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ABSTRACT: Designing new ionic liquids (ILs) is of crucial importance for various industrial applications. However, this always
leads to a daunting challenge, as the number of possible combinations of cation and anion are very high and it is impossible to
experimentally propose and screen a wide pool of potential candidates. However, recent applications of machine learning (ML)
models have greatly improved the overall chemical discovery pipeline. In this study, we compare different generative methods for
producing ionic liquids. In this comparison, we show the following: (1) when training data is scarce, a transfer learning approach can
be applied to variational autoencoders (VAEs) to generate molecular structures of the target molecule type; (2) in a VAE-like
structure, separate latent spaces for the cationic and anionic moieties can result in meaningful representations for their combinative,
macroscopic properties; (3) interpolating between ILs with desired properties can result in a new IL with attributes similar to the
two structural end points.

■ INTRODUCTION

Applications of ionic liquids (ILs) are experiencing a recent
surge in various industries due to their versatile properties. For
example, properties like low flammability, negligible vapor
pressure, high thermal stability, and wide electrochemical
window have made them suitable for energy storage
applications.1 Other applications of ILs include but are not
limited to solvents for pharmaceuticals,2 CO2 capture,3

catalysis and biocatalysis,4,5 cellulose dissolution,6 and organic
synthesis.7 However, with theoretically possible 1014−1018
molecular configurations,8 experimental optimization of
potential ILs for targeted applications is a daunting task,
since their specific properties largely depend on the structure,
dynamics, and interaction of their constituent anions and
cations. In recent years, physics based simulations such as
molecular dynamics (MD) and Monte Carlo (MC) have
shown promise to supplement wet lab experiments.9 While
MD/MC simulations have been able to accurately predict
some of the properties of ionic liquids such as density,10 due to
high computational cost associated with these simulations and

a need for accurate interatomic potentials, they are useful only
for validating a few selected candidates, not for screening a vast
pool of possible candidates.11 Therefore, more refined
methodologies are required not only to predict properties
without doing expensive time-consuming experiments but also
to screen potential candidates from available databases, and in
some cases, propose new candidates with desired properties.
To this end, recent advances in data science and machine
learning techniques are playing a pivotal role in high
throughput screening and analysis of a large number of IL
samples.12−16

In general, machine learning models, particularly deep
learning ones (typically categorized as neural networks
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(NNs) with three or more layers), are significantly accelerating
the overall chemical discovery pipeline. These include highly
accurate quantitative structure−property relationships
(QSPRs) for predicting properties of candidate molecules,
generative modeling to propose new candidate molecules for
specific applications, machine learning accelerated simulations,
and machine learned, reliable interatomic potentials.17−21

Since 2012, advances in GPU-accelerated training and
regularization tricks like dropout have put deep learning at
the forefront of the molecular design toolkit.22 This accelerated
training comes on the heels of back-propagation, the algorithm
by which connectionist-type learners can appropriate blame in
their network weights and therefore achieve gradient based
solutions to mastering their training data. Indeed, the similarity
of weighting interconnected neural layers to traditional
graphical processing tasks has led to the creation of specialized
hardware for those purposes.23 Further, modular Python
libraries like Keras24 and TensorFlow25 have made appropria-
tion of deep learning in computational molecular science very
convenient for a range of creative applications. Lastly, the
ability of deep learners to embed discretized objects into a
continuous space further opens up the design paradigm into
rapid, gradient-based solutions.
In this study, we aim to develop a generative deep learning

model for designing new IL molecules. However, this presents
a twofold challenge: at one side, deep learning models often
contain hundreds of thousands, if not millions, of parameters;
i.e., they are extremely data hungry.26 On the other side, there
is a serious lack of large curated experimental data sets that are
publicly available for ILs. Even MD/MC simulations cannot
come to the rescue due to their previously mentioned
limitations. In the context of training such generative models,
these data scarcity issues lead to low population of the latent
space from which candidate structures are generated and
properties predicted. The lack of training examples means that
the network may not be able to accurately scale to new types of
ionic liquids. However, recent works have investigated how
transfer learning or analogical learning might be better utilized
in these types of networks to overcome this challenge.27−32 For
example, Go ́mez-Bombarelli et al. developed a model
comprised of a variational autoencoder (VAE) trained
simultaneously with a neural network to both generate and
predict the property value of drug-like molecules.33 Addition-
ally, Goh et al. developed ChemNet, a deep neural network
(DNN) first pretrained on molecular descriptor labels, under
weak supervised learning, and then trained, using transfer
learning, on smaller data sets to predict molecular properties.34

However, transfer learning can suffer from “amnesia”, i.e.,
forgetting generalizations learned in the initial phases of
training.35 To address these challenges in this study, we set out
to show that a small molecule database, GDB-17,36 can be
leveraged in a VAE37−39 to embed cations and anions that can
then be used to generate candidate IL structures. A particular
challenge with this approach is the choice of training schedule
for these deep networks. In the first section of the study, we
explore novel training schedules and the balance of retaining
general chemical knowledge with the need for IL specific
information content.
In generative modeling, molecules should be represented in

a suitable way so that a decision or a design criterion can be
met. Recently, great progress has been made in representing
molecules as molecular graphs, where atoms and bonds make
up nodes and edges in a connectivity matrix.40,41 The main

advantages of this approach are that representations are
invertible, i.e., every graph is associated with a single molecule,
and unique, i.e., every molecule is associated with a single
graph. While this may reduce the computational load to
generate a unique molecular candidate, it is not necessary for
the generator to learn “true” chemistry. Indeed, some strategies
for molecular embedding have even been oriented around
tasking the generator with learning the relationships between
various types of molecular representations.42 In this work, we
have the added challenge that each IL “material” is constituted
as a pair of individual yet strongly coupled ionic speciesthe
cation and the anion. Herein, we explore how these two
distinct moieties can be represented in a latent space and use
SMILES annotation to represent their individual structures.
SMILES, developed by Weininger43 and Daylight Chemical

Information Systems, is an ASCII character string representa-
tion of a depth-first search of a molecule’s graph. In SMILES
representation, a molecule may be invertible but nonunique if
it is physically asymmetrical by translation or rotation or if it
varies with permutation of atomic indexes. When represented
in 2D, such a molecule may have different representations
(nonunique). All of these representations, however, still refer
to the same molecule (invertible). A nonunique string data set
can be made unique by the process of canonicalization, which
determines which of all possible string representations of a
molecule will be used as the reference for its molecular graph.
Certain canonical string representations such as IUPAC’s
InChI44 exist, and while canonicalization algorithms can be
applied to SMILES,45 no standard method pervades. This
being said, SMILES is the native encoding for many large
databases21 such as ZINC,46 ChEMBL,47 and GDB-17 which
we leverage in this work; therefore, SMILES was selected as
the molecular representation for the machine learning tasks
herein. As it is a string sequence, we can take advantage of
sequence-based deep learning models such as VAEs, which
have found success in natural language processing (NLP) and
recently in molecular generative models for drug-like
molecules.33,48−50 By that same token, the SMILES string is
fragile, meaning a small change in syntax can result in a
chemically infeasible molecule. For this reason, a method of
guiding the search through chemical space is required. To
validate our VAE outputs, we utilize a sanitization or “chemical
feasibility” step from RDKit51 to check the atomic valences of
emergent structures.
A goal of a generative model is to explore the chemical space

while achieving optimization of a single molecular property or
multiobjective optimization of a set of molecular properties. In
order to traverse the entirety of small molecule space (the
largest training cation had 37 heavy atoms, and ion SMILES
strings were limited to under 62 characters) and optimize over
it, a continuous, gradient-based generative model is desired.
This makes VAE an attractive option for the chemical design of
IL materials. A VAE is comprised of two neural networks: an
encoder and a decoder. The input to the encoder is a one-hot
encoded SMILES string, a common method of vector
representation that avoids unwanted mathematical relation-
ships between inputs due to orthogonality between represen-
tative vectors. In our study, the encoder converts one-hot
encoded SMILES strings into a latent vector representation,
and the decoder converts the encoded string back into a
SMILES string. The output of the encoder and input of the
decoder are of low dimension compared to the dimensionality
of the hidden layers of the encoder and decoder. For this
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reason, it is known as a bottleneck layer. In training, the model
must learn to represent data as best as possible in this
bottleneck layer, learning some representation of the key
features of a molecule. This is not unlike the process of
dimensionality reduction in principal component analysis. The
vector representation of the encoded string is then known as its
latent representation, a single distribution in the latent space.
By using the latent representation of a string as the input to a
QSPR neural network and training the entire model to include
the loss from the QSPR predictor, one can organize the latent
space in relation to both structure and property.33 The latter
sections of this work, therefore, explore the utility of the latent
by generating new candidate IL molecules from the latent
space and investigating their properties.
In general, the goals of this study are to establish a transfer

learning protocol with VAEs to build a generative model for IL
materials where experimental data is scarce and then add a
predictive model with the generative one to propose new IL
structures with desired properties. The rest of this paper is
organized as follows: in the next section, we elaborated on the
working principle of variational autoencoders (VAEs) and
discussed various generative models for producing ionic liquids
and the rationale behind choosing them to compare in this
study. Then, in the Results and Discussion, we established the
best model for our generative learning scheme, compared
various network architectures to handle the latent space of
anions and cations, and selected the best performing one. Next,
we demonstrated that it is possible to generate novel IL
candidates with desired properties by interpolating between
two different ILs. Lastly, we concluded with some remarks and
future directions.

■ METHODS
The Variational Autoencoder. The variational autoen-

coder (VAE) has seen success in the generation of images52

and has also been recently used for the generation of drug-like
molecules.33 It was therefore an attractive model for the
chemical design of ionic liquid materials. A variational
autoencoder is an autoencoder with added stochasticity. An
autoencoder is comprised of two neural networks: an encoder
and a decoder. The encoder inputs data input x and outputs a
latent (hidden) representation, which is of much lower
dimensionality than x. The decoder takes the latent
representation z (a vector) and outputs a prediction x̂. In
training, both the data and target label are the input x, so that
the model learns to predict its input. The significance lies in
the low dimensionality of the latent representation z, which
learns the most important features of the input in order to
make accurate predictions. The compression of x to z is like
the process of dimensionality reduction in principal
component analysis, wherein similar data inputs will be located
close together in latent space. In a variational autoencoder, the
input x is no longer mapped to a single vector in latent space.
Instead, it is mapped to a distribution over latent space. This
distribution is the values of z from which x could have been
generated. This takes the form of a vector of means and a
vector of standard deviations, wherein the ith elements refer to
the mean and standard deviation of the distribution
corresponding to the ith data point. The decoder samples
from this distribution a value z and outputs a distribution of
values of x to which z corresponds.39,53

In this work, we use the variational autoencoder to generate
molecular structures. Just as in a traditional VAE, the objective

function includes a reconstruction loss (the ability of the
decoder to recreate the input) and a Kullback−Leibler
divergence or KL divergence loss (the compactness of encoded
distributions).39 Since we are also interested in the properties
of these generated structures, we add to this objective function
the loss from the QSPR predictor. This led to a densely
populated latent space reorganization in relation to both
structure and property. The importance of latent space
organization lies in sampling new structures. In sampling
from the latent space, samples closely related in terms of
structure and chemical property will be close together in latent
space. If one desires to generate a structure with high density,
one could then use the latent representation of a known
molecule with high density, specify a temperature (meaning a
distance from that point), and begin sampling. If one desires to
generate molecules with structure and property between two
known molecules, one can sample from the interpolation
between these two points in latent space. In this work, we use
spherical linear interpolation (SLERP),54 which is discussed in
detail later.

Transfer Learning Protocol. In this study, the salt data
were taken from the ILThermo55,56 database with experimental
entries for properties: density, heat capacity, viscosity, and
thermal conductivity. This database consisted of 688 unique
entries comprised of 276 unique cations and 98 unique anions.
This is a challenging example of a scarce data set where
canonical machine learning approaches cannot be used with a
high degree of confidence. As stated previously, researchers are
using transfer learning approaches to overcome the challenge
of data scarcity. In a transfer learning protocol, the model
initially learns from a large data set and applies the stored
information to learn from a different but related and possibly
scarce data set. To prove the concept that transfer learning
works for our problem and to establish a protocol, we
investigated five different protocols (M1−M5, Table 1)three

non-transfer learning (purist) and two transfer learning
protocols. All of the protocols were instantiated using a VAE
structure and hyperparameters developed previously for small,
drug-like molecules.33 As this was a procedure to establish a
transfer learning protocol, only the molecules of the cationic
moiety were targeted. In later sections when attempting to
create ILs with specific properties, both the cation and anion
were embedded.
The first three models (purist models, M1−M3) are trained

either on the GDB7−17 database or on the cation database
(ILThermo, 276 unique structures). GDB-17 is a well-known
database for small organic molecules with roughly 166 billion
structures and is very much suitable for training machine
learning models. Conversely, the cation database is much
smaller and therefore bootstrapping was employed. Boot-

Table 1. VAE Training Protocols for Models M1−M5a

model

GDB-17
training
samples

1:1 GDB-17:bootstrapped
cation training samples

(N = 276)

bootstrapped cation
training samples

(N = 276)

M1 250,000
M2 1,000,000
M3 1,000,000
M4 1,000,000 500,000
M5 1,000,000 500,000 500,000

aOnly the cationic moieties are considered.
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strapping is a powerful tool which quantifies the uncertainties
associated with any measured data set by increasing the
number of data points through sampling with replacement, and
this bootstrapped ensemble modeling approach has been used
previously in other application areas such as hydrological
forecasting.57−59 By bootstrapping the cation data set, we
generated 250,000 and 1,000,000 training samples in models
M1 and M2, respectively, while, in M3, we randomly selected
1,000,000 training samples from the large GDB-17 data set.
These purist models are generated as controls to the transfer
learning protocols. Next, we perform two additional transfer
learning protocols (models M4 and M5). In both transfer
learning protocols, all weights could be updated in every
training iteration. In model M4, we start from model M3 which
has already learned from the GDB-17 data set and trained it on
a different data set to train a new model. This new data set
contains 500,000 training samples, but this time, 250,000 of
them are randomly selected from the previously sampled GDB-
17 data set of 1,000,000 samples and the remaining 250,000
are bootstrapped from the cation data set. Lastly, our final
transfer learning protocol, model M5, is built starting from
model M4 and then trained on a data set of 500,000 training
samples generated only by bootstrapping the cation data set. It
may initially seem nonintuitive to bootstrap such large sample
sets from the comparatively small cation sample size. Indeed,
the purpose of the M1 and M2 models is to demonstrate the
folly of exposing a model to too many rounds or epochs of the
same dataa practice that results in overfitting. What will be
shown in the transfer learning approaches is that the effect of
an initialized, nonrandom weight distribution, that is, a neural
architecture that has been “pre-fabricated” according to a large
variety of chemical structures, will be to enable these
architectures to learn from the bootstrapped data sets without
sacrificing their ability to create structurally diverse chemicals.
This will be demonstrated by the ability of these resultant
models (M4 and M5) to generate structurally diverse
molecules from latent cation seeds.

■ RESULTS AND DISCUSSION
Transfer Learning Approach. To evaluate the effective-

ness of our transfer learning protocol, we created five models
(three purist models and two transfer learning models) using
identical architectures and training data yet different training
protocols. The training protocols are listed in Table 1. Once
the models were trained, they were tasked with generating
structures from the latent space using a randomly selected
cation latent seed: 1-butyl-2-methylpyridinium (1 of the 276
cations in the cation data set). If after 10,000 sample attempts
the model was unable to procure a new and unique SMILES
structure that followed basic chemical rules such as valency
something we will refer to as chemically feasiblethe search
was terminated. The total number of returned structures from
each model is listed in Table 2. Additionally, since our target is
to generate cation molecules, we added a charge criterion to
generate molecules with positive charge in our molecule
generation scheme for the same cation seed. The total number
of samples with positive charge returned from each model is
also listed in Table 2 as well as indicated in Figure 1, top panel.
We note that the only model to not include 1-butyl-2-
methylpyridinium in its training data is M3. From Table 2, we
can see that model M3 generates the least number of
chemically feasible structures; at the same time, this model
fails to generate any sample with positive charge. This is

expected, as this model is entirely trained on the GDB-17
database which does not have any molecules with positive
charge; therefore, the model fails to learn the features
associated with positively charged molecules. Model M1
generates the greatest number of chemically feasible structures
compared to all other models, but the number of positively
charged samples is small even when it is compared to the other
purist model M2, which is also trained only on the
bootstrapped cation database. When we consider our transfer
learning models M4 and M5, we observe that M5 procures the
second highest number of chemically feasible structures for
both regular samples and positively charged samples among all
five models, while the samples produced by model M4 are very
low for both cases. This is due to the fact that model M4 was
mostly trained on a larger portion of GDB-17 data but tasked
with generating cationic samples. Additionally, we compared
the chemical (Tanimoto) similarity of the generated structures
with the seed structure when only the positively charged
samples are generated the using molecular access system
(MACCS)60 fingerprints, as shown in Figure 1, bottom panel.
Here, the Tanimoto similarity metric is defined as the

Table 2. Total Samples Generated from Each Model with
Single Cation Seed, 1-Butyl-2-methylpyridinium

model samples samples with (+) charge

M1 7122 6
M2 170 167
M3 6 0
M4 43 29
M5 3700 1729

Figure 1. (top) Log−log scale sample attempts vs number of
chemically feasible structures with a positive charge (also indicated by
N in bottom, left panel). Sampled from a single latent space cation
seed (inset). (bottom) Tanimoto similarities of MACCS fingerprints
of procured structures compared to cationic seed. Lower values are
more dissimilar from the seed, and broader histogram distributions
contain more structural variety.
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intersection over the union of the two fingerprints, and this
figure clearly demonstrates that M5 produces structures with
greater MACCS variety than its companion transfer learned
model, M4. The only other model that produces structures
with somewhat better MACCS variety is model M2. However,
the number of chemically feasible, positively charged structures
generated by M2 is an order of magnitude smaller than that for
M5. Therefore, M5 clearly achieves the best performance for
generating cationic candidates for ILs. This bolsters the fact
that the transfer learning protocol can be used in generating
novel cationic structures where experimental data is scarce.
The transfer learned training protocol for M5 was therefore
identified as the training protocol to create dual cation−anion
generating VAEs.
Sampling from Dual Latent Spaces for Target

Properties. After selecting M5 as having the preferred
training protocol, the network architecture was optimized to

represent two distinct moieties of ILs, namely, cation and
anion, in the latent space. We considered three dual cation−
anion VAEs, in order to procure latent space(s) with which to
feed a QSPR model, shown in Figure 2, left panel. As a null
hypothesis, Gen1 consisted of the Go ́mez-Bombarelli33

architecture, albeit with the first and final layers receiving
two, and outputting two, SMILES strings for the cation and
anion, respectively. Gen2 contained the same structure as
Gen1 with the exception that the cation−anion inputs fed into
three independent convolutional (CONV) layers before
feeding into three combined CONVs and the third gated
recurrent unit (GRU) in the decoder fed into two separate
branches of three GRUs for each of the cation and anion. Gen3
VAE consisted of two separate Gen1 architectures. Training
protocols for the three architectures followed the same
protocol as M5. All three models consisted of the same
QSPR structure described in previous work,61 with the

Figure 2. (left) Network architectures of three different VAE models. (right) Historical training accuracy for models Gen1, Gen2, and Gen3. Note:
These are the built in categorical accuracy metrics within Keras. They are not the Tanimoto similarities or the loss criteria. They are a per-SMILES-
character frequency term indicating how often the output recreates the input to the model. Training protocols are the same as M5. Training
accuracies for Gen1 and Gen2 did not appreciably improve with 1 million GDB-17 examples.

Figure 3. First two principal components during phase III salt embeddings at every 100,000 training examples. The inset number indicates the
100,000th training step.
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alteration that the input to the QSPR consisted of the
respective latent spaces.
The training histories of these three models are presented in

Figure 2, right panel. The Gen3 model, with completely
separate networks for the cation and anion, achieved high
reconstruction accuracies in almost every epoch of training.
Gen1 and Gen2 failed to improve in the first million samples of
GDB-17 data (Figure 2, right panel, up to the first dotted line)
and only marginally improved during the first transfer learning
segment, when both GDB-17 and cation/anion data were used
for training (between first and second dotted lines in Figure 2,
right panel). Of note, Gen1 and Gen2 were able to achieve
modestly high accuracies for anions in their final phase of
training (after the second dotted line in Figure 2, right panel).
This is due to the anion data set being much smaller than the
cation data set (98 vs 276); i.e., the VAE was able to memorize
the anion structures but was unable to generalize across
molecular entities. Across all models, training accuracies on the
smaller data sets in the second million samples are marked by
“jumps” from the prior, larger GDB17 data sets due to the
VAE’s ability to memorize the structures in the training sets.
The true test of the model’s viability will be whether it can
generate new IL structures. This is later investigated.
The purpose of exposing our models to GDB-17 data before

IL data is to embed within the network rudimentary chemical
understanding, insofar as to be able to recreate SMILES
annotation while dealing with noise (stochastic embedding)
and information loss (bottlenecking in the latent space).
However, it is important for the VAEs to learn the features
within various cation/anion groups when the IL data is
introduced in the training, specifically during the third phase of
transfer learning. Therefore, we performed principle compo-
nent analysis on the cation VAE Gen3 model during the third
phase of the training. Figure 3 shows the first two principle
components during phase three salt embedding at every
100,000 training samples. As expected, during this phase of
training, the Gen3 model assigns cation types to specific
neighborhoods within the latent space. Initially, the salt
components of various cationic functional groups are dispersed
throughout the latent space, but as more and more samples are
introduced in the network, the latent space seems to get

rearranged based on type of cations. For example, there are
clear regions consisting only of either the pyridinium or
imidazolium type cations, for which there are ample training
data. The quinolinium type cations have a distinct region as
well, and the remaining cation types cluster together around
the origin of the principal components. Also of interest, from
the first to the fifth 100,000 training examples, the quinolinium
type cations appear to migrate together in their latent
embeddings. This is without exposing the VAE to any kind
of “type labeling”the VAE is learning for itself these
structural categories that have been ascribed by researchers.
Next, to confirm whether these modelsGen1, Gen2, and

Gen3would be useful for generative purposes, we tasked
them with generating unique structures as in the case of the
cation generator, albeit this time allocating the entire salt
database as seeds for the respective latent spaces and allowing
the models however many function calls needed to procure
100 unique structures. Gen1 produced 100 structures in 4,073
function calls, Gen2 in 13,968, and Gen3 in 2,597. As
forecasted by their poor recreation accuracies, however, the
Gen1 and Gen2 models achieved low structural variety in their
procured candidates. Their molecular returns were typically
long, branched and unbranched alkyl chains. The Gen2 model,
however, did achieve some greater structural variety than the
Gen1 model: while it required far more decoding attempts
(13,968 vs 4,073) to create chemically feasible structures, when
it did procure a structure, it was more chemically meaningful,
containing functional groups learned from its training data that
were not present in the Gen1 model. The SMILES strings for
these generated structures of all three generative models
(Gen1, Gen2, and Gen3) are included in the Supporting
Information. Due to its ability to create both heterogeneous
structures and at a low function call level, Gen3 was selected in
subsequent QSPR trainings.
After finalizing the training protocol (M5) and VAE network

architecture (Gen3), we combined these components with
QSPR training to predict various IL properties. We trained
four VAE+QSPR models for four different properties of ILs:
density, heat capacity, viscosity, and thermal conductivity using
the Gen3 model. In this training schema, the hidden cells of
Gen3, indicated in Figure 2, are unfrozen (their weights can be

Figure 4. (left) Validation and (right) training set histories for QSPR training on Gen3. The top parts of each plot show the mean squred errors
(MSEs) of the property estimations for the validation and training set, respectively, while the accuracies in the bottom half of each plot represent
how accurately the ions were recreated by the networks.
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updated) and the QSPR loss is added to the objective function.
Instead of training on the entire cation/anion data sets, each
subsequent model is dedicated to a specific property and is
only trained on the subset of cation/anion data for which that
property data is available. The validation and training set
histories are presented in Figure 4 where MSEs represent the
mean absolute error of each training, while the accuracies
represent how accurately the properties were estimated by the
networks. Figure 4, left panel, indicates that the Gen3 QSPR
validation sets did not appreciably improve after 10 epochs and
did not improve at all after 30. To avoid overfitting, a model
would be selected somewhere between epoch 10 and 30, since
the validation loss improves negligibly in this range. In this
case, however, a model with the best generative capacity was
desired, which did not necessarily correlate with its predictive
ability. Indeed, the QSPR training served to redistribute the
placement of chemicals embedded in the latent space, to better
navigate it according to the premise that like structures lead to
like properties.
To validate this generative capability and to test the

usefulness of the VAE-latent space search approach, the
Gen3 model was saved at 10, 30, and 100 epochs for each of
the four QSPR training sessions. To simulate a real-world
design criterion, we designated each of the four properties as a
value to maximize or minimize. The target properties were the
following: high heat capacity (>918 J/mol/K), low density
(<962.7 kg/m3), low viscosity (<0.0106 Pa s), and high
thermal conductivity (>0.1667 W/m/K).
For heat capacity and thermal conductivity, the top 10

cations corresponding to the highest values for the respective
properties were taken as seeds for the VAE-QSPRs. The
models were then tasked with returning 100 salts with property

values that were equal to or higher than the experimental salt
values. The same was done for density and viscosity with the
alteration that the lowest values for the respective properties
were taken as seeds and models were tasked with finding salts
with equal or lower values. These four VAE-QSPR tasks were
repeated with the non-QSPR-trained Gen3 model to highlight
whether the reorganization of the latent space improved the
ability of the generator to find desired values. In order to
compare the VAE-QSPRs with the original Gen3 model (VAE
without QSPR), a separate RDKit-based QSPR model similar
to that described in previous work20 was used as the property
evaluator. Next, the performance of each VAE with increasing
training of the QSPR predictor (10, 30, and 100 epochs) was
compared against the original Gen3 VAE in their ability to
procure salts with property values that bordered on their
respective distributions. Therefore, we ended up with 13
different generator models (three QSPR-VAEs differing in
epochs for each of four properties and the original Gen3
model) all of which were tasked with generating 100 salt
structures with the aforementioned target properties. The total
number of function calls required by each generator was
recorded. The total number of function calls for each QSPR-
VAE and the baseline Gen3 VAE are presented in Figure 5.
In Figure 5, we observe that the VAE with 100 epochs, on

average, performs the best out of the VAE models. This
suggests that, by grafting a QSPR predictor onto an existing
generative model, the latent spacepreviously organized by a
purely structural relationshipis reorganized by the goal of
minimizing QSPR loss. By using the top 10 ILs as seeds to
generate from the latent space, we leverage the QSPR-related
organization but without explicitly calculating a gradient. In the
next portion of this work, we investigate how calculating the

Figure 5. Cumulative function calls for each property (heat capacity, density, viscosity, and thermal conductivity) for VAE with no QSPR and the
VAE-QSPR model with varying number of QSPR epochs to create 100 unique structures not within the training data sets with target property
values.
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spherical linear interpolation (SLERP) between ILs embedded
in the latent space can lead to new ILs with combinative
macroscopic properties.
Interpolating in the Latent Space for Combinative

Properties. A distinct advantage of designing in a continuous
structural space is the arbitrary appropriation of mathematical
relationships between vector-represented molecules to procure
new ones. However, this interpolation requires calculating
distances in high dimensional feature spaces, which is
nontrivial. Often, we will have to actively avoid pockets of
data-scarce regions in the VAE. Specifically, sampling from a
spherical linear interpolation (SLERP)54 between embeddings
rather than a linear one helps prevent divergence from a
model’s prior distribution (the distribution in the latent
space).62 Indeed, SLERP is just one of a handful of sampling
techniques used in high dimensional latent space models.62 In
other areas of generative modeling research, SLERP has been
used to demonstrate that the model has not simply memorized
training data but can extrapolate outside known examples.33

SLERP is a method to interpolate between two vectors along
the shortest arc.54 It can be thought of as the shortest path
along a spherical geodesic. More specifically, in the context of
unit vectors (which we can extend to any vectors by
normalizing), it is the interpolation between two unit vectors
along a unit-radius great circle arc centered at the origin, with
constant-speed (angular velocity) motion. Originally devel-
oped for the purposes of quaternion interpolation for 3D
animation, SLERP can be defined and used independently of
quaternions and beyond their dimensionality (4D vectors
along a 4D hypersphere). In the context of this paper, we
interpolate between n-dimensional vectors along an n-dimen-
sional sphere, where n is the dimensionality of the latent space.
The formula for SLERP interpolation between two vectors

p0 and p1(normalized) is independent of the dimensionality of
the space in which the arc is subtended and depends on an
interpolation parameter t between 0 and 1, as well as Ω, the
angle subtended between the points such that cos(Ω) = p0·p1,
the n-dimensional dot product:

p p t
t

p
t

pSLERP( , ; )
sin (1 )

sin( )
sin
sin( )0 1 0 1= [ − Ω]

Ω
+ [ Ω]

Ω

The interpolation t dictates the point on the arc to which the
interpolation is set. For example, t = 0.10 refers to a point 10%
of the way from p0 to p1, such that the angle between the
interpolated point and p0 is 0.1Ω and the angle between the
interpolated point and p1 is 0.9Ω. Changing t at a constant rate
results in a constant angular velocity along the arc. One will
also notice that, in the limit of Ω → 0, the formula or SLERP
reduces to that of linear interpolation (LERP):

p p t t p tpLERP( , ; ) (1 )0 1 0 1= − +

In this phase of our schema, we trained six combinative
property models containing any two of the four thermophysical
properties. These models were trained in the same way as
before, albeit with two property targets for the QSPR layers
trained off the latent space. After training, to evaluate the
performance of these models, we would at any given iteration
select two cationic moieties from the top 20 pool of each
property and interpolate 10 structures between them using
SLERP coordinates. The model was allowed 100 sampling
attempts before moving on past the current interpolation (i.e.,
in an iteration call, 0−10 structures were returned). Figure 6
demonstrates one such example when Gen3 VAE is used to
interpolate between two embedded ILs with desirable
properties, namely, high heat capacity and thermal con-
ductivity, which is often required for heat transfer application.
In this search, a high thermal conductivity IL was selected with
a high heat capacity IL, which appears at the top and bottom of
the right panel in Figure 6. After interpolating between them
for 10 distinct structures, a candidate was found that had heat
capacity and thermal conductivity estimates within our
dictated cutoff (higher than 918 J/mol/K and 0.1667 W/m/
K). This structure is shown as the white-red star in Figure 6.
Similar molecules to our selected candidate, essentially a
pyrrole radical, have been synthesized.63 The radical presence
has been attributed to the pyrrole ring, in which it acts as an
effective free-radical trap.63,64 Aminium or six-membered ring

Figure 6. Latent space interpolation in the Gen3 thermal conductivity−heat capacity 100 epoch QSPR model. In the interpolation (represented by
stars), the blue-red star indicates a high thermal conductivity salt in the training data and the green-red star indicates a high heat capacity in the
training data. The white stars represent the interpolated structures, and the white-red star represents the selected structure with both high heat
capacity and high thermal conductivity
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radical ions have been reported as reaction pathways for
creation of salts under certain conditions.64

To quantify whether interpolation is a convenient search
mechanism, we tallied the total number of function calls to
procure 10 structures in each of the pairwise property profiles,
as shown in Table 3. After procuring the interpolated

structures, they were evaluated alongside a sampled anion
(without anion pairing in Table 3) or alongside all
experimental anions (with anion pairing in Table 3). In this
way, total VAE function calls were minimized. If the
candidate−anion pair was estimated to be within the property
target bounds, it was selected as a solution to the search
criteria. In addition, we performed the sampling without
interpolation, instead using a latent “noisy” seed. The results of
these sample attempts appear in the right two columns of
Table 3.
As seen by comparing the right and left sides of Table 3,

sampling from the top 20 performers (encoded as latent seeds)
for each property outperformed the interpolation strategy.
However, when procured candidates were evaluated against all
anions in the training data sets to evaluate valid anionic
partners for the given property distribution target, the
interpolation method performed better than the noisy seed
strategy for generating high heat capacity/high thermal
conductivity targets and low viscosity/high thermal con-
ductivity targets. The reason evaluating against all anion
partners results in lower function calls is that the cations are
often promiscuousthey can be attached to a number of
anions and still fit within the target property profile.

■ CONCLUSION
In this work, we have demonstrated the following objectives:
(1) transfer learning is an effective approach to create a
generative neural network model of molecule types for which
there is scarce training data and this approach works for
generalizing from single to dual molecular systems (i.e., ILs),
(2) training the preconditioned-structural model on subse-
quent property data can lead to effective reorganization of the
latent space for generating molecules with desired properties,
and (3) interpolating between molecules of property extremes
can result in hybrid-generated structures with structural and
property similarities to the two end points. For the first
objective, we evaluated our training protocol against null
hypotheses: (a) training a model on only the larger but

molecularly dissimilar data set and (b) training the model on
only the smaller, target data set. Both null hypothesis protocols
resulted in poor structural variety when sampling from the
generated model and/or minimal chemically feasible SMILES.
In the second objective, we tasked our generative models with
producing 100 chemically feasible structures at fringe property
distributions (i.e., a nontrivial design task) and found that
QSPR-trained models procured structural candidates with
fewer function calls than the non-QSPR trained model. Finally,
for the third objective, we outlined a multiobjective design
problem, where we sought fringe property distributions using
six pairwise property combinations. In these cases, interpolat-
ing between top performers from each distribution did produce
chemically feasible structures but at about the same perform-
ance as sampling from both distributions with noisy seeds.
The infeasibility of purely MD/MC approaches to exploring

small molecule space in search of IL candidates was stated
earlier. A future area of work, however, would be to screen the
small molecule candidates procured by the ML approach, with
quantum mechanical structure relaxation followed by MD/MC
simulations to determine the viability of the structures along
with their properties. Additionally, one of the main challenges
of this study was the availability of cation and anion data in the
ILThermo database. Though our transfer learning protocol
showed significant promise even with a very small amount of
data for a relatively new domain such as ionic liquids, there are
other paths one could take to build a reasonably large data set
of anions and cations. These paths include but are not limited
to selecting representative molecules either from the Zinc46 or
PubChem65 database and generating rule-based libraries of
possible cations/anions such as replacing an aromatic group of
small aromatic cationic rings with an alkyl group. This will help
the transfer learning protocol proposed in this study to learn
more complex relationships in the latent space, as the network
will observe many more samples and may generate a more
diverse set of molecules. Additionally, comparison of the
quality and size of rule-based libraries with the VAE approach
discussed in this work and other machine learning approaches
would help contextualize the utility of machine learning
approaches, generally.
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