussian processes have been widely adopted

for modeling stochastic processes in reliability and maintenance studies. To optimize pre-

ventive maintenance strategies for deteriorating assets, Gaussian processs are used as an

emulator to approximate the Expected Value of Perfect Information indices for measuring
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the effect of parameter uncertainty on the cost [21–23]. In wind turbine condition monitor-

ing, Gaussian processes have been used for modeling power performance indicators to detect

anomaly [24–26]. [27] used Gaussian process classifiers to the operational data to investigate

fault diagnosis of wind turbines. To assess the remaining useful life of in-service compo-

nents, multivariate Gaussian convolution processes are used based on condition monitoring

signals [28].

The use of Gaussian process regression in RL dates back to 2003 when Engel et al. [29]

used a GP to approximate state value functions that are incorporated into the TD learning

(GPTD). Rasmussen & Kuss [30] then introduced an offline algorithm to maximize the

discounted reward in a discrete time continuous state MDP, where the state transitions and

the state value functions are both modeled by the GPR. Then the original GPTD algorithm

in [29] was extended to Gaussian Process SARSA by Engel et al. [31], who imposed the GPR

function approximation on the state-action function instead of the state value function. With

the development of Gaussian process methods in RL, the theoretical demonstration of the

sample efficiency emerged for some RL algorithms using GP as function approximation since

2014 [32]. The aforementioned RL algorithms equipped with GP focus on the discounted

reward objective, which is extended to the average reward objective in this study.

We demonstrate the performance of the proposed method using a case study on the

replacement threshold decision making of lithium-ion batteries with a continuous capacity

loss. Battery management systems have been well developed to monitor and control the

state-of-charge (SOC) and the state-of-health (SOH) during the working cycles in order to

enhance the efficiency of rechargeable batteries [33, 34]. Although extensive studies have

been conducted on the SOC and SOH estimation of lithium-ion batteries [35–38], there is a

lack of research on the maintenance decision making for rechargeable batteries [39]. Existing

studies on battery maintenance focus on time-based maintenance policies, ignoring the SOH

of batteries and the stochastic nature of battery degradation [40]. To predictively maintain

the health of battery systems, we introduce the RL algorithms to solve the MDP problem

formulated to optimize the replacement threshold, while the continuous capacity loss of
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batteries can be described using a stochastic process holding the Markovian property [40].

The results from the proposed RL algorithm using GP approximation are compared to the

ones from the traditional value iteration algorithm for discrete MDPs, where the continuous

state space is discretized into a finite number of states. In the proposed RL algorithm using

GP as function approximation, we optimize the long-run average reward (instead of the

discounted reward commonly in the literature) with iterations on both the state-action value

function and the state value function. In addition, we implement a simulation experiment

to compare the results with those from the exhaustive search and Monte Carlo estimation.

The proposed research is expected to enhance the maintenance decision-making capability

for complex systems, especially those concerning continuous states and discrete time. This

enables us to solve the problem without discretizing the degradation state and leads to a

more accurate result with a lower long time average cost compared with the discretized MDP

formulation.

The remainder of the paper is organized as follows. Section 2 describes the general CBM

problem under the MDP framework. In Section 3, we construct the RL algorithm with the

GP as function approximation for CBM. Section 4 presents the numerical experiments of the

proposed algorithm for the maintenance decision making of lithium-ion batteries, including

both simulation studies and case studies. Finally, we provide a summary and discussion in

Section 5.

2 System Description

condition-based maintenance is an effective maintenance approach that takes into account

the real-time conditions of a system (e.g., degradation, capacity loss) observed through

continuous monitoring or periodic inspection [41, 42]. The conditions of a system are either

descriptive defined by domain experts [8–10] or extracted from sensor data commonly in

recent applications [2, 3, 11]. For a non-repairable system, we study a CBM approach that

considers actions of corrective maintenance and preventive maintenance. The objective is to
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optimize the threshold for preventive maintenance that can minimize the total maintenance-

related cost, where the maintenance actions take place according to the detected condition

of the system at each decision epoch. The additional assumptions for the system are listed

as follows.

1. A non-repairable system is continuously monitored or periodically inspected before each

decision epoch.

2. The condition of the system is a continuous random variable, denoted as S(t), which

satisfies the Markovian property.

3. The system fails when S(t) reaches a pre-determined end-of-life threshold, H.

4. Maintenance decisions are made at equally-spaced decision epochs based on the observed

condition of the system:

(a) If the system condition is observed to be beyond the end-of-life threshold, S(t) > H,

then a corrective maintenance (CM) is performed, incurring a combined cost of the

replacement cost, CR, and a penalty cost due to downtime, CD.

(b) If the system condition exceeds a threshold for replacement, Hp, where Hp < S(t) <

H, then a preventive maintenance (PM) is implemented even though the system is

still functioning, and only the replacement cost, CR, is incurred.

(c) If the system condition is less than Hp, no action (N) is needed.

5. The time horizon is approximately infinite.

To evaluate the performance of the maintenance policy, we use a long-term average main-

tenance cost rate model, in which the optimal threshold for preventive replacement, H∗p , is

the decision variable:

C = lim
t→∞

(CC ×NC(t) + CR ×NP (t)) /t,

where C is the long-term average maintenance cost per unit of time, CC = CR + CD is

the cost induced by a corrective maintenance action. NC(t) and NP (t) are the numbers of

corrective maintenance and preventive maintenance actions by time t, respectively.
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Figure 1: The Framework of MDP for CBM

Figure 2: The State-Machine of MDP for CBM

2.1 Markov Decision Process for Condition-Based Maintenance

The overall framework of the MDP for the condition-based maintenance is shown in Figure

1. The system under maintenance is monitored to obtain its state at each decision epoch.

The state of the system can be directly represented by its sensor data, which commonly

leads to a large state space. To avoid the computational burden, the system states can be

extracted from the sensor data or determined by field experts’ observations. Based on the

system state at each decision epoch, an action is taken on the system maintained.

The MDP model can be fully described by the quintuple {T ,S,A, p(s′|s, a), r(s, a)} [43],

where T stands for the countable set of decision epochs. In our MDP model for condition-

based maintenance, S is the set of all possible values of the continuous system condition,

instead of the discrete states [8–10] or the discretized sensor data [3] in most of the literature.
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Although the system is constantly monitored, we take only its conditions at the decision

epochs for decision making with the Markovian property assumption. At each decision

epoch, if the system is in state s ∈ S, an action a ∈ A is made that incurs an expected

reward of r(s, a). In our CBM model, A = {N,PM,CM} denoting three different actions:

doing nothing, preventive maintenance, and corrective maintenance. The reward function r

is evaluated based on the total costs related to maintenance: r = 0,−CR, or −(CR+CD) for

a = N,PM , or CM , respectively. The state transition probability distribution is represented

by p(s′|s, a). When a = PM or a = CM , p(0|s, a) = 1 for all s. When a = N , the state

transition probability, p(s′|s, a), is estimated from existing degradation paths. When S is a

countable set, p(s′|s, a) provides a value for each s, s′ ∈ S, a ∈ A. Otherwise, p(s′|s, a) is

assumed to be a probability density function.

Figure 2 depicts the state machine of the MDP model for the condition-based mainte-

nance. The system starts with the as-good-as-new state S(0) = 0. As long as the system

state is below the preventive maintenance threshold, S(t) < Hp, no action is taken with no

cost accrued. Once S(t) goes beyond Hp (Hp < S(t) < H), a preventive maintenance action

is taken that brings the system to the as-good-as-new state S(0) = 0, incurring a preven-

tive maintenance cost CR. When S(t) goes beyond H, a corrective maintenance action is

performed to restore the system to the as-good-as-new state, with the maintenance cost CR

and the downtime cost CD accrued to the total cost.

To learn from existing samples, we consider deterministic policies π that are functions,

π : S → A, which assign a single action to each range of state:

π(s) =


N s ∈ [0, Hp)

PM s ∈ [Hp, H)

CM s ∈ [H,∞)

The optimal policy, namely, H∗p , can be obtained by using the RL approach to minimize the

long-term average maintenance cost, denoted by C∗.
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3 Methodology Description

3.1 Reinforcement Learning

In reinforcement learning, an agent interacts with the random environment at discrete

times. At specified times called decision epochs, the agent observes the state of the system

s and takes an action a accordingly, leading to an instant state s′ and an instant reward

r. The rule followed by the agent in selecting an action given the current state is called

the policy of the agent, denoted by a function π : S → A, where S and A are the state

and the action spaces, respectively. As aforementioned, reinforcement learning has been

introduced to solve CBM problems, where the degradation state at each decision epoch

constitutes the state transition samples of the underlying MDP. The main goal of RL in

condition-based maintenance is to achieve an optimal policy π∗ that minimizes the long-

term average maintenance cost. Such an optimal policy satisfies the well-known Bellman

optimality equation [44]:

v∗(s) + ρ∗ = max
a

∑
s′,r

p(s′, r|s, a)[r + v(s′)], (1)

where the scalar ρ∗ = −C∗ is the maximum long-term reward under policy π∗, and v∗(s)

denotes the value function of state s under policy π∗. For an average-reward MDP, the

optimal policy is equivalent to the solution to its Bellman equation.

The state-of-the-art RL approach is characterized by the TD and function approximation.

With the introduction of TD learning, RL algorithms no longer require exact transition

models and reward structures to be known in advance [45]. A typical update in TD prediction

takes the format

vπ(s)← vπ(s) + α[r + vπ(s′)− vπ(s)],

where α is a constant called the learning rate. The Q-learning algorithm [46], the SARSA

algorithm [47], the n-step Q(σ) algorithm [48] and Dyna-Q [49] are important variants of

the original TD algorithm. An effective technique to model the continuous state space in
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RL is to use function approximation, which approximates the value function by estimating

a function mapping the state-action pairs to values, instead of maintaining a table for the

value function of each state-action pair [50]. In this approach, we update an approximate

value function ṽ instead of precisely updating the table storing its value at every point. We

carry out the value iteration on sample points {si}ns
i=1, rather than every state action pair.

The Bellman equation in Eq. (1) changes to the maximization over ṽ. Hence, the update in

the value iteration becomes [51]:

vsi = max
a∈A

∑
s′∈S

p(s′|si, a)ṽ∗(s
′) + r(si, a), for i = 1, . . . , ns.

Free of an exact representation of all possible values in value functions, a function ap-

proximation makes it possible for RL algorithms to estimate the value function over a large

or continuous state-action space with a moderate number of available samples. As the value-

function model has no restriction on the form of mappings, it can utilize modern modeling

techniques, such as artificial neural network models [52] and the gradient descent improve-

ment [53].

3.2 Gaussian Process in Reinforcement Learning

As aforementioned, it is challenging for a discrete MDP to provide an accurate estimation

of transition probabilities and reward structures, while maintaining the Markov property.

In order to handle a large or continuous state space that cannot be addressed by the tab-

ular method, we turn to the function approximation to model the state transitions of the

system and the value functions (both state value functions and state-action value functions)

for continuous states. When there is not enough information on the possible function to

approximate, a general approximator is preferred. Although neural networks are capable to

model various relationships, they usually require a large amount of data. Therefore, we turn

to the GPR that can fit small datasets without loss of generality.
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3.2.1 Inference and Prediction of Gaussian Process Regression

The Gaussian Process for reinforcement learning (GPRL) method first models the state

transitions as a GP, then uses a set of support points for the value iteration of the value

function that is modeled by another GP. A GP f(x) ∼ GP(m(x), k(xi,xj))) is a collection of

random variables, any finite number of which have a joint Gaussian distribution. A Gaussian

process can be fully characterized by its mean function m(x) and covariance function k(xi,xj)

[54]. In our CBM model, the independent variable x and the dependent variable f(x) of the

GP are replaced by s and s′, respectively, i.e., the state of the system under maintenance

at the current and the next decision epochs, both of which are one-dimensional signals. As

described in Section 2, when the action a = PM or CM , the state of the system returns

to the as-good-as-new state. Therefore, the following Gaussian process, f(s), is utilized to

model the transition dynamics when a = N :

m(s) = E(f(s))

k(si, sj) = E[(f(si)−m(si))(f(sj)−m(sj))].

In a Gaussian process, the noise in the observed data over time is commonly modeled as

a normal random variable that is assumed to be independent of the process [54]:

s′ = f(s) + ε, ε ∼ N (0, σ2
n) (2)

where s′ is the dependent variable and ε is the residual.

For one-dimensional data in this research, we consider a kernel function that is specified

as the squared exponential function over states [54]:

k(si, sj) = v2e
−(si−sj)

2

2l2 (3)

where v and l are the parameters of interest.
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In addition, we consider the Matern kernel function that is given as [54]:

kmatern(si, sj) = σ2
f

21−ν

Γ(ν)

(√
2νr

σl

)ν

Kν

(√
2νr

σl

)
, (4)

where Γ(·) is the gamma function and Kν(·) is the modified Bessel function of the second

kind, and r =
√

(si − sj)2. σl, and σf are the model parameters to be estimated and the

parameter ν needs to be manually specified.

In order to catch the non-zero mean function, we can use a basis function h(s) whose

components constitute the mean function of the GP with coefficients β. The GP f(s) in

Eq. (2) can then be represented by a zero-mean GP, g(s), and the basis function whose

closed-form likelihood function can be obtained from the literature [54]:

f(s) = g(s) + h(s)>β, where g(s) ∼ GP(0, k(si, sj)). (5)

With a sample transition (s, s′), the parameter estimates can be obtained by maximizing

the likelihood function of the state transition probability function [54]:

log p(s′|s,b) = −1

2
(H>b− s′)>K−1s′ (H>b− s′)− 1

2
log |Ks′ | −

n

2
log 2π, (6)

where H = (h(s1), ...,h(sn)), Ks′ = K + σ2
nI with K satisfying Kij = k(si, sj) by taking the

observation noise into consideration.

With the estimation of parameters, the upcoming state transitions are predicted by inte-

grating the new point s∗ into the current GP [20] :

s′
s′∗

 ∼ N
[H,h(s∗)]

>β,

K K>∗

K∗ K∗∗


where

K∗ = [k(s∗, s1) ... k(s∗, sn)], K∗∗ = k(s∗, s∗).

12



Then the distribution of the updated state transition can be represented by [20]

s′∗|s′ ∼ N
(
K∗K

−1s′ + h(s∗)
>β, K∗∗K

−1K>∗
)
. (7)

Given s∗, the mean term K∗K
−1s′ + h(s∗)

>β in Eq. (7) can be regarded as the point

estimation of s′∗. The confidence interval on s′∗ can be obtained using the estimated variance

of s′∗ given by K∗∗K
−1K>∗ .

3.2.2 Gaussian Process in Reinforcement Learning over Long Term Average Reward

The commonly used RL algorithms in the literature are mostly for optimizing the expected

discounted reward, in which a discount factor is used to control the impact of the future

reward on the current state [29, 32]. In this research, however, we need to optimize the

long-term average reward, i.e., to minimize the long-term average maintenance cost of the

system. Therefore, the algorithms for optimizing the expected discounted reward cannot

be readily utilized. With the absence of the discount factor, the accumulated reward for

every state of this ergodic process is infinite. Inspired by the idea of policy iteration for the

long-term average reward in the discrete Markov decision model [13], we can assume that

the change in reward after each step for every state stays the same in the long run under a

fixed policy. In this way, we can change the stabilization condition accordingly to optimize

over the long-term average cost.

The detailed steps are described in Algorithm 1, or GPRL algorithm, in which the in-

crement of value function at each support point is evaluated as its Euclidean diameter and

calculated after every iteration. Compared to the RL algorithms for optimizing the expected

discounted reward, we change the condition for convergence to achieve the optimal long-term

average reward: it converges when the diameter of the increment becomes smaller than a

specified threshold value. We also store p(s′|s, a) to save the time of numerical integration.

Another version of Algorithm 1 is developed and implemented for the state-action value it-

eration, in which the state-action value function is modeled by another GP, and the update

is changed accordingly.
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Algorithm 1: Value Iteration for Average Reward in GPRL

Step 1: Input n observations of state transition in a fixed interval ∆t of the form (s, a, s′) and
one-step reward function r(s, a).
Step 2: Model the state transition with GPR, and get the transition probability as a normal
distribution p(s′|s, a) = N (µs′(s),Σs′(s)).
Step 3: Choose a set of m supporting points S = {s1, ..., sm} and initialize their value function as
Vi = Ri = r(si, a0) where a0 is assigned arbitrarily. Then fit the GPR for value function.
Step 4: set ∆ = 1, ε = 0.00001
while ∆ ≥ ε, do

for i = 1, ...,m, do
Choose the optimal policy based on current values for supporting points:
ai = arg max

a

∫
p(s′|si, a)[r(si, a) + V (s′)]ds′.

Compute new values for supporting points: V (si)
new =

∫
p(s′|si, ai)[r(si, ai) + V (s′)]ds′.

Update the reward function for supporting points: Ri = r(si, ai).
end
Compute the maximal and minimal differences and test the stationary property:
δmax = max(V new − V ), δmin = min(V new − V ), ∆ = δmax − δmin.

Update the GPR model for value function with new Ris.
end

4 Numerical Experiments

We demonstrate the performance of the proposed RL algorithm with GP approximation

(GPRL algorithm) using simulation experiments and case studies on a CBM decision-making

problem for lithium-ion batteries, while the continuous capacity loss of batteries can be

described using a stochastic process holding the Markovian property. The following model

parameters are shared among simulation experiments and case studies with real data. The

preventive maintenance cost is the cost of replacing a battery, i.e., the cost of a new battery

and a negligible labor cost, which is estimated as $10,000 for a 100kWh battery set. The

downtime cost when a battery ceases to function is estimated to be $3,000. To normalize the

cost parameters, we assign CR = −1.0 for the preventive maintenance cost and CD = −0.3

for the downtime cost, respectively. The system state, S = [0, 1], indicates the percentage of

capacity loss of a battery. Our objective is to minimize the average cost per decision epoch

in the long term.
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4.1 Simulation Study

We start with a simulation experiment to compare the results of the GPRL algorithm

with those from the exhaustive search using Monte Carlo simulation, in terms of the accuracy

in the optimal policy and cost. In this experiment, the degradation paths for the continuous

capacity loss of batteries are sampled from a Wiener process with a drift of 0.0002 and a

variance of 0.0012, where the drift value is chosen to obtain an expected cycle life of 1,000

when H = 0.2.

For the GPRL algorithm, we have 100 paths in the training set and 100,000 paths in

the test set to validate the performance. The numerical integration and policy evaluation

are conducted at an interval of 0.001 for S = [0, 1]. In the GPRL algorithm, the mean

function is set to be the linear base function h(s) in Eq. (5) and the covariance function

is the squared exponential function in Eq. (3). The GPRL algorithm achieved the optimal

policy of H∗p = 0.183 with the average cost per 50 cycles of $531.71.

On the other hand, the result of the Monte Carlo simulation at the same interval length of

0.001 is shown in Figure 3, where the average cost per 50 cycles from the exhaustive search

is $533.69 with the same optimal policy. The agreement of the results from the GPRL

algorithm and the Monte Carlo simulation indicates that the proposed GPRL method is

capable of reaching the optimal policy without the degradation model to be known. In

addition, the proposed GPRL algorithm is more computationally effective for complicated,

unknown degradation models.

4.2 Case Study

4.2.1 Data Description and Model Details

Case studies are implemented to demonstrate the performance of the GPRL algorithm

on the randomized battery usage data from NASA Ames Research Center [56]. We used

the data from six different experiments carried out under different current and temperature

conditions, each containing four trajectories of capacity loss obtained under the same exper-
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Figure 3: Monte Carlo Simulation Results When H = 0.2

imental environment. For each of the 24 trajectories, we calculated the capacity loss from

the recorded voltage and current using reference periods of every 50 charging-discharging

cycles. Figure 4 presents the capacity loss in percentage over time for the four trajectories

in one of the six experiments.

Before we implement the proposed GPRL algorithm, the discrete MDP approach using the

value-iteration algorithm is applied to this dataset of 24 trajectories, where the continuous

state space is discretized into a finite number of states. The results are then compared

in terms of the optimal objective function and the computational burden. According to

industry standards [18, 33, 36], the battery lifetime is determined by using 20%, 30%, and

40% capacity loss as the end-of-life threshold of lithium batteries, i.e., H = 0.2, 0.3, and 0.4,

respectively.

4.2.2 Results from Discrete MDP

We first formulate the degradation of capacity loss as a discrete-time discrete-state MDP

to serve as a benchmark. The continuous capacity loss data is discretized into bins that

are small enough to maintain the Markov property. It can be verified using a chi-square

homogeneity test on the transition probability from the current state to the next state
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Figure 4: Capacity Loss Trajectories of Four Batteries in NASA Randomized Usage Test [56]

conditioning on the previous state. For the NASA randomized battery usage data, the

capacity loss in percentage is discretized into 21 states from 0% to 40%. The test is conducted

for each state and the P-value is larger than 0.05 in 18 out of 21 states, indicating that the

Markovian property holds for these states. With the determined bin size, we can estimate the

transition probability p(s′|s, a) and the expected reward r(s, a) from the sample trajectories.

The transition matrix of states is sparse as only a few neighboring states can be reached

in each decision epoch. The results are obtained after solving the MDP using the value

iteration algorithm, and are presented in Table 1 to serve as a benchmark.

4.2.3 Results from GPRL Algorithm

In this case study, we implement the GPRL value iteration algorithms with the state

value function and the state-action value function, respectively, to compare their solutions

and computation time. In both algorithms, the state transition is modeled by a GP. To

determine the mean and kernel functions in the GPRL iteration algorithms, we used another

dataset generated by Severson et al [18] that has the capacity loss in percentage recorded
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after each charging-discharging cycle (rather than every 50 cycles).

To determine the mean function in Eq. (5) among the choices of 0, constant and linear

ones, we estimate the state transition model from the initial samples of a selected capacity

loss trajectory in the dataset [18]. The extrapolation capability of the model is tested

using the mean squared error (MSE) on the remaining state transition samples of the same

trajectory. Different numbers of initial state transition samples are used to evaluate their

MSE in estimating the system dynamics. The results show that the GPR with the linear

mean function outperforms the other choices with a minimum out-of-sample MSE by using

the first 200 cycles. The Gaussian process regression helps to secure a reasonably accurate

state transition model using only samples at the early stage of the degradation. With the

chosen linear mean function, we explore the kernel function in the algorithm among the

choices of the squared exponential kernel in Eq. (3), and the Matern kernel in Eq. (4)

with the parameter ν of 3/2 and 5/2, respectively. Since the resulted out-of-sample MSE

is similar among different kernels, we decide to choose the squared exponential kernel for

computational simplicity and the advantage of the squared exponential kernel demonstrated

in [26].

With the chosen mean and kernel functions, the GPR model for the state transitions of

the capacity loss trajectory is obtained by maximizing the loglikelihood function in Eq. (6),

which is approximately linear as shown in Figure 5. In the GPRL algorithm, we apply

the value iteration over the state value function and the state-action value function to the

NASA dataset, respectively. As given in Table 1, similar results are obtained from the two

algorithms for the different values of the end-of-life threshold, H, respectively. The algorithm

conducting the value iteration over the state value function runs significantly faster, as the

value function approximation is more straightforward than that of the state-action value

function. The difference in computation time increases when the action set becomes larger.

To compare with the discrete MDP approach, we use the results from the GPRL algorithm

with state value iteration, due to its shorter computation time without much compromise on

the optimal policies. When H = 0.2, 0.3, and 0.4, the minimal average cost per 50 cycles is
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$1330, $839, and $579, respectively, which saves about 2.3%, 7.3%, and 11.9% in the average

cost compared to the MDP results. The improvement in the average cost is explained by the

more accurate policy the GPRL algorithm can provide, while H∗p is restricted to one of its

bin edges in the discrete MDP. When the end-of-life threshold, H is larger, the maintenance

actions are less frequently conducted and thus the error in H∗p leads to a greater proportion

of the additional costs in C∗ provided by the discrete MDP.
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Figure 5: State Transition Gaussian Process

Table 1: Results of GPRL and Discrete MDP

H Algorithm C∗($1000) H∗p Running time(s)

0.2
State-action value iteration 1.323 0.174 156.11

State value iteration 1.330 0.175 90.11
Discrete MDP 1.362 0.160 -

0.3
State-action value iteration 0.835 0.271 394.05

State value iteration 0.839 0.271 213.31
Discrete MDP 0.905 0.260 -

0.4
State-action value iteration 0.576 0.371 936.97

State value iteration 0.579 0.371 537.46
Discrete MDP 0.657 0.340 -

5 Conclusions

Although reinforcement learning has been implemented as an effective approach for solv-

ing MDPs in maintenance problems, most RL algorithms applied are restricted to discrete
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state and action spaces. In this research, we develop an algorithm to find the optimal policy

for discrete-time continuous-state MDPs for CBM decision-making. We use the GPR as

function approximation to model the state transition and the value functions of states in

RL. In addition, in the proposed GPRL algorithm, the long-run average reward (instead

of the discounted reward commonly in the literature) is optimized with iterations on the

state-action value function and the state value function, respectively.

Specifically, to demonstrate the proposed method, we model the battery maintenance

decision-making problem by an MDP, where the Gaussian process regression is introduced

to describe the system dynamics and value functions. Using NASA battery randomized

usage data, we implement the proposed GPRL algorithm over the state value iteration and

the state-action value iteration, respectively. The results from the two versions of GPRL

algorithms are compared with the ones from the discrete MDP approach, which verifies the

capability of our proposed algorithm in achieving accurate results. The advantage of using

our approach in RL is evident by keeping the continuous states of the degradation process.

The methodology we investigated in this research can be readily applied to maintenance

decision-making for various discrete-time continuous-state systems, such as equipment or

facilities under daily or weekly inspection.

Further studies can be implemented to the applications of RL using the Gaussian process

to other engineering systems. We can also explore different ways of modeling continuous

states in a decision process, such as a specific parametric model (instead of a universal model

of GPR) that can capture the physical properties of a system. In addition, the proposed work

considers a relatively simple situation where a single variable deterioration state is studied.

When multiple degradation processes exhibit in a system, the proposed GPRL method can

be readily extended to the maintenance of such a system, as the Gaussian process regression

can be naturally generalized to the vector state and the RL can well handle the delayed

reward.
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