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Abstract

Neural networks are known to be vulnerable to carefully
crafted adversarial examples, and these malicious samples
often transfer, i.e., they remain adversarial even against
other models. Although significant effort has been devoted
to the transferability across models, surprisingly little atten-
tion has been paid to cross-task transferability, which repre-
sents the real-world cybercriminal’s situation, where an en-
semble of different defense/detection mechanisms need to be
evaded all at once. We investigate the transferability of ad-
versarial examples across a wide range of real-world com-
puter vision tasks, including image classification, object de-
tection, semantic segmentation, explicit content detection,
and text detection. Our proposed attack minimizes the “dis-
persion” of the internal feature map, overcoming the lim-
itations of existing attacks, that require task-specific loss
functions and/or probing a target model. We conduct eval-
uation on open-source detection and segmentation models,
as well as four different computer vision tasks provided by
Google Cloud Vision (GCV) APIs. We demonstrate that our
approach outperforms existing attacks by degrading perfor-
mance of multiple CV tasks by a large margin with only
modest perturbations.

1. Introduction

Recent progress in adversarial machine learning has
brought the weaknesses of deep neural networks (DNNs)
into the spotlight, and drawn the attention of researchers
working on security and machine learning. Given a deep
learning model, it is easy to generate adversarial examples
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Figure 1: Real-world computer vision systems deployed in
safety- and security-critical scenarios usually employ an ensemble
of detection mechanisms that are opaque to attackers. Cybercrim-
inals are required to generate adversarial examples that transfer
across tasks to maximize their chances of evading the entire detec-
tion systems.

(AEs), which are close to the original input, but are easily
misclassified by the model [9, 33]. More importantly, their
effectiveness sometimes transfers, which may severely hin-
der DNN-based applications especially in security critical
scenarios [23, 13, 36]. While such problems are alarming,
little attention has been paid to the threat model of commer-
cially deployed vision-based systems, wherein deep learn-
ing models across different tasks are assembled to provide
fail-safe protection against evasion attacks. Such a threat
model is quite different from models that have been inten-
sively studied in the aforementioned research.

Cross-task threat model. Computer vision (CV) based
detection mechanisms have been deployed extensively in
security-critical applications, such as content censorship
and authentication with facial biometrics, and readily avail-
able services are provided by cloud giants through APIs
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(e.g., Google Cloud Vision [3]). The detection systems
have long been targeted by evasive attacks from cybercrim-
inals, and it has resulted in an arms race between new at-
tacks and more advanced defenses. To overcome the weak-
ness of deep learning in an individual domain, real-world
CV systems tend to employ an ensemble of different detec-
tion mechanisms to prevent evasions. As shown in Fig. 1,
underground businesses embed promotional contents such
as URLs into porn images with sexual content for illicit on-
line advertising or phishing. A detection system, combining
Optical Character Recognition (OCR) and image-based ex-
plicit content detection, can thus drop posted images con-
taining either suspicious URLs or sexual content to miti-
gate evasion attacks. Similarly, a face recognition model
that is known to be fragile [32] is usually protected by a
liveness detector to defeat spoofed digital images when de-
ployed for authentication. Such ensemble mechanisms are
widely adopted in real-world CV deployment.

To evade detection systems with uncertain underlying
mechanisms, attackers turn to generating adversarial ex-
amples that transfer across CV tasks. Many adversar-
ial techniques on enhancing transferability have been pro-
posed [38, 36, 23, 13]. However, most of them are designed
for image classification tasks, and rely on task-specific loss
functions (e.g., cross-entropy loss), which limits their effec-
tiveness when transferred to other CV tasks.

To provide a strong baseline attack to evaluate the ro-
bustness of DNN models under the aforementioned threat
model, we propose a new succinct method to generate ad-
versarial examples, which transfers across a broad class of
CV tasks, including classification, object detection, seman-
tic segmentation, explicit-content detection, and text detec-
tion and recognition. Our approach, called Dispersion Re-
duction (DR) and illustrated in Fig. 2, is inspired by the im-
pact of “contrast” on an image’s perceptibility. As lowering
the contrast of an image would make the objects indistin-
guishable, we presume that reducing the “contrast” of an
internal feature map would also degrade the recognizabil-
ity of objects in the image, and thus could evade CV-based
detection.

We use dispersion as a measure of “contrast” in feature
space, which describes how scattered the feature map of
an internal layer is. We empirically validate the impact of
dispersion on model predictions, and find that reducing the
dispersion of internal feature maps significantly affects the
activation of subsequent layers. Based on additional ob-
servation that lower layers detect simple features [20], we
hypothesize that the low-level features extracted by early
convolution layers share many similarities across CV mod-
els. By reducing the dispersion of an internal feature map,
the information that is in the feature output becomes indis-
tinguishable or useless, and thus the following layers are not
able to obtain any useful information no matter what kind

of CV task is at hand. Thus, the distortions caused by dis-
persion reduction in feature space are ideally suited to fool
any CV model, whether designed for classification, object
detection, semantic segmentation, text detection, or other
vision tasks.

Based on these observations, we propose and build the
DR as a strong baseline attack to evaluate model robust-
ness against black box attacks, which generate adversarial
examples using simple and readily-available image classi-
fication models (e.g., VGG-16, Inception-V3 and ResNet-
152), whose effects extend to a wide range of CV tasks.
We evaluate our proposed DR attack on both popular open
source detection and segmentation models, as well as com-
mercially deployed detection models on four Google Cloud
Vision APIs: classification, object detection, SafeSearch,
and Text Detection (see §4). ImageNet, PASCAL VOC2012
and MS COCO2017 datasets are used for evaluations. The
results show that our proposed attack causes larger drops
on the model performance compared to the state-of-the-art
attacks (MI-FGSM [13], DIM [36] and TI [14]) across dif-
ferent tasks. We hope that our findings raise alarms for real-
world CV deployment in security-critical applications, and
that our simple but effective attack will be used as a bench-
mark to evaluate model robustness. Code is available at:
https://github.com/erbloo/dr_cvpr20.

Contributions. Our contributions include the following:

e This work is the first to study adversarial machine
learning for cross-task attacks. The proposed attack,
called dispersion reduction, does not rely on labeling
systems or task-specific loss functions.

e Evaluations shows that the proposed DR attack beats
state-of-the-art attacks in degrading the performance
of object detection and semantic segmentation mod-
els, and four different GCV API tasks, by a large mar-
gin: 52% lower mAP (detection) and 31% lower mloU
(segmentation) compared to the best of the baseline at-
tacks.

e Code and evaluation data are all available at an
anonymized GitHub repository [1].

2. Related Work

Adversarial examples [33, 16] have recently been shown
to be able to transfer across models trained on different
datasets, having different architectures, or even designed for
different tasks [23, 35]. This transferability property moti-
vates the research on black-box adversarial attacks.

One notable strategy, as demonstrated in [29, 28], is to
perform black-box attacks using a substitute model, which
is trained to mimic the behavior of the target model by a
distillation technique. They also demonstrated black-box
attacks against real-world machine learning services hosted
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Figure 2: DR attack targets on the dispersion of the feature map
at a specific layer of feature extractors. The adversarial exam-
ple generated by minimizing dispersion at conv3.3 of VGG-
16 model also distorts feature space of subsequent layers (e.g.,
conv5.3), and its effectiveness transfers to commercially de-
ployed GCV APIs.

by Amazon and Google. Another related line of research,
called a gradient-free attack, uses feedback on query data,
i.e., soft predictions [34, 18] or hard labels [8] to construct
adversarial examples.

The limitation of the aforementioned works is that they
all require (some form of) feedback from the target model,
which may not be practical in some scenarios. Recently,
several methods have been proposed to improve transfer-
ability, by studying the attack generation process itself; our
method falls into this category. In general, an iterative at-
tack [9, 19, 27] achieves a higher attack success rate than a
single-step attack [16] in a white-box setting, but performs
worse when transferred to other models. The methods men-
tioned below reduce the overfitting effect by either improv-
ing the optimization process or by exploiting data augmen-
tation.

MI-FGSM. Momentum Iterative Fast Gradient Sign
Method (MI-FGSM) [13] integrates a momentum term into
the attack process, to stabilize update directions and escape
poor local maxima. The update procedure is as follows:

x{t+1 = xi +a - sign(gis1)
Ve (21, 9) Q)

Jit1 =M Gt + 5~
| 7z (21, y) |

The strength of MI-FGSM can be controlled by the momen-
tum and the number of iterations.

DIM. Momentum Diverse Inputs Fast Gradient Sign
Method (DIM) combines momentum and an input diversity
strategy to enhance transferability [36]. Specifically, DIM
applies an image transformation, 7°(+), to the inputs with a
probability p at each iteration of iterative FGSM to alleviate
the overfitting phenomenon. The update procedure is simi-
lar to MI-FGSM, the only difference being the replacement
of (1) by:

wypq = Clipi{a} + o - sign(Vo L(T (x4 11;p), y")}
2
where T'(z}, p) is a stochastic transformation function that
performs input transformation with probability p.

TI. Rather than optimizing the objective function at a
single point, the Translation-Invariance (TI) [15] method
uses a set of translated images to optimize an adversarial
example. By approximation, TI calculates the gradient at
the untranslated image & and then averages all the shifted
gradients. This procedure is equivalent to convolving the
gradient with a kernel composed of all the weights.

The major difference between our proposed method and
the three aforementioned attacks is that our method does
not rely on task-specific loss functions (e.g., cross-entropy
loss or hinge loss). Instead, it focuses on low-level features,
that are presumably task-independent and shared across dif-
ferent models. This is especially critical in the scenario for
which the attackers do not know the specific tasks of the
target models. Our evaluation in §4 demonstrates improved
transferability generated by our method across several dif-
ferent real-world CV tasks.

3. Methodology

To construct AEs against a target model, we first estab-
lish a source model as the surrogate, to which we have ac-
cess. Conventionally, the source model is established by
training with examples labeled by the target model. That
is, the inputs are paired with the labels generated from
the target model, instead of the ground truth. In this way,
the source model mimics the behavior of the target model.
When we construct AEs against the source model, they are
likely to transfer to the target model due to this connection.

In our framework, although a source model is still re-
quired, there is no need for training new models or query-
ing the target model for labels. Instead, a pretrained pub-
lic model could simply serve as the source model due to
the strong transferability of the AEs generated via our ap-
proach. For example, in our experiments, we use pretrained
VGG-16, Inception-v3 and Resnet-152, which are publicly
available, as the source model f. With f as the source
model, we construct AEs against it. Existing attacks perturb
input images along gradient directions /,.J that depend on
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Algorithm 1 Dispersion reduction attack

Input: A classifier f, original sample x, feature map at
layer k; perturbation budget ¢
Input: Attack iterations 7.

Output: An adversarial example x" with || X —x || <€
1: procedure DISPERSION REDUCTION
2 Xy
3: fort =0toT — 1do
4: Forward x; and obtain feature map at layer k:
Fre = F(xp)|x 3)
5: Compute dispersion of Fy: g(Fx)
6: Compute its gradient w.r.t the input: </xg(Fx)
7: Update x}:
X; = X; — Vx9(Fr) €
8: Project x; to the vicinity of x:
Xp 1 = clip(xy, X — €, X + €) (5)
9: return x;

the definition of the task-specific loss function .J, which not
only limits their cross-task transferability but also requires
ground-truth labels that are not always available. To miti-
gate these issues, we propose a dispersion reduction (DR)
attack, that formally defines the problem of finding an AE
as an optimization problem:

min g(f (x', 6))

st ]| x —x|<e

(6)

where f(-) is a DNN classifier with output of intermediate
feature map, and g¢(-) calculates the dispersion. Our pro-
posed DR attack, detailed in Algorithm 1, takes a multi-
step approach that creates an AE by iteratively reducing
the dispersion of an intermediate feature map at layer k.
Dispersion describes the extent to which a distribution is
stretched or squeezed, and there can be different measures
of dispersion, such as the standard deviation, and the gini
coefficient [26]. In this work, we choose standard deviation
as the dispersion metric due to its simplicity, and denote it
by g().

To explain why reducing dispersion could lead to valid
attacks, we propose a similar argument as used in [16]. Con-
sider a simplified model where f(x) = a = (al,...,a,)"
is the intermediate feature, and y = Wa is an affine trans-
formation of the feature (we omit the bias b for simplicity),
resulting in the final output logits y = (y1,...,y%) . In
other words, we decompose a DNN classifier into a fea-
ture extractor f(-) and an affine transformation. If the cor-

rect class is ¢, the logit y. of a correctly classified example
should be the largest, that is w.a >> w;a for ¢ # ¢, where
w; is the ith row of W. This indicates w, and a are highly
aligned.

On the other hand, suppose our attack aims to reduce
the standard deviation of the feature a. The corresponding
adversarial examples x’ leads to a perturbed feature

N —onl pom 2
fx)=a"~a aaaStd(a) o

=a—2a(a—al)/(Vn—1Std(a))

Where a depicts the magnitude of the perturbation on a, a
is the average of the entries of a, and 1 is a column vector
with 1 in each entry. Therefore, the change of the logit vy,
due to adversarial perturbation is essentially

Ay. = —2a(we.a —w.la)/(vVn — 1Std(a))
= —2a(w.a — nw.a)/(vVn — 1Std(a))  (8)
= —2av/n — 1Cov(w.,a)/Std(a) < 0

If we think of each entry of a and w. as samples, the
Cov(w,a) corresponds to the empirical covariance of
these samples. This suggests that as long as w,. and a are
aligned, our attack can always reduce the logit of the correct
class. Note that « is approximately the product of the mag-
nitude of the perturbation on x and the sensitivity of f(-),
therefore the reduction of the logit could be large if f(-) is
sensitive, which is often the case in practice.

In general, y. could be any activation that is useful for
the task, which may not be classification. As long as ¥,
is large for natural examples, indicating a certain feature is
detected, it is always reduced by our attacks according to
the analysis above. Thus, our attack is agnostic to tasks and
the choice of loss functions.

4. Experimental Results

We compare our proposed DR attack with the state-of-
the-art black-box adversarial attacks on object detection
and semantic segmentation tasks (using publicly available
models), and commercially deployed Google Cloud Vision
(GCV) tasks.

4.1. Experimental Settings

Network Types: We consider Yolov3-DarkNet53 [30],
RetinaNet-ResNet50 [21], SSD-MobileNetv2 [22], Faster
R-CNN-ResNet50 [31], Mask R-CNN-ResNet50 [17] as
the target object detection models and DeepLabv3Plus-
ResNet101 [I11], DeepLabv3-ResNetlOl [10], FCN-
ResNet101 [24] as the target semantic segmentation mod-
els. All network models are publicly available, and de-
tails are provided in the Appendix. The source networks
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Figure 4: Results of DR attack with different attack layers of
VGG16. We see that attacking the middle layers results in higher
drop in the performance compared to attacking top or bottom lay-
ers. At the same time, in the attacking process, the drop in std of
middle layers is also larger than the top and bottom layers. This
motivates that we can find a good attack layer by looking at the std
drop during the attack.

for generating adversarial examples are VGG16, Inception-
v3 and Resnet152 with output image sizes of (224 x 224),
(299 x 299) and (224 x 224), respectively. For the evalu-
ation on COCO0O2017 and PASCAL VOC2012 datasets, the
mAP and mloU are calculated as the evaluation metrics for
detection and semantic segmentation, respectively. Due to
the mismatch of different models being trained with differ-
ent labeling systems (COCO / VOC), only 20 classes that
correspond to VOC labels are chosen from COCO labels if
a COCO pretrained model is tested on the PASCAL VOC
dataset, or a VOC pretrained model is tested on the COCO
dataset. For the evaluation on ImageNet, since not all test
images have the ground truth bounding boxes and pixelwise
labels, the mAP and mloU are calculated as the difference
between the outputs of benign/clean images and adversarial
images.

Implementation details: We compare our proposed
method with projected gradient descent (PGD) [27],
momentum iterative fast gradient sign method (MI-
FGSM) [12], diverse inputs method (DIM) [37] and
translation-invariant attacks (TI) [15]. Concerning the hy-
perparameters, the maximum perturbation is set to be € =
16 for all the experiments with pixel values in [0, 255].
For the proposed DR attacks, the step size is « = 4, and
the number of training steps is N = 100. For the base-
line methods, we first follow the default settings in [37] and

[15] with @« = 1 and N = 20 for PGD, MI-FGSM and
DIM, oo = 1.6 and N = 20 for TI-DIM. We apply the same
hyper-parameters (o« = 4, N = 100) used with the pro-
posed method to all the baseline methods. For MI-FGSM,
we adopt the default decay factor 4 = 1.0. For DIM and
TI-DIM, the transformation probability is set to p = 0.5.

4.2. Diagnostics
4.2.1 The effect of training steps NV

We show the results of attacking SSD-ResNet50,
RetinaNet-ResNet50, SSD-MobileNet and Faster RCNN-
ResNet50 with a different number of training steps
(N = {20, 100,500}) based on MS COCO2017 validation
set. We also compare the proposed DR attack with multiple
baselines, namely PGD, MI-FGSM, DIM, TI-DIM. The
results are shown in Fig. 3. In contrast to the classification-
based transfer attacks [13, 36, 14], we do not observe
over-fitting in cross-task transfer attacks for all the tested
methods. Therefore, instead of using N = 20, which is the
value used by the baseline attacks we compare with, we can
employ larger training steps (/N = 100), and achieve better
attack performance at the same time. In addition, we can
see that our DR attack outperforms all the state-of-the-art
baselines for all the step size settings. It should be noticed
that DR attack is able to achieve promising results at
N = 20, and the results from the DR attack, using 20
steps, are better than those of baseline methods using 500
steps. This shows that our proposed DR attack has higher
efficiency than the baselines.

4.2.2 The effect of attack layer

We show the results of attacking different convolutional lay-
ers of the VGG16 network with the proposed DR attack
based on the PASCAL VOC2012 validation set. Figure 4a
shows the mAP for Yolov3 and faster RCNN, and mloU for
Deeplabv3 and FCN. In Fig. 4b we plot the standard de-
viation (std) values before and after the DR attack, together
with the change. As can be seen, attacking the middle layers
of VGG16 results in higher drop in the performance com-
pared to attacking top or bottom layers. At the same time,
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Detection Results Using Val. Images of Yolov3 RetinaNet SSD Faster-RCNN  Mask-RCNN
DrkNet ResNet50 MobileNet ResNet50 ResNet50
COCO and VOC Datasets mAP mAP mAP mAP mAP
COCO/VOC COCO/VNOC COCO/NOC Ccoco/vOoCc  coco/rvoc
VGG16 PGD (a=1, N=20) 33.5/54.8 14.7/31.8 16.8/35.9 9.7/14.2 10.3/15.9
PGD (a=4, N=100) 21.6/38.7 7.2114.6 7.9/18.2 49/6.4 5.719.7
MI-FGSM (a=1, N=20) 28.4/48.9 12.0/23.6 13.6/29.6 7.8/10.9 8.2/12.0
MI-FGSM (a=4, N=100) 19.0/35.0 5.8/10.6 7.0/19.1 44/5.0 481/17.1
DIM (a=1, N=20) 26.7/46.9 11.0/21.9 11.0/22.9 6.4/82 7.2/11.6
DIM (a=4, N=100) 20.0/37.6 6.2/13.0 6.5/14.9 4.1/5.0 46/6.7
TI-DIM (a=1.6, N=20) 25.8/41.4 9.6/174 10.4/19.9 6.5/7.5 7.4/9.2
TI-DIM (a=4, N=100) 19.5/33.4 7.7/13.1 7.5/16.7 40/5.2 4.8/6.6
DR (a=4, N=100)(ours) 19.8/38.2 5.3/8.7 3.9/8.2 2.5/28 3.2/51
InceptionV3  PGD (a=1, N=20) 46.8/67.5 23.9/51.8 252/474 27.0/45.7 27.5/48.7
PGD (a=4, N=100) 35.3/57.1 15.0/33.0 14.0/31.6 18.2/31.7 19.4/34.8
MI-FGSM (a=1, N=20) 42.0/63.9 20.0/44.3 20.9/43.5 22.8/39.3 23.7/42.9
MI-FGSM (a=4, N=100) 32.4/54.0 12.5/27.1 13.1/29.2 16.3/26.9 17.9/30.5
DIM (a=1, N=20) 32.5/54.5 12.9/27.5 13.9/29.7 14.2/24.0 16.3/27.7
DIM (a=4, N=100) 29.1/48.3 10.4/20.5 10.4/22.0 12.2/18.2 13.8/44.6
TI-DIM (a=1.6, N=20) 32.1/50.2 12.8/25.8 13.5/28.0 12.5/20.4 14.4/23.0
TI-DIM (a=4, N=100) 27.1/42.2 11.0/19.8 10.4/22.1 99/14.6 11.1/17.5
DR (a=4, N=100)(ours) 24.2/45.1 8.5/18.9 9.0/19.5 8.3/14.3 9.8/17.0
Resnet152 PGD (a=1, N=20) 39.4/62.0 19.1/42.9 19.9/41.6 13.8/19.4 15.0/22.0
PGD (a=4, N=100) 28.8/51.5 12.2/25.9 11.2/24.4 8.2/11.3 8.8/13.9
MI-FGSM (a=1, N=20) 35.1/58.1 15.8/36.2 16.7/35.8 11.1/16.3 12.2/18.1
MI-FGSM (a=4, N=100) 26.4/48.2 11.2/23.5 99/21.3 7.0/9.5 8.2/11.4
DIM (a=1, N=20) 28.1/50.3 12.2/26.3 11.0/23.9 7.0/10.6 79/12.6
DIM (a=4, N=100) 24.7/43.2 8.8/194 7.8/16.1 5.1/77.1 6.2/10.3
TI-DIM (a=1.6, N=20) 27.9/45.6 11.7/21.7 11.3/22.5 6.8/8.7 7.5/9.9
TI-DIM (a=4, N=100) 22.3/36.7 9.0/15.8 8.7/19.1 5.0/6.6 5.718.2
DR (a=4, N=100)(ours) 22.7/43.8 6.8/12.4 4.7/17.6 23/2.8 3.0/4.5

Table 1: Detection results using validation images of COC02017 and VOC2012 datasets. Our proposed DR attack performs best on
25 out of 30 different cases, and achieves 12.8 mAP on average over all the experiments. It creates 3.9 more drop in mAP compared to the

best of the baselines (TI-DIM: 16.7 mAP).

the change in std for middle layers is larger compared to the
top and bottom layers. We can infer that for initial layers,
the budget € constrains the loss function to reduce the std,
while for the layers near the output, the std is already rela-
tively small, and cannot be reduced too much further. Based
on this observation, we choose one of the middle layers as
the target of the DR attack. More specifically, in the fol-
lowing experiments we attack conv3-3 for VGG16, the last
layer of group — A for inception-v3, and the last layer of
2nd group of bottlenecks(conv3-8-3) for ResNet152.

4.3. Open Source Model Experiments

We compare the proposed DR attack with the state-of-
the-art adversarial techniques, to demonstrate the transfer-
ability of our method on public object detection and seman-
tic segmentation models. We use validation sets of Ima-
geNet, VOC2012 and COCO2017 for testing object detec-
tion and semantic segmentation tasks. For ImageNet, 5000
correctly classified images from the validation set are cho-
sen. For VOC and COCO, 1000 images from the validation

set are chosen. The test images are shared in github reposi-
tory: dispersion_reduction_test_images [2].

The results for detection and segmentation on COCO and
VOC datasets are shown in Tables 1 and 2, respectively.
The results for detection and segmentation on the ImageNet
dataset are provided in the Appendix. We also include the
table for average results over all the datasets, including Im-
ageNet, in the Appendix.

As can be seen from Tables 1 and 2, our proposed
method (DR) achieves the best results on 36 out of 42 ex-
periments by degrading the performance of the target model
by a larger margin. For detection experiments, the DR at-
tack performs best on 25 out of 30 different cases and for
semantic segmentation 11 out of 12 different cases. For de-
tection, our proposed attack achieves 12.8 mAP on average
over all the experiments. It creates 3.9 more drop in mAP
compared to the best of the baselines (TT-DIM: 16.7 mAP).
For semantic segmentation, our proposed attack achieves
20.0 mIoU on average over all the experiments. It achieves
5.9 more drop in mIoU compared to the best of the baselines
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(DIM: 25.9 mloU).

To summarize the results on the ImageNet dataset pro-
vided in the Appendix, our proposed method (DR) achieves
the best results in 17 out of 21 experiments. For detection,
our proposed attack achieves 7.4 relative-mAP on average
over all the experiments. It creates 3.8 more drop in relative-
mAP compared to the best of the baselines (TI-DIM: 11.2).
For semantic segmentation, our proposed attack achieves
16.9 relative-mIoU on average over all the experiments. It
achieves 4.8 more drop in relative-mIoU compared to the
best of the baselines (TI-DIM: 21.7).

. DeepLabv3 FCN
Seg. Results Using Val. Images of ResNet-101 ResNet-101
COCO and VOC Datasets mloU mloU
COCO/VOC  COCO/vVOC
VGG16  PGD (a=1, N=20) 37.8/42.6 26.7/29.1
PGD (a=4, N=100) 22.3/24.0 17.1/18.1
MI-FGSM (a=1, N=20) 32.8/36.2 22.7/25.0
MI-FGSM (a=4, N=100) 19.9/21.6 22.0/16.5
DIM (a=1, N=20) 30.3/33.2 15.5/22.4
DIM (=4, N=100) 21.2/23.7 16.2/16.9
TI-DIM (a=1.6, N=20) 29.9/31.1 21.9/23.0
TI-DIM (a=4, N=100) 23.8/24.7 18.9/19.2
DR (a=4, N=100)(ours) 17.2/21.8 12.9/14.4
IncV3 PGD (a=1, N=20) 49.4/56.0 36.8/40.1
PGD (a=4, N=100) 37.1/41.3 26.1/28.3
MI-FGSM (a=1, N=20) 44.2/51.1 324/354
MI-FGSM (a=4, N=100) 33.7/39.1 24.0/35.4
DIM (a=1, N=20) 35.7/40.4 24.9/27.2
DIM (a=4, N=100) 30.4/33.9 21.3/223
TI-DIM (a=1.6, N=20) 35.3/37.0 26.4/27.7
TI-DIM (=4, N=100) 29.0/29.8 22.5/23.5
DR (a=4, N=100)(ours) 23.2/29.2 17.1/20.9
Res152  PGD (a=1, N=20) 45.2/50.2 30.7/34.6
PGD (a=4, N=100) 31.5/35.1 21.6/24.0
MI-FGSM (a=1, N=20) 39.9/43.9 26.4/29.9
MI-FGSM (a=4, N=100) 28.2/32.2 19.9/22.1
DIM (a=1, N=20) 31.3/35.5 22.3/23.9
DIM (a=4, N=100) 25.9/28.8 19.0/19.9
TI-DIM (a=1.6, N=20) 31.8/33.9 23.7/25.2
TI-DIM (a=4, N=100) 26.6/26.6 20.3/21.4
DR (a=4, N=100)(ours) 22.7/27.0 16.4/17.6

Table 2: Semantic Segmentation results using validation im-
ages of the COCO02017 and VOC2012 datasets. Our proposed
DR attack performs best on 11 out of 12 cases and achieves 20.0
mloU on average over all the experiments. It achieves 5.9 more
drop in mloU compared to the best of the baselines (DIM: 25.9
mloU).

4.4. Cloud API Experiments

We compare the proposed DR attack with the state-
of-the-art adversarial techniques to enhance transferability
on commercially deployed Google Cloud Vision (GCV)
tasks ':

e Image Label Detection (Labels) classifies image into
broad sets of categories.

Ihttps://cloud.google.com/vision/docs

Original
Barn Owl: Turtle:84%  Adult: Likely 1
99% bbox : [...] Racy: Likely
GCV | Labels | Objects | | SafeSearch | ‘ Texts
APIs
Vertebrate: Animal:77% Adult:Unlikely ::STO) K y[y]
99% bbox:[..] Racy:Unlikely HAWWEF i[---]
Adversarial

Figure 5: Visualization of images chosen from the testing set and
their corresponding AEs generated by DR. All the AEs are gener-
ated on VGG-16 conv3. 3 layer, with perturbations clipped by
lo < 16, and they effectively fool the four GCV APIs as indi-
cated by their outputs.

e Object Detection (Objects) detects multiple objects
with their labels and bounding boxes in an image.

e Image Texts Recognition (Texts) detects and recog-
nize text within an image, which returns their bounding
boxes and transcript texts.

e Explicit Content Detection (SafeSearch) detects
explicit content such as adult or violent content within
an image, and returns the likelihood.

Datasets. We use ImageNet validation set for test-
ing Labels and Objects, and the NSFW Data
Scraper [7] and COCO-Text [4] dataset for evaluating
against SafeSearch and Texts, respectively. We ran-
domly choose 100 images from each dataset for our evalua-
tion, and Fig. 5 shows sample images in our test set. Please
note that due to the API query fees, larger scale experiments
could not be performed for this part.

Experiment setup. To generate the AEs, We use nor-
mally trained VGG-16 and Resnet-152 as our source mod-
els, since Resnet-152 is commonly used by MI-FGSM and
DIM for generation [36, 13]. Since the DR attack targets
a specific layer, we choose conv3.3 for VGG-16 and
conv3. 8.3 for Resnet-152 as per the profiling result in
Table 3 and discussion in Sec. 4.2.2.

Attack parameters. We follow the default settings
in [13] with the momentum decay factor 4 = 1 when im-
plementing the MI-FGSM attack. For the DIM attack, we
set probability p = 0.5 for the stochastic transformation
function T'(x;p) as in [36], and use the same decay fac-
tor 4 = 1 and total iteration number N = 20 as in the
vanilla MI-FGSM. For our proposed DR attack, we do not
rely on the FGSM method, and instead use the Adam opti-
mizer (31 = 0.98, B2 = 0.99) with learning rate of 5¢ 2 to
reduce the dispersion of target feature map. The maximum
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Model Attack Labels Objects SafeSearch Texts
acc. mAP (IoU=0.5) acc. AP (IoU=0.5) C.R.W~
baseline (SOTA)' | 82.5% 732 100% 69.2 76.1% |
MI-FGSM 41% 42.6 62% 38.2 15.9%
VGG-16 DIM 39% 36.5 57% 29.9 16.1%
DR (Ours) 23% 329 35% 20.9 4.1%
MI-FGSM 37% 41.0 61% 40.4 17.4%
Resnet-152 DIM 49% 46.7 60% 34.2 15.1%
DR (Ours) 25% 333 31% 34.6 9.5%

! The baseline performance of GCV models cannot be measured due to the mismatch between the original
labels and labels used by Google. We use the GCV prediction results on original images as ground truth,
thus the baseline performance should be 100% for all accuracy and 100.0 for mAP and AP. Here we
provide state-of-the-art performance [5, 6, 4, 7] for reference.

2 Correctly recognized words (C.R.W) [4].

Table 3: The degraded performance of four Google Cloud Vision models, where we attack a sin-
gle model from the left column. Our proposed DR attack degrades the accuracy of Lables and
SafeSearch to 23% and 35%, the mAP of Objects and Texts to 32.9 and 20.9, the word recog-

nition accuracy of Texts to only 4.1%, which outperform existing attacks.

perturbation of all attacks in the experiments are limited by
clipping at [, = 16, which is still considered less percepti-
ble for human observers [25].

Evaluation metrics. We perform adversarial attacks
only on a single network and test them on the four black-
box GCV models. The effectiveness of attacks is measured
by the model performance under attacks. As the labels from
original datasets are different from labels used by GCV, we
use the prediction results of GCV APIs on the original data
as the ground truth, which gives a baseline performance of
100% relative accuracy or 100.0 relative mAP and AP re-
spectively.

Results. We provide the state-of-the-art results on each
CV task as reference in Table 3. As shown in Table 3,
DR outperforms other baseline attacks by degrading the
target model performance by a larger margin. For ex-
ample, the adversarial examples crafted by DR on VGG-
16 model brings down the accuracy of Labels to only
23%, and SafeSearch to 35%. Adversarial examples
created with the DR also degrade the mAP of Objects
to 32.9% and AP of text localization to 20.9%, and with
barely 4.1% accuracy in recognizing words. Strong base-
lines like MI-FGSM and DIM, on the other hand, only cause
38% and 43% success rate, respectively, when attacking
SafeSearch, and are less effective compared with DR
when attacking all other GCV models. The results demon-
strate the better cross-task transferability of the dispersion
reduction attack.

Figure 5 shows example of each GCV model’s output
for the original and adversarial examples. The performance
of Labels and SafeSearch are measured by the accu-
racy of classification. More specifically, we use top! accu-
racy for Labels, and use the accuracy for detecting the
given porn images as LIKELY or VERY_LIKELY being
adult for SafeSearch. The performance of Objects

is given by the mean average precision (mAP) at IoU=0.5.
For Texts, we follow the bi-fold evaluation method of IC-
DAR 2017 Challenge [4]. We measure text localization ac-
curacy using average precision (AP) of bounding boxes at
IoU=0.5, and evaluate the word recognition accuracy with
correctly recognized words (C.R.W) that are case insensi-
tive.

When comparing the effectiveness of attacks on different
generation models, the results demonstrate that DR gener-
ates adversarial examples that transfer better across these
four commercial APIs. The visualization in Fig. 5 shows
that the perturbed images with [, < 16 well maintain their
visual similarities with the original images, but fool the real-
world computer vision systems.

5. Discussion and Conclusion

We have proposed a Dispersion Reduction (DR) attack
to improve the cross-task transferability of adversarial ex-
amples. Specifically, our method reduces the dispersion of
intermediate feature maps. Compared to existing black-box
attacks, results show that our proposed method performs
better on attacking black-box cross-CV-task models. One
intuition behind the DR attack is that by minimizing the dis-
persion of feature maps, images become “featureless.” This
is because few features can be detected if neuron activations
are suppressed by perturbing the input (Fig. 2). Moreover,
with the observation that low-level features bear more sim-
ilarities across CV models, we hypothesize that the DR at-
tack would produce transferable adversarial examples when
one of the middle convolution layers is targeted. Evalu-
ation on different CV tasks shows that this enhanced at-
tack greatly degrades model performance compared to prior
state-of-the-art attacks, and thus would facilitate evasion at-
tacks against a different task model or even an ensemble of
CV-based detection mechanisms.
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