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Abstract—Sensor sources submit updates to a monitor through
an unslotted, uncoordinated, unreliable multiple access collision
channel. The channel is unreliable; a collision-free transmission
is received successfully at the monitor with some transmission
success probability. For an infinite-user model in which the
sensors collectively generate updates as a Poisson process and
each update has an independent exponential transmission time,
a stochastic hybrid system (SHS) approach is used to derive the
average age of information (AoI) as a function of the offered
load and the transmission success probability. The analysis is
then extended to evaluate the individual age of a selected source.
When the number of sources and update transmission rate grow
large in fixed proportion, the limiting asymptotic individual age
is shown to provide an accurate individual age approximation,
even for a small number of sources.

I. INTRODUCTION

Consider a collection of sensors that transmit updates to a

central monitor. In many applications, complexity and energy

considerations dictate that the sensors be transmit-only devices

that blindly send update measurements without regard to the

activity of other sensors [1]–[3]. Because these transmit-only

sources cannot coordinate, the transmissions are subject to

collisions and the system operation is necessarily unslotted.

Since timeliness may be important, this work examines the

age of information (AoI) of these sensor updates. When the

newest received update has time stamp u(t), the age process

is ∆(t) = t−u(t) [4] and the average age is limt→∞ E[∆(t)].
We note there has been growing interest in the AoI of

sources sharing a communication facility, starting with mul-

tiple sources submitting updates through queues [5]–[13]. In

addition, AoI has been analyzed for multiple users sharing

a slotted system with various levels of system coordination,

including round-robin and Aloha-like contention [14], [15],

scheduled access [16]–[22], CSMA [23], and random access

with source-optimized contention policies [24]–[26]. However,

age of information (AoI) in transmit-only sensor updates

has not been studied. The graphical method of age analysis

introduced in [4] and then employed in e.g. [27]–[35] has not

enabled age analysis of the collision channel.

A. System Model

In the collision channel, a transmission is collision-free if

all other transmitters are idle during that transmission. If an

update suffers a collision, it is not received by the monitor. In

addition, the communication channel is unreliable; a collision-

free update will suffer an error and fail to be received by the

monitor with probability Pe.

A key advantage of an unslotted system is that the trans-

mission times can have arbitrary durations [36]. To avoid a

combinatorial explosion of the state space, we assume the

transmission times of the updates are modeled as independent

exponential (µ) random variables. Furthermore, the collection

of sensors in aggregate initiate update transmissions as a rate

λ Poisson point process. This is consistent with the “infinite

user” model of historical importance in the analysis of the

maximum stable throughput of collision resolution protocols

[36]–[40].

B. Paper Summary

For the collection of uncoordinated sensors, we consider two

types of age metrics. The system age is defined as the age of

the most recent update received from any sensor in the system.

For the system age, a fresher update from any sensor reduces

the age at the monitor. This is in contrast to the individual

age of a selected sensor among N sensors. Poisson arrivals

of transmitted updates and exponential update transmission

times enable the method of stochastic hybrid systems (SHS)

for age analysis. Section II-A, provides a short introduction

to the SHS method and then uses SHS to analyze the system

age in Section II-B.

Using the probability of correct detection Pc = 1 − Pe,

the system age analysis is extended to evaluate the individual

age in Section III. The individual age, in the limit of a

large number of users and proportional system service rate,

is shown to converge to simple function of the offered load,

that approximates the individual age even for a small number

of sources. The paper concludes with a discussion of open

issues in Section IV.

II. AVERAGE SYSTEM AGE

A. SHS Background

A stochastic hybrid system (SHS) [41] has state [q(t),x(t)]
such that x(t) ∈ R

1×n and q(t) ∈ Q = {0, . . . ,M} is a

continuous-time Markov chain.

For AoI analysis, q(t) describes the discrete state of a

network while the age vector x(t) describes the continuous-

time evolution of a collection of age-related processes. The1759978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020
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Fig. 1. SHS Markov chain for the system age over an unslotted collision
channel.

SHS approach was introduced in [10], where it was shown

that age tracking can be implemented as a simplified SHS

with non-negative linear reset maps in which the continuous

state is a piecewise linear process [42]–[44]. For finite-state

systems, this led to a set of age balance equations and simple

conditions [10, Theorem 4] under which E[x(t)] converges to

a fixed point.

A description of this simplified SHS for AoI analysis now

follows. In the graph representation of the Markov chain q(t),
each state q ∈ Q is a node and each transition l ∈ L is a

directed edge (ql, q
′
l) with transition rate λ(l) from state ql

to q′l. Associated with each transition l is a transition reset

mapping Al ∈ {0, 1}n×n
that induces a jump x

′ = xAl in

the continuous state x(t).
Unlike an ordinary continuous-time Markov chain, the

SHS Markov chain may include self-transitions in which

the discrete state is unchanged because a reset occurs in

the continuous state. Furthermore, for a given pair of states

q, q′ ∈ Q, there may be multiple transitions l and l̂ in which

q(t) jumps from q to q′ but the transition maps Al and A
l̂

are different.

For each state q̄, we denote the respective sets of incoming

and outgoing transitions by

L′
q̄={l ∈ L : q′l = q̄}, Lq̄={l ∈ L : ql = q̄}. (1)

Assuming the discrete state Markov chain is ergodic, q(t) has

unique stationary probabilities π̄ = [π̄0 · · · π̄M ] satisfying

π̄q̄

∑

l∈Lq̄

λ(l) =
∑

l∈L′

q̄

λ(l)π̄ql , q̄ ∈ Q, and
∑

q̄∈Q

π̄q̄ = 1. (2)

The next theorem provides a way to derive the limiting average

age vector E[x] = limt→∞ E[x(t)].
Theorem 1: [10, Theorem 4] If the discrete-state Markov

chain q(t) is ergodic with stationary distribution π̄ > 0 and

there exists a non-negative vector v̄ = [v̄0 · · · v̄M ] such that

v̄q̄

∑

l∈Lq̄

λ(l) = 1π̄q̄ +
∑

l∈L′

q̄

λ(l)
v̄qlAl, q̄ ∈ Q, (3)

then the average age vector is E[x] =
∑

q̄∈Q v̄q̄ .

In the next section, Theorem 1 is employed to find the

average age for uncoordinated unslotted updating.

B. SHS Modeling of the System Age

For an SHS age model of the unslotted collision channel, the

discrete state Markov chain for q(t) is shown in Figure 1 and

the corresponding set of SHS transitions is given in Table I.

The discrete state q(t) ∈ {0, 1, 2, . . .} is the number of active

transmitters. In the idle state 0, the start of a transmission

TABLE I
SHS TRANSITIONS FOR TRACKING THE OVERALL AGE IN THE MARKOV

CHAIN OF FIG. 1.

l ql → q′l λ(l)
xAl Al vqlAl

1 0 → 1 λ [ 0 x2] [ 0 0
0 1 ] [ 0 v02]

2 1 → 0 Pcµ [x1 x1] [ 1 1
0 0 ] [v11 v11]

3 1 → 0 Peµ [x2 x2] [ 0 0
1 1 ] [v12 v12]

4 1 → 2 λ [x2 x2] [ 0 0
1 1 ] [v12 v12]

5 2 → 1 2µ [x1 x2] I [v21 v22]
6 2 → 3 λ [x1 x2] I [v21 v22]
7 3 → 2 3µ [x1 x2] I [v31 v32]
...

...
...

...
...

...
... M→M−1 Mµ [x1 x2] I [vM1 vM2]

causes the system to jump to state 1. This update is success-

fully delivered if it completes service before another update

begins transmission. Otherwise, a jump to state 2 begins a

collision period in which transmitted updates suffer collisions

and are unsuccessful. In states k ≥ 2, there are k updates being

transmitted in a k-way collision. A collision period ends when

the system returns to the idle state.

The age state is x(t) = [x1(t) x2(t)] where x2(t) is the age

at the monitor and x1(t) is what the age at the monitor would

become if an update in service were to complete transmission

at time t. In each state q(t) = q̄, the continuous state evolves

according to ẋ(t) = 1 = [1 1]. Our objective is to calculate

the average age at the monitor ∆ = limt→∞ E[x2(t)].

An age reduction in x2(t) occurs only when a collision-free

update is delivered successfully. This event must be preceded

by a transition l = 1 in which the system goes from idle

to having a single update in service. In this transition, the

mapping x
′ = xA1 = [0 x2] resets x1 to x1 = 0, the

age of the fresh update that just began transmission. On the

other hand, x′
2 = x2 is unchanged because it tracks the age

at the monitor. In state 1, the transition l = 2 corresponds

to the update being transmitted collision-free and also being

successfully received. In this transition, x′ = xA2 = [x1 x1]
resets x2 to x′

2 = x1, the age of the update that was just

successfully received.

By contrast, transition l = 3 corresponds to the update

being transmitted collision-free but it fails to be received. In

this transition, x′ = xA3 = [x2 x2] leaves the age x2 at the

monitor unchanged. This transition also resets x1 to x′
1 = x2

to indicate that there is no update in transmission whose

delivery can yield an age reduction. Similarly, A4 = A3

because in transition l = 4, a second update collides with

an update in a transmission. Since this collision guarantees

that neither update in transmission is successfully received,

this transition also sets x′
1 = x2,

While state 1 has exactly one update being in service, this

update may or may not be collision-free. This information

is encoded in the continuous state x(t). If x1(t) < x2(t),
then there is single update with age x1(t) in the middle of a1760
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Fig. 2. Average system age ∆ in Theorem 2 as a function of offered load
ρ; time is normalized so that µ = 1. Dashed lines show the lower bound
∆1(ρ)/(µPc).

collision-free transmission at time t; otherwise x1(t) = x2(t).
In particular, the transition l = 4 into state 2 initiates a

collision period in which x1(t) = x2(t). This condition is

preserved throughout the collision period, including when the

system transitions through state 1 and back to the idle state 0.

C. SHS Analysis of the System Age

A consequence of the Poisson update arrival process is that

the number of updates being simultaneously transmitted can

be arbitrarily large. However, in order to apply Theorem 1,

the state space is truncated so that the largest collision has

M updates. We start by finding ∆M , the average age in this

truncated system.

To employ Theorem 1, observe first that (2) implies λπ̄0 =
µπ̄1 and for k = 1, . . . ,M − 1,

(λ+ kµ)π̄k = λπ̄k−1 + (k + 1)µπ̄k+1. (4)

Solving for π̄k, k = 1, . . . ,M , in terms of ρ = λ/µ and

enforcing the normalization constraint yields

π̄0 =
(

M
∑

j=0

ρj/j!
)−1

, π̄k =
ρk

k!
π̄0. (5)

From (3), we have for q̄ ∈ {0, 1, 2,M} that

λv̄0 = 1π̄0 + Pcµv̄1A2 + Peµv̄1A3, (6a)

(λ+ µ)v̄1 = 1π̄1 + λv̄0A1 + 2µv̄2, (6b)

(λ+ 2µ)v̄2 = 1π̄2 + λv̄1A4 + 3µv̄3, (6c)

Mµv̄M = 1π̄M + λv̄M−1, (6d)

and for q̄ = k ∈ {3, . . . ,M − 1},

(λ+ kµ)v̄k = 1π̄k + λv̄k−1 + (k + 1)µv̄k+1. (6e)

Solving (6) for v̄0, . . . , v̄M , the average system age in the

truncated system is

∆M = E[x2] =

M
∑

k=0

v̄k2. (7)

The average system age with an infinite user population is

then ∆ = limM→∞ ∆M . These steps can be found in the
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Fig. 3. Average system age ∆ in Theorem 2 of the unslotted system vs. the
average system age ∆slotted of the corresponding slotted Aloha system as a
function of offered load ρ.

Appendix. For j = 1, 2, . . ., we adopt the shorthand notation

βj ≡
∞
∑

i=j

ρi

i!
e−ρ, γj ≡

∞
∑

k=0

j!

(j + k)!
ρk, (8)

in order to state the following claim.1

Theorem 2: Poisson updates through a collision channel

achieve the average system age

∆ =
(1+ρ)eρ

µPcρ
+
β1

µ
+
(3+ρ)β2

2µ
+
ρ(1+ρ)β2γ3

6µ
+

∞
∑

j=3

βjγj
jµ

.

D. System Age: Numerical Results

With time normalized so that µ = 1, Figure 2 depicts the

system age in Theorem 2 as a function of the offered load ρ
for probability of correct reception Pc ∈ {0.5, 0.8, 1}. For all

Pc, the age becomes high when ρ approaches zero or when

ρ becomes large and the system has too many collisions. For

Pc = 1, the average age happens to be minimized at ρ =
ρ∗ = 0.5195, achieving the minimum age of ∆∗ = 5.513. As

Pc decreases, the optimal offered load increases slightly. For

example, when Pc = 0.5, the optimal load is ρ∗ = 0.5625;

this achieves an average age of ∆∗ = 10.40. We see from

Figure 2 that the average age is not particularly sensitive to

variations in ρ near ρ∗.

We further observe that all terms in ∆ are non-negative.

With the definition

∆1(ρ) ≡
(

1 +
1

ρ

)

eρ, (9)

the average system age satisfies the lower bound

∆ ≥ ∆1(ρ)

µPc

(10)

This simple lower bound, depicted in Figure 2 with dashed

lines, is tight for small ρ and nontrivial for large ρ.

It is also instructive to compare the system age of the

unslotted and slotted systems. Consider the corresponding

1Note that βj = P[K ≥ j] and γj = βj/P[K = j] for a Poisson (ρ)
random variable K, While it is possible to state Theorem 2 with γj replaced
by βj/P[K = j], this ratio of quantities that both go to zero as j → ∞ can
induce numerical stability issues in the calculation of ∆.1761
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Fig. 4. Average individual age for N = 20 sources. Time is normalized so
that µ = 20. The figure compares ∆1|20 and ∆1(ρ) against a simulation of
N = 20 on/off sources with aggregate update arrival rate 20ρ. At each ρ,
• marks the time-average individual ages of each of the 20 sources while ×

marks the average age averaged over the 20 sources.

infinite-user slotted system. In each unit time slot, the number

of fresh transmitted updates is a Poisson random variable K
with E[K] = ρ. A fresh update is successfully transmitted in

each time slot with probability Ps = P[K = 1] = ρe−ρ. The

average system age is [14, Equation (23)]

∆slotted =
1

2
+

1

Ps

=
1

2
+

eρ

ρ
. (11)

Figure 3 compares average system age in the slotted and

unslotted systems. We see that the age penalty for unslotted

operation is negligible when the offered load ρ is small.

However, when the offered load is large, the age penalty

becomes large because of the long collision periods induced

by unslotted operation. This highlights how slotting is is able

to destroy the memory of the collision process.

III. INDIVIDUAL AGE ANALYSIS

In practice, the number of sources N will be finite and it

is desirable to characterize the age process of an individual

source. Fortunately, the infinite user model of Theorem 2

can be employed to evaluate the individual age for one of

N sources by reinterpreting Pc, the probability of correct

detection of a collision-free update, as the probability that

the collision-free update reduces the age of a selected user.

Specifically, suppose the aggregate updating rate λ in the

infinite user model is from N independent sources, each

offering updates as a Poisson process of rate λ/N . In this case,

a transmitted update belongs to a source i with probability

1/N . Hence, Theorem 2 can be employed with an update

that is transmitted collision-free as belonging to source i (and

thus offering an age reduction for source i) with probability

Pc = 1/N . This yields the individual age

∆1|N =
N(1 + ρ)eρ

µρ
+

β1

µ
+

(3 + ρ)β2

2µ

+
ρ(1 + ρ)β2γ3

6µ
+

∞
∑

j=3

βjγj
jµ

. (12)

For fixed service rate µ and fixed offered load ρ, (12)
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Fig. 5. Average individual age for N = 100 sources. Time is normalized so
that µ = 100. The figure compares ∆1|100 and ∆1(ρ) against a simulation
of N = 100 on/off sources with aggregate update arrival rate 100ρ. At each
ρ, • marks the time-average individual ages of each of the 100 sources while
× marks the average age averaged over the 100 sources.

implies that the individual age grows linearly with the number

of users N . This is not surprising since the system bandwidth,

as embodied in the fixed service rate µ, is shared among

N sources. However, to provide good age performance as

N becomes large, the system needs bandwidth to grow in

proportion to N . In this case, we assume the system has N
sources, each offering updates at rate λ0 but the system band-

width grows with N so that the service rate of a transmission

is µ = Nµ0. The normalized offered load remains fixed at

ρ = (Nλ0)/(Nµ0) = λ0/µ0. This is essentially the same

scaling previously employed in [17]. A transmitted update

belongs to the selected source with probability Pc = 1/N .

We also assume time is normalized so that µ0 = 1. Under

these conditions, we observe as N → ∞ that

∆1|N → ∆1(ρ). (13)

Here we can interpret ∆1(ρ) as the individual age on a colli-

sion channel in the limit of the number of sources becoming

large and the transmission time of an update approaching

zero. In this asymptotic limit, the individual average age is

minimized at ρ = (
√
5− 1)/2 = 0.618.2

We will see this individual age model is somewhat pes-

simistic. The Poisson update process of source i can generate

self-colliding updates that are time-overlapping with prior

source i updates. In practice, each source transmits one update

at a time and never has a self-collision. In this sense, ∆1|N

and ∆1(ρ) are approximations for the individual average age

in a practical system.

To evaluate these approximations, we simulate a system

with N independent on/off sources. Each source is either

transmitting an update of exponential duration with expected

value 1/µ, or being silent for an exponential period with

expected length 1/λ0−1/µ. By this construction, the two-state

update process of each source offers updates at the longterm

rate of λ0 = λ/N updates per unit time. As N becomes

large, we expect the aggregate update process to be reasonably

2It can be shown that ρ = 0.618 also maximizes the probability the system
is transmitting a collision-free update.1762
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approximated by a rate Nλ0 = λ Poisson process. We also

expect each source to obtain average individual age that is

approximated by ∆1|N .

Under these conditions, Figures 4 and 5 compare ∆1|N and

∆1(ρ) against the simulated time-average ages experienced by

each of the N on/off sources, each generating 50, 000 updates.

Time is normalized so that µ = N and the average update

transmission time is 1/µ = 1/N . The aggregate offered load

is ρ = (Nλ0)/N = λ0.

In Figure 4 with N = 20 sources, ∆1|N , which is derived

from the infinite user model of Theorem 2, is pessimistic in

slightly (by 2-3%) overestimating the average age received

by a source. The asymptotic approximation, ∆1(ρ), which

discards terms of ∆1|N that become negligible as µ = N
becomes large, is observed to be an even better age approx-

imation in the finite user system. In Figure 5 with N = 100
sources, we see that that with more sources, the approximation

∆1(ρ) becomes an increasingly accurate approximation to the

average individual age.

IV. CONCLUSION

For uncoordinated transmit-only sensors, this work provides

an exact analysis for the system age. The uncoordinated

transmit-only system works well as long as the normalized

offered load is near ρ∗ = 0.6. When these networks have a

nontrivial number of sources, ∆1(ρ) is a useful approximation

for the individual age in a system with offered load ρ.

From ∆1(ρ), we see that the individual age penalty is

substantial (on the order of 10×) if the offered load is, say,

ρ∗/10 or 10ρ∗. Moreover, we saw in the comparison with the

slotted system that age in the unslotted system is particularly

sensitive to overloading the system. Configuring the network

of transmit-only sources for the proper offered load would be

important at time of deployment. On the other hand, adaptive

configuration may also be possible if the sources have access

to some minimal feedback.

In addition, there remain a number of open questions about

how additional coordination mechanisms, such as collision de-

tection and/or avoidance or state-dependent updating policies,

can contribute to reducing AoI.
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APPENDIX

PROOF OF THEOREM 2

The mappings Al induce x1(t) = x2(t) in all states k 6= 1.

This implies (6) has a solution such that v̄k = [v̄k v̄k] = v̄k1
for all k 6= 1. Only v̄1 = [v̄11 v̄12] has distinct non-identical

components. In terms of v̄11, v̄12 and v̄k, k 6= 1, (6) becomes

ρv̄0 = µ−1π̄0 + Pcv̄11 + Pev̄12, (14a)

(1 + ρ)v̄11 = µ−1π̄1 + 2v̄2, (14b)

(1 + ρ)v̄12 = µ−1π̄1 + ρv̄0 + 2v̄2, (14c)

(2 + ρ)v̄2 = µ−1π̄2 + ρv̄12 + 3v̄3, (14d)

Mv̄M = µ−1π̄M + ρv̄M−1, (14e)

and for 3 ≤ k ≤ M − 1,

ρkv̄k = µ−1π̄k + ρv̄k−1 + (k + 1)v̄k+1. (14f)

The average age in Theorem 1 becomes

∆M = v̄0 + v̄12 + v̄2 +

M
∑

j=3

v̄j . (15)

In the limit of large M , we obtain the limiting average age

∆ = limM→∞ ∆M . Equations (14e) and (14f) admit the

solution

v̄k =
ρ

k
v̄k−1 +

βk|M

kµ
, 3 ≤ k ≤ M, (16)

where

βk|M =
M
∑

i=k

π̄i = π̄0

M
∑

i=k

ρi/i! (17)

is the stationary probability of the system being in a collision

of k or more updates. Now we observe that it follows from

(16) that for 3 ≤ l ≤ M ,

v̄l =

l
∑

j=3

(j − 1)!

µl!
ρl−jβj|M +

2ρl−2

l!
v̄2. (18)

Defining V3:M =
∑M

l=3 v̄l, it then follows from (18) and

reordering of the sums over l and j that

V3:M =

M
∑

j=3

βj|M

jµ

M
∑

l=j

j!

l!
ρl−j+

ρv̄2
3

M−3
∑

m=0

ρm

(m+3)!
. (19)

Defining γj|M =
∑M−j

k=0
j!

(k+j)!ρ
k, the index shift k = l − j

in (19) yields

V3:M =

M
∑

j=3

βj|M

jµ
γj|M +

ρ

3
γ3|M v̄2. (20)

Applying (16) with k = 3 to (14d) yields

v̄2 =
π̄2 + β3|M

2µ
+

ρ

2
v̄12 =

β2|M

2µ
+

ρ

2
v̄12. (21)

From (21) and the identity π̄1+β2|M = β1|M , it follows from

(14b) and (14c) that

v̄11 =
ρ2v̄0
1 + ρ

+
β1|M

µ
, v̄12 = ρv̄0 +

β1|M

µ
. (22)

From (22) and the identity Pc+Pe = 1, it follows from (14a)

that

v̄0 =
1 + ρ

µρPc

. (23)

It then follows from (21) and (22) that

v̄2 =
ρ2

2
v̄0 +

β2|M + ρβ1|M

2µ
. (24)

Applying (20), (22), and (24) to (15) and observing that

limM→∞ βj|M = βj and limM→∞ γj|M = γj , the claim

follows.1763
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