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Abstract

We present a computational model of thin elastic bilayers that undergo large bending
isometric deformations when actuated by non-mechanical stimuli. We propose a dis-
continuous Galerkin approximation of the variational formulation discussed in [8]. We
showcase its advantages and good computational performance with configurations of
interest in both engineering and medicine and either Dirichlet or free boundary condi-
tions.

1. Introduction

Large bending deformation of thin plates is a critical subject for many modern
engineering and medical applications due to the extensive use of plate actuators in
a variety of systems like thermostats, nano-tubes, micro-robots and micro-capsules
[9, 17, 19, 24, 26]. From the mathematical viewpoint, there is an increasing interest
in the modeling and the numerical treatment of such plates. A rigorous analysis of
large bending deformation of plates was conducted in the seminal work of Friesecke,
James and Miiller [15], who derive geometrically non-linear Kirchhoff models from
three dimensional hyperelasticity via I'-convergence. There have been various other
interesting models since then, such as the prestrained model derived in [20]. A well-
known relevant case that provides also the main motivation for this work is the bilayer-
plate model [7, 8, 23]. This is the case when two thin layers with different material
properties are attached together. Upon thermal, electrical, or chemical actuation, such
plates react differently thereby leading to large bending deformations. Mathematically,
the plates develop an intrinsic spontaneous curvature tensor Z and the deformation
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y : Q — R? of the midplane Q c R? minimizes the elastic energy

1
E[y] :=§fQ|H—Z|2—foy, (1.1)

where H = (h; j)i =1 is the second fundamental form of the surface y(Q), namely
hij = 8;;y - v, v is the unit normal to the midplate and | - | denotes the Frobenius norm.
This spontaneous deformation of a flat configuration may occur without a forcing term
f- Our goal is to explore simple mathematical and computational bilayer models which
are capable to reproduce equilibrium configurations observed in engineering and med-
ical applications [2, 18, 25]. Shear and stretch are negligible leaving bending as the
essential feature to account for. In particular, lengths and areas are preserved by the ad-
missible deformations y(€2). Mathematically, this entails that y is an isometry, namely
y obeys the pointwise constraint

[Vy]'Vy =1 (1.2)

for the first fundamental form, where Vy = [0y, 0,y] € R¥*2, [Vy]T is the transpose of
Vy, and I is the 2 x 2 identity matrix. For isometric deformations, the unit normal v
reads

vV =01y X dy). (1.3)

Before proceeding further, we point out that because of the isometry constraint (1.2) (no
shear nor stretch), the Lamé’s first parameter A and shear-modulus u of the plate only
affect the energy by a multiplicative constant %22‘;%}” which is thus omitted [15, 23].

Previous work on the numerical treatment of large bending deformations includes
the use of Kirchhoff finite element discretizations for the single layer problem by Bar-
tels [5] and the bilayer problem by Bartels, Bonito and Nochetto [8], both reviewed
by Bartels [6]. Modeling and simulation of thermally actuated bilayer plates is devel-
oped by Bartels, Bonito, Muliana and Nochetto [7]. Our discontinuous Galerkin (dG)
approach for the single layer problem, described in [11], exhibits some desirable the-
oretical and computational properties. We show I'-convergence in [11] of the discrete
energy functional Ej, to the continuous bending energy E and combine this property
with a compactness argument to deduce that global minimizers of E;, converge strongly
(up to a subsequence) to global minimizers of E in L?(€2). We also test the dG method
computationally in [11] via some illuminating examples that document its improved
accuracy and geometric flexibility with respect to the Kirchhoff approach in [5]. These
experiments are simple but designed to explore theoretical properties of the dG method
and showcase its potential.

In this work we extend the dG approach to the simplified bilayer model of [7] and
use it to compute configurations of interest in engineering and medical applications
with either Dirichlet or free boundary conditions. In Section 2 we recall the single
layer model of [11] and its dG approximation. In Section 3, we briefly discuss the
bilayer model of [7] and its novel dG approximation. We conclude in Section 4 with
simulations relevant in applications. Some simulations reproduce those already pre-
sented in [8, 7] using Kirchhoff elements and some are new.



2. Single Layer - Main features of the DG Approach

We start with a brief description of the single layer framework, namely Z = 0 in
(1.1), and the key features of the dG method developed in [11].

Continuous energy. Given a Lipschitz domain Q ¢ R? (the undeformed plate), a
smooth isometric deformation y : Q — R? satisfies

HP = D% = 1Ay @1
pointwise in Q. To see this, we write the isometry constraint (1.2) componentwise
6,<y.6jy=6,»j, i,j= 1,2,
and deduce by differentiation

Ory - 0ijy =0 or Oijy llv="01yxday, 1, jk=12.

2

Combining this with the definition of the second fundamental form H = (h; j)l.jzl , leads

to
hij = 0;y - v = 0;jy = hijy = hij 01y X 02y, (2.2)

which implies the first equality in (2.1). The second one follows from
01012y - 02y) = D2(B11y - 02) =0 = |91’ = Onry - Onay.

Therefore, the elastic energy (1.1) for the single layer plate can be rewritten as

1
ﬁm:iLWW"L”’ 23)

with load f € [L*(Q)]?. The single layer model thus consists of seeking a deforma-
tion y € [H*(Q)]® that minimizes (2.3) subject to the nonlinear pointwise isometry
constraint (1.2) a.e. in Q as well as Dirichlet boundary conditions on dpQ C 9

y=g, Vy=0 on dpQ, 24

where g € [H2(Q)], @ := Vg e [H'(Q)]?*? are given and satisfy OT® =7 ondpQ. In
addition to [11], we allow dpQ = 0 and call it free boundary conditions.
The first variation of (1.2) yields the linearized isometry constraint

Lv;y] := [VW]'Vy + [Vy]'Vv =0 ae. Q. (2.5)

This defines the tangent plane # [y] at y to the nonlinear constraint (1.2), namely the
set of functions v € [H?*(Q)]® with vanishing Dirichlet trace on 0pQ provided 9pQ # 0
and satisfying (2.5). The first variation 6E°[y](v) = 0 of (2.3) in the direction v reads

SE°[yl(v) = szy ‘D% - f-v=0 VYveFyl, (2.6)
Q



and is the Euler-Lagrange equation. We can find its solution y € [H*(Q)]? as the limit
as t — oo of the solution y(¢) € [H*(Q)]* with 0,y(t) € F[y(#)] of the H>-gradient flow

By Vi +OE' I =0 VveFIyl 2.7)

For v, w € [H2(Q)]?, the H*(Q)-scalar product in (2.7) is defined to be

V. W) = szv :D’w + sf Vew. (2.8)
Q Q

Hereafter, we take & > 0 whenever dpQ = 0 and & = 0 provided dpQ # 0. The
evolution (2.7) is supplemented by an initial condition y(0) = yy where yy € [H 2P
satisfies both (1.2) and (2.4). Notice that this, together with d,y € F[y], yields

O30 -1 = [ 8, (DI V) ds = [ Lasseds = o

whence y(f) remains an isometry along the gradient flow (2.7). Moreover, since 9,y €
Fyl, taking v = 9,y in (2.7) gives

d d
10y lpqy + 7 E'DI=0 = —E[]<0. (2.9)

Discrete energy. We consider a sequence of subdivisions {77};~0 of Q made of tri-
angles or quadrilaterals. We assume that the sequence is shape regular, quasi-uniform
and identify & with the maximal element size. From now on ¢ and C are generic
constants independent of /& but possibly depending on the shape-regularity and quasi-
uniformity constants of the sequence {77,};>0-

We denote by Py (resp. Qi) the space of polynomial functions of degree at most
k > 0 (resp. at most k on each variable). Also, T stands for the reference element,
which is either the master triangle when the subdivision is made of triangles or the unit
square in the case of quadrilaterals. The mapping between the reference element T and
any T € 7}, is denoted Fr. Notice that F7 is affine for triangles 7' and bi-linear for
quadrilaterals 7.

With each subdivision 7, made of triangles, we associate the space of discontinu-
ous piecewise polynomial functions

Vii={m e LXQ) : voFreP, VT eT). (2.10)

Alternatively for subdivisions made of quadrilaterals, the space Py is replaced by Q.
We point out that in this case, v;|r is no longer polynomial, which entails additional
difficulties in the analysis. We refer to [11] for details but note that we require k > 2 in
both cases.

We denote by 82 the collection of edges of 7, contained in Q and by SZ those
contained in dpQ (note that 82 = ( provided dpQ = 0); hence &, := 82 U 82 is the set
of active interelement boundaries (across which jumps and averages will be computed).
We further denote by I') := U{e : e € &)} the interior skeleton, by I'? := Ufe : e € &}
the boundary counterpart, and by I, := T) UT? the full skeleton.



For e € 62 we fix u := u, to be one of the two unit normals to e in Q; this choice is
irrelevant for the discussion below. For e € 82 we set u to be the outward pointing unit
normal to e. Given vy, € V’Z’ we denote its piecewise gradient by Vv, and the jumps of
vy and Vv, across any edge e € &, by

vi—vi ee& Vv, =Vt eec &
[vpl =40 A AR S @1
v, ecg) Vv, e€g)

where vi(x) = lim,_o+vi(x £ s ) for x € e. The averages of v, € V’Z and Vv, across
an edge e € & are given by

Loyt - 0 1 + - 0
(v + e& s(Vivi+V e&

= 20T e€b gy O ET) €8 g 1)
v, e€g) Vv, e€g)

Motivated by the dG formulation of the bi-harmonic problem and (2.1), given two
positive stabilization parameters y, and y;, we define the discrete energy E,? on [V];,P
by [11]

1
Ejynl = SIDil ) = (o ymze

= ({8, Viyn}s [Vhyh])LZ(rg) + ({0, Anyn}s [)’h])LZ(rg)

= (0. Viyn} Viyn = @) 2oy + (0uBnynbs yn = )2t (2.13)
Yi,-1/2 2 Y0 ,,-32 2
+ ?Hh (Vaynllizz o, + ?Hh Dalllza o,

Vi, - Y0, -
+ S 2 Tayn = O gy + W2 00 = Ol
We show in [11] that, if g, v, are chosen sufficiently large and dpQ # 0, then the
discrete energy E2 is coercive with respect to the following dG quantity defined for
v € [V}

vall: = = IDGVAlIZa gy + W2 EVVAT s o, + WA Vil o,
-1/2 2 -3/2 2 2.14)
+ R (Vv — DI A n = Moy

h

L2(IY)
in the sense that Eg[vh] < c implies [||[vy|l|lz < C uniformly in A. When 9pQ = 0, the
coercivity of Eg holds on the subspace of V’; consisting of functions with vanishing
zero (mean value) and first moments.

Notice that the boundary conditions (2.4) are enforced using the Nitsche method:
if Egb’h] < ¢, then the coercivity property |||vylllg < C implies ||y, — g”LZ(rZ) < Ch3/?
and ||V,y;, — (I)”Lz(rj;) < Ch'?, whence (2.4) is recovered as & — 0. This allows us to
avoid incorporating the boundary conditions explicitly on the discrete admissible set

Ans ;:{vheMP: D f \ANRAE

7eT;, VT

< 5}, (2.15)

where 6 = d(h) is such that 5(h) — 0 as h — 0. By doing so, unlike for the Kirchhoff
approach [11], technical issues related to compatibility between the isometry constraint



(1.2) and boundary conditions (2.4) are by-passed. We also point out that imposing
(1.2) at the vertices within the Kirchhoff approach is further relaxed to an element-
wise average constraint in (2.15), which is achievable with the gradient flow described
below.

I'-convergence: We prove convergence of almost global minimizers in [11, Section
5] provided 0pQ2 # 0. Let y, € A be a sequence of almost global minimizers of Ej,
ie.
EMysl < inf E[wy]+e(h) < C,
wp€A s

where e€(h) — 0, 6(h) — 0 as h — 0 and C is a constant independent of 4. Then, {y;},
is precompact in [L*(©)]* and every cluster point y of the sequence {y,}s-o satisfies
y € [HX ()], y = g, Vy = ® on dpQ and y is an isometry and a global minimizer of
E°. Moreover, up to a subsequence (not relabeled), the discrete energy converges

lim Ej[ys] = E°[y].

Discrete Euler-Lagrange equations: In order to write discrete versions of (2.5)
and (2.6), we must first realize that the Dirichlet boundary conditions (2.4) are imposed
weakly via the Nitsche method. This changes the very notion of discrete tangent plane.
We write the discrete linearized isometry constraint

Liviwdi= [ (190 + (') =0 vTe7i Q10
T

for variations v, € [V];,P of a minimizer y, € Ays. This defines the discrete tangent
plane Flys] at y; to be the set of functions v, € [V}]* satisfying (2.16) without bound-
ary conditions. The discrete version of (2.6) is 6E2[yh](vh) = 0 for all v, € F1[y] and
reads

ann, vi) = (s vidre) + €n(vi) Y vy € Falynl, (2.17)

where a; (-, -) is the bilinear form corresponding to (2.13) and is given for v, wy, € [Vﬁ 1P
by
ap(wp,vp) = (Diwh, DthV)Lz(Q)
= (0. Vuwnds [Vival )2,y = (0 Vavads [Viwn]) 2,y
+ (10uBwwik, Vil 2,y + (0uBnvib, [Wal )2 r,y
+y1 (7 [Vawnl [V poryy + Yo(B ™ Twal s [vad) o r,y -

(2.18)

and ¢}, is the linear form that enforces the boundary conditions in the Nitsche’s sense
G(vp) = _(a,uvhvh, q))LZ(FZ) + (ayAth, g)Lz(l-Z)
+ (k7' @, thh)LZ(F,‘;) + '}’O(h%g, Vh)U(r’;)'

To see this, simply note that we use the full skeleton I', in (2.18) and combine the four
terms in €;,(v;,) with similar terms on the boundary skeleton Fz in (2.18) to arrive at the



following equivalent form of (2.17) where the Nitsche’s approach is apparent:

(Djyn, Divh)Lz(g) = (10, Viynh Vvl 2,y — (10, Vavah, [Viy] D)
+ ({0, Bwyn}s Vil 2,y + ({0uAnvils [y )LZ(rg)
+ 107" [Viyn] s [Vaval Vo) + Yo(h™ [yn], [va] )iz
= (0,Vuvn, Viyn — (D)LZ(Fﬁ;) + (0, Apvn, yn — g)Lz(Fz)
+y1(h™ (Vi — D), Vivn) oy + Yo(h™>(yn — 8, Vi) 12t

=(f, Vh)LZ(Q)-

(2.19)

Discrete gradient flow: In order to construct discrete minimizers y, € [Vﬁ]3 of
(2.13) satisfying (2.16), or solutions of (2.17), we employ the following discrete relax-
ation dynamics with pseudo-time step 7 > 0. Given a current deformation y; € [Vﬁ 13 at
iteration n € N, we seek the new iterate yi*! := y!+6y2*! with correction 5y;*! € F [y}
satisfying

T_l(éyZ”,vh)Hﬁ + ah(éyZ”,vh) = —a,(y;, Vi)

(2.20)
+ (v + Give) Y, € Frlyyl.

This is a discrete version of (2.7) in [V’;l]3 with variations 5y2+1 tangent to y; and un-
derlying metric induced by the discrete H>(Q)-inner product (-, -) 2 and corresponding
norm ||| - |||le, where

(Vh,Wh)H,g = (Divh,D%Wh)Lz(g) + e(vhawh)LZ(Q)

| . 2.21)
+ (B [Vl (VWD) ooy + (A7 [val, [wa) 2 o).

Notice that the presence of the e-term as in (2.8) ensures that (-, ), is indeed an inner
h

product in [Vﬁ]3 and that therefore (2.20) has a unique solution even when dpQ = 0.
An important property of gradient flows is that the resulting deformations yZ“ =
v +6ypt! € [VE]? decrease the discrete energy strictly provided §y;*! # 0 [11, Lemma

h
3.2]
1
I8y, e + B3 < ER;; (2.22)

this is the discrete counterpart of (2.9). This also shows that the sequence y; converges
to a local minimizer y,, € [VZP of Eg. In addition, if 6 > (1 + clEg [y2] +cR(g, @, )T
with R(g, @, f) = ||g||12ql(Q) + ||(I)||z,(9) + ||f||i2(9), then the linearized isometry constraint
(2.16), together with (2.22) and Friedrichs inequality, guarantees y; € A, s foralln > 1;

hence, y, € Ajs. We refer to [11, Lemma 3.2] for additional details.

3. Simplified Bilayer Model and its dG Approximation

We now briefly recall the simplified bilayer model from [7], and adjust the dG
method of [11] to this model.



Continuous energy: Since y is a pointwise isometry, i.e. y satisfies (1.2), in view
of (2.1) the energy functional (1.1) for the bilayer plate can be rewritten as

Em:lfWW—sz+{ﬂﬁ—fﬁ, 3.1
2Q Q 2Q Q

where the matrix function Z € R>*? is referred to as a spontaneous curvature and
encodes the mismatch between the two constituent materials of the bilayer plate. Mo-
tivated by the applications presented in Section 4, we focus on the case f = 0 in the
discussion below. Moreover, using the expression (1.3) for the unit normal, valid for
isometries, the second fundamental form reads H = (9;;y - (81y X 02));; and leads to

1 1
Em=iﬁWW—Zj@mwwwm@+iﬂ#. (3.2)
Q ij Q Q

The first variation SE'[y](v) of E at y € [H>(Q)]? in the direction v € ¥ [y] reads

SE'[YI) :=szy:Dzv—ch?ijV~(61y><82y)zu
Q 7 Jo
—Zf3in'(51)’><62V+61V><32y)zij,
ij YQ

where we recall that 7 [y] is the set of functions v € [H*(Q)]® with vanishing Dirichlet
boundary conditions and satisfying the linearized isometry constraint (2.5). To obtain
an equivalent expression better suited to numerical approximations, we combine (2.2)
with the vector identity (a X b) - (c X d) = (a- c)(b-d) — (a - d)(b - ¢) to realize that

6,~jy . (61y X azv) = h,‘j (01}7 X 62)1) . (61y X 62\1) =0
0ijy - (01v X 82y) = hj (81y X 82y) - (B1v X d2y) =0

because 0,y - d,y = 0 and 9;y - 9;v = 0 according to (1.2) and (2.5) respectively.
Therefore, the expression of SE'[y](v) = 0 simplifies to

6El[y](v)=szy:Dzv—Zfﬁ,-jv-(Blyxﬁzy)z,-j=O, (3.3)
Q 7 Ve

whenever y € [H*(Q)]® is an isometry that minimizes (3.2) and v € ¥ [y]. In analogy
with (2.7), we can now find y as the asymptotic limit of the solution of the H?-gradient
flow

By V)i +OE' VI =0 Vv e Fly] = %El[y] <0. (3.4)

We observe that the first term in (3.3) dominates the second one and is already present
in the first variation (2.6) of the single layer energy functional E°. We exploit this next.

Discrete energy: In order to obtain a simple yet efficient discretization of (3.3), we
take advantage of the good properties of the dG discretization of Section 2. We thus



discretize the first term in (3.3) according to (2.17) and the second one elementwise to
arrive at

arVn, vi) = Cp(vp) + Z Z faith - (01yn X O2yn) Zij Yy, € Fulvn].  (3.5)
T

ij TeT

We emphasize that this nonlinear discrete scheme entails only a piecewise computation
of the additional term without taking into account any possible jumps of d;;v; and of
01yn X 02y, They are indeed already incorporated into the bilinear form ay(-, -) defined
in (2.18) and provide a good approximation of the Hessian D*y [11]. The discrete
energy E }L associated with (3.5) reads

E}lynl == Eply] - Z Z faij)’h ~(01yn X O2yn) Zij-

ij TeT, YT

We point out that (3.5) is not the Euler-Lagrange equation of E ;l because the orthog-
onality conditions leading to (3.3) may not be valid for y;, € A; ;. We deal with (3.5)
below.

Discrete gradient flow: To compute a solution y, € A, s of (3.5) we propose a
discrete version of (3.4) with 6F /1: [yZ“](vh) replaced by (3.5) and its rightmost term
treated explicitly; compare to (2.20). Given y} € Ay 5, we thus seek 6y2+1 € F1y;] such

that

O v + an(@Yy i) = = an(vva) + Gvn)
(3.6)
+00 [aom-@uixanh  vu e
ij Ter, YT
and set y’;l“ =y +(5y;’l+' . This linear algorithm is used for the simulations in Section 4.

Several comments are in order. It is not clear that (3.6) reduces the elastic energy
E }1’ [v,;] and yZ” € Ays. To show these crucial properties we need to quantify for y}
the lack of orthogonality leading to (3.3). Moreover, we have to quantify the effect of
the explicit treatment of the last term in (3.6). Finally, the isometry constraint (1.2) is
not valid for y; € Ay s, for which we allow an isometry defect. In view of (2.16), we
deduce

fT VY, 1Tyt = fT (VYT Vy + fT [Voy ' Ve, > fT (VyiITVYy VT €Th,

whence exploiting telescopic cancellation we obtain
I f AR/ f (VY31 V= 1
T T

provided y2 is an isometry in the sense that the last equality holds. This implies that
the average of d;y; > 1 over each T € 7}, and (3.6) is well-defined. However, the

vector 41y, X 02y} may not have unit norm. These observations were instrumental

; PRV
in [8] to redefine the normal vector as % X |c’)j_)h| and prove I'-convergence of the
h “h



discrete energy. We anticipate that a rigorous study of the dG approach (3.6) to the
bilayer model may need to take advantage of the properties of the discrete Hessian
Hj[y,] described in [11], as well as the quasi-orthogonality relations

Z|fT81yZ'62yZ|S6

TeTy

and
fa,‘yz -aivh =0 VV}, € ﬂ[yZ], VT € Th,
T

ensuing from (2.15) and (2.16) respectively. We do not investigate here any theoretical
properties of (3.6) but rather explore its performance on several numerical experiments,
some from [8, 7] and some new. This is carried out in the next section.

4. Numerical Experiments

In this section we explore several examples motivated by the work in [8, 7] and
experimental work in [2, 25, 18] in order to further understand the computational per-
formance of the dG method (3.6), which extends our method from [11] to bilayer plates.
We aim to verify whether the simple extension of Section 3 can lead to relevant simula-
tions that capture the essential physical properties of the bilayer bending problem seen
in lab experiments. To this end, we challenge our algorithm in a variety of settings
exploring the effect of the spontaneous curvature matrix Z, the boundary conditions
and the midplate aspect ratio. All these factors are crucial for engineering applications
as they can be appropriately combined to achieve desirable equilibrium configurations
under suitable thermal, electrical, or chemical actuation. We emphasize that the model
discussed here does not assume small deformations and therefore copes with geomet-
rically nonlinear deformations.

4.1. Boundary Conditions

Before we proceed with the specific examples, it is worth discussing briefly our ap-
proach for boundary conditions (B.C.). Our experiments fall into two main categories:

¢ Dirichlet B.C. on 9p,Q: Case ¢ = 0. We impose the Dirichlet condition (2.4) via
a Nitsche approach in (2.19), whose left-hand side is the variational derivative of
Eg[yh] in (2.13). In fact, the left-hand side of (2.19) contains boundary terms on I" Z
with the quantities V,y, — ® and y, — g but, incidentally, does not contain terms on
dQ\ T?. Therefore, the discrete space [V}]* does not include Dirichlet boundary
conditions. The corresponding gradient flow (3.6) is linear and coercive thanks to a
Friedrichs inequality [12],[11, Corollary 2.2] even when £ = 0 in (2.21); hence (3.6)
admits a unique solution. Moreover, our I'—convergence analysis of [11] guarantees
that the limiting deformation y satisfies (2.4) on dpQ for single-layer plates. All the
numerical simulations with 0p€Q # 0 are therefore performed with € = 0.

10



e Free B.C.: Case £ > 0. When dpQ2 = 0, we allow the thin plate to deform without
any boundary restrictions. We thus realize that the kernel of the bilinear form on the
left-hand side of (3.6) is non-trivial unless € > 0. The characterization of such kernel
with &€ = 0 and linearized isometry constraint is not clear. Nevertheless, to guarantee
that the resulting linear system is uniquely solvable, we add a zero order e-term to
the discrete semi-inner product (-, ~)H§ defined in (2.21). Stationary configurations
of (3.6) are unaffected by the e-term. In practice, we take £ = 1072 in our examples
below.

4.2. Implementation of the Gradient Flow

We now briefly describe some implementation aspects of the gradient flow. Except
for the convergence analysis of Section 4.3, all subsequent experiments are performed
on 5 uniform refinements of the plate, resulting in 1024 cells, and with a pseudo-time
step T = 5-1073. The associated finite element spaces are given by (2.10) for the case of
quadrilaterals and k = 2, i.e. using Q? polynomials in the reference element T. Based
on parameter studies performed for the single layer model in [11], we use rather large
values for the stabilization parameters: y, = 5-10° and y; = 1.1-103. This choice is not
exclusively dictated by stability considerations, as is customary for interior penalty dG
[10, 21, 22], but primarily by a balance between the discrete initial energy Eg [yg] and
the fictitious time-step 7 of the discrete gradient flow, which determines the isometry
defect ¢ in (2.15) according to 6 > (1 + ¢)7 for the single layer model, where ¢ is a con-
stant depending on the initial energy Eg [yg], the data f, g, @ and the domains Q, dpQ.
It is important to notice that the magnitudes of yy,y; affect the weak imposition of
Dirichlet conditions alla Nitsche and the value of Eg [yg], thereby making the choice
of yp,7y: a critical aspect of our method. Different choices may influence the defor-
mation flow and potentially lead to cases where local discrete minimizers are attained
instead of global ones. However we recall that for the single layer system, once vy, y;
are fixed, I'-convergence guarantees that discrete global minimizers converge towards
exact global minimizers.

The stopping criteria for the gradient flow is

|E\yy 1= Byl < 106 7= 5107, @.1)

We declare such a deformation yZ“ to be our equilibrium deformation.

Lastly, to implement the linearized isometry constraint (2.16), we use a piecewise
constant symmetric Lagrange multiplier matrix A7*! € [V)]*** with 3 components cor-
responding to the distinct elements of the symmetric bilinear form Lz [vy; y}] € [V)]>
of (2.16) for T € 7T, If {¢;} stands for the standard Lagrange basis of [Vﬁ]3 (i.e. piece-
wise P¥ or QF in the reference element) and {¥;} for the basis of [Vg]2><2 consisting of
piecewise constant 2 X 2 matrices, then the bilinear form associated with /IZ” is

DA ) o= f A (Ve Wy + [V V) VT €Ty
T

Moreover, we denote by AZ*' the vector representation of /lZ“ in the basis {¥;} and by
Y™*! the vector representation of y7' in the basis {¢;}; hence 6Y"*! := Y"*! — ¥". There-
fore, the augmented linear system corresponding to (3.6) with Lagrange multiplier is a
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saddle point system and reads

IM+A (BH\ (Y™ [-AY"+ F"+ G 42)
B" 0 AT 0 ’ ’
where the coefficients of M, A and B" are
Mij = (pjs 9z, Aij = an(g), ¢i), B}, = Z by (i, 05) (4.3)
TeTh
whereas those of the right-hand side of (4.2) are
F = Z Z fzkl Oipi - (01}, X 02)1), G; = Cy()). 4.4)
ki TeT, VT
Algorithm 1 Gradient Flow
1: // Input
2: y2 o Y0 > Initial deformation function < vector
3: Y05 Y1 > Jump penalization parameters
4 T > Pseudo-time step
5. J/ Initialization
6:n=0
7: Assemble M, A, B° according to (4.3)
8: Assemble F°, G according to (4.4)
9: Assemble A = 7'M + A and compute its LU decomposition
10: Compute E; [y?]
11: // Main Loop
12: repeat
13: Solve for A"*! according to (4.5)
14 Solve for §Y™*! according to (4.6)
15: Compute E} [y;*']
16: n—n+l
17: until |E}[y!] - E}[y77']] < 107°7
We propose a Schur complement iterative method to solve (4.2), namely
B"A (B A" = B'A (- AY" + F" + G), 4.5)
and
Y™ = AN (- AY" + F" + G — (BY) A", (4.6)

where the matrix A := 77! M+A needs to be assembled only once and so the application
of its inverse can be computed using a LU decomposition (computed once as well).
This results in an efficient inner solver used in conjunction with a conjugate gradient
algorithm to compute A"*! in (4.5); efficient preconditioning of (4.5) is still an open
issue. A pseudo-code for the full algorithm is given in Algorithm 1. Additional details
can be found in [11]. The implementation of the dG method and simulations below
have been carried out within the FEM software platform deal.ii [3, 4]. The resulting
deformations are visualized with Paraview [1].
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4.3. Clamped Plate: Z = I and Comparison with Existing Methods

We start with the simplest case of a rectangular plate Q = (=5, 5)%x (-2, 2), clamped
on the side {—5} X [-2, 2], with spontaneous curvature given by Z = I. The deformation
with minimal energy corresponds to a cylinder of radius 1 and energy 20 [23]. We
report relevant iterations of the gradient flow in Figure 1. A cylindrical equilibrium
configuration is reached confirming the results in [8, 23]. It is worth mentioning that,
in contrast to [8], this final stage is attained now without any self-crossing of the plate,
which is generally speaking difficult to avoid for a relaxation dynamics such as (3.6).

000,

£

.

Figure 1: Pseudo-evolution (counter-clockwise) towards the equilibrium of a clamped rectangular
plate with spontaneous curvature Z = 1. The bilayer plate is depicted at times 0.0, 0.5, 1.5, 3.0,
5.0, 8.0, 10.0, 20.0 x10* of the gradient flow. The plate reaches a cylindrical shape asymptoti-
cally, which is an absolute minimizer, without self-crossing.

We exploit this example to illustrate the improved accuracy and geometric flexibil-
ity of the dG method relative to the Kirchhoff approach in [5] for Z # 0. A complete
numerical study of this property when Z = 0 is already presented in [11, Section 6].
We consider a sequence of 4,5 and 6 consecutive refinements of the plate Q, thus re-
sulting in 256, 1024 and 4096 cells with a total of 7680, 30720 and 122880 degrees of
freedom; they are denoted by mesh #4, #5 and #6 respectively. The pseudo-time step is
setto 7 = 5-1073; we refer again to [11] for a convergence analysis with respect to the

Mesh || #4 [ #5 [ #6

Method dG K dG K dG K
Energy || 18.514 | 15.961 || 18.679 | 16.544 || 18.891 | No Convergence

Table 1: Final energies using the Kirchhoff method (K) of [8] and the proposed dG method on 4, 5 and
6 consecutive uniform refinements of the plate (=5,5) X (=2,2). The exact equilibrium energy is 20 and
corresponds to a cylindrical shape. We observe that dG method is at least 10% more accurate. Moreover,
unlike the dG method, the Kirchhoff method is not able to reach a stationary state for refinement 6.
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time-step. Table 1 displays the final energies obtained with the proposed dG method
and the Kirchhoff method of [8, Table 6.1]. We observe that the dG method gives
equilibrium deformations with energy 10% more accurate that the Kirchhoff method.

4.4. Clamped Plate: Anisotropic Curvature
We now explore the effect of anisotropic spontaneous curvature

3 2
z-|% 3
The plate Q = (-2,2) X (-3, 3) is clamped along the side dpQ = [-2,2] X {-3}. In
contrast to Example 4.3, this choice of Z corresponds to principal curvatures 5 and
1 and principal directions forming an angle /4 with the coordinate axes. This, in

conjunction with clamped boundary conditions, yields a plate that gradually “rolls”
into a conic shape rather than a cylindrical shape. We illustrate this deformation in

N e

Figure 2: Pseudo-evolution (counter-clockwise) towards the equilibrium of a clamped rectangular
plate with principal directions forming an angle of 7/4 with the coordinate axes and principal
curvatures 5 and 1 (anisotropic spontaneous curvature). The bilayer plate is depicted at times
0.0, 0.3, 1.0, 10.0, 50.0, 170.0 x10? of the gradient flow and rolls to a conic shape.

4.5. Clamped Plate: Principal Curvatures of Opposite sign
We consider the same plate as in Example 4.4, namely Q = (-2,2) x (-3,3)
clamped along the side dpQ = [-2,2] X {—3}, but with spontaneous curvature

-5 0
=[5 4
0 5
The principal curvatures have now opposite signs and the principal directions are the
coordinate axes. At first the plate tries to bend in each coordinate direction according

to the corresponding curvature sign. Eventually the longer side dominates and the
structure attains the cylindrical configuration depicted in Figure 3.
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Figure 3: Pseudo-evolution (bottom-left to top-right) towards the equilibrium of a clamped rect-
angular plate with principal curvatures of opposite sign. The bilayer plate is depicted at times
0.0,0.7,2.5,7.0, 10.0, 12.0, 14.0, 19.0, 67.0 x10° of the gradient flow. The equilibrium shape is

a cylinder.

Figure 4: Pseudo-evolution (bottom-left to top-right) towards equilibrium of a rectangular plate clamped in
the middle, with anisotropic spontaneous curvature. The bilayer plate is depicted at times 0.0, 0.2, 0.6, 6.0,
10.0, 12.0, 20.0, 60.0, 155.0 X103 of the gradient flow and self-intersects. The equilibrium configuration is
two identical but disjoint cylinders.

4.6. Plate Clamped in the Middle: Anisotropic Curvature

We now explore an example that was motivated by [2]. The rectangular plate is
Q = (-5,5)x(-2,2) and we set the Dirichlet condition to be g(x) = x and ®(x) = 0 on
the middle line {0}x[-2, 2] of Q. The plate is endowed with an anisotropic spontaneous

curvature
50
=5 1]

which corresponds to principle curvatures 5 and 1 in the coordinate directions. This
leads to the formation of two cylinders in each side of dp€Q2, as observed in [2]. Our
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numerical experiments exhibit self-crossing before the two cylinders separate this time.
Therefore, the lack of self-crossing alluded to in Example 4.3 is not generic.

4.7. Free Plate: Anisotropic Curvature

We now explore a cigar-type configuration motivated by work in mechanical engi-
neering [25]. The plate Q = (-5, 5) X (-2, 2) is completely free of boundary conditions
and has the same anisotropic spontaneous curvature

3 =2
1% 7]
as Example 4.4. We observe in Figure 5 that the plate deforms at 45° degrees with

respect to the cartesian axes, similarly to Figure 2 but, in the absence of a clamped
side, it does so in a symmetric way and eventually reaches a cylindrical configuration

/
~
4

Figure 5: Pseudo-evolution (counter-clockwise) towards equilibrium of a rectangular plate with anisotropic
spontaneous curvature and free boundary conditions. The bilayer plate is depicted at times 0.0, 0.1, 0.5,
1.5,2.5,5.3,22.0 x103 of the gradient flow. The last three snapshots reveal that the plate assumes a tighter
configuration as an effort to become a full cylinder but instead rolls into a cigar.

4.8. Free Plate: Wavy Pattern

Several geometric shapes, including wave patterns, are obtained experimentally in
[18] using bilayer and multilayer materials as building blocks for more complex self-
folding and self-organizing structures. The wave pattern is created by alternating the
position of the polymer that acts as the bilayer.

We present here numerical simulations of wave patterns obtained by splitting the
plate Q = (-8, 8) X (-1, 1) into eight equal parts along the x; direction. We alternate
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the spontaneous curvature between Z = —I and Z = [ in each part, and impose free
boundary conditions on the plate. The relaxation dynamics towards equilibrium is
illustrated in Figure 6. We note that the gradient flow is much faster than previous
examples and, as a consequence, requires much fewer steps: the plate reaches the
fourth depicted configuration quickly, which is then succeeded by very small variations
of shape and energy.

’M

Figure 6: Pseudo-evolution (bottom-left to top-left) towards equilibrium of a rectangular plate with aspect
ratio 8 and alternating spontaneous curvature Z = +/ in each of its 8 square parts. The bilayer plate is
depicted at times 0.0, 0.1, 1.0, 2.3 %103 of the gradient flow.

i

Figure 7: Pseudo-evolution (left to right) towards equilibrium of a rectangular plate with high aspect ratio
and anisotropic spontaneous curvature with principal directions forming an angle of 7/4 with the axes and
principal curvatures —1/2 and 5/2. The bilayer plate is depicted at times 0.0, 0.5, 2.0, 5.0, 15.0, 48.0 x103
of the gradient flow.

4.9. Free Plate: Helix Shape

We now present the second example from [18], which is a DNA-like shape. We
consider a high aspect ratio plate Q = (=8, 8) x (-0.5,0.5), which deforms with free
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boundary conditions under the effect of the spontaneous curvature

[ -3
Z‘[—3/2 1]'

This choice of spontaneous curvature corresponds to principal directions that form an
angle of 45 degrees with the coordinate axes, similar to Example 4.7 (see Figure 5), but
with principal curvatures —1/2 and 5/2. We observe numerically that the relative mag-
nitude of principal curvatures and aspect ratio leads to a deformation that resembles the
twisting of DNA molecules (DNA-like helix). We illustrate the resulting deformation
in Figure 7 for several instances of the gradient flow. Different combinations would
lead to deformations of similar nature, but with different visual results in terms of plate
twisting.

5. Conclusions

In [8] we introduce a model for bilayer plates that undergo large (geometrically
nonlinear) isometric deformations driven by an intrinsic spontaneous curvature tensor;
see [9, 17, 19, 24, 26] for enginnering applications and [23] for analysis. In [7] we
discuss a simplified model for thermal actuation of such bilayer plates. In both cases,
we discretize the models with Kirchhoff elements and prove I'-convergence in [8]. In
[11] we propose a discontinuous Galerkin method (dG) for single layer plates that also
display large isometric deformations [5, 15]. The discrete energy functional captures
the discontinuities of the discrete space and I'—converges to the continuous energy [11].
In this paper we extend the dG methodology of [11] to the simplified bilayer model of
[7]. Our contributions and pending questions are the following:

o Computational modeling: The reduced model of [7] incorporates the effect of spon-
taneous curvature via a simple additional term to the elastic energy of [5, 11]. We
propose a discrete gradient flow that treats such term explicitly and without interele-
ment jumps. This, together with a linearized isometry constraint, leads to a linear
saddle point problem to be solved at each step with a Schur complement algorithm.
The latter exploits that the matrix for the inner loop is independent of the step and
can thus be factored out only once; the corresponding linear system is solved with a
parallel direct method.

o Simulations: We showcase the excellent computational performance of dG with ex-
amples extracted from [7, 8] as well as from the engineering literature [2, 18, 25].
The dG method is able to reproduce configurations of interest in engineering and
medical applications. Moreover, dG exhibits a higher geometric flexibility and ac-
curacy than the Kirchhoff element approach of [5, 7, 8]; the current simulations
solidify further the merits of dG already discovered in [11]. The relaxation dynam-
ics is a mathematical devise to reach equilibrium but does not prevent self-crossing;
see Examples 4.3 and 4.6 as well as earlier computations [5, 7, 8]. Avoiding self-
intersection within a physically meaningful dynamics for plates remains open; this
question is addressed in [6] for rods. Simulations were carried out within the soft-
ware platform deal.ii [3, 4].
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e Boundary conditions: We implement both Dirichlet and free boundary conditions
with the Nitsche’s approach, which enforces them weakly within the dG variational
formulation rather than in the discrete space. This flexibility comes at the expense
of a subtle dependence between the penalty parameters and the magnitudes of the
initial energy and isometry defect. The choice of penalty parameters is thus a critical
component of the dG approach. We are currently exploring parameter free options
within the dG framework.

e Discrete gradient flow: This relaxation dynamics is a semi-implicit discretization
of a continuous gradient flow that hinges on orthogonality properties valid at the
continuous level for isometries. Since such properties are violated slightly at the
discrete level, it is no longer obvious that the discrete gradient flow decreases the
discrete energy and guarantees the isometry defect. These properties were crucial in
[11] to prove I'-convergence.

e Future research: There are two important questions that require further attention
and remain open. The first is the numerical analysis of the current dG scheme. This
involves the study of the discrete gradient flow (3.6) and the I'-convergence, includ-
ing the analysis of the boundary-free case. As we mention after (2.14), coercivity
for the boundary-free case holds only in the subspace of our discrete space of func-
tions having vanishing zero and first moments. Elucidating how the discrete gradient
flow affects this property is a crucial aspect of this analysis. The second question is
the potential extension of our method to the physically interesting and challenging
prestrained models [20].

References

[1] J. Ahrens, B. Geveci, Ch. Law, ParaView: An End-User Tool for Large Data
Visualization, Visualization Handbook, Elsevier, 2005.

[2] S. Alben, B. Balakrisnan, E. Smela, Edge effects determine the direction of bi-
layer bending, Nano Letters 11, 6, 2280-2285, 2011.

[3] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M.
Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II Library, Version 8.5,
Journal of Numerical Mathematics, 25(3):137-146, 2017.

[4] W. Bangerth, R. Hartmann, G. Kanschat, deal.Il — a General Purpose Object
Oriented Finite Element Library, ACM Trans. Math. Softw., 33(4):24/1-24/27,
2017.

[5] S. Bartels, Finite element approximation of large bending isometries, Numer.
Math. 124, 3, 415-440, 2013.

[6] S. Bartels, Finite element simulation of nonlinear bending models for thin elastic
rods and plates, Handbook of Numerical Analysis. Vol XXI, to appear, 2020.

19



[7] S. Bartels, A. Bonito, Anastasia H. Muliana, R. H. Nochetto, Modeling and sim-
ulation of thermally actuated bilayer plates, J. Comp. Phys. 354, 512-528, 2018.

[8] S. Bartels, A. Bonito, R. H. Nochetto, Bilayer plates: model reduction, T-
convergent finite element approximation and discrete gradient flow, Comm. Pure
Appl. Math. 70, 3, 547--589, 2017.

[9] N. Bassik, B. Abebe, K. Laflin, and D. Gracias, Photolithographically patterned
smart hydrogel based bilayer actuators, Polymer 51, 6093-6098, 2010.

[10] A. Bonito, R. H. Nochetto, Quasi-optimal convergence rate of an adaptive dis-
continuous Galerkin method, SIAM J. Numer. Anal., 48, 2, 734-771, 2010.

[11] A. Bonito, R. H. Nochetto, D. Ntogkas, Discontinuous Galerkin approach to
large bending deformations with isometry constraint, (submitted).

[12] S. C. Brenner, K. Wang, J. Zhao,Poincaré-Friedrichs inequalities for Piecewise
H? Functions, Numer. Funct. Anal. Optim., 25, 463-478, 2004.

[13] A.Buffa, C. Ortner, Compact embeddings of broken Sobolev spaces and applica-
tions, IMA Numer. Anal., 29, 827-855, 2009.

[14] A. Erm, J-L Guermond, Finite element quasi-interpolation and best approxima-
tion, ESAIM: M2AN 51, 1367-1385, 2017.

[15] Friesecke G., James R. D., Miiller S., A theorem on geometric rigidity and the
derivation of nonlinear plate theory from three-dimensional elasticity, Comm.
Pure Appl. Math. 55, 11, 1461-1506, 2002.

[16] P. Hornung, Approximation of flat W>? isometric immersions by smooth ones,
Arch. Ration. Mech. Anal. 199, 1015- 1067, 2011.

[17] E. Jager, E. Smela, O. Ingands, Microfabricating conjugated polymer actuators,
Science 290, 1540-1545, 2000.

[18] S. Janbaz, R. Hedayati, A. A. Zadpoor, Programming the shape-shifting of
flat soft matter: from self-rolling/self-twisting materials to self-folding origami,
Mater. Horiz., 3, 536-547, 2016.

[19] J.-N. Kuo, G.-B. Lee, W.-F. Pan, H.-L. Lee, Shape and thermal effects of metal
films on stress-induced bending of micromachined bilayer cantilever, Japanese
Journal of Applied Physics 44, 5R, 3180, 2005.

[20] Bhattacharya K., Lewicka M.,Schaffner M., Plates with incompatible prestrain,
arXiv:1401.1609, 2014.

[21] Pryer T, Discontinuous Galerkin methods for the p—biharmonic equation from a
discrete variational perspective, Electronic Transactions of Numerical Analysis,
2014.

20



[22] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic
Equations: Theory and Implementation, Society for Industrial and Applied Math-
ematics, 2008.

[23] B. Schmidt, Minimal energy configurations of strained multi-layers, Calc. Var.
Partial Differential Equations, 30:4,477-497, 2007.

[24] O. Schmidt, K. Eberl, Thin solid films roll up into nanotubes, Nature 410, 168,
2001.

[25] B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, Capture/release ability
of thermo-responsive polymer particles, J. Mater. Chem., 20, 3496-3501, 2010.

[26] E. Smela, O. Inganés, I. Lundstrom, Controlled folding of micrometer-size struc-
tures, Science 268, 5218, 1735-1738, 1995.

21



