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Abstract

We present a computational model of thin elastic bilayers that undergo large bending

isometric deformations when actuated by non-mechanical stimuli. We propose a dis-

continuous Galerkin approximation of the variational formulation discussed in [8]. We

showcase its advantages and good computational performance with configurations of

interest in both engineering and medicine and either Dirichlet or free boundary condi-

tions.

1. Introduction

Large bending deformation of thin plates is a critical subject for many modern

engineering and medical applications due to the extensive use of plate actuators in

a variety of systems like thermostats, nano-tubes, micro-robots and micro-capsules

[9, 17, 19, 24, 26]. From the mathematical viewpoint, there is an increasing interest

in the modeling and the numerical treatment of such plates. A rigorous analysis of

large bending deformation of plates was conducted in the seminal work of Friesecke,

James and Müller [15], who derive geometrically non-linear Kirchhoff models from

three dimensional hyperelasticity via Γ-convergence. There have been various other

interesting models since then, such as the prestrained model derived in [20]. A well-

known relevant case that provides also the main motivation for this work is the bilayer-

plate model [7, 8, 23]. This is the case when two thin layers with different material

properties are attached together. Upon thermal, electrical, or chemical actuation, such

plates react differently thereby leading to large bending deformations. Mathematically,

the plates develop an intrinsic spontaneous curvature tensor Z and the deformation
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y : Ω→ R3 of the midplane Ω ⊂ R2 minimizes the elastic energy

E[y] :=
1

2

∫

Ω

|H − Z|2 −

∫

Ω

f y, (1.1)

where H = (hi j)
2
i, j=1

is the second fundamental form of the surface y(Ω), namely

hi j = ∂i jy · ν, ν is the unit normal to the midplate and | · | denotes the Frobenius norm.

This spontaneous deformation of a flat configuration may occur without a forcing term

f . Our goal is to explore simple mathematical and computational bilayer models which

are capable to reproduce equilibrium configurations observed in engineering and med-

ical applications [2, 18, 25]. Shear and stretch are negligible leaving bending as the

essential feature to account for. In particular, lengths and areas are preserved by the ad-

missible deformations y(Ω). Mathematically, this entails that y is an isometry, namely

y obeys the pointwise constraint

[∇y]T∇y = I (1.2)

for the first fundamental form, where ∇y = [∂1y, ∂2y] ∈ R3×2, [∇y]T is the transpose of

∇y, and I is the 2 × 2 identity matrix. For isometric deformations, the unit normal ν

reads

ν := ∂1y × ∂2y. (1.3)

Before proceeding further, we point out that because of the isometry constraint (1.2) (no

shear nor stretch), the Lamé’s first parameter λ and shear-modulus µ of the plate only

affect the energy by a multiplicative constant 1
6

2µ+λµ

2µ+λ
which is thus omitted [15, 23].

Previous work on the numerical treatment of large bending deformations includes

the use of Kirchhoff finite element discretizations for the single layer problem by Bar-

tels [5] and the bilayer problem by Bartels, Bonito and Nochetto [8], both reviewed

by Bartels [6]. Modeling and simulation of thermally actuated bilayer plates is devel-

oped by Bartels, Bonito, Muliana and Nochetto [7]. Our discontinuous Galerkin (dG)

approach for the single layer problem, described in [11], exhibits some desirable the-

oretical and computational properties. We show Γ-convergence in [11] of the discrete

energy functional Eh to the continuous bending energy E and combine this property

with a compactness argument to deduce that global minimizers of Eh converge strongly

(up to a subsequence) to global minimizers of E in L2(Ω). We also test the dG method

computationally in [11] via some illuminating examples that document its improved

accuracy and geometric flexibility with respect to the Kirchhoff approach in [5]. These

experiments are simple but designed to explore theoretical properties of the dG method

and showcase its potential.

In this work we extend the dG approach to the simplified bilayer model of [7] and

use it to compute configurations of interest in engineering and medical applications

with either Dirichlet or free boundary conditions. In Section 2 we recall the single

layer model of [11] and its dG approximation. In Section 3, we briefly discuss the

bilayer model of [7] and its novel dG approximation. We conclude in Section 4 with

simulations relevant in applications. Some simulations reproduce those already pre-

sented in [8, 7] using Kirchhoff elements and some are new.

2



2. Single Layer - Main features of the DG Approach

We start with a brief description of the single layer framework, namely Z = 0 in

(1.1), and the key features of the dG method developed in [11].

Continuous energy. Given a Lipschitz domain Ω ⊂ R2 (the undeformed plate), a

smooth isometric deformation y : Ω→ R3 satisfies

|H|2 = |D2y|2 = |∆y|2 (2.1)

pointwise in Ω. To see this, we write the isometry constraint (1.2) componentwise

∂iy · ∂ jy = δi j, i, j = 1, 2,

and deduce by differentiation

∂ky · ∂i jy = 0 or ∂i jy ‖ ν = ∂1y × ∂2y, i, j, k = 1, 2.

Combining this with the definition of the second fundamental form H = (hi j)
2
i j=1

, leads

to

hi j = ∂i jy · ν ⇒ ∂i jy = hi jν = hi j ∂1y × ∂2y, (2.2)

which implies the first equality in (2.1). The second one follows from

∂1(∂12y · ∂2y) = ∂2(∂11y · ∂2y) = 0 ⇒ |∂12y|2 = ∂11y · ∂22y.

Therefore, the elastic energy (1.1) for the single layer plate can be rewritten as

E0[y] :=
1

2

∫

Ω

|D2y|2 −

∫

Ω

f y, (2.3)

with load f ∈ [L2(Ω)]3. The single layer model thus consists of seeking a deforma-

tion y ∈ [H2(Ω)]3 that minimizes (2.3) subject to the nonlinear pointwise isometry

constraint (1.2) a.e. in Ω as well as Dirichlet boundary conditions on ∂DΩ ⊂ ∂Ω

y = g, ∇y = Φ on ∂DΩ, (2.4)

where g ∈ [H2(Ω)]3,Φ := ∇g ∈ [H1(Ω)]3×2 are given and satisfy ΦTΦ = I on ∂DΩ. In

addition to [11], we allow ∂DΩ = ∅ and call it free boundary conditions.

The first variation of (1.2) yields the linearized isometry constraint

L[v; y] := [∇v]T∇y + [∇y]T∇v = 0 a.e. Ω. (2.5)

This defines the tangent plane F [y] at y to the nonlinear constraint (1.2), namely the

set of functions v ∈ [H2(Ω)]3 with vanishing Dirichlet trace on ∂DΩ provided ∂DΩ , ∅

and satisfying (2.5). The first variation δE0[y](v) = 0 of (2.3) in the direction v reads

δE0[y](v) =

∫

Ω

D2y : D2v − f · v = 0 ∀ v ∈ F [y], (2.6)
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and is the Euler-Lagrange equation. We can find its solution y ∈ [H2(Ω)]3 as the limit

as t → ∞ of the solution y(t) ∈ [H2(Ω)]3 with ∂ty(t) ∈ F [y(t)] of the H2-gradient flow

(
∂ty, v

)
H2(Ω) + δE

0[y](v) = 0 ∀ v ∈ F [y]. (2.7)

For v,w ∈ [H2(Ω)]3, the H2(Ω)-scalar product in (2.7) is defined to be

(
v,w)H2(Ω) :=

∫

Ω

D2v : D2w + ε

∫

Ω

v · w. (2.8)

Hereafter, we take ε > 0 whenever ∂DΩ = ∅ and ε = 0 provided ∂DΩ , ∅. The

evolution (2.7) is supplemented by an initial condition y(0) = y0 where y0 ∈ [H2(Ω)]3

satisfies both (1.2) and (2.4). Notice that this, together with ∂ty ∈ F [y], yields

[∇y(t)]T∇y(t) − I =

∫ t

0

∂t

(
[∇y(s)]T∇y(s)

)
ds =

∫ t

0

L[∂sy(s); y(s)]ds = 0,

whence y(t) remains an isometry along the gradient flow (2.7). Moreover, since ∂ty ∈

F [y], taking v = ∂ty in (2.7) gives

‖ ∂ty ‖
2
H2(Ω)

+
d

dt
E0[y] = 0 ⇒

d

dt
E0[y] ≤ 0. (2.9)

Discrete energy. We consider a sequence of subdivisions {Th}h>0 of Ω made of tri-

angles or quadrilaterals. We assume that the sequence is shape regular, quasi-uniform

and identify h with the maximal element size. From now on c and C are generic

constants independent of h but possibly depending on the shape-regularity and quasi-

uniformity constants of the sequence {Th}h>0.

We denote by Pk (resp. Qk) the space of polynomial functions of degree at most

k ≥ 0 (resp. at most k on each variable). Also, T̂ stands for the reference element,

which is either the master triangle when the subdivision is made of triangles or the unit

square in the case of quadrilaterals. The mapping between the reference element T̂ and

any T ∈ Th is denoted FT . Notice that FT is affine for triangles T and bi-linear for

quadrilaterals T .

With each subdivision Th made of triangles, we associate the space of discontinu-

ous piecewise polynomial functions

Vk
h :=

{
vh ∈ L2(Ω) : vh ◦ FT ∈ Pk, ∀T ∈ Th

}
. (2.10)

Alternatively for subdivisions made of quadrilaterals, the space Pk is replaced by Qk.

We point out that in this case, vh|T is no longer polynomial, which entails additional

difficulties in the analysis. We refer to [11] for details but note that we require k ≥ 2 in

both cases.

We denote by E0
h

the collection of edges of Th contained in Ω and by Eb
h

those

contained in ∂DΩ (note that Eb
h
= ∅ provided ∂DΩ = ∅); hence Eh := E0

h
∪ Eb

h
is the set

of active interelement boundaries (across which jumps and averages will be computed).

We further denote by Γ0
h

:= ∪{e : e ∈ E0
h
} the interior skeleton, by Γb

h
:= ∪{e : e ∈ Eb

h
}

the boundary counterpart, and by Γh := Γ0
h
∪ Γb

h
the full skeleton.
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For e ∈ E0
h

we fix µ := µe to be one of the two unit normals to e in Ω; this choice is

irrelevant for the discussion below. For e ∈ Eb
h

we set µ to be the outward pointing unit

normal to e. Given vh ∈ V
k
h
, we denote its piecewise gradient by ∇hvh and the jumps of

vh and ∇hvh across any edge e ∈ Eh by

[vh] :=


v−

h
− v+

h
e ∈ E0

h

v−
h

e ∈ Eb
h

, [∇hvh] :=


∇hv−

h
− ∇hv+

h
e ∈ E0

h

∇hv−
h

e ∈ Eb
h

, (2.11)

where v±
h
(x) = lims→0+vh(x ± s µe) for x ∈ e. The averages of vh ∈ V

k
h

and ∇hvh across

an edge e ∈ Eh are given by

{vh} :=


1
2
(v+

h
+ v−

h
) e ∈ E0

h

v−
h

e ∈ Eb
h

, {∇hvh} :=


1
2
(∇hv+

h
+ ∇hv−

h
) e ∈ E0

h

∇hv−
h

e ∈ Eb
h

. (2.12)

Motivated by the dG formulation of the bi-harmonic problem and (2.1), given two

positive stabilization parameters γ0 and γ1, we define the discrete energy E0
h

on [Vk
h
]3

by [11]

E0
h[yh] : =

1

2
‖D2

hyh‖
2
L2(Ω)

− ( f , yh)L2(Ω)

− ({∂µ∇hyh},
[
∇hyh

]
)L2(Γ0

h
) + ({∂µ∆hyh},

[
yh

]
)L2(Γ0

h
)

− ({∂µ∇hyh},∇hyh − Φ)L2(Γb
h
) + ({∂µ∆hyh}, yh − g)L2(Γb

h
)

+
γ1

2
‖h−1/2[∇hyh]‖2

L2(Γ0
h
)
+
γ0

2
‖h−3/2[yh]‖2

L2(Γ0
h
)

+
γ1

2
‖h−1/2(∇hyh − Φ)‖2

L2(Γb
h
)
+
γ0

2
‖h−3/2(yh − g)‖2

L2(Γb
h
)
,

(2.13)

We show in [11] that, if γ0, γ1 are chosen sufficiently large and ∂DΩ , ∅, then the

discrete energy E0
h

is coercive with respect to the following dG quantity defined for

vh ∈ [Vk
h
]3

|||vh|||
2
E : = ‖D2

hvh‖
2
L2(Ω)
+ ‖h−1/2 [∇hvh] ‖2

L2(Γ0
h
)
+ ‖h−3/2[vh]‖2

L2(Γ0
h
)

+ ‖h−1/2(∇hvh − Φ)‖2
L2(Γb

h
)
+ ‖h−3/2(vh − g)‖2

L2(Γb
h
)
,

(2.14)

in the sense that E0
h
[vh] ≤ c implies |||vh|||E ≤ C uniformly in h. When ∂DΩ = ∅, the

coercivity of E0
h

holds on the subspace of Vk
h

consisting of functions with vanishing

zero (mean value) and first moments.

Notice that the boundary conditions (2.4) are enforced using the Nitsche method:

if E0
h
[yh] ≤ c, then the coercivity property |||vh|||E ≤ C implies ‖yh − g‖L2(Γb

h
) ≤ Ch3/2

and ‖∇hyh − Φ‖L2(Γb
h
) ≤ Ch1/2, whence (2.4) is recovered as h → 0. This allows us to

avoid incorporating the boundary conditions explicitly on the discrete admissible set

Ah,δ :=

 vh ∈ [Vk
h]3 :

∑

T∈Th

∣∣∣∣∣
∫

T

[∇hvh]T∇hvh − I

∣∣∣∣∣ ≤ δ
 , (2.15)

where δ = δ(h) is such that δ(h) → 0 as h → 0. By doing so, unlike for the Kirchhoff

approach [11], technical issues related to compatibility between the isometry constraint
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(1.2) and boundary conditions (2.4) are by-passed. We also point out that imposing

(1.2) at the vertices within the Kirchhoff approach is further relaxed to an element-

wise average constraint in (2.15), which is achievable with the gradient flow described

below.

Γ-convergence: We prove convergence of almost global minimizers in [11, Section

5] provided ∂DΩ , ∅. Let yh ∈ Ah,δ be a sequence of almost global minimizers of Eh,

i.e.

E0
h[yh] ≤ inf

wh∈Ah,δ

E0
h[wh] + ǫ(h) ≤ C,

where ǫ(h)→ 0, δ(h)→ 0 as h→ 0 and C is a constant independent of h. Then, {yh}h>0

is precompact in [L2(Ω)]3 and every cluster point y of the sequence {yh}h>0 satisfies

y ∈ [H2(Ω)]3, y = g,∇y = Φ on ∂DΩ and y is an isometry and a global minimizer of

E0. Moreover, up to a subsequence (not relabeled), the discrete energy converges

lim
h→0

E0
h[yh] = E0[y].

Discrete Euler-Lagrange equations: In order to write discrete versions of (2.5)

and (2.6), we must first realize that the Dirichlet boundary conditions (2.4) are imposed

weakly via the Nitsche method. This changes the very notion of discrete tangent plane.

We write the discrete linearized isometry constraint

LT [vh; yh] :=

∫

T

(
[∇vh]T∇yh + [∇yh]T∇vh

)
= 0 ∀T ∈ Th (2.16)

for variations vh ∈ [Vk
h
]3 of a minimizer yh ∈ Ah,δ. This defines the discrete tangent

plane Fh[yh] at yh to be the set of functions vh ∈ [Vk
h
]3 satisfying (2.16) without bound-

ary conditions. The discrete version of (2.6) is δE0
h
[yh](vh) = 0 for all vh ∈ Fh[yh] and

reads

ah(yh, vh) = ( f , vh)L2(Ω) + ℓh(vh) ∀ vh ∈ Fh[yh], (2.17)

where ah(·, ·) is the bilinear form corresponding to (2.13) and is given for vh,wh ∈ [Vk
h
]3

by

ah

(
wh, vh

)
:=

(
D2

hwh,D
2
hvhv

)
L2(Ω)

−
(
{∂µ∇hwh}, [∇hvh]

)
L2(Γh) −

(
{∂µ∇hvh}, [∇hwh]

)
L2(Γh)

+
(
{∂µ∆hwh}, [vh]

)
L2(Γh) +

(
{∂µ∆hvh}, [wh]

)
L2(Γh)

+ γ1

(
h−1 [∇hwh] , [∇hvh]

)
L2(Γh) + γ0

(
h−3 [wh] , [vh]

)
L2(Γh),

(2.18)

and ℓh is the linear form that enforces the boundary conditions in the Nitsche’s sense

ℓh(vh) := −
(
∂µ∇hvh,Φ

)
L2(Γb

h
) +

(
∂µ∆hvh, g

)
L2(Γb

h
)

+ γ1

(
h−1Φ,∇hvh

)
L2(Γb

h
) + γ0

(
h−3g, vh

)
L2(Γb

h
).

To see this, simply note that we use the full skeleton Γh in (2.18) and combine the four

terms in ℓh(vh) with similar terms on the boundary skeleton Γb
h

in (2.18) to arrive at the
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following equivalent form of (2.17) where the Nitsche’s approach is apparent:

(
D2

hyh,D
2
hvh

)
L2(Ω) −

(
{∂µ∇hyh}, [∇hvh]

)
L2(Γh) −

(
{∂µ∇hvh},

[
∇hyh

] )
L2(Γ0

h
)

+
(
{∂µ∆hyh}, [vh]

)
L2(Γh) +

(
{∂µ∆hvh},

[
yh

] )
L2(Γ0

h
)

+ γ1

(
h−1 [
∇hyh

]
, [∇hvh] v

)
L2(Γ0

h
) + γ0

(
h−3 [

yh

]
, [vh]

)
L2(Γ0

h
)

−
(
∂µ∇hvh,∇hyh − Φ

)
L2(Γb

h
) +

(
∂µ∆hvh, yh − g

)
L2(Γb

h
)

+ γ1

(
h−1(∇hyh − Φ),∇hvh

)
L2(Γb

h
) + γ0

(
h−3(yh − g), vh

)
L2(Γb

h
)

=
(
f , vh

)
L2(Ω).

(2.19)

Discrete gradient flow: In order to construct discrete minimizers yh ∈ [Vk
h
]3 of

(2.13) satisfying (2.16), or solutions of (2.17), we employ the following discrete relax-

ation dynamics with pseudo-time step τ > 0. Given a current deformation yn
h
∈ [Vk

h
]3 at

iteration n ∈ N, we seek the new iterate yn+1
n := yn

h
+δyn+1

n with correction δyn+1
h
∈ Fh[yn

h
]

satisfying

τ−1(δyn+1
h , vh

)
H2

h
+ ah

(
δyn+1

h , vh

)
= −ah

(
yn

h, vh

)

+ ( f , vh)L2(Ω) + ℓh(vh) ∀ vh ∈ Fh[yn
h].

(2.20)

This is a discrete version of (2.7) in [Vk
h
]3 with variations δyn+1

h
tangent to yn

h
and un-

derlying metric induced by the discrete H2(Ω)-inner product
(
·, ·

)
H2

h
and corresponding

norm ||| · |||H2
h
, where

(
vh,wh

)
H2

h
:=

(
D2

hvh,D
2
hwh

)
L2(Ω) + ε

(
vh,wh

)
L2(Ω)

+
(
h−1[∇vh], [∇wh]

)
L2(Γ0

h
) +

(
h−3[vh], [wh]

)
L2(Γ0

h
).

(2.21)

Notice that the presence of the ε-term as in (2.8) ensures that
(
·, ·

)
H2

h
is indeed an inner

product in [Vk
h
]3 and that therefore (2.20) has a unique solution even when ∂DΩ = ∅.

An important property of gradient flows is that the resulting deformations yn+1
h
=

yn
h
+ δyn+1

h
∈ [Vk

h
]3 decrease the discrete energy strictly provided δyn+1

h
, 0 [11, Lemma

3.2]
1

τ
|||δyn+1

h |||
2

H2
h

+ E0
h[yn+1

h ] ≤ E0
h[yn

h]; (2.22)

this is the discrete counterpart of (2.9). This also shows that the sequence yn
h

converges

to a local minimizer yh ∈ [Vk
h
]3 of E0

h
. In addition, if δ ≥

(
1+ c1E0

h
[y0

h
]+ c2R(g,Φ, f )

)
τ

with R(g,Φ, f ) = ‖g‖2
H1(Ω)

+ ‖Φ‖2
H1(Ω)

+ ‖ f ‖2
L2(Ω)

, then the linearized isometry constraint

(2.16), together with (2.22) and Friedrichs inequality, guarantees yn
h
∈ Ah,δ for all n ≥ 1;

hence, yh ∈ Ah,δ. We refer to [11, Lemma 3.2] for additional details.

3. Simplified Bilayer Model and its dG Approximation

We now briefly recall the simplified bilayer model from [7], and adjust the dG

method of [11] to this model.

7



Continuous energy: Since y is a pointwise isometry, i.e. y satisfies (1.2), in view

of (2.1) the energy functional (1.1) for the bilayer plate can be rewritten as

E1[y] :=
1

2

∫

Ω

|D2y|2 −

∫

Ω

H : Z +
1

2

∫

Ω

|Z|2 −

∫

Ω

f y, (3.1)

where the matrix function Z ∈ R2×2 is referred to as a spontaneous curvature and

encodes the mismatch between the two constituent materials of the bilayer plate. Mo-

tivated by the applications presented in Section 4, we focus on the case f = 0 in the

discussion below. Moreover, using the expression (1.3) for the unit normal, valid for

isometries, the second fundamental form reads H = (∂i jy · (∂1y × ∂2y))i j and leads to

E1[y] =
1

2

∫

Ω

|D2y|2 −
∑

i j

∫

Ω

∂i jy · (∂1y × ∂2y) zi j +
1

2

∫

Ω

|Z|2. (3.2)

The first variation δE1[y](v) of E at y ∈ [H2(Ω)]3 in the direction v ∈ F [y] reads

δE1[y](v) :=

∫

Ω

D2y : D2v −
∑

i j

∫

Ω

∂i jv · (∂1y × ∂2y) zi j

−
∑

i j

∫

Ω

∂i jy · (∂1y × ∂2v + ∂1v × ∂2y) zi j,

where we recall that F [y] is the set of functions v ∈ [H2(Ω)]3 with vanishing Dirichlet

boundary conditions and satisfying the linearized isometry constraint (2.5). To obtain

an equivalent expression better suited to numerical approximations, we combine (2.2)

with the vector identity (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) to realize that

∂i jy · (∂1y × ∂2v) = hi j (∂1y × ∂2y) · (∂1y × ∂2v) = 0

∂i jy · (∂1v × ∂2y) = hi j (∂1y × ∂2y) · (∂1v × ∂2y) = 0

because ∂1y · ∂2y = 0 and ∂iy · ∂iv = 0 according to (1.2) and (2.5) respectively.

Therefore, the expression of δE1[y](v) = 0 simplifies to

δE1[y](v) =

∫

Ω

D2y : D2v −
∑

i j

∫

Ω

∂i jv · (∂1y × ∂2y) zi j = 0, (3.3)

whenever y ∈ [H2(Ω)]3 is an isometry that minimizes (3.2) and v ∈ F [y]. In analogy

with (2.7), we can now find y as the asymptotic limit of the solution of the H2-gradient

flow

(
∂ty, v

)
H2(Ω) + δE

1[y](v) = 0 ∀ v ∈ F [y] ⇒
d

dt
E1[y] ≤ 0. (3.4)

We observe that the first term in (3.3) dominates the second one and is already present

in the first variation (2.6) of the single layer energy functional E0. We exploit this next.

Discrete energy: In order to obtain a simple yet efficient discretization of (3.3), we

take advantage of the good properties of the dG discretization of Section 2. We thus
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discretize the first term in (3.3) according to (2.17) and the second one elementwise to

arrive at

ah(yh, vh) = ℓh(vh) +
∑

i j

∑

T∈Th

∫

T

∂i jvh · (∂1yh × ∂2yh) zi j ∀ vh ∈ Fh[yh]. (3.5)

We emphasize that this nonlinear discrete scheme entails only a piecewise computation

of the additional term without taking into account any possible jumps of ∂i jvh and of

∂1yh × ∂2yh. They are indeed already incorporated into the bilinear form ah(·, ·) defined

in (2.18) and provide a good approximation of the Hessian D2y [11]. The discrete

energy E1
h

associated with (3.5) reads

E1
h[yh] := E0

h[yh] −
∑

i j

∑

T∈Th

∫

T

∂i jyh · (∂1yh × ∂2yh) zi j.

We point out that (3.5) is not the Euler-Lagrange equation of E1
h

because the orthog-

onality conditions leading to (3.3) may not be valid for yh ∈ Ah,δ. We deal with (3.5)

below.

Discrete gradient flow: To compute a solution yh ∈ Ah,δ of (3.5) we propose a

discrete version of (3.4) with δE1
h
[yn+1

h
](vh) replaced by (3.5) and its rightmost term

treated explicitly; compare to (2.20). Given yn
h
∈ Ah,δ, we thus seek δyn+1

h
∈ F [yn

h
] such

that

τ−1(δyn+1
h , vh

)
H2

h
+ ah

(
δyn+1

h , vh

)
= − ah

(
yn

h, vh

)
+ ℓh(vh)

+
∑

i j

∑

T∈Th

∫

T

zi j ∂i jvh · (∂1yn
h × ∂2yn

h) ∀ vh ∈ F [yn
h],

(3.6)

and set yn+1
h

:= yn
h
+δyn+1

h
. This linear algorithm is used for the simulations in Section 4.

Several comments are in order. It is not clear that (3.6) reduces the elastic energy

E1
h
[yn

h
] and yn+1

h
∈ Ah,δ. To show these crucial properties we need to quantify for yn

h

the lack of orthogonality leading to (3.3). Moreover, we have to quantify the effect of

the explicit treatment of the last term in (3.6). Finally, the isometry constraint (1.2) is

not valid for yn
h
∈ Ah,δ, for which we allow an isometry defect. In view of (2.16), we

deduce
∫

T

[∇yn+1
h ]T∇yn+1

h =

∫

T

[∇yn
h]T∇yn

h +

∫

T

[∇δyn+1
h ]T∇δyn+1

h ≥

∫

T

[∇yn
h]T∇yn

h ∀T ∈ Th,

whence exploiting telescopic cancellation we obtain

|T |−1

∫

T

[∇yn
h]T∇yn

h ≥ |T |
−1

∫

T

[∇y0
h]T∇y0

h = I

provided y0
h

is an isometry in the sense that the last equality holds. This implies that

the average of ∂iy
n
h
≥ 1 over each T ∈ Th and (3.6) is well-defined. However, the

vector ∂1yn
h
× ∂2yn

h
may not have unit norm. These observations were instrumental

in [8] to redefine the normal vector as
∂1yn

h

|∂1yn
h
|
×
∂2yn

h

|∂2yn
h
|

and prove Γ-convergence of the
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discrete energy. We anticipate that a rigorous study of the dG approach (3.6) to the

bilayer model may need to take advantage of the properties of the discrete Hessian

Hh[yh] described in [11], as well as the quasi-orthogonality relations

∑

T∈Th

∣∣∣∣
∫

T

∂1yn
h · ∂2yn

h

∣∣∣∣ ≤ δ

and ∫

T

∂iy
n
h · ∂ivh = 0 ∀ vh ∈ Fh[yn

h], ∀T ∈ Th,

ensuing from (2.15) and (2.16) respectively. We do not investigate here any theoretical

properties of (3.6) but rather explore its performance on several numerical experiments,

some from [8, 7] and some new. This is carried out in the next section.

4. Numerical Experiments

In this section we explore several examples motivated by the work in [8, 7] and

experimental work in [2, 25, 18] in order to further understand the computational per-

formance of the dG method (3.6), which extends our method from [11] to bilayer plates.

We aim to verify whether the simple extension of Section 3 can lead to relevant simula-

tions that capture the essential physical properties of the bilayer bending problem seen

in lab experiments. To this end, we challenge our algorithm in a variety of settings

exploring the effect of the spontaneous curvature matrix Z, the boundary conditions

and the midplate aspect ratio. All these factors are crucial for engineering applications

as they can be appropriately combined to achieve desirable equilibrium configurations

under suitable thermal, electrical, or chemical actuation. We emphasize that the model

discussed here does not assume small deformations and therefore copes with geomet-

rically nonlinear deformations.

4.1. Boundary Conditions

Before we proceed with the specific examples, it is worth discussing briefly our ap-

proach for boundary conditions (B.C.). Our experiments fall into two main categories:

• Dirichlet B.C. on ∂DΩ: Case ε = 0. We impose the Dirichlet condition (2.4) via

a Nitsche approach in (2.19), whose left-hand side is the variational derivative of

E0
h
[yh] in (2.13). In fact, the left-hand side of (2.19) contains boundary terms on Γb

h

with the quantities ∇hyh − Φ and yh − g but, incidentally, does not contain terms on

∂Ω \ Γb
h
. Therefore, the discrete space [Vk

h
]3 does not include Dirichlet boundary

conditions. The corresponding gradient flow (3.6) is linear and coercive thanks to a

Friedrichs inequality [12],[11, Corollary 2.2] even when ε = 0 in (2.21); hence (3.6)

admits a unique solution. Moreover, our Γ−convergence analysis of [11] guarantees

that the limiting deformation y satisfies (2.4) on ∂DΩ for single-layer plates. All the

numerical simulations with ∂DΩ , ∅ are therefore performed with ε = 0.
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• Free B.C.: Case ε > 0. When ∂DΩ = ∅, we allow the thin plate to deform without

any boundary restrictions. We thus realize that the kernel of the bilinear form on the

left-hand side of (3.6) is non-trivial unless ε > 0. The characterization of such kernel

with ε = 0 and linearized isometry constraint is not clear. Nevertheless, to guarantee

that the resulting linear system is uniquely solvable, we add a zero order ε-term to

the discrete semi-inner product (·, ·)H2
h

defined in (2.21). Stationary configurations

of (3.6) are unaffected by the ε-term. In practice, we take ε = 10−2 in our examples

below.

4.2. Implementation of the Gradient Flow

We now briefly describe some implementation aspects of the gradient flow. Except

for the convergence analysis of Section 4.3, all subsequent experiments are performed

on 5 uniform refinements of the plate, resulting in 1024 cells, and with a pseudo-time

step τ = 5·10−3. The associated finite element spaces are given by (2.10) for the case of

quadrilaterals and k = 2, i.e. using Q2 polynomials in the reference element T̂ . Based

on parameter studies performed for the single layer model in [11], we use rather large

values for the stabilization parameters: γ0 = 5·103 and γ1 = 1.1·103. This choice is not

exclusively dictated by stability considerations, as is customary for interior penalty dG

[10, 21, 22], but primarily by a balance between the discrete initial energy E0
h
[y0

h
] and

the fictitious time-step τ of the discrete gradient flow, which determines the isometry

defect δ in (2.15) according to δ ≥
(
1+ c

)
τ for the single layer model, where c is a con-

stant depending on the initial energy E0
h
[y0

h
], the data f , g,Φ and the domains Ω, ∂DΩ.

It is important to notice that the magnitudes of γ0, γ1 affect the weak imposition of

Dirichlet conditions alla Nitsche and the value of E0
h
[y0

h
], thereby making the choice

of γ0, γ1 a critical aspect of our method. Different choices may influence the defor-

mation flow and potentially lead to cases where local discrete minimizers are attained

instead of global ones. However we recall that for the single layer system, once γ0, γ1

are fixed, Γ-convergence guarantees that discrete global minimizers converge towards

exact global minimizers.

The stopping criteria for the gradient flow is
∣∣∣E1

h[yn+1
h ] − E1

h[yn
h]
∣∣∣ < 10−6 τ = 5 · 10−9. (4.1)

We declare such a deformation yn+1
h

to be our equilibrium deformation.

Lastly, to implement the linearized isometry constraint (2.16), we use a piecewise

constant symmetric Lagrange multiplier matrix λn+1
h
∈ [V0

h
]2×2 with 3 components cor-

responding to the distinct elements of the symmetric bilinear form LT [vh; yn
h
] ∈ [V0

h
]2×2

of (2.16) for T ∈ Th. If {ϕi} stands for the standard Lagrange basis of [Vk
h
]3 (i.e. piece-

wise Pk or Qk in the reference element) and {Ψi} for the basis of [V0
h
]2×2 consisting of

piecewise constant 2 × 2 matrices, then the bilinear form associated with λn+1
h

is

bn
T (λn+1

h , ϕi) :=

∫

T

λn+1
h :

(
[∇ϕi]

T∇yn
h + [∇yn

h]T∇ϕi

)
∀T ∈ Th.

Moreover, we denote by Λn+1
h

the vector representation of λn+1
h

in the basis {Ψi} and by

Yn+1 the vector representation of yn
h

in the basis {ϕi}; hence δYn+1 := Yn+1 − Yn. There-

fore, the augmented linear system corresponding to (3.6) with Lagrange multiplier is a
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saddle point system and reads
(
τ−1M + A (Bn)T

Bn 0

) (
δYn+1

Λn+1

)
=

(
−AYn + Fn +G

0

)
, (4.2)

where the coefficients of M, A and Bn are

Mi j := (ϕ j, ϕi)H2
h
, Ai j := ah(ϕ j, ϕi), Bn

i j :=
∑

T∈Th

bn
T (Ψi, ϕ j) (4.3)

whereas those of the right-hand side of (4.2) are

Fn
i :=

∑

k,l

∑

T∈Th

∫

T

zkl ∂klϕi · (∂1yn
h × ∂2yn

h), Gi := ℓh(ϕi). (4.4)

Algorithm 1 Gradient Flow

1: // Input

2: y0
h
↔ Y0 ⊲ Initial deformation function↔ vector

3: γ0, γ1 ⊲ Jump penalization parameters

4: τ ⊲ Pseudo-time step

5: // Initialization

6: n = 0

7: Assemble M, A, B0 according to (4.3)

8: Assemble F0, G according to (4.4)

9: AssembleA = τ−1M + A and compute its LU decomposition

10: Compute E1
h
[y0

h
]

11: // Main Loop

12: repeat

13: Solve for Λn+1 according to (4.5)

14: Solve for δYn+1 according to (4.6)

15: Compute E1
h
[yn+1

h
]

16: n← n + 1

17: until |E1
h
[yn

h
] − E1

h
[yn−1

h
]| < 10−6τ

We propose a Schur complement iterative method to solve (4.2), namely

BnA−1(Bn)TΛn+1 = BnA−1( − AYn + Fn +G
)
, (4.5)

and

δYn+1 = A−1( − AYn + Fn +G − (Bn)TΛn+1), (4.6)

where the matrixA := τ−1M+A needs to be assembled only once and so the application

of its inverse can be computed using a LU decomposition (computed once as well).

This results in an efficient inner solver used in conjunction with a conjugate gradient

algorithm to compute Λn+1 in (4.5); efficient preconditioning of (4.5) is still an open

issue. A pseudo-code for the full algorithm is given in Algorithm 1. Additional details

can be found in [11]. The implementation of the dG method and simulations below

have been carried out within the FEM software platform deal.ii [3, 4]. The resulting

deformations are visualized with Paraview [1].
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boundary conditions under the effect of the spontaneous curvature

Z =

[
1 −3/2

−3/2 1

]
.

This choice of spontaneous curvature corresponds to principal directions that form an

angle of 45 degrees with the coordinate axes, similar to Example 4.7 (see Figure 5), but

with principal curvatures −1/2 and 5/2. We observe numerically that the relative mag-

nitude of principal curvatures and aspect ratio leads to a deformation that resembles the

twisting of DNA molecules (DNA-like helix). We illustrate the resulting deformation

in Figure 7 for several instances of the gradient flow. Different combinations would

lead to deformations of similar nature, but with different visual results in terms of plate

twisting.

5. Conclusions

In [8] we introduce a model for bilayer plates that undergo large (geometrically

nonlinear) isometric deformations driven by an intrinsic spontaneous curvature tensor;

see [9, 17, 19, 24, 26] for enginnering applications and [23] for analysis. In [7] we

discuss a simplified model for thermal actuation of such bilayer plates. In both cases,

we discretize the models with Kirchhoff elements and prove Γ-convergence in [8]. In

[11] we propose a discontinuous Galerkin method (dG) for single layer plates that also

display large isometric deformations [5, 15]. The discrete energy functional captures

the discontinuities of the discrete space and Γ−converges to the continuous energy [11].

In this paper we extend the dG methodology of [11] to the simplified bilayer model of

[7]. Our contributions and pending questions are the following:

• Computational modeling: The reduced model of [7] incorporates the effect of spon-

taneous curvature via a simple additional term to the elastic energy of [5, 11]. We

propose a discrete gradient flow that treats such term explicitly and without interele-

ment jumps. This, together with a linearized isometry constraint, leads to a linear

saddle point problem to be solved at each step with a Schur complement algorithm.

The latter exploits that the matrix for the inner loop is independent of the step and

can thus be factored out only once; the corresponding linear system is solved with a

parallel direct method.

• Simulations: We showcase the excellent computational performance of dG with ex-

amples extracted from [7, 8] as well as from the engineering literature [2, 18, 25].

The dG method is able to reproduce configurations of interest in engineering and

medical applications. Moreover, dG exhibits a higher geometric flexibility and ac-

curacy than the Kirchhoff element approach of [5, 7, 8]; the current simulations

solidify further the merits of dG already discovered in [11]. The relaxation dynam-

ics is a mathematical devise to reach equilibrium but does not prevent self-crossing;

see Examples 4.3 and 4.6 as well as earlier computations [5, 7, 8]. Avoiding self-

intersection within a physically meaningful dynamics for plates remains open; this

question is addressed in [6] for rods. Simulations were carried out within the soft-

ware platform deal.ii [3, 4].
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• Boundary conditions: We implement both Dirichlet and free boundary conditions

with the Nitsche’s approach, which enforces them weakly within the dG variational

formulation rather than in the discrete space. This flexibility comes at the expense

of a subtle dependence between the penalty parameters and the magnitudes of the

initial energy and isometry defect. The choice of penalty parameters is thus a critical

component of the dG approach. We are currently exploring parameter free options

within the dG framework.

• Discrete gradient flow: This relaxation dynamics is a semi-implicit discretization

of a continuous gradient flow that hinges on orthogonality properties valid at the

continuous level for isometries. Since such properties are violated slightly at the

discrete level, it is no longer obvious that the discrete gradient flow decreases the

discrete energy and guarantees the isometry defect. These properties were crucial in

[11] to prove Γ-convergence.

• Future research: There are two important questions that require further attention

and remain open. The first is the numerical analysis of the current dG scheme. This

involves the study of the discrete gradient flow (3.6) and the Γ-convergence, includ-

ing the analysis of the boundary-free case. As we mention after (2.14), coercivity

for the boundary-free case holds only in the subspace of our discrete space of func-

tions having vanishing zero and first moments. Elucidating how the discrete gradient

flow affects this property is a crucial aspect of this analysis. The second question is

the potential extension of our method to the physically interesting and challenging

prestrained models [20].
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