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Human communicative abilities are unrivalled in the ani-
mal kingdom1–3. Language—in whatever modality—is the 
medium that allows humans to collaborate and coordinate 

in species-unique ways, making it the bedrock of human culture 
and society4. Thus, to absorb the culture around them and become 
functioning members of society, children need to learn language5. 
A central problem in language learning is referent identification: to 
acquire the conventional symbolic relation between a word and an 
object, a child must determine the intended referent of the word. 
There is no unique cue to reference, however, that can be used 
across all situations6. Instead, referents can only be identified infer-
entially by reasoning about the speaker’s intentions7–10. That is, the 
child has to infer what the speaker is communicating about on the 
basis of information sources in the utterance’s social context.

From early in development, children use several different mecha-
nisms to harness social-contextual information sources7,9,11. Children 
expect speakers to use new words for unknown objects12–15, to talk 
about objects that are relevant16,17, new in context18,19 or related to 
the ongoing conversation20–22. These different mechanisms, how-
ever, have been mainly described and theorized about in isola-
tion. The implied picture of the learning process is that of a ‘bag of 
tricks’: mechanisms that operate (and develop) independently from 
one another11. As such, this view of the learning process does not 
address the complexity of natural social interaction during which 
many sources of information are present6,23. How do children arbi-
trate between these sources to accurately infer a speaker’s intention?

When information integration is studied directly, the focus 
is mostly on how children interpret or learn words in light of 
social-contextual information24–32. In one classic study33, children 
faced a four-compartment (2 × 2) shelf with a ball, a pen and two 
glasses in it. The speaker, sitting on the opposite side of the dis-
play, saw only three of the four compartments: the ball, the pen and 
one of the glasses. When the speaker asked for “the glass”, children 
had to integrate the semantics of the utterance with the speaker’s 
visual perspective to correctly infer which of the glasses the speaker 
was referring to. This study advanced our understanding by  

documenting that preschoolers use both information sources, a 
finding confirmed by a variety of other work26,29,31. Yet these stud-
ies neither specify nor test the process by which children integrate 
different information sources. When interpreting such findings, 
work in this tradition refers to social-pragmatic theories of lan-
guage use and learning9,10,34–36, all of which assume that information 
is integrated as part of a social inference process but none of which 
clearly defines the process. As a consequence, we have no explicit 
and quantitative theory of how different information sources (and 
word-learning mechanisms) are integrated.

We present a theory of this integration process. Following 
social-pragmatic theories of language learning9,10, our theory is 
based on the following premises: information sources serve dif-
ferent functional roles but are combined as part of an integrated 
social inference process34–37. Children use all available information 
to make inferences about the intentions behind a speaker’s utter-
ance, which then leads them to correctly identify referents in the 
world and learn conventional word–object mappings. We formal-
ize the computational steps that underlie this inference process in a 
cognitive model38–40. In contrast to earlier modelling work, we treat 
word learning as the outcome of a social inference process and not 
just a cross-situational41,42 or principle-based learning process43. In 
the remainder of this paper, we rigorously test this theory by asking 
how well it serves the two purposes of any psychological theory: 
prediction and explanation44,45. First, we use the model to make 
quantitative predictions about children’s behaviour in new situa-
tions— predictions we test against new data. This form of model 
testing has been successfully used with adults38,46 and here we extend 
it to children. Next, we quantify how well the model explains the 
integration process by comparing it to alternative models that make 
different assumptions about whether information is integrated, 
how it is integrated and how the integration process develops. 
Alternative models either assume that children ignore some infor-
mation sources or—in line with a ‘bag of tricks’ approach—assume 
that children compute isolated inferences and then weigh their out-
come in a posthoc manner.
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We focus on three information sources that play a central part 
in theorizing about language use and learning: (1) expectations 
that speakers communicate in a cooperative and informative man-
ner12,16,35, (2) shared common ground about what is being talked 
about in conversation36,47,48 and (3) semantic knowledge about pre-
viously learned word–object mappings11,49.

Our rational-integration model arbitrates between informa-
tion sources via Bayesian inference (Fig. 1f gives model formulae). 
A listener (L1) reasons about the referent of a speaker’s (S1) utter-
ance. This reasoning is contextualized by the prior probability ρ of 
each referent. We treat ρ as a conversational prior which originates 
from the common ground shared between the listener and the 
speaker. This interpretation follows from the social nature of our 
experiments (below). From a modelling perspective, ρ can be (and 
in fact has been) used to capture non-social aspects of a referent, 
for example its visual salience38. To decide between referents, the 
listener (L1) reasons about what a rational speaker (S1) with infor-
mativeness α would say given an intended referent. This speaker is 
assumed to compute the informativity for each available utterance 
and then choose the most informative one. The informativity of 
each utterance is given by imagining which referent a listener, who 
interprets words according to their literal semantics (what we call a 
literal listener, L0), would infer on hearing the utterance. Naturally, 
this reasoning depends on what kind of semantic knowledge θj (for 
object j) the speaker ascribes to the (literal) listener.

Taken together, this model provides a quantitative theory of 
information integration during language learning. The three infor-
mation sources operate on different timescales: speaker informa-
tiveness is a momentary expectation about a particular utterance, 
common ground grows over the course of a conversation and 
semantic knowledge is learned across development. This inter-
play of timescales has been hypothesized to be an important com-
ponent of word meaning inference42,50 and we link these different 
time-dependent processes together via their proposed impact on 
model components. Furthermore, the model presents an explicit 
and substantive theory of development. It assumes that, while chil-
dren’s sensitivity to the individual information sources increases 
with age, the way integration proceeds remains constant7,51. In the 
model, this is accomplished by creating age-dependent param-
eters capturing developmental changes in sensitivity to speaker 
informativeness (αi, Fig. 1d), the common ground (ρi, Fig. 1c) and 
object-specific semantic knowledge (θij, Fig. 1e).

To test the predictive and explanatory power of our model, we 
designed a word-learning experiment in which we jointly manipu-
lated the three information sources (Fig. 1). Children interacted on a 
tablet computer with a series of storybook speakers52. This situation 
is depicted in Fig. 1a(4), in which a speaker (here, a frog) appears 
with a known object (a duck, right) and an unfamiliar object (the 
diamond-shaped object, left). The speakers used a new word (for 
example, “wug”) in the context of two potential referents and then 
the child was asked to identify a new instance of the new word, test-
ing their inference about the speaker’s intended referent. To vary 
the strength of the child’s inference, we systematically manipulated 
the familiarity of the known object (from, for example, the highly 
familiar “duck” to the relatively unfamiliar “pawn”) and whether the 
familiar or new object was new to the speaker (that is, whether it 
was part of common ground).

This paradigm allows us to examine the integration of the three 
information sources described above. First, the child may infer 
that a cooperative and informative speaker12,16 would have used the 
word “duck” to refer to the known object (the duck); the fact that 
the speaker did not say “duck” then suggests that the speaker is most 
likely referring to a different object (the unfamiliar object). This 
inference is often referred to as a ‘mutual exclusivity’ inference13,15. 
Second, the child may draw on what has already been established in 
the common ground with the speaker. Listeners expect speakers to 

communicate about things that are new to the common ground18,19. 
Thus, the inference about the new word referring to the unfamiliar 
object also depends on which object is new in context (Fig. 1a,b(1)–
(3)). Finally, the child may use their previously acquired semantic 
knowledge; that is, how sure they are that the known object is called 
“duck”. If the known object is something less familiar, such as a chess 
piece (for example, a pawn), a 3-year-old child may draw a weaker 
inference, if they draw any inference at all53–55. Taken together, the 
child has the opportunity to integrate their assumptions about (1) 
cooperative communication, (2) their understanding of the com-
mon ground and (3) their existing semantic knowledge. In one con-
dition of the experiment, information sources were aligned (Fig. 1a) 
while in the other they were in conflict (Fig. 1b).

Results
Predicting information integration across development. We 
tested the model in its ability to predict 2–5-year-old children’s judg-
ments about word meaning. We estimated children’s (n = 148) devel-
oping sensitivities to individual information sources in two separate 
experiments (Experiments 1 and 2; Fig. 1c-e). In Experiment 1, we 
estimated children’s sensitivity to informativeness jointly with their 
semantic knowledge. In Experiment 2, we estimated sensitivity to 
common ground. We then generated parameter-free a priori model 
predictions (developmental trajectories) representing the model’s 
expectations about how children should behave in new situations in 
which all three information sources had to be integrated. We gener-
ated predictions for 24 experimental conditions: 12 objects of differ-
ent familiarities (requiring different levels of semantic knowledge), 
with novelty either conflicting or coinciding (Fig. 1). We compared 
these predictions to newly collected data from n = 220 children 
from the same age range (Experiment 3). All procedures, sample 
sizes and analyses were preregistered (Methods).

The results showed a very close alignment between model pre-
dictions and the data across the entire age range. That is, the average 
developmental trajectories predicted by the model resembled the 
trajectories found in the data (Supplementary Fig. 6). With predic-
tions and data binned by child age (in years), the model explained 
79% of the variance in the data (Fig. 2a). These results support the 
assumption of the model that children integrate all three available 
information sources.

It is still possible, however, that simpler models might make 
equally good—or even better—predictions. For example, work on 
children’s use of statistical information during morphology learn-
ing showed that children’s behaviour was best explained by a model 
that selectively ignored parts of the input56. Thus, we formalized the 
alternative view that children selectively ignore information sources 
in the form of three lesioned models (Fig. 2b). These models assume 
that children follow the heuristic ‘ignore x’ (with x being one of the 
information sources) when multiple information sources are pre-
sented together.

The no-word-knowledge model uses the same model architec-
ture as the rational-integration model. It uses expectations about 
speaker informativeness and common ground but omits semantic 
knowledge that is specific to the familiar objects (that is, uses only 
general semantic knowledge). The model assumes a listener whose 
inferences do not vary depending on the particular familiar object 
but only on the age-specific average semantic knowledge (a marker 
of gross vocabulary size). The no-common-ground model takes in 
object-specific semantic knowledge and speaker informativeness 
but ignores common ground information. Instead of assuming that 
one object has a higher prior probability to be the referent because 
it is new in context, the listener thinks that both objects are equally 
likely to be the referent. As a consequence, the listener does not dif-
ferentiate between situations in which common ground is aligned 
or in conflict with the other information sources. Finally, accord-
ing to the no-speaker-informativeness model, the listener does not 
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assume that the speaker is communicating in an informative way 
and hence ignores the utterance. As a consequence, the inference is 
solely based on common ground expectations.

We found little support for these heuristic models (Fig. 2b). 
When using Bayesian model comparison via marginal likelihood of 
the data57, the data were several orders of magnitude more likely 
under the rational-integration model compared to any of the 
lesioned models (rational integration versus no word knowledge: 
BF10 = 3.9 × 1035; rational integration versus no common ground: 
BF10 = 2.6 × 1047; rational integration versus no speaker informative-
ness: BF10 = 4.8 × 10110; Fig. 2). Figure 2c exemplifies the differences 
between the models: all heuristic models systematically underes-
timated children’s performance in the congruent condition. Thus, 
even when the information sources were redundant (that is, they 
all point to the same referent), children’s inferences were notably 
strengthened by each of them. In the incongruent condition, the 
no-word-knowledge model underestimated performance because it 
did not differentiate between the different familiar objects. In the 
case of a highly familiar word such as “duck”, it therefore underesti-
mated the effect of the utterance. The no-speaker-informativeness 
model completely ignored semantic knowledge, which led to even 
worse predictions. In contrast to the lesioned models that underesti-
mated performance, the no-common-ground model overestimated 
performance in the incongruent condition because it ignored the 
dampening effect of common ground favouring the familiar object 

as the referent. Taken together, we conclude that children consid-
ered all available information sources.

Explaining the process of information integration. In the pre-
vious section, we established that children integrated all available 
information sources to infer the meanings of new words. This 
result, however, does not speak to the process by which informa-
tion is assumed to be integrated. Thus, in this section, we ask which 
integration process best explains children’s behaviour.

The rational-integration model assumes that all information 
sources enter into a joint inference process but alternative integra-
tion processes are conceivable and might be consistent with the data. 
For example, the ‘bag of tricks’11 idea mentioned in the introduction 
could be restated as a modular integration process: children might 
compute independent inferences on the basis of subsets of the avail-
able information and then integrate them in a posthoc manner by 
weighting them according to some parameter. This view would allow 
for the possibility that some information sources are considered to 
be more important than others. In other words, children might be 
biased towards some information sources. We formalized this alter-
native view as a biased-integration model. This model assumes that 
semantic knowledge and expectations about speaker informative-
ness enter into one inference (mutual exclusivity inference)12,13,53 
while common ground information enters into a second inference. 
The outcomes of both processes are then weighted according to a 
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Fig. 1 | Experimental task and model. a,b, Screenshots from the experimental task showing the condition of the experiment in which common ground 
information is congruent (that is, points to the same object) with speaker informativeness (a) and also showing the incongruent condition (b). The 
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NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ARTICLES NATURE HUMAN BEHAVIOUR

bias parameter ϕ. Like the rational-integration model, this model 
takes in all available information sources in an age-sensitive way 
and assumes that they are integrated. The only difference lies in the 
nature of the integration process: the biased-integration model priv-
ileges some information sources over others in an ad-hoc manner.

The parameter ϕ in the biased-integration model is unknown 
ahead of time and has to be estimated on the basis of the experimen-
tal data. That is, through Experiments 1 and 2 alone, we do not learn 
anything about the relative importance of the information sources. 
As a consequence—and in contrast to the rational-integration 
model—the biased-integration model does not allow us to make 
a-priori predictions about the new data (Experiment 3) in the way 
we described above. For a fair comparison, we therefore constrained 
the parameters in the rational-integration model with the data from 
Experiment 3 as well. As a consequence, both models estimated 
their parameters using all the data available in a fully Bayesian man-
ner (Supplementary Fig. 4).

The biased-integration model made reasonable posterior pre-
dictions and explained 78% of the variance in the data (Fig. 3b). 
The parameter ϕ—indicating the bias to one of the inferences—was 
estimated to favour the mutual exclusivity inference (maximum 
a-posteriori estimate = 0.65; 95% highest density interval (HDI): 
0.60–0.71; Fig. 3d). However, the rational-integration model pre-
sented a much better fit to the data, both in terms of correlation 
and the marginal likelihood of the data (Bayes Factor in favour of 
the rational-integration model: BF10 = 2.1 × 108; Fig. 3b). When con-
strained by the data from all experiments, the rational-integration 
model explained 87% of the variance in the data. Figure 3e exem-
plifies the difference between the models: the biased-integration 
model put extra weight on the mutual exclusivity inference and thus 
failed to capture performance when this inference was weak com-
pared to the common ground inference—such as in the congruent 
condition for younger children. As a result, a fully integrated—as 
opposed to a modular and biased—integration process explained 
the data better.

The rational-integration model assumes that the integra-
tion process itself does not change with age7. That is, while chil-
dren’s sensitivity to each information source develops, the way the 
information sources relate to one another remains the same. The 
biased-integration model can provide the basis for an alternative  

proposal about developmental change, one in which the inte-
gration process itself changes with age. That is, children may 
be biased towards some information sources and that bias itself 
may change with age. We formalize such an alternative view as a 
developmental-bias model which is structurally identical to the 
biased-integration model but in which the parameter ϕ changes 
with age. The model assumes that the importance of the different 
information sources changes with age.

The developmental-bias model also explained a substantial por-
tion of the variance in the data: 78% (Fig. 3c). The estimated devel-
opmental trajectory for the bias parameter ϕ suggests that younger 
children put a stronger emphasis on common ground information, 
while older children relied more on the mutual exclusivity inference 
(Fig. 3d). The relative importance of the two inferences seemed to 
switch at around age 3 yr. Yet again, when we directly compared the 
competitor models, we found that the data were several orders of 
magnitude more likely under the rational-integration model (Bayes 
Factor in favour of the rational-integration model: BF10 = 1.4 × 106; 
Fig. 3b). Looking at Fig. 3e, we can see that the developmental-bias 
model tended to underestimate children’s performance because the 
supportive interplay between the different inferences is constrained. 
In the biased models, the overall inference could only be as strong as 
the strongest of the components—in the rational-integration model, 
the components interacted with one another, allowing for stronger 
inferences than the individual parts would suggest.

Discussion
The environment in which children learn language is complex. 
Children have to integrate different information sources, some of 
which relate to expectations in the moment, others to the dynam-
ics of the unfolding interactions and yet others to their previously 
acquired knowledge. Our findings show that young children can inte-
grate multiple information sources during language learning—even 
from relatively early in development. To answer the question of how 
they do so, we presented a formal cognitive model that assumes that 
information sources are rationally integrated via Bayesian inference.

Previous work on the study of information integration during 
language comprehension focused on how adults combine per-
ceptual, semantic or syntactic information58–62. Our work extends 
this work to the development of pragmatics. Our model is based 
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on classic social-pragmatic theories on language use and compre-
hension10,34–36. As a consequence, instead of assuming that different 
information sources feed into separate word-learning mechanisms 
(the ‘bag of tricks’ view), we assume that all of these information 
sources play a functional role in an integrated social inference pro-
cess. Our model goes beyond previous theoretical and empirical 
work by describing the computations that underlie this inference 
process. Furthermore, we presented a substantive theory about how 
this integration process develops: we assume that children become 
increasingly sensitive to different information sources but that the 
way these information sources are integrated remains the same. We 
used this model to predict and explain children’s information inte-
gration in a new word-learning paradigm in which they had to inte-
grate (1) their assumptions about informative communication, (2) 
their understanding of the common ground and (3) their existing 
semantic knowledge.

The rational-integration model made accurate quantitative 
predictions across a range of experimental conditions both when 
information sources were aligned and when they were in conflict. 
Predictions from the model better explained the data compared 
to lesioned models which assumed that children ignore one of the 
information sources, suggesting that children used all available 
information. We also formalized an alternative, modular, view. 
According to the biased-integration model, children use all available 
information sources but compute separate inferences on the basis of 
a subset of them. Integration happens by weighing the outcomes 
of these separate inferences by some parameter. Finally, we tested 
an alternative view on the development of the integration process. 
According to the developmental-bias model, the importance of the 
different information sources changes with age. In both cases, the 
rational-integration model provided a much better fit to the data, 

suggesting that the integration process remains stable over time. 
That is, there is developmental continuity and therefore no qualita-
tive difference in how a 2-year-old integrates information compared 
to a 4-year-old.

The rational-integration model is derived from a more general 
framework for pragmatic inference, which has been used to explain 
a wide variety of phenomena in adults’ language use and comprehen-
sion38,39,63–67. Thus, it can be generalized in a natural way to capture 
word learning in contexts that offer more, fewer or different types 
of information. For example, non-verbal aspects of the utterance 
(such as eye-gaze or gestures) can affect children’s mutual exclusiv-
ity inferences68–72. As a first step in this direction, we recently stud-
ied how adults and children integrate non-verbal utterances with 
common ground51. Using a structurally similar rational-integration 
model, we also found a close alignment between model predictions 
and the data. The flexibility of this modelling framework stems from 
its conceptualization of human communication as a form of rational 
social action. As such, it connects to computational and empirical 
work that tries to explain social reasoning by assuming that humans 
expect each other to behave in a way that maximizes the benefits 
and minimizes the cost associated with actions28,73,74.

Our model and empirical paradigm provide a foundation on 
which to test deeper questions about language development. First, 
our experiments should be performed in children from different 
cultural backgrounds learning different languages75. In such studies, 
we would not expect our results to replicate in a strict sense; that is, 
we would not expect to see the same developmental trajectories in 
all cultures and languages. Substantial variation is much more likely. 
Studies on children’s pragmatic inferences in different cultures have 
documented both similar76,77 and different78 developmental trajec-
tories. Nevertheless, our model provides a way to think about how 
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Fig. 3 | Explaining information integration. a, Model predictions from the rational-integration model (coloured lines) next to the behavioural data (dotted 
black lines with 95% CI in grey) for all 24 experimental conditions. Top row shows the congruent condition, while bottom row shows the incongruent 
condition. Familiar objects are ordered on the basis of their rated age of acquisition (left to right). Light dots represent individual data points. b,c, Correlations 
between model predictions binned by age and condition for the integration model (b) and the two biased models (c). Vertical and horizontal error bars show 
95% HDIs. BF10 gives the Bayes factor in favour of the rational-integration model on the basis of the marginal likelihood of the data under each model.  
d, Posterior distribution of the bias parameter in the biased-integration model and developmental trajectories for the bias parameter in the developmental-bias  
model. e, Predictions from all models considered alongside the data (with 95% HDI) for two experimental conditions (familiar word: “duck”).
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to reconcile cross-cultural variation with a shared cognitive archi-
tecture: we predict differences in how sensitive children are to the 
individual information sources at different ages but similarities in 
how information is integrated7. In computational terms, we assume 
a universal architecture that specifies the relation between a set of 
varying parameters. Of course, either confirmation or disconfirma-
tion of this prediction would be informative.

Second, it would be useful to flesh out the cognitive processes 
that underlie reasoning about common ground. The basic assump-
tion that common ground changes interlocutors’ expectations about 
what are likely referents79 has been used in earlier modelling work 
on the role of common ground in reference resolution62. Here, we 
went one step further and measured the strength of these expecta-
tions to inform the parameter values in our model. However, in its 
current form, our model treats common ground as a conversational 
prior and does not specify how the listener arrives at the expectation 
that some objects are more likely to be referents because they are 
new in common ground. That is, computationally, our model does 
not differentiate between common ground information and other 
reasons that might make an object contextually more salient. An 
interesting starting point to overcome this shortcoming would be 
modelling work on the role of common ground in conversational 
turn-taking80.

Finally, our model is a model of referent identification in the 
moment of the utterance. At the same time, the constructs made use 
of by our model are shaped by factors that unfold across multiple 
time points and contexts: common ground is built over the course of 
a conversation and the lexical knowledge of a child is shaped across 
a language developmental timescale. Even speaker informativeness 
could be imagined to vary over time following repeated interactions 
with a particular speaker. What is more, assessing speaker informa-
tiveness is unlikely to be the outcome of a single, easy-to-define pro-
cess. The expectations about informative communication that we 
take it to represent are probably the result of the interplay between 
multiple social and non-social inference processes. The broader 
point here is that our model makes use of unidimensional repre-
sentations of high-dimensional, structured processes and examines 
how these representations are integrated. As such, it is first and fore-
most a computational description of the inferences and we therefore 
make no strong claims about the psychological reality of the param-
eters in it. Connecting our model with other frameworks that focus 
on the cognitive, temporal and cross-situational aspects of word 
learning would elucidate further these complex processes42,50,81.

This work advances our understanding of how children navigate 
the complexity of their learning environment. Methodologically, it 
illustrates how computational models can be used to test theories; 
from a theoretical perspective, it adds to broader frameworks that 
see the ontogenetic and phylogenetic emergence of language as 
deeply rooted in social cognition.

Methods
A more detailed description of the experiments and the models can be found  
in the Supplementary Information. The experimental procedure, sample sizes  
and analysis for each experiment were preregistered (https://osf.io/7rg9j/
registrations; dates of registration: 2 May 2019, 5 April 2019 and 2 March 2019). 
Experimental procedures, data, model and analysis scripts can be found in an 
online repository (https://github.com/manuelbohn/spin). Experiments 1 and 2 
were designed to estimate children’s developing sensitivity to each information 
source. The results of these experiments determine the parameter values in the 
model (Fig. 1c-f). Experiment 3 was designed to test how children integrate 
different information sources.

Participants. Sample sizes for each experiment were chosen to have at least 30 
data points per cell (that is, unique combination of condition, familiar object and 
age group). Across the three experiments, a total of 368 children participated. 
Experiment 1 involved 90 children, including 30 2-year-olds (range = 2.03–3.00, 15 
girls), 30 3-year-olds (range = 3.03–3.97, 22 girls) and 30 4-year-olds (range = 4.03–
4.90, 16 girls). Data from ten additional children were not included because they 
were either exposed to less than 75% of English at home (five children), did not 

finish at least half of the test trials (two children), the technical equipment failed 
(two children) or their parents reported an autism spectrum disorder (one child).

In Experiment 2, we tested 58 children, including 18 2-year-olds (range = 2.02–
2.93, seven girls), 19 3-year-olds (range = 3.01–3.90, 14 girls) and 21 4-year-olds 
(range = 4.07–4.93, 14 girls). Data from five additional children were not included 
because they were either exposed to less than 75% of English at home (three 
children) or the technical equipment failed (two children).

Finally, Experiment 3 involved 220 children, including 76 2-year-olds 
(range = 2.04–2.99, seven girls), 72 3-year-olds (range = 3.00–3.98, 14 girls) and 72 
4-year-olds (range = 4.00–4.94, 14 girls). Data from 20 additional children were 
not included because they were either exposed to less than 75% of English at home 
(15 children), did not finish at least half of the test trials (three children) or the 
technical equipment failed (two children).

All children were recruited in a children’s museum in San José, California, 
United States. This population is characterized by a diverse ethnic background 
(predominantly White, Asian or mixed-ethnicity) and high levels of parental 
education and socioeconomic status. Parents consented to their children’s 
participation and provided demographic information. All experiments were 
approved by the Stanford Institutional Review Board (protocol no. 19960).

Materials. All experiments were presented as an interactive picture book on a 
tablet computer. Tablet-based storybooks are commonly used to simulate social 
interactions in developmental research and interventions82. A recent, direct 
comparison found similar performance with tablet-based and printed storybooks 
in a word-learning paradigm52. Furthermore, our results in Experiment 1 and 2 
replicate earlier studies on mutual exclusivity and discourse novelty that used live 
interactions instead of storybooks18,19.

Figure 1a,b show screenshots from the actual experiments. The general setup 
involved an animal standing on a little hill between two tables. For each animal 
character, we recorded a set of utterances (one native English speaker per animal) 
that were used to talk to the child and make requests. Each experiment started with 
two training trials in which the speaker requested known objects (car and ball).

Procedure. Experiment 1 tested the mutual exclusivity inference13,53. On one 
table, there was a familiar object; on the other table, there was an unfamiliar 
object (a new design drawn for the purpose of the study) (Fig. 1a/b(4) and 
Supplementary Fig. 1a). The speaker requested an object by saying “Oh cool, 
there is a (non-word) on the table, how neat, can you give me the (non-word)?”. 
Children responded by touching one of the objects. The location of the unfamiliar 
object (left or right table) and the animal character were counterbalanced. We 
coded a response as a correct choice if children chose the unfamiliar object 
as the referent of the new word. Each child completed 12 trials, each with a 
different familiar and a different unfamiliar object. We used familiar objects that 
we expected to vary along the dimension of how likely children were to know 
the word for it. This set included objects that most 2-year-olds can name (for 
example, a duck) as well as objects that only very few 5-year-olds can name (for 
example, a pawn (chess piece)). The selection was based on the age of acquisition 
ratings from Kuperman and colleagues83. While these ratings usually do not 
capture the absolute age when children acquire these words, they capture the 
relative order in which words are learned. Supplementary Fig. 2a shows the words 
and objects used in the experiment. There was a high correlation between the 
rated age-of-acquisition and the mutual exclusivity effect for the different words 
(Supplementary Fig. 2c).

Experiment 2 tested children’s sensitivity to common ground that is built 
up over the course of a conversation. In particular, we tested whether children 
keep track of which object is new to a speaker and which they have encountered 
previously18,19. The general setup was the same as in Experiment 1 (Supplementary 
Fig. 1b). The speaker was positioned between the tables. There was an unfamiliar 
object (drawn for the purpose of the study) on one of the tables while the 
other table was empty. Next, the speaker turned to one of the tables and either 
commented on the presence (“Aha, look at that.”) or the absence (“Hm, nothing 
there.”) of an object. Then the speaker disappeared. While the speaker was away, 
a second unfamiliar object appeared on the previously empty table. Then the 
speaker returned and requested an object in the same way as in Experiment 1. The 
positioning of the unfamiliar object at the beginning of the experiment, the speaker 
as well as the location the speaker turned to first was counterbalanced. Children 
completed ten trials, each with a different pair of unfamiliar objects. We coded a 
response as a correct choice if children chose as the referent of the new word the 
object that was new to the speaker.

Experiment 3 combined the procedures from Experiments 1 and 2. It followed 
the same procedure as Experiment 2 but involved the same objects as Experiment 
1 (Fig. 1(1)–(4)) and Supplementary Fig. 1c). In the beginning, one table was 
empty while there was an object (unfamiliar or familiar) on the other one. After 
commenting on the presence or absence of an object on each table, the speaker 
disappeared and a second object appeared (familiar or unfamiliar). Next, the 
speaker reappeared and made the usual request (“Oh cool, there is a (non-word) 
on the table, how neat, can you give me the (non-word)?”). In the congruent 
condition, the familiar object was present in the beginning and the unfamiliar 
object appeared while the speaker was away (Fig. 1a and Supplementary Fig. 1c, 
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left). In this case, both the mutual exclusivity and the common ground inference 
pointed to the new object as the referent (that is, it was both new to the speaker 
in the context and it was an object that does not have a label in the lexicon). In 
the incongruent condition, the unfamiliar object was present in the beginning 
and the familiar object appeared later. In this case, the two inferences pointed 
to different objects (Fig. 1b and Supplementary Fig. 1c, right). This resulted in a 
total of two alignments (congruent versus incongruent) × 12 familiar objects = 24 
different conditions. Participants received up to 12 test trials, six in each alignment 
condition, each with a different familiar and unfamiliar object. Familiar objects 
were the same as in Experiment 1. The positioning of the objects on the tables, 
the speaker and the location the speaker first turned to were counterbalanced. 
Participants could stop the experiment after six trials (three per alignment 
condition). If a participant stopped after half of the trials, we tested an additional 
participant from the same age group to reach the preregistered number of data 
points per age group (2-, 3- and 4-year-olds).

Data analysis. To analyse how the manipulations in each experiment affected 
children’s behaviour, we used generalized linear mixed models. Since the focus 
of the paper is on how information sources were integrated, we discuss these 
models in the Supplementary Information and focus here on the cognitive models 
instead. A detailed, mathematical description of the different cognitive models 
along with details about estimation procedures and priors can be found in the 
Supplementary Information. All cognitive models and Bayesian data analytic 
models were implemented in the probabilistic programming language WebPPL84. 
The corresponding model code can be found in the associated online repository. 
Information about priors for parameter estimation and Markov chain Monte 
Carlo settings can also be found in the Supplementary Information and the online 
repository.

As a first step, we used the data from Experiments 1 and 2 to estimate children’s 
developing sensitivity to each information source. To estimate the parameters 
for semantic knowledge (θ) and speaker informativeness (α), we adapted the 
rational-integration model to model a situation in which both objects (new and 
familiar) have equal prior probability (that is, no common ground information). 
We used the data from Experiment 1 to then infer the semantic knowledge and 
speaker informativeness parameters in an age-sensitive manner. Specifically, 
we inferred the intercepts and slopes for speaker informativeness via a linear 
regression submodel and semantic knowledge via a logistic regression submodel, 
the values of which were then combined in the cognitive model to generate model 
predictions to predict the responses generated in Experiment 1. To estimate the 
parameters representing sensitivity to common ground (ρ), we used a simple 
logistic regression to infer which combination of intercept and slope would 
generate predictions that corresponded to the average proportion of correct 
responses measured in Experiment 2. For the ‘prediction’ models, the parameters 
whose values were inferred by the data from Experiments 1 and 2 were then used 
to make out-of-sample predictions for Experiment 3. For the ‘explanation’ models, 
these parameters were additionally constrained by the data from Experiment 3. 
A more detailed description of how these parameters were estimated (including 
a graphical model, Supplementary Fig. 4) can be found in the Supplementary 
Information.

To generate model predictions, we combined the parameters according to the 
respective model formula. As mentioned above, common ground information 
could either be aligned or in conflict with the other information sources. In the 
congruent condition, the unfamiliar object was also new in context and thus had 
the prior probability ρ. In the incongruent condition, the new object was the ‘old’ 
object and thus had the prior probability of 1 – ρ.

The rational-integration model is a mapping from an utterance u to a referent 
r, defined as
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where i represents the age of the participant and the j the familiar object. The three 
lesioned models that were used to compare how well the model predicts new data 
are reduced versions of this model. The no-word-knowledge model uses the same 
model architecture
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and the only difference lies in the parameter θ, which does not vary as a function 
of j, the object (that is, θ in this model is analogous to a measure of gross 
vocabulary development). The object-specific parameters for semantic knowledge 
are fitted via a hierarchical regression (mixed effects) model. That is, there is an 
overall developmental trajectory for semantic knowledge (main effect, θi) and 
then there is object-specific variation around this trajectory (random effects, θij). 
Thus, the no-word-knowledge model takes in the overall trajectory for semantic 
knowledge (θi) but ignores object-specific variation. The no-common-ground 
model ignores common ground information (represented by ρ) and is thus 
defined as
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For the no-speaker-informativeness model, the parameter α = 0. As a 
consequence, the likelihood term in the model is 1 and the model therefore  
reduces to
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As noted above, the explanation models used parameters that were additionally 
constrained by the data from Experiment 3 but the way these parameters 
were combined in the rational-integration model was the same as above. The 
biased-integration model is defined as
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with PME representing a mutual exclusivity inference which takes in speaker 
informativeness and object-specific semantic knowledge. This inference is then 
weighted by the parameter ϕ and added to the respective prior probability, which 
is weighted by 1 – ϕ. Thus, ϕ represents the bias in favour of the mutual exclusivity 
inference. In the developmental-bias model the parameter ϕ is made to change 
with age (ϕ) and the model is thus defined as
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We compared models in two ways. First, we used Pearson correlations between 
model predictions and the data. For this analysis, we binned the model predictions 
and the data by age in years and by the type of familiar object (Figs. 2 and 3 and 
Supplementary Figs. 7 and 10). Second, we compared models on the basis of the 
marginal likelihood of the data under each model—the likelihood of the data 
averaging over (‘marginalizing over’) the prior distribution on parameters; the 
pairwise ratio of marginal likelihoods for two models is known as the Bayes Factor. 
It is interpreted as how many times more likely the data are under one model 
compared to the other. Bayes Factors quantify the quality of predictions of a model, 
averaging over the possible values of the parameters of the models (weighted by 
the prior probabilities of those parameter values); by averaging over the prior 
distribution on parameters, Bayes Factors implicitly take into account model 
complexity because models with more parameters will tend to have a broader prior 
distribution over parameters, which in effect, can water down the potential gains 
in predictive accuracy that a model with more parameters can achieve57. For this 
analysis, we treated age continuously.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data files, along with all experimental stimuli, model and analysis scripts can be 
found at: https://github.com/manuelbohn/spin.
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