DG APPROACH TO LARGE BENDING PLATE
DEFORMATIONS WITH ISOMETRY CONSTRAINT
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ABSTRACT. We propose a new discontinuous Galerkin (dG) method for a ge-
ometrically nonlinear Kirchhoff plate model for large isometric bending de-
formations. The minimization problem is nonconvex due to the isometry con-
straint. We present a practical discrete gradient flow that decreases the energy
and computes discrete minimizers that satisfy a prescribed discrete isometry
defect. We prove I'-convergence of the discrete energies and discrete global
minimizers. We document the flexibility and accuracy of the dG method with
several numerical experiments.

1. INTRODUCTION

Large bending deformations of thin plates is a critical feature for many mod-
ern engineering applications due to the extensive use of plate actuators in a va-
riety of systems like thermostats, nano-tubes, micro-robots and micro-capsules
[9, 24, 27, 33, 34]. From the mathematical viewpoint, there is an increasing in-
terest in the modeling and the numerical treatment of such plates. A rigorous
analysis of large bending deformations of plates was conducted by Friesecke, James
and Miiller [23], who derived the geometrically non-linear Kirchhoff model from
three dimensional hyperelasticity via I'-convergence. Since then, there have been
various other interesting models, such as the models of prestrained plates derived in
[10, 28]. Previous work on the numerical treatment of large bending deformations
includes the single layer problem by Bartels [5], the bilayer problem by Bartels,
Bonito and Nochetto [8] and the modeling and simulation of thermally actuated
bilayer plates by Bartels, Bonito, Muliana and Nochetto [7]. In all three approaches
[5, 7, 8] the model involves minimizing an energy functional that is dominated by
the Hessian of the deformation y :  — R? of the mid-plane Q C R? of the unde-
formed plate. Given functions (g, ®), the minimization takes place under Dirichlet
boundary conditions for y = g and Vy = ® on part of the boundary 0pQ of 9
and the isometry constraint

(1.1) VyI'Vy=1 ae. inQ,

where I stands for the identity matrix in R2. The authors of [5, 7, 8] employ
Kirchhoff elements in order to impose the isometry constraint at the nodes of the
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triangulation and rely on an H2- gradient flow that allows them to construct solu-
tions of decreasing discrete energy. In [5, 8] it is also proved that the discrete energy
I'-converges to the continuous one. Since for fourth order problems a conforming ap-
proach would be very costly, the Kirchhoff elements offer a natural non-conforming
space for the model that allows the imposition of (1.1) nodewise.

1.1. Our contribution. In this paper we focus on the single layer problem, as in
[5], in order to investigate the applicability of a more flexible approach that hinges
on a non-conforming space of discontinuous functions. We use interior penalty terms
for the discrete energy along with a Nitsche’s approach to enforce the boundary
conditions in the limit. We start with the Dirichlet and forcing data

(1.2) ge[H(QP, ®e[H Q> [fe[LQ)F,
and the affine manifold of [H?(£2)]3
(1.3) V(g,®) :={ve[H*(Q]?: v=g, Vo= on dpQ},

where 0pf) is an open non-empty subset of the boundary 02. We wish to approx-
imate a minimizer y : Q — R3 of the continuous energy

(14) Bl = [ 107 = [ 7

in the nonconvex set of admissible functions
(1.5) Ag,®) :={y e V(g,®): (Vy)'Vy=1Tae. inQ},

where | - | denotes the Frobenius norm. To avoid the costly use of a conforming
finite element subspace of [H2(£2)]3, we resort to a space [V§]? of discontinuous
piecewise polynomials of degree k > 2 over a shape-regular but possibly graded
mesh 7, (constructed either using the reference unit triangle or unit square). Since
our estimates below are all local, hereafter h stands for a mesh density function
locally equivalent to the element size. However, to de-emphasize this aspect of our
approach in favor of others (non-convexity, Hessian reconstruction, I'-convergence)
and to simplify notation, h written as a parameter signifies the meshsize of 7y, (i.e.
the largest element size). We denote by E}, : [Vﬁ]?’ — R the discrete energy that
approximates E and accounts for the discontinuities of the functions v, € [V¥]?
and of their broken (i.e. piecewise) gradients Vjvp; see (2.16).

It is important to notice that the energy E in (1.4) is convex but the isometry
constraint (1.1) is not. Therefore, we must approximate (1.1), and thus the admissi-
ble set A(g, ?) in a way amenable to computation, as well as construct an algorithm
able to find critical points. We define the discrete admissible set AZ75(9’ ) to be
the set of functions vj, € [V§]3 whose boundary jumps include g and @ (see (2.9)
and (2.10) below) and whose discrete isometry defect Dp[vp,] satisfies

(16) Dh[vh] = Z /T(thh)th”Uh -1 S g,

TETh

where ¢ = e(h) — 0 as h — 0. We then search for y;, € A’fm(g, ®) that minimizes
the discrete energy Ej[yn]. To this end, we propose a discrete H2-gradient flow with
fictitious time step 7 that can be made arbitrarily small. We show that it gives rise
to iterates {y)'} >~ C Aﬁ’s(g, ®) with decreasing discrete energy Ep[yp '] < Ep[y}],

whenever y't! # y?, and guarantees the discrete isometry defect (1.6) for all

n > 1 provided the initial guess v} € Aﬁ,s (g, ®) is an approximate isometry such
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that Dy[y?] < 7. This is achieved by selecting € proportional to 7, depending on
Eh[yg]agaq)7f'

We also prove I'-convergence of the discrete energy FEj, to the continuous energy
E and that global minimizers y; € A’g,s(g,fb) of Ej, converge in L?(2) to global
minimizers y € A(g,®) of E as h — 0. A key ingredient for I'-convergence is
reconstruction of a suitable discrete Hessian Hp[yp] of yp, which uses the broken
Hessian D?2y;, and the jumps [y5] and [V,yp] of y, and Viy;, across interelement
boundaries. Such Hy[ys] is an L?-function in 2 that converges weakly to D?y under
suitable mesh conditions. A similar approach is employed in [20] for second order
problems and later in [31] for the p—biharmonic equation, where p = 2. We refer
to Section 4 for a discussion of properties of Hy[yp] and critical differences with
[20, 31].

Our approach is motivated by the flexibility of dG compared to Kirchhoff ele-
ments [5, 6]. First of all, Kirchhoff elements require polynomial degree k = 3 and
suffer from a complicated implementation that involves a discrete gradient that
maps the gradient of the discrete deformation to another space. Since this is not
implemented in standard finite element libraries, the above difficulty hinders the
impact of the method in the engineering community. In contrast, the proposed
dG approach works for k > 2, does not require such map (or more precisely, the
map is the trivial elementwise differentiation) and its implementation is standard.
Moreover, Kirchhoff elements are not amenable to adaptively refined partitions, at
least in theory; the current dG theory, instead, allows for graded meshes Tj. It
is worth mentioning as well that imposing Dirichlet boundary conditions weakly,
instead of directly in the admissible set as in [5, 6, 8, 7], allows for more flexibility.
In particular, this alleviates the constraints on the construction of the recovery
sequence necessary for the I'-convergence of Ej towards FE; see Section 5.3. Upon
dropping the penalty term of jumps of Vy;, across a prescribed curve, dG naturally
accommodates configurations with kinks, as is the case of origami. Lastly, imposing
the isometry constraint numerically with Kirchhoff elements at each vertex seems
to be very rigid at the expense of approximation accuracy. In contrast, our experi-
ments with dG indicate that this approach is more accurate and adjusts better to
the geometry of the problem; see Section 6.1.

1.2. Outline. We first construct our discrete energy functional Ej in Section 2,
and prove key properties for functions v, € [V;‘;P, including the coercivity of Ej,
with respect to an appropriate mesh-dependent energy norm. We introduce in Sec-
tion 3 the discrete H2-gradient flow and show it is able to find discrete minimizers
of Ej, that satisfy the desired discrete isometry defect (1.6); this sets the stage for
relations between €, h and 7 in (1.6). In Section 4 we define the discrete Hessian
Hp[ypn] and derive a bound in L? and its weak convergence in L?. This leads to
the proof of I'-convergence of the discrete energy E}, to the exact energy E, in Sec-
tion 5, as well as the convergence of global minimizers of Ej, to global minimizers of
E. In Section 6 we present experiments that corroborate numerically the excellent
properties of our method and compare it with the Kirchhoff element approach. In
Section 7 we provide some details for our implementation and justify the choice of
a discontinuous versus a continuous space of functions Vﬁ. We draw conclusions
in Section 8 and present some technical estimates for isoparametric maps in the
appendix of Section 9.
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2. DISCRETE ENERGY AND PROPERTIES OF DG

We start this section by providing intuition on the derivation of the discrete
energy FEp, but without presenting all the details. We then introduce the dis-
crete dG space V¥ for scalar functions along with an interpolation operator Iy, :
[rer, H YT) — VENH(Q), and discuss its properties. We finally prove coercivity
of Eh.

2.1. Continuous energy. Starting from a three-dimensional hyperelasticity model,
dimension reduction as the thickness of the plate decreases to zero leads to the two-
dimensional energy functional [5, 6, 23]

(21) Bl = [P~ [ £

up to a multiplicative constant for the first term. Hereafter, y € A(g, ®) is an
isometric deformation from € C R? into R3, v := 91y x Oy is the unit normal and

H = (hij)} j=1 = (0ijy - v)7 =, is the second fundamental form of the deformed

plate y(€2). The connection between (2.1) and (1.4) follows from (1.1), namely

where 0;; is the Kronecker delta. Differentiating with respect to the cartesian
coordinates x1 and xo and using simple algebraic manipulations, these relations

imply
Oy -0ijy=0 = Oyy|v=>0yxdy, ijk=12

This, combined with the definition h;; = 0;;y - v, leads in turn to
hi[* = 109)%, 4,5 =1,2.
Similarly, using that
81 (812y . 82y) =0 and 62 (811y . 82y) = 0,
we obtain
|812y\2 = 01y - Oy.
Therefore, the isometry property (1.1) yields the pointwise relations
(2.2) [H|* = |D%y|* = |Ayf,

so that the nonlinear expression (2.1) of E[y] coincides with (1.4), namely

(2.3 Bl =g [ PP~ [ 1w

The Euler-Lagrange equation for a minimizer y € V(g, ®) of (2.3) reads

(2.4) D*y:D*w= [ f-v VYveV(0,0),
Q Q

where V(g, ®) is defined in (1.3). If y = (y,,)3_;, then the strong form of (2.4) is

2
(2.5) divdiv D%y, = A%y, = > Qjiijyn = fn InQ, n=1,23,

4,j=1
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whereas the natural boundary conditions imposed on 9Q \ 9p{? are

2
0uVyn =D’y pp = Oijynpi =0, n=1,2,3
i=1
(2.6) )
OuAyy, = (diVDQyn),u = Z Oiijyn tj = 0, n=123.

ij=1

Hereafter, u denotes the outward unit normal to (2.

2.2. Discrete energy. We denote by Py (resp. Q) the space of polynomial func-
tions of degree at most k > 0 (resp. at most k on each variable). Moreover, T
stands for the reference element, which is either the unit triangle for Py or the unit
square for Q. A generic element T := Fp(T) is given by a map Fr € [P¥]2 (resp.
[QF]2) provided T is the unit triangle (resp. square). Notice that when k = 1, Fr
is affine for triangles T and bi-linear for quadrilaterals T'.

We consider a sequence of meshes {7 }r~0 of Q made of closed shape regular
but possibly graded elements T' [19]. We assume that {2 can be exactly represented
by such subdivisions, i.e. we do not account in the analysis below for variational
crimes induced by the approximation of the boundary 0f). Hereafter, we denote by
h a mesh density function which is equivalent locally to the size hr of T and h. of
an edge e; h written as a parameter also signifies the largest value of hp. In order
to handle hanging nodes (necessary for graded meshes based on quadrilaterals),
we assume that all the elements within each domain of influence have comparable
diameters (independently of k). We refer to Sections 2.2.4 and 6 of Bonito-Nochetto
[11] for precise definitions and properties. At this point, we only point out that
sequences of meshes made of quadrilaterals with at most one hanging node per
side satisfy this assumption. We append a sub-index h to differential operators
to indicate that they are applied element-wise. For instance, Vv is defined by
Vol := Vo|p, T € Th.

From now on ¢ and C' are generic constants independent of A but perhaps de-
pending on the shape-regularity constant of the mesh sequence {7, }r>0. Also, we
use the notation A < B to indicate A < ¢B, where ¢ is a constant independent of
h, A and B.

Let Vﬁ be the space of discontinuous functions over the mesh 7y,

(2.7) VE = {on € L*(Q) : w0 Fr €Py (resp. Qi) VT €Th}

of degree &k > 2. We point out that the discrete functions v, € Vﬁ are not poly-
nomials on the physical elements T unless Fr € [P1]2. This is consistent with the
implementation in the deal.ii library[1] used to obtain the numerical illustrations of
Section 6. Similarly, the Hessians of vy |r and v o Fp are not proportional because
D?Fr # 0, except when Fr € [P!]2. We account for this delicate issue in Section
9.

We denote by £ the collection of edges of 7; contained in Q and by 8}; those
contained in dp€2; hence &, = 5,? U 5,2 is the set of active interelement boundaries.
We further denote the interior skeleton and the boundary counterpart by

(2.8) I:=uUf{e:ec&}, TY:=Ufe:ecél},
and by 'y, := I‘% U I‘Z the full skeleton.
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As is customary for dG methods, we need to introduce jumps and averages on
edges. For e € &) we fix yu := p. to be one of the two unit normals to e in 2; this
choice is irrelevant for the discussion below. Given v, € V§, we denote its broken
gradient by Vjvp and the jumps of vy, and Vjvy across interior edges by

(2.9) [Vple =0, — v,f, [Viople := Vpv, — thlf, Vee 527

where v (z) = limy_o+ vn(z £ s o) and @ € e. In order to deal with Dirichlet

boundary data (g, ®) we resort to a Nitsche’s approach; hence we do not impose
essential restrictions on the discrete space [V§]3. However, to simplify the notation
later it turns out to be convenient to introduce the discrete sets V¥(g, ®) and
V#(0,0) which mimic the continuous counterparts V(g, ®) and V(0, 0) but coincide
with [VF]3. In fact, we say that vy, € [VF]? belongs to V¥(g,®) provided the
boundary jumps of v are defined to be

(2.10) [Vnle == vn — g, [Vavnle := Vo, — @, Vee &P

We stress that [|[va]|| L2 () and [[[Vavn]l|z2rey — 0 imply vp — g and Viv, — @ in
L?(0pf) as h — 0; hence the connection between V¥ (g, ®) and V(g, ®). Therefore,

the sets [V¥]? and V¥ (g, ®) coincide but the latter is not a space because it carries
the additional information of boundary jumps, namely

(2.11) V¥(g,®) := {Uh € [V [vnle, [Vavrle given by (2.10) for all e € 52}.

In the same vein, we will deal with discrete test functions v, € V¥(0,0) for which
boundary jumps are given by [v3]e := vy, and [Vivp]e := Vi, for all e € E2, which
is consistent with (2.10) for g = 0, ® = 0. We observe again that the sets V¥ (0, 0)
and [V¥]? are the same. We will not write the subscript e whenever no confusion
arises. On the other hand, the definiton of average of v, € [Vﬁ]j across an edge
e € &, is independent of Dirichlet conditions and is thus given by

(212) {on} = {%fv;fw,:) ce g

b7
vy, ec &y

(Vhon} = LV + Vi) e€& .
Vh’l)}: e e 52

Definitions (2.9), (2.10) and (2.12) extend to the broken energy space

(2.13) E(Tn) = [[ H'(D).

TETH

Before introducing the discrete energy Ej,, we derive the corresponding bilinear
form ap(-,-) in the usual manner. This is the first instance where the definitions
of V¥(g,®) and V¥(0,0) become critical. We integrate by parts twice the strong
equation (2.5) over elements 7' € 7, against a test function v, € VF(0,0). We
assume y to be smooth, whence the jumps [0, Vy|. and [0,Ay]. vanish on edges
e € &, to arrive at

(f’ ”h)m(ﬂ) = (DQ%D%L”}I)H(Q) - ({6uvy}’ [V”h])Lz(rh) + ({auAy}v [”h])Lz(rh)'

We next use that [y]e = 0 and [Vy]. = 0 for all edges e € &: for interior edges
e € &) this is because y is smooth, whereas for boundary edges e € &) it is a
consequence of y = g and Vy = ® on 9pQ and definition (2.10). We can thus
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symmetrize the previous equality and add vanishing penalty terms
2 2
(fv Uh)LQ () = (D Y, thh)LQ (Q)
- ({8MVy}, [vvh])m(rh) - ({8uvhvh}’ [vy])ﬂ(rh)

(2'14) + ({aﬁbAy}> [Uh])Lz(ph) + ({8HAhUh}7 [y])Lz(Fh)
+71 (A VY], [Vaon] )LZ(Fh) +70 (72 [y], [v] )LQ(Fh)
= &h(y, Uh)a

with penalty parameters vp,71 > 0 to be determined. Hereafter, we denote by
(") z2(aq) the L?(M) scalar product and vector versions of it. Since (2.14) reduces
to (2.4) for v, € V(0,0), we resort to (2.14) to define the discrete equation for yj,

(2.15) yn €Vi(g,®) 1 an(yn,vn) = (fivn)r2)  You € VE(0,0).

We point out that the Dirichlet conditions in (1.3) are enforced in the Nitsche’s
sense. Since ap, is symmetric by construction, we define the discrete energy to be

(216) Enlun] = 5 anln i) — ()2

The first variation § Ey[yn; vn] of En[ys] in the direction v, € V¥(0,0) yields (2.15).
In order for (2.16) to be meaningful with respect to the original minimization
problem in (1.4)-(1.5), we define the discrete admissible set Aﬁ’s(g,tb), a discrete

analogue of A(g, ®) in (1.5) that involves the discrete isometry defect Dy, to be
(2.17)

Az,s(ga@) = {yh € Vﬁ(qu)) : Dh[yh] - Z
T€ETh

/T(Vhyh)TVhyh - f’ < E}

with parameter 0 < ¢ = e(h) — 0 as h — 0. We will see in Section 3 that the
discrete gradient flow used to construct discrete solutions yields e = C'h, where C'
depends on Ey[yP], g, ®, f, ¥} being the initial iterate, and other geometric con-
stants.

2.3. Interpolation onto Continuous Piecewise Polynomials. For several rea-
sons we need to interpolate from the broken energy space E(7},) defined in (2.13)

onto the space VZ = Vﬁ N H() of continuous functions which are polynomials

of degree < k over the reference element T. We refer to [3, 11, 13, 15, 17] for such
interpolation estimates. We now construct a Clément type interpolation operator
I, : E(Th) — Vﬁ, thereby extending [3, 11] to E(73), because of its simplicity and
fitness with our application of it.

We construct IIj in two steps. We first compute the local L?-projection P, :
E(7,) — V¥, which for every v € E(73,) and T € Tj, reduces to the equation

(2.18) Py € VE(T) : / (Phoo—v)w=0 Ywe VT,
T

where V(D) (resp. Vlﬁ(D)) stands for the restriction of functions in V¥ (resp. V’,j)
to D C Q. We next define the Clément interpolation operator I, : VK — V¥ of
3, 11] as follows. Given the canonical basis functions {¢;}; of V¥ with supports
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{w; Y| associated with nodes {x;}¥ ;, we compute the L?-projection of v € V¥ on
stars w;

(2.19) v; € VE (w;) : / (w—v)w=0 YweViw),

and define [,v := Zil vi(x;)d; € Vﬁ and
(2.20) I, := I, 0 Py, : B(Tp,) — V.
If 73, has hanging nodes, the stars w; are related to the notion of domain of influence;

we refer to Section 6 of [11] for details. We make the same assumptions as [11] on
Th, which in turn imply that all elements of 7; within w; possess comparable size.

Lemma 2.1 (interpolation). The interpolation operator II;, defined in (2.20) is
invariant in the space Vi and satisfies the following estimate for all v € E(T,)

(2:21)  [|VIpoll 2@ + 1B (v = Th0)l| 22y S IVavliL2 (@) + 1020l L2 o),
where we recall that T stands for the interior skeleton of Ty, defined in (2.8).
Proof. The operator Il is invariant in Vﬁ because so are P, and I;,. We next

examine properties of Py, I}, and I} separately. Recall that all T' € T}, are closed.
Step 1: Operator P,. Since P, is an elementwise L2-projection, we easily deduce
1/2
1Pho = vl pry + by *[|Phv = vl p2(ory + hrl|V Pav z2cry S bl Vol zary.
Given an interior edge e € £, let T € T, be the two adjacent elements that satisfy

e =T+t NT~ and v* be the restrictions of v to T*. If w(e) := TT UT~, a simple
calculation now shows

1[Puv]ll2(e) < 1Pavt — 0¥ || p2ge) + [Pho™ — v lp2ee) + 07 — 07 || p2(e)
ShY2Vavll L2 ey + 0]l 22 ce)-

Step 2: Operator Ip,. Let w(T) be the union of stars w; alluded to in (2.19) that
intersect T; note that all elements within w(T") have comparable size [11]. More-
over, let 4%(w(T)) and 2 = 7°(w;) be the skeletons of w(T) and w; (interelement
boundaries internal to these sets).  We recall (see e.g. [11]) that to prove the
estimate

IV Ill 22y + 127 (Tnw = o)l 2y S IVR0l L2y + 1072 0]l 22 (o i)
for all v € Vﬁ, it suffices to derive the bounds
IVvill L2n) + 12710 = vi) 2w S IVAVI L2 + 1B 2[0]l 20y

where v; is defined in (2.19). Since the dimension of the space V¥ (w;) is finite and
depends only on shape regularity, all norms in V¥ (w;) are equivalent and indepen-
dent of meshsize upon rescaling w; to unit size. We further observe that if the right
hand side of the last inequality vanishes, then v is constant in w;. The definition
of v; thus gives v; = v and the left hand side vanishes, thereby showing that the
desired estimate is valid in the rescaled w;. The powers of meshsize result from a
standard scaling argument from unit size back to actual size.

Step 3: Operator 11j,. Combining the estimates for Pj, and [} yields
IVl 20y S IV P2+ 102 [Puo]llarg) S IIVaollz2 @+ 102 0]l 22ro)-

A similar estimate is valid for ||h~!(v — IT4v)||L2(q). This concludes the proof. [
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We have written (2.21) in a convenient form for our later application. Note that
it only requires that Vﬁ contains piecewise constants and make no reference to the
actual polynomial degree k. However, since Il is invariant on Vfw we may apply
(2.21) to v — p where p € V’,ﬁ is the best H'-approximation of v € H**1(Q) to get

lv—Mpvl|L2) = [[(v—p) =1l (v=p)|lL2() S PIV(v=D)llL2() S th”UHHHl(Q);

see Lemma 9.4 (error estimates for curved quadrilaterals). Another consequence of
the proof of Lemma 2.1 is the local interpolation estimate

IVl L2y + [P (0 = )| L2 (r) S IVAvll2 ey + 10720 L2 (g0 iy
for all T € Tp; recall that w(T) and 7°(w(T')) are defined in Step 2 of Lemma 2.1.
Corollary 2.1 (boundary error estimate). The following estimate is valid
(222) 0720 ~ Wyo)llzaon S IVavllza + 1020l awgy Vo € B(TR).

Proof. Let e be a generic boundary edge, not necessarily in SZ, and T € Ty be an
adjacent element (i.e. e C 9T'). The scaled trace inequality reads

B2 (v = o) || 2y S 10 = Tpv) |2y + IV (v — T40) || 127

Adding over e, the desired estimate follows from (2.21). O

The following Friedrichs inequality is another straightforward application of
(2.21); similar estimates are proved in [13, 15]. We observe that the jumps [v]
of v € E(T) in (2.21) are computed on the interior skeleton I'), but the desired
estimate requires control of the trace of v on dp€.

Corollary 2.2 (discrete Friedrichs inequality). There exists a constant Crp > 0,
depending on Q and Op$Y, such that for all v € E(Ty,) there holds

(2.23) [vllz20) < CF(HVhUHL?(Q) + 1B 2] | 2 cro) + ||U||L2(aDQ))~

Proof. In view of (2.21), it suffices to prove (2.23) for II,v. The standard form of
the Friedrichs inequality is valid for II,v € H'(Q), namely

ITpv] L2) S VIRV L2 (@) + [Hav]lL2 6,0,

where the hidden constant depends only on 2 and dp€2. Let e € £? be a boundary
edge in IpQ and T' € T, be an element so that e C 9T. The scaled trace inequality

lellzae) bl zacry + ha*| Vel ey
for w = v — II}v, in conjunction with (2.21), yields
IVl L2 () + ITholl 2 0p0) S VAVl L20) + 120l 2o) + 0l 22 (00 0)

and shows (2.23) as desired. O
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2.4. Coercivity of the Discrete Energy. We now prove that the discrete energy
(2.16) is coercive with respect to a suitable dG quantity that substitutes the H?2-
norm. As motivation, we start with a similar coercivity estimate for the continuous
case.

Lemma 2.2 (coercivity of E). Let data (g, P, f) satisfy (1.2). For anyy € V(g, P)
there holds

1yl7r2 () S Elyl + lglin @) + 120130 @) + 1122
where Ely] is defined in (1.4).
Proof. Since y = g and Vy = ® on 9p(?, the Friedrichs inequality implies
ly = gllz2@) S IV =Dz VY= @llr2e) S 1D% — V)|l 120,
whence
(2.24) 9ty < € (D120 + ol ) + 191y ) -

Consequently, we use (1.4) to find that for any p > 0
1Dy = 2Bl0) +2 [ £+y < 28] + 20 ool
<2F Liri 2
< 2E[y] + pllfl\m(m +ollyllz (o)

1
<2E[y| + ;”f”%?(sz) + CP(||D2$/H%2(Q) + ”9”%11(9) + H‘I’Hip(g))
Setting p = %, we deduce that

1Dyl 72(0) S Elyl + lglin ) + 12070 ) + 11720,
which combined with (2.24) gives the asserted estimate. (]

We observe that the Friedrichs inequality plays a crucial role in the previous
proof to control y — g and Vy — ®, which vanish on dpf2. At the discrete level we
face two difficulties: the lack of regularity that leads to interior jumps for y;, and the
Nitsche’s approach that circumvents the explicit imposition of Dirichlet boundary
conditions. To deal with the first issue, we introduce a discrete H?-scalar product

(wh, Uh)H;f(Q) :z(DfLwh, Divh)LQ(Q)

(2.25) B _
+ (h 1[Vhwh], [thh])Lz(Fh) + (h 3[wh], [Uh])L2(Fh)
and corresponding discrete H?Z-norm lonllmz ) = (vh,vh)}i/f(m for all vy, wp, €
v h

VZ(0,0). We point out that the jumps are computed in the full skeleton I';, and
for boundary edges e € E,l: we have [v] = vy, and [V v = Vv, according to the
definition of V§(0,0) in (2.11) for g =0 and ® = 0.

In order to account for the second issue, the Nitsche’s approach, we need to allow
v € Vﬁ (9, ®) and thus utilize the convention that boundary jumps in

(2.26)  llonllz () = IDRvnlZeo) + 102V hon]l3ar,) + 187 2 [on]ll2 )

are defined as in (2.11) for v, € V¥ (g, ®). This convention will simplify notation
and will not lead to confusion because we will always specify the membership of vy,
in the sequel. Notice that ||.|[;2(q) is not a norm on VE(g, ®).
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In addition, we can derive a Friedrichs-type estimate for any vy, € Vi (g, ®). We
simply apply (2.23) to v, and Vv, and add and subtract g and ® to the boundary
terms |lvp||L20,0) and || Vivn| z2a,0), to obtain

(2.27) vz + IVrvsllz2@) < CF(||Uh||H,3(Q) + gl @) + H(I)”Hl(Q))a
where Cr (not relabeled) is proportional to the constant in (2.23).

Lemma 2.3 (coercivity of E}). Let data (g, P, f) satisfy (1.2) and set

(2.28) R(g, @, f) = llgllip ) + 1217 ) + 11I72(0)-

If the penalty parameters vo, v1 in the discrete energy Eplyn| defined in (2.16) are
sufficiently large, then there exists a constant C'y depending on Cg in (2.27) such
that

lynllrz 0y < Enlyn] + CrR(g,®, f)  Yyn € Vii(g, ®).

Proof. We examine the various terms in ay(yn,yn) defined in (2.14) with y;, €
Vi(g, ®). We start with ({0,Vryn}, [Vayn] )L2(Fh)’ recall the definition (2.12) of

averages, and use the inverse estimate (9.8) for isoparametric elements to obtain
0,V nyn Iz < IH{Dhyn Y2 ey S b2 Diynll 2 ooy

for all e € &, where w(e) is either the union of two elements containing e for e € &)
or a single element for e € £?. Consequently, Young’s inequality yields for any
p>0

‘({auvhyh}v [(Vhyn] )LZ(Fh)

Ciy, _
< plIDRynlZ2) + 7||h Y2 N hynl 1720, -

We next consider ({8,Anyn}, [yn]) 12,y Lhe inverse inequality (9.8) again implies

(Th)
{08y H 22 (e) < I{Diyn 2oy S b 2IDiynll 2 (wie)y Ve € En,

whence Young’s inequality gives

) ({0uAnyn} [yn] )L"‘(Fh)

In light of definition (2.26) of || - || z2(q), we choose p = 1/8 and 71,70 sufficiently
large, depending on the geometric constants C, Cy, to absorb the above terms into
%”D%yh”%zm)» l21||}fl/2[vill/ft]||%2(rh) and 770||h73/2[yh]||%2(rh,) of an(yn,yn). We
thus deduce coercivity of aj and, according to (2.16), we find

Co,,
S pHD}QLthZL?(Q) + 7”]1 oE [yn] ||2L2(rh)-

1
Hyh”?qi(g) < §ah(yh,yh) = Enlyn] + (fa yh)L2(Q)~

We apply the Friedrichs-type estimate (2.27) to deal with the forcing term, namely

| [ 1] < 11z < ol ooy (Iomllzion + gl oy + 0]

We finally see that ||yn | z2(q) can be hidden on the left-hand side of the previous
coercivity estimate via Young’s inequality, and conclude the proof. O

Lemma 2.3 and its proof yield the following bounds on Ej, [ys]
(2.29) ~CpR(g,®, f) < Bnlyn] < Iyl o) + R(g. @, f).
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3. DISCRETE GRADIENT FLOW

We now design a discrete H2-gradient flow to construct discrete minimizers. A
key aspect of this flow is to guarantee the discrete isometry defect (1.6), namely

Dplyn) = Y

TeTh

/(Vh'l}h)th'Uh —I| <e.
T

We start with the first variation of the isometry constraint (1.1) evaluated at y €
V(g, ®) in the direction v, the so-called linearized isometry constraint, which reads

(3.1) Lly;v] = (Vo)IVy + (Vy)TVo =0 Vv € V(0,0).
This serves to describe the tangent manifold to (1.1) at y € V(g, ®)
Fly) :={veV(0,0): Lly;v]=0}.

In view of (3.1), let the discrete linearized isometry constraint at y, € V¥ (g, ®) be
(3.2) LT[yh;’Uh] = / (thh)thyh + (Vhyh)Tthh =0 VYo, € VZ(0,0),
T

which imposes the pointwise equality (3.1) on average over each element T' € Tj,.
This in turn leads to the subspace Fy,[ys] of V£(0,0) defined as

Filyn] == {vn € VE(0,0) :  Lyfyn;vp] =0 VT €T}

We are now in a position to describe the discrete H?-gradient flow. Let yi) €
V¥(g,®) be a suitable initial guess with energy Ej[y)] as small as possible and
isometry defect Dy[y?] < 7, where 7 > 0 is a fictituous time-step to be determined
later. Given an iterate y? € V¥ (g, ®) for n > 0, we seek to minimize the functional

n 1 2 n
Frlyp] > wp — EHwhHHﬁ(Q) + Enlyy + wal,

where the discrete H?-norm |wnllf2(q) is defined in (2.26). We thus minimize
Epyj, + wy] but penalizing the deviation of wy, from zero in the norm [[wp| g2 q)-

If 6yt € Fplyp] is a minimizer, then it satisfies the optimality condition
(33) T OURT ) g2y + OBR[Yn + 0y vl =0 Yor € Fulyil,

where 6 Fp, [yZH; vp] is the variational derivative of Ej, at yZH =yr+ 6y,?+1 in the

direction of v;,. In view of (2.15) and (2.16), the Euler-Lagrange equation (3.3) is
equivalent to

T Syt Un) m2(Q) + an Sy, on)

= —an(yp,vn) + (f;vn) 2= F"(Yn;vn) Yon € Fulyy]-

Remark 3.1 (solvability of (3.4)). Note that problem (3.4) is linear in dy} ™ and
Lemma 2.3 (coercivity of E}) with vanishing data (g, @, f) yields coercivity of ay,

(3.5) ap(vp,vp) > O‘””h”il,ﬁ(ﬂ) Yoy, € VE(0,0)

for some constant o independent of h. Since 0 € Fy[yj| we infer that Fy[yp] #
() and the Lax-Milgram theorem implies existence and uniqueness of a solution
Syt € Filyl to each step of the discrete gradient flow (3.3).



LARGE ISOMETRIC BENDING PLATE DEFORMATIONS 13

Remark 3.2 (saddle point formulation). Instead of solving (3.4) within the man-
ifold F[y}] € V¥(0,0) we could pose the problem in the entire space VF(0,0)
provided we append the constraint 5y}7f+1, vy, € Fplyp] via a Lagrange multiplier.
To this end, consider the bilinear form £, (y7; -, ) : [VF]? x [V9]2%2 given by

(3.6) (YR vns i) ==Y / fin ((Vhy;?)TV}LUh + (VhUh)TVhyZ>-
T

TETh
The saddle point system equivalent to (3.4) reads: find (Jy; ™, A1) € [VF]3 x
[V9]2%2 such that for all (vs, ps) € [VF]? x [V9]2%2 there holds

T Sy vn) )+ an(Gyn T on) 4yl ons AR = F™ (35 vn)

n+1

(3.7) .
Ch(yrs 0y, ) = 0.

It is an open question whether a uniform inf-sup condition is valid for (3.7). We

will get back to (3.7) in Section 7 as a practical procedure to find 6y,7;+1.

We now show that the discrete H2-gradient flow (3.3) reduces the energy Ej,.

Lemma 3.3 (energy decay). Let y? € VF(g,®) be the n-th iterate of the discrete
H?-gradient flow (3.3) with data (g, ®, f) obeying (1.2). If§y2+1 # 0 is the solution
of (3.3), then the next iterate y;' ™" =y + oy satisfies

En[y; ] < Enlyp]-

Moreover, if « is the coercivity constant in (3.5) and 7 is the time step, then

N-1
a 1 n
(35 (5+7) 22 100k oy + Euli) < Eni)

Proof. We set vy, = §y2+1 in (3.3) and use the fact that E}, is quadratic to obtain
n n n n n 1 n n
OBnlyr, + 0y, 0y = Bulyp ] = Bulg] + an(oyn T oy

Invoking the coercivity property (3.5) we thus get
a 1
+12 1 n
(5 + ) 1695 32 ) + Bnlyi '] < Enli]

whence Ej [y} '] < Ey[yp] if oy, T # 0. We finally sum over n to deduce (3.8). O
We now show that the discrete H2-gradient flow guarantees the discrete isometry

defect (1.6) for any € > 0 provided the time step 7 in (3.3) is suitably chosen. This
is due to the presence of the dissipative leftmost term in (3.8).

Lemma 3.4 (discrete isometry defect). Let the initial guess y) € V¥ (g, ®) for (3.4)
be an approrimate isometry in the sense that

(39) Dulih)l = - | [ (9" Vsl — 1] < -
TeT, T
let R(g,®, f) and C}% be given in Lemma 2.3 (coercivity of Ey), let Cr be the

Friedrichs constant in (2.27), and set

(3.10) s0 = (1+ CH(Eulyh) + CiR(9, 2. 5) )7,
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Then every iterate yj of (3.3) for n > 1 satisfies the discrete isometry defect (1.6)

(3.11) Duloi) = 3 | [ (Fuap) i 1
TETh T

<e Ve>egg.

Proof. We start by quantifying the increase of the discrete isometry defect in each
iteration of the discrete gradient flow. Combining yj™' = y + §y;'*' with the
property Lr[y?; 6y '] = 0, which is (3.2) for vy, = dy;' ™', we get the identity

/(VhyZH)TVhZ/;?H :/ (Vay?)" Vhyﬁur/ (Vh(syZH)TVh(sZ/ZH-
T T T

Summing for n = 0 to n = N — 1, and exploiting telescopic cancellation, we obtain
N—1
| @i = [ TVt + 3 19855
n=0

Consequently, adding over T' € T, and employing (3.9), we deduce

N—-1
DATNESS /T(Vhyév)TVhyéV I‘ <t IVRoYT -
TETh n=0

We finally combine the Friedrichs-type inequality (2.27) for syt € V£(0,0) (i.e.
corresponding to Dirichlet boundary data g = 0 and ® = 0) with the energy decay
relation (3.8) and the lower bound in (2.29) to get

N-1 N-1
> IV ey < C3 Y 103 M3z ) < CF(Enlyfl] + CiR(g, @, /).
n=0 n=0

Inserting this in the bound for Dy[y}] yields the asserted estimate (3.11). g

Remark 3.5 (choice of initial guess y7). We realize from Lemma 3.4 (discrete
isometry defect) that choosing yg might be tricky, unless we can make the discrete
isometry defect Dp[y?] small without increasing much the discrete energy Ep[y)]
due to the boundary penalty terms. We will revisit this issue in Section 6.

4. DISCRETE HESSIAN

In this section we provide a suitable definition of discrete Hessian Hp[yn] €
[L2(Q)]3%2*2 for y;, € [VF]3. Central to this concept is the following question: if
the discontinuous function y;, converges strongly in [L?(Q)]3 to y € [H%(2)]3, under
what conditions could Hp,[yp] converge weakly in [L?(Q)]?>*2*2 to D?y, namely

(4.1) Hplyn] = D%y in  [L2(Q)]?*2%%7?

It is apparent that the information contained in the broken Hessian Dy, € [L*(Q)]
is insufficient for this purpose, and that the jumps [ys] € [L?(T'4)]® and [Vayn] €
[L2(T',)]?*? do not provide directly the missing information because they are sin-
gular with respect to the Lebesgue measure. To bridge this gap, in Section 4.1 we
introduce lifting operators of [y,] and [Vays] [| and use them to construct Hy,[ys].
Another important property of Hp[yp] critical for the lim-inf argument is

3IxX2%x2

1
(4.2) §||Hh[ﬁl/h]||i2(g) = (fnsyn)r2) < Enlynl,

with constant 1 on the right-hand side. We will prove (4.1) and (4.2) in Section
4.2.
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Our approach is similar in spirit to that developed by Pryer[31], who in turn is
inspired by Di Pietro and Ern[20] for second order problems. However, an important
distinction is worth pointing out. The finite element spaces considered in [20, 31]
consist of polynomial functions (of total degree < k) on the physical elements
T € Tp. Instead, the dG method proposed in this work uses polynomial functions
on the reference element T' (see (2.7)), which is consistent with the implementation
within the deal.ii library[1, 4] responsible for the numerical experiments of Section 6.
Consequently, several challenges arise when dealing with isoparametric elements (in
particular quadrilaterals elements): (i) the mappings Frp : T — T between T and
T € T, are non-affine and do not produce polynomial functions on 7T7; (ii) VhV’,fb
does not embed in [Vﬁ/]Q for some k' as required, for example, for the analyses
in [20, 16, 18]; (iii) the Hessians of D?vy|r and D?(vj, o Fr) are not proportional
because D2Fp # 0. As a consequence, the space of Hessians

(4.3) HY = {m, € L*()**? : 7,|r = Diwp, wy € VH(T), T € Tn},

where the reconstructed Hessian Hy[vy] of a function vy, € V’,?L belongs to, is not a
subspace of [VF]2*2 in general; 7, € HF might not be piecewise polynomial.

4.1. Lifting operators and definition of H}[y]. Given a scalar-valued function
v, € VF, we define two lifting operators Ry, ([Vyvp]) and B, ([vp]) that extend the
jumps [Vpvp] and [vp] of Vpvp, and vy, from the full skeleton T'y, to the bulk Q, as
in Brezzi et al.[16]. It turns out that of the many ways to achieve this, there is only
one that leads to (4.1) and (4.2). We describe this next.

Given an edge e € &, let w(e) be the patch associated with e (i.e. the union
of two elements sharing e for interior edges e € £ or just one single element for
boundary edges e € &), and let H (w(e)) stand for the restriction of functions in
Hj; to w(e). The first lifting operator Ry := Y c¢, 7e = [L*(Th)]*> — Hj hinges on
the local liftings r. : [L2(e)]? — HF which, for all e € &, and ¢ € [L?(e)]?, are
defined by

(44)  re(d) € Hi(w(e)) : / }

and vanish outside w(e). Notice that upon taking 7, = D?wy,, we get
(4.5) (Rh([vhvh}), Di’wh)LQ(Q) = ([thh], {8M(Vhwh)} )Lz(Fh) Ywy, € Vﬁ

The second lifting operator By, := Y ¢, be : L?(e) — HJ. relies on the local

liftings b, : L?(e) — HF which, for all e € &, and ¢ € L?(e), are given by

(4.6) be(qb)erL(w(e)):/ be((b):m:/d) (div m}-pe V€ HE(w(e)),
w(e) e

re(9) 1y = /¢> qra}pe V€ HE(uw(e)),

and vanish outside w(e). In this case, taking 7, = D3wy, again and observing that
div(D3vp) = Vi (Apvp) elementwise, we obtain

(47) (Bh([vh})v Diwh)L’z(Q) = ([Uh]a {8M(Ahwh)} )Lz(Fh) Vwy, € VIFCL
To deal with vector-valued functions, we apply (4.4) and (4.6) componentwise.
Definition 4.1 (discrete Hessian). We define Hj, : VK (g, ®) — [HF]? to be

(4.8) Hy[yn] == Diyn — Ru([Vaynl) + Bn(lyn]),
where Ry, = o 7e and By =3 ¢ be are defined in (4.4) and (4.6).
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It is worth realizing that, in view of (4.5) and (4.7), we readily find
(4.9)
(Hh [yh]a Th)Lz(Q) = (Diyh’ D%wh)Lz (Q)

- ([vhth {8u(vhwh)} )LQ(Fh) + ([yh]a {aM(Ahwh)})Lz(Fh)

for all 7, = D2wy, € [HF]? and yj, € VE (g, ®), and that the boundary jumps on I'Y
are given by [yr] = yn — g and [Vpyp] = Viayn — @, according to (2.10) and (2.11).
Relation (4.9) is a key tool in the analysis of our dG method and justifies using the
Hessian space (4.3) for the definition of reconstructed Hessian Hy[yy]. In contrast,
Pryer [31] assumes that yp is piecewise polynomial of total degree < k in Q and
Hy,[yp] is piecewise polynomial of total degree k — 2 in Q.

4.2. Properties of Hj[y,]. We start with L? a priori bounds for Ry, By and Hj.

Lemma 4.2 (L%bounds of lifting operators). Let y, € VF¥(g,®) with data (g, ®)
satisfying (1.2). Then, for all e € T}, there holds

e (VaynDll 2wy S 102V ayn || o e

and
Ibe ([yaD) 22 (oen) S 1105 lynlll 2y

Proof. We argue as in [16] but with emphasis on boundary edges e € £’ because
they contain the Dirichlet data (g, ®) in view of (2.10); see also [11, 20, 31]. We
prove the first bound because the other one is identical. Definition (4.4) of r. yields

e (Vg — @) 2200 = / (Vngn — @)« {re(Vagn — )} pe.

e

Since {r.(Viyn — @)}, = re(Viyn — @) for all e € £P, according to (2.12), invoking
the inverse estimate (9.8) for D?vj, = ro(Vyy, — ®) implies

Ire(Vayn — @) 172 iey < 172 (Viyn — @)l L2(e) 10 ?re(Viyn — @)l L2(e)
S A2 (Vayn — @) llz2e) I7e(Vayn — @)l 2(w(e)) s

and yields the desired bound for e € 52. For interior edges e € &), we replace
Vyr — ® with [Vpyp]e given by (2.9), and apply the same argument. O

Since each element T € Ty, intersects at most 4 sets w(e), we immediately get

IRL(Vryn)) 2oy S 12V aynl 2y
IBr ()l 220y S 1072 2lynlllLecrn),

as well as the following corollary.

(4.10)

Corollary 4.1 (L?-bound of discrete Hessian). If yi, € V¥ (g, ®) with data (g, ®)
satisfying (1.2), then the following bound holds

[Hnlynlllr20) < 1ynllmzo)-

Proof. Combine Definition 4.1 (discrete Hessian) with (4.10) and (2.26). O
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While there is some flexibility in the definitions (4.4) and (4.6) of local lifts r,
and b, for Lemma 4.2 (L2-bounds of lifting operators) to be valid, the following
result reveals that these definitions are just right for the weak convergence of Hy, [yp]
provided the following condition holds on the sequence of meshes {7, }n>0

10" P = ry

(4.11) 1
HDFTIHTw(T)

<&h)—=0 ashr—0,

for all T = Fp(T) € T, and m = 2,3. Note that (4.11) is valid for affine equivalent
elements because F' is affine and £(h) = 0. However, (4.11) is more restrictive
for non-affine mappings Fr (i.e. Fr € [P¥]? for k > 2 or Fr € [Q*]? for k > 1).

Proposition 4.3 (weak convergence of Hp,[ys]). Let (4.11) hold and yj, € V¥ (g, ®)
with data (g,®) satisfying (1.2). If llynllmz) < A, with A > 0 independent of h,
and yp, converges to a function y € [H*(Q)]* in [L*(Q)]> as h — 0, then

Hylyn) = Dy in [L?(Q)]P*22.

Proof. Since we know D?y € [L?(Q)]?>*2*2 by assumption, we need to show that
/Hh[yh]:T—>/D2y:T ash —0
Q Q

for all 7 € [C§°(Q)]3*2*2. First we show this property relying on a suitable ap-
proximation 75, € [HF]?® of 7, and next we construct such 73, using (4.11).

Step 1: Weak convergence. We argue with each component of yy,, integrate by parts
elementwise and utilize the definition (4.8) of Hp[yn] and elementary calculations
to deduce

/thh T= Z/ yn - divdivr

TeTh

—Z/ Vhyh : T—Th Z/ : T—Th)
e€cly eclp

+ Z / Vhyn) : {7 — T} e — Z / yn] - {divy (7 — 70) } e
e€Ep e€Ep

_Z/Vhyh_ Th#e+2/ (yn — g) - divpTh ple
34 ec&}

provided 7, = Diwy, € [Hﬁ]?’ is a discrete Hessian. We point out that there is a con-
tribution of boundary terms e € £ ;’L because they appear in Definition 4.1 (discrete
Hessian). Combining the bound ||y || z2(q) < A with (2.26) and (4.10) gives

| Rn(IVryr]) 2 ) + I1Br(lyn) 2@ S A,

(4.12) _ -
1R 2yl 2oy + 1B 2yl 2oy S A

Suppose that there exists wy, € [Vﬁ]3 such that 7, = D}Qlwh satisfies

(413) ||7'7ThHL2(Q) + ||hvh(TfTh)||L2(Q)+ Hh2D}2L(T*Th)”L2(Q) —0 ash—0.
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The scaled trace inequalities
IBY2(7 = 1) |2y S 17 = a2 + 1BVA(T = 70) |20
1R272divi (= )l 20y S IRVA(T = 70) L2 () + B2 Dj (7 — )| 292
together with (4.12) and (4.13), readily yield

’/ Hplyn] : 7 — / Yn -diniVT} S AT = mllz2o)
Q Q
+ A(IBVa(r = )20y + [B2DF (7 = Tz ) = O-

Since y;, — y in [L?(Q)]3, we obtain
(4.14) /Hh[yh]:7—>/y~divdiVT:/D2y:T as h — 0,
Q Q Q

because y € [H2(2)]? and 7 € [C§°(Q)]>*2*2. This is the asserted limit.

Step 2: Proof of (4.13). We argue componentwise and construct a scalar wy, € V¥
such that 7, = D?wj, € HF satisfies (4.13) for 7 € [C5°(2)]**2. To this end, we
choose an arbitrary element 7' € T, with isoparametric map F' = Fp : T T
from the reference element f; see Section 9. We assume that T contains the origin,
and let 7 := F(0) € T. If quadratic polynomials were contained in V¥(T), the
obvious idea would be to construct a quadratic approximation of 7 in T' by Taylor
expansion. Since this is not true for isoparametric maps F, we build a quadratic
approximation in T instead. We denote by 77 the meanvalue of 7 within T, set

7:= DFT(0)7r DF(0) € R**?,
and note that [|7]| 25y < hrllTrll2(r). Let wy = wWo F~1 € VE(T) where @ is the

quadratic function @(z) = 12777 in T’ hence D2@(Z) = 7 for all # € T. According

to (9.4), the Hessian of wy, within T reads

Oijwn(z) =) Omn®(@) 0 F, ()0 (@) + ) 0n@(@) 055 Fy ().

Since Vw(0) = 0, we infer that
D*wy(z7) = DF~"(27) T DF ' (ar) =71,
whence Poincaré inequality implies
I = D*wp (1)l L2 (1) S b | DT L2 (1)

We need to control the deviation of D?wy, from constant due to F; for affine equiv-
alent elements, D?w;, = D?wy,(xr7) turns out to be constant. It is here that we
exploit (4.11) to deal with F. Differentiating 0;;wy, and using D3w = 0, we dis-
cover

IhD*wpl L2 (r) S BZIDE ™ oo () 1 D*@ll 27
+ W || D2F | poo (1) |IDE ™| oo () | D?] 12 )
D F Y e V@ a2y S EIBEL I oy S ERY Il oy,
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whence 6 D?wj;, = D?wj, — D?*wy, (1) satisfies
16D*wh |2y S hrl|6D*wh]| o (1)
S |1 DPwpll 1y S hrllD*whll 2y S ER)|IF7ll L2y

and |7 — TallL2() — 0 as h — 0 because D ;...
we also see that

Trll72 ¢y < I71172(qy- Moreover,

IRV R(T — )l 2 () S 1AV T L2(0) + ||hD;°’Lwh||L2(Q) —0 ash—0.
Arguing with D}w, similarly to Diwy, we easily derive
1h?D%wp | 2¢ry S ERITT ] 2207y,
as well as ||h2D3 (1 — )| 2() — 0 as h — 0. This shows (4.13) as desired. O
We reiterate that condition (4.11) is innocuous for affine equivalent elements
because D2F7? 1'— 0, but is rather restrictive otherwise (e.g quadrilateral meshes).

In order to avoid (4.11), we content ourselves with a weaker statement yet sufficient
for I'-convergence of Ej towards E. We state this next.

Proposition 4.4 (lim-inf property of the reconstructed Hessian). Letyp, € VZ (g9,9)
and y € V(g,®) with data (g,®) satisfying (1.2). If [lynllm2) < A, with A >0
independent of h, and yn, — y in [L2(Q)]3, and yn — y, Viayn — Vy in L2(0Q) as
h — 0, then there exists H € [L?(Q)]>*2*2 such that Hy[yn] — H in [L*(Q)]3*2*2
and

(4.15) /Q(H — D%) : D*w =0, Yw € [H2(Q)]3.

Furthermore, the following estimate holds

2 ..
(4.16) 1Dyl ez () < liminf || Hpfyn]ll L2 ()-

Proof. We assume that the reference element T is the unit square and omit the
somewhat simpler case of the unit triangle for which interpolations estimates such
as (9.14) are standard. We split the proof into two steps.

Step 1: Proof of (4.15). Thanks to Corollary 4.1 (L%-bound on the Hessian) and
the boundedness assumption |lyp[|gz(q) < A, there exists H € L?(92)****? such
that

(4.17) Hyplyn) = H in [L2(Q)]?***2 = ||H||L2(Q)Sliznjglf||Hh[yh]||Lz(Q).

Proceeding as in Step 1 of the proof of Proposition 4.3 with 7 € [C>(Q)]?*2 we
get boundary terms involving both 7 and div7 which result in the last line of the
expression for fQ Hy,[yp) : 7 being replaced by I + II + II1, where

IZ—/aQ(Vhyh—‘I))i(Th—T)N+/ (yn — 9) - divp (7, — 7)1,

opQ

17 :/ (Vayn — Vy) : T — / (yn —y) - divrp,
90\dpQ 2Q\0pQ

III:/ Vy:Tuf/ y - divTpu.
19]9) oN
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Let 7 = D?w for w € [C*®(Q)]® and 7, = D?w;, where wy, is chosen as follows:
given T € Ty, let Wr = w|r o F, Piwr be the L%-projection of wr onto the space
Qk, and wy,|r = Pz o F~1. We intend to prove the estimates

(4.18) 17 = mullL2@) + 1AVR(T = 1)l L2@) + W2 Dh (1 = )l 2 ) S B

which are refinements of (4.13) for w € [C°°(Q2)]3. In view of (4.18), employing the
same argument as in Step 1 of Proposition 4.3, together with the assumption that
yn — y and Vyy, — Vy in L2(0Q), we infer that |I|,|II| — 0 as well as

/Hh[yh]:D2w—>/y~divdivD2w—/ y - div D*w p + Vy : D%w p,
o0 a0
as h — 0 for all w € [C*°(Q)]3. Integrating twice back by parts, we deduce

(4.19) /Hh Yn) w—)/D2y:D2w as h = 0.
Q

Upon approximating any H?2({2) by functions in [C*°(Q)], relation (4.19) is also
valid for any w € [H?(Q)]?. This combined with (4.17) yields the orthogonality
property (4.15). The latter in turn implies ||[D?y[|r2(0) < [[H| 12(0) as well as
(4.16).

Step 2: Proof of (4.18). We recall that F : T — T is the isoparametric map
between T and T' € Tp,. The first estimate in (4.18) is similar to (9.14):
I7 =l 2y = 1D*(w —wp) || L2y S hrllwlmsr)
upon replacing the Lagrange interpolant Ipw by wj, defined in Step 1. To prove
the middle estimate in (4.18) we observe that if £ > 3, then (9.14) yields
IV(m = 1)l z2¢ry = 1D (w — wi) || z2¢ry S brllwl s r).-

However, this estimate is inadequate for k¥ = 2 for which we revisit the proof
of Lemma 9.3 (error estimate for quadrilaterals) and add and subtract the L2-

projection ﬁgﬁ]\ onto the space of polynomials of degree < 3 to arrive at

3
1D (w = wi)ll ey S b2 Y (1D (@ = Psid)ll oy + 1D (Psio = PD)| o) -
j=1
For the first term, we use the Bramble-Hilbert estimate in Q3 to deduce
3
S DY (@ — Py oy S NP0 oy < Bl
j=1
in view of (9.15). For the second term, instead, we use an inverse estimate
”DS(PS@ - P@)“Lz(f) 5 ||D2(P3@ - P@)Hm(f)a

and next add and subtract @w. We first realize that || D?(@ — ﬁS@)HL?(f) may be
tackled as in the case k£ > 3 whereas

2
SOIDH (@ — P)| o7y S NDP oy S Wollwlarscry

according to (9.15) again. Altogether, we obtain the bound

I1D*(w — wp)|| L2y S hrllwlgaery + lwllgs @y S llwll gser,
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which implies the desired middle estimate in (4.18). Exactly the same procedure
leads to the remaining estimate for || D*(w —wp)||r2(7) provided w € H5(T'), except

that this time we invoke the L?-projection P, onto polynomials of degree < 4 and
an inverse estimate to relate | D*0]|,, (T) to ||[D*0]| . ) for ¥ polynomial; we thus

deduce hr||D*(w — wp)| r2(r) S ||| gs(ry- This concludes the proof. O

Another consequence of Definition 4.1 (discrete Hessian) and Lemma 4.2 (L?-
bounds of lifting operators) is (4.2) with constant 1. This is crucial for the rest.

Proposition 4.5 (relation between Ej[yn] and Hylyp]). Let data (g, P, f) satisfy
(1.2) and yy, € V¥(g,®). Then the discrete energy Eplyn] defined in (2.16) and the
discrete Hessian Hplyp] defined in (4.8) satisfy

*||Hh[th|L2(Q (fsyn)r2(0) < Enlynl;

provided the penalty parameters vy and 1 are chosen sufficiently large.

Proof. We expand the expression for Hy[y;,] and utilize (4.5) and (4.7) to obtain

(4.20) 3 P = [ 7= Bulon] = Dl

where

1
Inlyn] == — *HBh yn]) — Ru([Vhyn]) Hiz(g

1/2

+'YOHh 3/2 yh ||L2(Fh +71Hh vhyh]“ig(ph)-

In view of (4.10) there is a constant C' independent of h such that

_ 2 _ 2
(421)  Julyn] > (0 — O)||h 3/2[yh]||L2(Fh) + (1 = O)||h 1/2[vhyh]’|L2(Fh) >0
for 79 and ~y; sufficiently large. This is what we intended to prove. O

It is convenient to point out that g, sufficiently large in (4.21) also yields

(4.22) 122 e o,y + 172 V09m] 2,y S nlun]

5. '-CONVERGENCE OF Ej,

In this section we prove the I'-convergence of Ej to E. This consists of three
parts. We first show equi-coercivity and compactness for y;, € Afm(g, ®) in Section
5.1. We next prove a lim-inf inequality for Ej,[ys] in Section 5.2 and a lim-sup prop-
erty in Section 5.3; the former uses lower semicontinuity of the L?-norm whereas
the latter hinges on constructing a recovery sequence for any y € A(g, ) via regu-
larization and interpolation. These three results are responsible for I'-convergence
of Ej, as well as convergence (up to a subsequence) of global minimizers y;, of Ej
in A¥ _(g,®) to global minimizers of F in A(g, ®); this is the topic of Section 5.4.
Lastly, we combine these results in Section 5.5 to show that the stabilization terms

|32 [yn W2,y = 0 Hh‘l/Q[Vhyh]HLQ(m —0 ash—0,

for such yj, and that Hy[yp] in Proposition 4.4 (lim-inf property of the reconstructed
Hessian) as well as D2y, converge to D?y strongly in [L?(£2)]3%2x2.
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5.1. Equi-coercivity and compactness. If data (g, @, f) satisfies (1.2) and y;, €
V¥ (g, ®) possesses a uniform bound Ej[yn] < A for all A > 0, then Lemma 2.3
(coercivity of E}) guarantees equi-coercivity

(5.1) ||yh||?{i(ﬂ) S Enlyn] + CpR(g, @, f) < C,

where C' > 0 is independent of h. This, together with Friedrichs-type estimate
(2.27), leads to weakly converging subsequences.
We now establish the L?-compactness property.

Proposition 5.1 (compactness in L?(Q)). Let data (g, ®, f) satisfy (1.2) and let
the sequence {yn}r>o0 C A’,?hs(g,(b) satisfy the uniform bound Epyp] < A for all
h > 0 with A independent of h. Then there exists a subsequence (not relabeled) and
a function y € A(g, ®) such that yp, — y in [L2(Q)]3, Viyn — Vy in [L?(Q)]3*2,
yn — y in [L2(0Q)]? and Viyy, — Vy in [L?(09)]**3 as h,e — 0.

Proof. We proceed in several steps.

Step 1: Weak convergence in L. We first use (5.1) to deduce that lynllaz@) < C
for all h. We next employ the Friedrichs-type inequality (2.27) to obtain ||yp||z2(q) <
C for all h. Consequently, there exists a subsequence of {yp, }r~0 (not relabeled) con-
verging weakly in [L2(2)]3 to some y € [L*(Q2)]3. We must show that y € V(g, ®).

Step 2: H'-regqularity of y and L?-strong convergence. To prove that y € [H(Q)]?
we need to regularize y,. To this end, we employ the smoothing interpolation
operator II;, defined in Section 2.3 and let zj, := Iy, € [Vﬁ]j = [VENH}(Q))?. In
view of the stability bound (2.21) and the Friedrichs-type estimate (2.27), we find
that

Iznllz2@) + IVznll 2@ S lvnllz) + 1V aynllzz) + 1R

S ynllzz ) + l9llm @) + 1@ 1@< C,

Z/hH|L2(F;1)

because of equi-coercivity property (5.1). Since zj, is uniformly bounded in H', (a
subsequence of) z, converges weakly to some z € [H'(Q)]* and strongly to z in
[L2(Q)]? and [L?(09)]3. Properties (2.21) and (2.22) of I, yield

1 _1 1
lyn—Thyn | L2+ vn—1aynl L2(60) < B2 (lththm(sz) + A2 [yh]l\m(rg)> S he,
whence as h — 0

lyn = 2llL2) < llyn — Maynll 2 @) + l2n — 2l L2) = 0,
lyn — 2llL200) < llyn — MnynllL2o0) + l2n — 2llz2(00) — 0.

The uniqueness of the weak L?() limit implies that y = 2z € [H'(2)]® and that
yp, converges to y strongly in [L?()]?. Regarding the trace, we first observe that

3/2[

1IR3 (yn — )l 12(0p0) = I~ Ynlllzoey < llynllmz) < C,

according to (2.26) and (5.1); hence ||yn — gllz2(a,,0) — 0 as h — 0. Since
z—g=(z—zn) + ryn — yn) + (Yn — 9),

and [|IIpyn — ynllL20p0) — 0 as h — 0, in view of Corollary 2.1 (boundary error
estimate) and (5.1), we infer that y = z = g on dp{d.



LARGE ISOMETRIC BENDING PLATE DEFORMATIONS 23

Step 8: H?-regularity of y and H'-strong convergence. This entails repeating Step
2 with Vjyn. We thus define Zp, := II,(Viys) € [VF]3%2. Applying again the
stability bound (2.21) in conjunction with (2.26) and (5.1) gives the uniform bound

1Znll 2@+ IV Znll 22 (@) S IVaunll L2 @) +IIDhynll L2y + 102 [V aynlll 2oy < C.

Hence, (a subsequence of) Z;, converges weakly in [H!(Q)]?*? and strongly in
[L2(2)]2*% and [L2(092)]>*? to a function Z € [H(2)]**2. Moreover, an argu-
ment similar to Step 2, again relying on Corollary 2.1, yields Z = ® on dpf) and
IVryn — ZllL2(9): IVhyr — Z|[12(00) — 0 as h — 0.

It remains to show that Z = Vy, whence y € [H*(Q)]?. For any test function
¢ € [C5°(Q)]3%2, elementwise integration by parts leads to

/QVhyhi¢=—/ﬂyh'div¢+/ro[yh]'¢u-

We next show that the last term tends to 0 as h — 0. Note that

/Fo[yh]-w

because |[h~2[yn]l| L2(r,) < hllynllaz @) = 0 while [B1/26]| p2ro) S [Q[[¢]| L (o) <
C. This in turn implies that as h — 0

/QZ:qb:—/Qy-din),

Step 4: Isometry constraint. To show that y satisfies (1.1), we combine the discrete
isometry defect (1.6) with a bound for the broken Hessian D?yj,. The former
controls the isometry constraint mean over elements, whereas the latter controls
oscillations of V,y,. In fact, we prove

(5.2) > (V) Vayn — Il prry Shte
TeTh

S ||h71/2[yh”|L2(F‘g) ||h1/2¢HL2(F2) =0 as h — 0,

or equivalently Z = Vy.

Let Mr[yn] € R?*? denote the mean of the isometry constraint over T' € Ty,

Ml =71

i ((Vhyh)TVhyh - 1)7

and write
1(Vhyn) " Viyn — Iy <l (Vayn) " Vayn —1I) — Mrlys) ey T 1Mz [yl | 1 -

For the second term, we use that y, € A¥ (g, ®), defined in (2.17)), to deduce that

,€

[Mrlynl|| 1 oy = ITHMr[yn]l - = > IT||Mzlynll = Dalyn] < e.
TeTh

For the first term, instead, we apply the Poincaré inequality in L*(T') to obtain
| (Vhyn) " Vayn — 1) — MT[yh]HLl(T) S (|Va((Vayn) " Viyn) HLl(T)
S hr ||DI21yh||L2(T)thyh||L2(T)~
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Summing over T' € T, and using the Friedrichs-type inequality (2.27), together with
Lemma 2.3 (coercivity of Ep[yp]) and the uniform bound on Eplyn] < A, we get

Z | (Vhyn) Vg, — 1) — MT[?Jh]HLl(T) S hIDjynl 2@l Viysll L2 ) S b
T€7—h

where the hidden constant depends on A and data (g, ®, f). This shows (5.2).
With this at hand, we now show that [|[Vy”Vy — I||11(q) = 0. We observe

Vy'Vy — I =vVy"(Vy—Vayn) + (Vy" = (Vayn) ) Vayn + (Vayn) Vayn — 1,

which implies

IVy"Vy = Il S (||V3/HL2(Q) + ththL?(Q)) IViyn = Vyllr2@) +h+e—=0

as h,e — 0, upon recalling the strong convergence of V,y; to Vy in [L?()]?*2*2

from Step 3 and the uniform bound of ||Vl 12(q) from (2.27). The proof is thus
complete. O

5.2. Lim-inf property of Ej. The lim-inf property easily follows from the pre-
ceding results, but we prove it here for completeness. Instead of looking at a general
sequence {yntnhso with y, — y in [L?(Q)]?, we assume Ej[y,] < A for all h and
uniform constant A > 0, since otherwise liminf,_,o Fx[yn] = oo and the lim-inf
inequality is trivial.

Proposition 5.2 (lim-inf property). Let data (g, ®, f) satisfy (1.2). Let the penalty
parameters g and 1 in (2.16) be chosen sufficiently large, and let the discrete
isometry defect parameter ¢ = e(h) — 0 as h — 0. Let y, € Age(g,q)) and
Eplyn] < A for all h with A independent of h. Then, there exists y € A(g, ) such
that yp, — y in [L2(Q)]3, Viyn — Vy in [L2(Q)]3*2, yp, — y in [L2(0Q)]® and
Viyn — Vy in [L2(02)]**3 as h — 0 and

Ely] <liminf Ej [yn).
h—0

Proof. Since y;, € A’fL’E(g,CI)) and Eplyn] < A, we invoke Proposition 5.1 (com-
pactness in L?(Q)) to get y € A(g, ®), namely y satisfies the Dirichlet boundary
conditions on dp€) and the isometry constraint (1.1), whereas y;, satisfies y;, — y
in [L2(Q)]3, Vayn — Vy in [L2(Q)]*2, yp — vy in [L2(0Q)]® and Vpy, — Vy
in [L2(00Q)]**3 as h,e — 0. Furthermore, the equi-coercivity bound (5.1) in con-
junction with Proposition 4.4 (liminf for the reconstructed Hessian) guarantees
that

2 ..
1Dyl L2y < lim inf [ Hnrlyn]llL2(0)-

This, together with (f,yn)r2) = (f,¥)r2(0) as h — 0, yields

1 1. .
5/ \D2y|2—/ f-y < 5 liminf (/ Hh(yh)|2_/f'yh)
Q Q h—0 Q Q

We next employ Proposition 4.5 (relation between Ej[yn] and Hp[yg]), i.e.

3 [ 1w = [ £ < Bl

and combine the last two inequalities to deduce the asserted estimate. O
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5.3. Lim-sup property of E;. Since we are interested in minimizers of E within
the admissible set A(g, @), to show the lim-sup property we construct a recovery
sequence in [L2()]? for a function y € A(g, ®) via regularization and Lagrange
interpolation. Since the isometry and Dirichlet boundary contraints are relaxed
via (1.6) and the Nitsche’s approach, we do not need to preserve them in the reg-
ularization and interpolation procedures. This extra flexibility is an improvement
over [5, 8], where the lim-sup property is proven under the assumption that both
procedures preserve those constraints at the nodes using an intricate approximation
argument by P. Hornung [26].

Proposition 5.3 (lim-sup property). If the parameters vo and v1 in (2.14) are suf-
ficiently large, then for any y € A(g, ®), there exists a recovery sequence {yp}, C
AF (g,®)N[HY(Q)]?>*? with lynllmz @) S IYll2) uniformly in b such that

h,e

yh =y in [LA(Q)], Vyn — Vy in  [L*(Q)]**2 as h — 0,

and
lim sup Ep[yn] < Elyl,
h,e—0

provided h < 1 and € := e(h) > €1, where

(5.3) e1 == ChllyllFz2 (0

and C is an interpolation constant that depends on the shape regularity of {Tn}n.

Proof. We proceed in several steps.

Step 1: Recovery sequence. Let A := |ly|g2(q) and let y, = Iy € [V’fb]?’ =
[VE N HY(2)]® be the standard Lagrange interpolant of y, which is well-defined in
R? because H?(Q)) € CY(2). We first resort to the local estimate (9.9), namely

(5-4) ||D}2Lyh||L2(T) S Wlazery VT € Th,

which is valid for isoparametric maps. Moreover, ||[yn]llz2(e) = 0 for all e € &)
because y;, € C°(£2), whereas combining a trace inequality with (9.10) yields

lwalllz2ce) = Hny = yllL2(e) S W22 1ylm oy Ve € &,
because y = g on dp and (2.10). Similarly, for all e € &) we have
||[vyh]HL2(e) < Hv(Ihy+ - y)”|L2(e) + HV(Ihy_ - y)]HL2(e) 5 hé/2|y‘H2(w(e))a

where y* = y|p+ and TF are adjacent elements such that e = T N T~ and
w(e) = TT UT~. Moreover, for e € £ we have [Vyp]. = V(Iny — y) according
to (2.10), because Vy = ® on dpf2, and we proceed as before. Therefore, we infer
that

lunllzz) S W2 = Enlyn] £ A’ + R(g,9, f),
where the last inequality is a consequence of the upper bound in (2.29).
Step 2: Discrete isometry defect. We claim that yy, satisfies (1.6) for € > ;1. Since
IVynllzz(ry < IVYll2ry + IV — D2y < W VYllezry + Chrlylaz(ry,
in light of (9.10), adding and substracting y and recalling Vy? Vy = I we obtain
Vyn Vyn =1 =V (yn —y)" Vyn +Vy" Viyn —y),
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whence Dy, [yp] defined in (1.6) satisfies for h < 1

Dalpn] < " (IVunllzary + IV9lzen) ) 19y = yn) 2oy

TETh
SO bl Vyllcery Wlmzey + Y halylie
TeTh TET

< hVyllzz ) lylaz@) + h2|y\%{2(9) < 2A%h.
Therefore, if 61 = ChA? = C’h||yHi12(Q), we deduce that y, € A} (g, ®) for e > e;.

Step 3: Convergence of Ep[yp]. It remains to show that as h,e — 0
Enlyn] = Ely],

with € > £1. We focus on two critical terms in Ep[ys] in (2.16), namely
IDiynllrz@) = 1D*yllezy, 1B [Vays] lr2 e, — 0,

because similar arguments yield |32 [ys] || z2(r,) — 0 as well as convergence of
the remaining terms in Ej,[yp] upon proceeding as in Lemma 2.3 (coercivity of Ej).

Since y is merely in [H%(Q)]?, we argue by density. Let {y°},~0 C [C(R?)]?
be a sequence of regularizations of y such that y° — y in [H?(Q)]® as 0 — 0, and
let y7 = Iy° € [VF]? be the Lagrange interpolant of y°. Estimate (5.4) implies

ID*(yn — yi)ll2ery S |y — ¥ |2y
whence writing y — yn = (y — y7) — In(y — y7) + (y7 — v5,) gives
h' IV (y = yn)llc2cry + 1D* (v = y)ll 2 ery S v = ¥ lmzery + b lly” | mscr),

because the polynomial degree is k£ > 2. This can be made arbitrarily small upon
choosing first the coarse scale o and next h, and implies | D3 ys || 2(0) — [[D?y|| L2(0)
as h — 0 by the triangle inequality.

We finally examine the stabilization term [|h =2 [V,ys] || 22(r,). We recall that

[Vy] = 0 for all interior edges e € £) and Vy = & for boundary edges e € . We
next utilize the scaled trace inequality in conjunction with (2.10) to write

Hh_1/2[vhyh]HL2(e) = A2 [Valy — yh)]HLz(e)
Sh VR = yn) L2 wiey) + 1D (W = yn)ll L2 w(e))
whence [|[h=Y2[Vyyn] | 2(r,) — 0 as h — 0. This concludes the proof. O

We point out the occurrence of the H2-seminorm on the right-hand side of (5.4)
for both affine equivalent and isoparametric elements (including subdivisions made
of quadrilaterals). We present a proof in Section 9 and refer to [19] and Chapter
13 of [22] for a comprehensive discussion of isoparametric elements.

5.4. Convergence of global minimizers. We now show that cluster points of
global minimizers of E}, are global minimizers of F, without assuming the existence
of the latter. The proof combines Propositions 5.1 (compactness in L?*(Q)), 5.2
(lim-inf property) and 5.3 (lim-sup property).

We now collect properties of the nonconver discrete admissible set Aﬁﬁ (g, ®) of
(2.17), the discrete counterpart of the nonconvex set A(g,®) of (1.5). Given an
initial guess y) € V¥(g, ®) with isometry defect Dy[y}] < 7 and energy Ej[y})] <
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Ao independently of h, Lemma 3.4 (discrete isometry defect) guarantees that the
discrete H?-gradient flow produces a sequence {y'}, C A’,fhe(g, ®) with € > ¢¢ and

0 = (1 +C2 (Ao + CpR(g, ®, f)))T.

This shows that AZ7E(g, ®) is non-empty provided € > ¢y and that £y can be made
arbitrarily small as 7 — 0. We could take 7 proportional to h, which is the choice
in Section 6. Moreover, Lemma 3.3 (energy decay) shows that Ej,[yn] < Ao whereas
Lemma 2.3 (coercivity of Ej,) gives

lynll7r2 (@) < Ao+ ChR(g, @, f).
This is the setting for I'-convergence and is discussed next.

Theorem 5.4 (convergence of global minimizers). Let data (g, P, f) satisfy (1.2).
Let the penalty parameters vo and v1 in (2.14) be chosen sufficiently large. Let
Yn € Afi,s(!]’ D) be a sequence of functions such that Ex[yr] < Ao, for a constant Ag
independent of h, and let the discrete isometry defect parameter € satisfy

IS Z g1 = C(AO + R(gyéaf))ha

where C is an interpolation constant depending on the shape regularity of {Tp}. If
Yn € Afw(g, ®) is an almost global minimizer of E), in the sense that
Eplyn] < inf  Epfws] + o,
whEAﬁ,E(Q,Q)

where o,e = 0 as h — 0, then {yn}, is precompact in [L*()]* and every cluster
point y of yn belongs to A(g,®) and is a global minimizer of E, namely Ely] =
inf,ep(g,) E[w]. Moreover, up to a subsequence (not relabeled), the energies con-
verge

lim Ep[yn] = E[y].

h—0

Proof. This proof is standard and given for completeness. Since Ep[yn] < Ag, we
invoke Proposition 5.2 (lim-inf property) to deduce the existence of y € A(g, P)
such that a (non-relabeled) subsequence of y, — y in [L?(2)]® and

Ely] < liminf Ep[ys).
h—0

This means that A(g, ®) is non-empty and that

inf  E[z] < E[y] < Ag.
ok [2] < Ely] < Ao

To show that y is a global minimizer of E, we let 0 < n < 1 and w € A(g, ) satisfy
Elw] < inf FElz]+n<n+Ao.
z€A(g,P)

Lemma 2.2 (coercivity of E) yields Hw||§{2(m <Sn+ Ao+ R(g,®, f) = Ay whence,
if e > e; = ChAy, Proposition 5.3 (lim-sup property) gives a recovery sequence
wp, € A} (g, ®) of w such that w, — w in [L*(Q)]* as h,e — 0 and

lim sup Epwp] < Efw].

h,e—0

We next utilize that Ej[y,] < Ep[wy]+ 0, because y;, is an almost global minimizer
of Ej within A’fb,e(g, D), to deduce

Ely] < liminf Ep[ys] < limsup (Eh[wh] + 0) <FEw]< inf E]z]+n.
h—0 h—0

z€A(g,P)
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Taking n — 0 implies that y is an global minimizer of E and
lim F = Ely].
P n[yn) [y]
This concludes the proof. ([l

5.5. Strong Convergence of Hy[y,] and Scaled Jumps. We now exploit The-
orem 5.4 (convergence of global minimizers) to strengthen the assertions of Propo-
sition 5.1 (compactness in L?()), in the spirit of [20, 31]. In fact, we show strong
convergence of the scaled jump terms to zero and of the discrete Hessian Hy[yy] as
well as broken Hessian D2y, of yp, to D%y as h — 0.

Corollary 5.1 (strong convergence of Hessian and scaled jumps). Let (g, ®, f)
satisfy (1.2) and the penalty parameters o and vy in (2.14) be chosen sufficiently
large so that (4.22) holds. Let y, € Afw(g,@) be a subsequence of almost global
minimizers of Ep, converging to a global minimizer y € A(g, ®) of E, as established
in Theorem 5.4. Then, the following statements are valid as h — 0

(i) Hh[yh] — D2y strongly in [LQ(Q)]3><2><27.

(it) A2 [Vaynlllzae,) + 1Ryl 2 (e, — 05
(iii) Diyp — D2y strongly in [L?()]3*2*2.

Proof. We first observe that Theorem 5.4 (convergence of global minimizers) yields

1
Eh[yh]%E[y]=§/Q|D2y|2—/ﬂf-y as h — 0.

We apply Propositions 4.5 (relation between Ej,[yn] and Hplyn]) to deduce

1., . 1
ithUpHHh[yh]H%z(Q) < limsup <Eh[yh] +/ I yh> = §||D2y||%2(ﬂ)
h—0 h—0 Q

We now resort to Proposition 4.4 (lim-inf property of the reconstructed Hessian).
In fact, combining (4.16) with the previous inequality gives the convergence in norm

[ Hnlynlll2) = 1Dyl 220

In addition, Proposition 4.4 guarantees that Hy[y,] — H in [L%(Q)]>*2*2 where H
satisfies the orthogonality property (4.15). This leads to

(Hh[yh]a DQy)LQ(Q) - (H, DQy)Lz(Q) = ||D2yH%2(Q)’ as h — 0.
The above property and the convergence of norms imply strong convergence, namely
2 2
[ lyn] = D?y| 2y = [ Hrlyr]|| 2 ) + 1D*Yl1Z20) = 2(Hnlynl, DY) 12 ) = 0-

This in turn yields (i). To prove (ii) we make use of (i) to infer that as h — 0

Inlyn] = Ehyh**/\thﬂ2 /f yn — Ely] /|D2y|2 /f y =0,

where we have used the definition (4.20) of Jp[yn]. In view of (4.22), we thus get
1R =2 yall 2o,y + 1P 2 [Vagalllzw,) =0 as h— 0.

This not only establishes (ii), but combined with (i), the definition (4.8) of Hp[ys],
and the bounds (4.10) for Ry, ([Vryr]) and By ([yn]), directly implies (iii). O
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6. NUMERICAL EXPERIMENTS

In this section we explore and compare the performance of our method with that
of Kirchhoff elements [5, 6, 7, 8]. We are interested in the speed and accuracy of the
method, as well as its ability to capture the essential physics and geometry of the
problems appropriately. We observe that our dG approach seems to be more flexible
with comparable or better speed. We present below specific examples computed
within the platform deal.ii with polynomial degree k = 2 and uniform meshes 7},
made of rectangles [1, 4]; hence we use Qo(T) for all T' € T;,. Moreover, one might
notice that we consistently use rather large penalty parameters ~q, 1 relative to the
second-order case [1, 2, 4, 11, 16, 32]. These choices hinge mostly on experiments
performed for the vertical load example of Subsection 6.1 and are not dictated by
stability considerations exclusively. In fact, they are a compromise between the
discrete initial energy Ej[y9] and the fictitious time step 7 of the gradient flow,
which obey the relations (3.9) and (3.10) and control the discrete isometry defect
Dy, [yn] according to (3.11). We point out that enforcing Dirichlet conditions via the
Nitsche’s approach depends on the magnitude of vg and ~;, which in turn affects
Eply)]. We examined a very wide range of 7o and v, and compared Dy, [y,] with
the rate at which it decreases for each tested pair. We selected those values that
lead to the smallest defect and the largest rate of convergence. We made similar
choices for all subsequent examples without exhaustive testing for each of them. We
note that our theory does not explicitly predict why the best convergence behavior
manifests for such large values of vy and ;. We do not provide our computational
study leading to 7y and v, for the sake of brevity.

6.1. Vertical load on a square domain. This is a simple example of bending
due to a vertical load. We use the same configuration as in [5] in order to present
a faithful comparison of the two methods. We deal with a square domain with two
of the non-parallel sides being clamped.

Example 6.1. Let Q = (0,4) x (0,4) and 9pQ = {0} x [0,4] U [0,4] x {0} be the
part of the boundary where we enforce the Dirichlet boundary conditions

(6.1) g = (r1,72,0) and & = [[,0]7.

We apply a vertical force f = (0,0, F') of magnitude F' = 2.5 x 10~2.

[ No. Cells [ DoFs | 7=h [ Enlyn] | Dulyn] | Iterations
256 7680 | /2272 | -7.53¢-3 | 4.02¢-3 13
1024 | 30,720 | v2 277 | -5.760-3 | 1.63¢-3 28
4096 | 122,880 | V2 2% | -4.26e-3 | 6.07c-4 76
16384 | 491,520 | v2 277 | -3.300-3 | 2.28¢-4 | 140

TABLE 1. Example 6.1: Number of cells, degrees of freedom, discrete
energy Fplyn], isometry defect Dp[ys] and number of gradient flow it-
erations for the square plate €2 = [0,4]2, clamped in two adjacent sides
with vertical forcing. We observe super-linear rates for the isometry
defect, while theory predicts linear rates for the case 7 = h.
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0.030- Deformation Along Diagonal {x+y=4}
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FIGURE 1. Example 6.1: Deformation along the diagonal 21 + x2 = 4.
We observe smaller deformation y than with the Kirchhoff elements, up
to one order of magnitude. For example, h = 272 yields |y| ~ 0.018 for
dG, while h = 275 gives |y| = 0.02 for Kirchhoff elements.

We first illustrate the convergence of the energy Fj[ys] and the isometry defect
Dplyn] as h decreases. We set 9 = 5,000, 71 = 1100 and choose 7 = h and observe
that the isometry defect decays super-linearly with 7, which is better than the linear
convergence predicted in Lemma 3.4 (discrete isometry defect). Compared to [5],
we obtain a more clear rate, while the defect itself is up to one order of magnitude
smaller. The number of gradient flow iterations is similar for both methods.

We now explore the geometric behavior of our method. More precisely, it was
observed in [5] that there was an artificial displacement along the diagonal z1+x2 =
4, which does not correspond to the actual physics of the problem, namely y = 0
for x1 + x5 < 4. This displacement decreases with smaller mesh size h. Our method
introduces the same artificial deformation. However, we can see in Figure 1 that this
displacement is smaller now, up to one order of magnitude for the last refinement.

6.2. Obstacle Problem. In Example 6.1 we document the flexibility of the dG
approach to capture the correct bending behavior of plates. To explore this further,
we introduce an extra element to the deformation: a rigid obstacle. We use a
square plate clamped on one side and we exert a vertical force. We require that
the plate does not penetrate the obstacle. This example is motivated by [7], where
the deformation of the plate is the result of thermal actuation of bilayer hinges
connected to the plate.

Example 6.2. Let Q = (—=1,1)x (—1,1) and 9pQ = {—1} x[—1, 1] be the Dirichlet
boundary where we enforce clamped boundary conditions (6.1). We apply the
vertical force f = (0,0,1). We choose a simple case where the obstacle is a rigid
flat plate at height z = 0.2. From a mathematical viewpoint, this obstacle problem
can be treated by introducing the convex set of admissible deformations

K={ye[l*(Q)] : y;3<02},

along with splitting of variables. We introduce another deformation s, s &~ y such
that s € K always and penalize the L?()-distance between y and s. If o is an
obstacle penalty parameter, we add the following extra term to the energy Fly]

~lly = sl
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At the discrete level, this affects the gradient flow at each step, where we use
as sp, the L2-projection of the previous solution y? in K. We refer to [7] for more
details about the variable splitting and the projection.

The plate configurations before contact are unaffected by the obstacle presence
and dictated by pure bending. Contact occurs with minor penetration of the ob-
stacle because we do not force the deformation y, to belong to the set K, but
rather penalize its L2-distance from its projection to K. As time evolves, the plate
bends backwards trying to decrease the obstacle crossing because it is energetically
costly. This behavior can be enhanced by further mesh refinement and by choosing
a smaller obstacle parameter o. To illustrate the obstacle-plate interaction, we pro-
vide six different steps of the gradient flow in Figure 2. The illustration corresponds
to 1024 cells, 0 = 3 x 10~* and time step 7 = 5 x 10~%. The penalty parameters are
70 = 1 = 5000, and the isometry defect at the end of this simulation is 9 x 1075,

Deformation Y_3 Deformation Y_3
E 1.483e-01 Ezoaae-ow
-20.11126 " 20‘15284
* “0.074174 -0.10189
-0.037087 -0.050946
t].6786-07 E1‘7238-07
(A) t=500ts (B) t=700ts
Deformation Y_3 Deformation Y_3
‘2 .062e-01 lE2.042e-0 1
_— 10.15464 _— 015318
\ 0.10309 ﬁ\ 010212
10.051545 10.051059
tl .745e-07 E1.780e-07
(€) t=1300ts (D) t=3000ts
Deformation Y_3 Deformation Y_3
[2‘027e-01 [2.0209-01
— -30‘15206 - -0.1515
-0.10137 -0.101
-0.050687 £0.050499
E1‘787e-07 t1.778@-07
(E) t=5000ts (F) t=13382ts

FIGURE 2. Example 6.2 (deformation of the plate with obstacle dic-
tated only by forcing): (a) Configuration before contact, (b) First con-
tact with the obstacle, (c) Penetration of the obstacle, (d) Plate starts
adjusting shape to decrease crossing, (e) Stronger bending with smaller
crossing, (f) Final stage with obtacle crossing of about 0.002.
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6.3. Compressive Case: Buckling. We finally investigate the geometrically and
physically interesting case of buckling. We use a rectangular plate with a small
vertical load, that induces a bias for bending, and we impose compressive boundary
conditions on two opposite sides. The latter reveals the delicate interplay between
the Nitsche’s approach for enforcement of Dirichlet boundary conditions and the
choice of suitable initial configurations, for the performance of the gradient flow.
This example is also motivated by [5].

Example 6.3. Let Q = (—2,2) x (0,1) and 9pQ = {—2,2} x [0, 1] be the two sides
where we impose the compressive boundary conditions

g=(x1£14,25,0) and &= [IQ,O]T.

We apply a vertical force f of magnitude 10~2. Given the compressive nature of the
problem, the plate could bend either upwards or downwards (buckling), resulting in
two deformations which are the reflection of each other with respect to the x1 — x-
plane and have the same minimal energy. This is why we apply a small force
upwards to select the deformation with positive third component. Since our initial
configuration is flat, there is a boundary mismatch that leads to large boundary
penalty terms in the Nitsche’s approach and correspondingly large initial energy
En[y?]. This in turn gives rise to either large isometry defects, because of (3.10)
and (3.11), or tiny time steps 7 and very slow evolution. This might explain why
we need a stronger force than the one in [5] (i.e. 107°) because Ej[y?] is dominated
by the boundary terms. Moreover, to prevent a large Ej[y?] from creating very
abrupt and non-physical deformations during the gradient flow for moderate T,
we employ a quasi-static approach: we enforce the boundary conditions gradually
thereby avoiding a large mismatch (parameter continuation). We use a parameter
« that starts from zero and increases throughout the flow until it reaches the value
1. In order to achieve a gradual adjustment to the boundary conditions, we let

ola):=(1—-a)id+a g, 0<a<l,

and ®(a) = ® be the Dirichlet boundary conditions for y and Vy, where id stands
for the identity function. As the mesh 7, becomes finer, the growth of parameter
«a must be slower to compensate for the larger initial energy associated with mesh-
dependent boundary terms as well as to allow for smooth flow evolutions.
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FIGURE 3. Example 6.3 (buckling of a rectangular plate at six different
stages): (a)-(c) Initial stages with small deformations dictated mostly by
the forcing, (d)-(e) The compressive boundary conditions dominate the
evolution and induce large bending deformations, (f) Final deformation
with attained compressive boundary condition.

To illustrate the effect of v, we depict deformations in Figure 3 that corresponds
to various stages of the gradient flow with 79 = 7; = 10* and time step 7 = 0.04625.
The parameter « increases linearly by the amount 5 x 10~° in each iteration. We
see that the compressive nature of the boundary conditions becomes more apparent
after a exceeds the value 1/2 and that the boundary conditions are attained at the
end of the deformation. The final isometry defect is Dy, [yn] = 5.04 1072, one order
of magnitude smaller than observed in [5].

7. IMPLEMENTATION

We now make some implementation remarks and connect them with the theory in
Sections 2 and 3. If (§Y 1!, A7) are the nodal values of functions (5y)' ™, AP+,
then the matrix form of the saddle point problem (3.7) reads

A BI [sy;tt F,
(7'1) |:Bn 0 :| [AZJrl - 0|’
where A is the matrix corresponding to the left-hand side of (3.4) and B, is the
matrix associated with (3.6), which depends on y;'. Since A does not depend on

Yy we can assemble it and perform its LU decomposition once and subsequently
use a direct solver whenever we need the action of A~!. For the full system we use
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the Schur complement approach with a conjugate gradient iterative solver, to first
solve for AZ“ and next recover 6YZ+1. The numerical experiments of Section 6
reveal the existence of solution (§y; ™, A1) of the discrete gradient flow (3.7),
which exhibits small isometry defects asymptotically as n grows and confirm the
validity of an inf-sup condition for (3.7). However, this issue remains open (see
Remark 3.2).

Lastly, it is important to mention that our choice in Section 2 of a space V’,?L of
discontinuous polynomials is strongly motivated by the structure of (7.1). More
precisely, if (Syz+1 were continuous then the inf-sup condition for ¢,, in (3.6) would
not be local and be harder to achieve. In fact, computational experiments for con-
tinuous functions (not reported here) indicate that the conjugate gradient method
becomes significantly slower if the functions of V¥ are required to be continuous;
this justifies our choice of a fully discontinuous space V¥. We refer to [29] for details.

8. CONCLUSIONS

In this work we design, analyze and implement a dG approach to construct
minimizers for large bending deformations under a nonlinear isometry constraint.
The problem is nonconvex and falls within the nonlinear Kirchhoff plate theory.
We propose a discrete energy functional and provide a flexible approximation of
the isometry constraint. We devise a discrete gradient flow for computing discrete
minimizers and enforcing a discrete isometry defect. We construct a discrete ap-
proximation of the Hessian inspired by [20, 31] that turns out to be instrumental to
prove I'—convergence: convergence of the discrete energy to the continuous one as
well as L2-convergence of global minimizers of the discrete energy to global mini-
mizers of the continuous energy. The existence of the latter is not assumed a-priory,
but is rather a consequence of our analysis. Our dG approach simplifies some im-
plementation details and theoretical constructions needed in [5, 8] for the Kirchhoff
elements. The dG formulation is also valid for graded isoparametric elements of
degree k > 2, which is considerably more general than [5, 8]. Moreover, we present
numerical experiments that indicate that the dG approach also captures the physics
of some problems better than the Kirchhoff approach, while also giving rise to a
more accurate approximation of the isometry constraint.

9. APPENDIX: ESTIMATES FOR ISOPARAMETRIC MAPPINGS

In this appendix we present inverse and error estimates involving the Hessian for
elements obtained by isoparametric transformations; this includes quadrilaterals
mapped by bilinear maps @Q;. The issue at stake is that the isoparametric map
Fr T — T from the reference element T to a generic element T € Ty is no
longer affine but rather Fy belongs to [Px(T)]2 or [Qx(T))?, whence D™ Fy # 0
for 2 < m < k. Since the considerations below are local to a single element T', we
drop the sub-index T in Fr. Moreover, we denote by ¥ := v o F' the pullback of a
function v defined on T. Property D™F # 0 does not affect the first derivatives
of a function v but it does influence its higher derivatives. To quantify this effect
we recall that we assume that {75 }p~¢ is shape-regular so that ||DF||LOQ(:;) S by

and |DF~1| L) S h;l, where the hidden constants depend on shape regularity
of Tp. Furthermore, because |D*F| ;. 7y < [|DF|| oo (7, Lemma 13.4 in Ern and
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Guermond[22] (see also Ciarlet and Raviart[19]) guarantees that

(9.1) D™ F~ | poe (1) S ||DF71H7Ln°°(T) 2<m<k+1.

Our estimates below rely on the following key property of isoparametric maps F":
(9.2) peP(T) = p=poF ecViT).

If 7 : Co(f) — Vﬁ(f) is the Lagrange interpolation operator over 7' of degree k > 1
and Ij, : C°(T) — V¥(T) is the corresponding operator induced by the map F, then
(9.2) translates into

(9.3) Lip(x) = T9(@) = p@) = pa) Vo= Fr(3) e T, € T.
If v € H2(T), © € H(T), then the chain rule gives

(94) o) = Y 02,0@) 0F, (@) 0;F, N (2) + Y 9n0(@) 0y F, (),

m,n=1 m=1
2 2
(9.5) @) = Y 02,0(x) 0iFm(Z) 0;Fu(@) + D Omv(x) 0ij Fin(2).
m,n=1 m=1
This, together with (9.1), yields
(9.6) 1Dl 2zy S P DF ™ 3ee oy [0l g2y S 1z 0]
(9.7) ID?0] 27y S hrllD?v]l L2y + V0l L2 (1)

This gives relations between the Hessians of v and ¥ that involve lower order terms.
The next two estimates connect higher order derivatives of isoparametric maps.

Lemma 9.1 (inverse estimate). Let T € T, and e € &, be an edge of T. Then the
following estimates are valid for all v, € V¥

(98)  ID%vnllr2ce) S he 21D onllnz(rys 1D 0nllc2e) S he ™2 D%onll 2 -
Proof. Let p € P1(T) be a linear polynomial to be chosen later. Combining (9.4)
and (9.1) with an inverse estimate for v, — p € VF(T)), according to (9.2), yields
ID?0n]l L2y = 1D (vn = D)l 2(e) S he ™ 2100 = Pl @) S he 2180 = Pll o (-
We now map back to T using (9.7) for D2(7;, — p) to get
[0h = Pll 27y S hrliD?onllcacry + 1V (on = p)llz2cr) + b llvn = pllzacr-

We finally choose p as the best linear approximation of vy, in T', whence the Bramble-
Hilbert lemma yields |[vn — pllz2(r) + hrllV(vn — p)l|22(ry S hZID?vnl|L2(ry and
gives the first assertion. The remaining assertion follows along the same lines upon
differenciating (9.4) once more and using (9.1) with m = 2 together with the inverse
estimate ||V — Dl gs@) S I|on — 1/7\”112(?)' The proof is complete. O

Lemma 9.2 (H?stability). Let v € H*(T) for T € Ty and Iyv € VE(T) be the
Lagrange interpolant of v of degree k > 1. The following bound is then valid

(99) ||D2Ihv||L2(T) S ||D21)||L2(T)~
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Proof. We first note that ;v is well defined because H2(T) C C°(T) (recall that
T is closed). In view of (9.3), we see that D?I,v = D?(Iyv — p) = D?I},(v — p) for
any p € P1(T"). We utilize (9.6) to deduce

2 ST
10210l 2ry S B 1T = B) .
We choose p to equal v at three vertices of T, and observe that @ = ¥ —p vanishes at
the corresponding three vertices of T and the associated linear Lagrange interpolant
Iw = 0 vanishes as well. Concatenating an inverse estimate with the interpolation

error estimate ||w — E@HLW@) S W] g2 (7, valid because H?(T) C L>(T), yields

1@ = D)l g2 7y S NT@ = D)l o () < 18 = Bll poo iy S ID*(@ = P 2
We finally invoke (9.7) to infer that
ID?@ = D)l 127y S hrllD* (v = p)ll L2y + IV (0 = p)llz2cry S bl D*0l| 2 cr)
This leads to the asserted estimate (9.9). O
We point out that the usual interpolation estimate
(9.10) v = Invll L2y + he [V (v = Inv) | 21y S A7 [0l 2(r),

with H2-seminorm on the right-hand side is valid for isoparametric elements with
polynomial degree k = 1. In fact, transforming to 7" and back to T via (9.7) gives

||U - Ih'UHL2(T) + hTHV(U - IhU)HLz(T) < B2 ||D2v||L2 + hT|V’U|L2(T

Applying this estimate to v — p, with p € P1(T), and recalling (9.3) leads to (9.10).
However, this argument fails for k£ > 2. We now state, and prove for completeness,
a key error estimates for quadrilaterals valid for £ > 1 due to Ciarlet and Raviart
(see Examples 7 and 8 in [19]). We also refer to (13.27) in Ern and Guermond [22].

Lemma 9.3 (error estimate for quadrilaterals). Let T € Ty, be so that T = F(f)
with F € Qy bilinear. If v € H*(T) and Iyv € VE(T) is the Lagrange interpolant
of v with k > 1, then for 0 < m < k + 1 there holds

(9.11) |7} - Ih'U|H""(T) S hk+17m‘U|Hk+1 (T)-

Proof. Expression (9. 4) in conjunction with (9.1) reveals that mapping D™ (v—Iv)
from T to T involves computing all derivatives D7 (v — I ’U) according to

D™ (v = Iyv) |l L2 (ry S hy ™ Z 1D? (@ = I0)| 127y S b ™ I[P 10|l 12
j=1
where [D*+15] = (8% T1%)2_, stands for all pure derivatives of order k+1. The latter
inequality is a consequence of the Bramble-Hilbert estimate for Qj elements; see
Theorem 1 in [12]. We now resort to a variant of (9.5) involving k + 1 derivatives
but simplified by the fact that pure derivatives 8]F = 0 if j > 2 because F is

bilinear:
2

@) = Y O 0(@) 0iFn, () BiF, ().

ni, ne41=1

Since HDF||LOO@) < hyp, this yields

(0.12) 1D 80l 2y S ol srmss
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and combined with the previous estimate gives the asserted estimate (9.11). O

Lemma 9.3 extends to isoparametric maps F € Qi for £ > 1. We quote here
Theorem 6 of Ciarlet and Raviart [19]; see also (13.30) in Ern and Guermond [22].

Lemma 9.4 (error estimates for curved quadrilaterals). Let T' € Tp be so that
T = F(T) with F € Qi and let F € Q1 be the bilinear function that maps the
vertices of T to those of T. Let F' satisfy

(9.13) |[D™F] < |DE V2<m<k+1.

2o (2 L= (%)
Ifve H*Y(T) and Iv € V¥(T) is the Lagrange interpolant of v with k > 1, then

for 0 <m < k+1 there holds
(9.14) [0 = Inolgm(ry S R [0]l grea (-
The proof of Lemma 9.4 is similar to that of Lemma 9.3 except that

(9.15) VD190 oy S Bl
replaces (9.12). This is because 8sz # 0 for 7 > 2 and (9.13) is used instead.
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