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Abstract—Sensor sources submit updates to a monitor through
an unslotted, uncoordinated, unreliable multiple access collision
channel. The channel is unreliable; a collision-free transmission
is received successfully at the monitor with some transmission
success probability. For an infinite-user model in which the
sensors collectively generate updates as a Poisson process and
each update has an independent exponential transmission time,
a stochastic hybrid system (SHS) approach is used to derive the
average age of information (Aol) as a function of the offered
load and the transmission success probability. The analysis is
then extended to evaluate the individual age of a selected source.
When the number of sources and update transmission rate grow
large in fixed proportion, the limiting asymptotic individual age
is shown to provide an accurate individual age approximation,
even for a small number of sources.

I. INTRODUCTION

Consider a collection of sensors that transmit updates to a
central monitor. In many applications, complexity and energy
considerations dictate that the sensors be transmit-only devices
that blindly send update measurements without regard to the
activity of other sensors [1]-[3]. Because these transmit-only
sources cannot coordinate, the transmissions are subject to
collisions and the system operation is necessarily unslotted.

Since timeliness may be important, this work examines the
age of information (Aol) of these sensor updates. When the
newest received update has time stamp u(t), the age process
is A(t) = t—u(t) [4] and the average age is lim;_, - E[A(t)].

We note there has been growing interest in the Aol of
sources sharing a communication facility, starting with mul-
tiple sources submitting updates through queues [5]-[13]. In
addition, Aol has been analyzed for multiple users sharing
a slotted system with various levels of system coordination,
including round-robin and Aloha-like contention [14], [15],
scheduled access [16]-[22], CSMA [23], and random access
with source-optimized contention policies [24]-[26]. However,
age of information (Aol) in transmit-only sensor updates
has not been studied. The graphical method of age analysis
introduced in [4] and then employed in e.g. [27]-[35] has not
enabled age analysis of the collision channel.

A. System Model

In the collision channel, a transmission is collision-free if
all other transmitters are idle during that transmission. If an
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addition, the communication channel is unreliable; a collision-
free update will suffer an error and fail to be received by the
monitor with probability P,.

A key advantage of an unslotted system is that the trans-
mission times can have arbitrary durations [36]. To avoid a
combinatorial explosion of the state space, we assume the
transmission times of the updates are modeled as independent
exponential () random variables. Furthermore, the collection
of sensors in aggregate initiate update transmissions as a rate
A Poisson point process. This is consistent with the “infinite
user” model of historical importance in the analysis of the
maximum stable throughput of collision resolution protocols
[36]-[40].

B. Paper Summary

For the collection of uncoordinated sensors, we consider two
types of age metrics. The system age is defined as the age of
the most recent update received from any sensor in the system.
For the system age, a fresher update from any sensor reduces
the age at the monitor. This is in contrast to the individual
age of a selected sensor among N sensors. Poisson arrivals
of transmitted updates and exponential update transmission
times enable the method of stochastic hybrid systems (SHS)
for age analysis. Section II-A, provides a short introduction
to the SHS method and then uses SHS to analyze the system
age in Section II-B.

Using the probability of correct detection P, = 1 — P,
the system age analysis is extended to evaluate the individual
age in Section III. The individual age, in the limit of a
large number of users and proportional system service rate,
is shown to converge to simple function of the offered load,
that approximates the individual age even for a small number
of sources. The paper concludes with a discussion of open
issues in Section IV.

II. AVERAGE SYSTEM AGE
A. SHS Background

A stochastic hybrid system (SHS) [41] has state [¢(t), x(¢)]
such that x(t) € R and ¢(t) € Q = {0,...,M} is a
continuous-time Markov chain.

For Aol analysis, ¢(t) describes the discrete state of a
network while the age vector x(t) describes the continuous-
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SHS Markov chain for the system age over an unslotted collision

Fig. 1.
channel.

SHS approach was introduced in [10], where it was shown
that age tracking can be implemented as a simplified SHS
with non-negative linear reset maps in which the continuous
state is a piecewise linear process [42]-[44]. For finite-state
systems, this led to a set of age balance equations and simple
conditions [10, Theorem 4] under which E[x(¢)] converges to
a fixed point.

A description of this simplified SHS for Aol analysis now
follows. In the graph representation of the Markov chain ¢(t),
each state ¢ € Q is a node and each transition [ € L is a
directed edge (g;,q;) with transition rate XD from state g
to ¢;. Associated with each transition [ is a transition reset
mapping A; € {0,1}"*" that induces a jump x’ = xA; in
the continuous state x(t).

Unlike an ordinary continuous-time Markov chain, the
SHS Markov chain may include self-transitions in which
the discrete state is unchanged because a reset occurs in
the continuous state. Furthermore, for a given pair of states
q,q' € Q, there may be multiple transitions / and [ in which
q(t) jumps from ¢ to ¢’ but the transition maps A; and A;
are different.

For each state g, we denote the respective sets of incoming
and outgoing transitions by

L={leLid=a) L={lcLia=aq. O

Assuming the discrete state Markov chain is ergodic, ¢(t) has
unique stationary probabilities @ = [7o - -+ 7] satisfying

7> A= \07, geQ and Y 7=1 (2

leLq lec, )

The next theorem provides a way to derive the limiting average
age vector E[x]| = lim;_, o, E[x(?)]-

Theorem 1: [10, Theorem 4] If the discrete-state Markov
chain ¢(t) is ergodic with stationary distribution 7@ > 0 and
there exists a non-negative vector v = [Vq - -- Vs] such that

Vo AV =17+ Y Av,AL qgeQ 3
€Ly lEL‘,%

then the average age vector is E[x] = > 5 V5.
In the next section, Theorem 1 is employed to find the
average age for uncoordinated unslotted updating.

B. SHS Modeling of the System Age

For an SHS age model of the unslotted collision channel, the
discrete state Markov chain for ¢(t) is shown in Figure 1 and
the corresponding set of SHS transitions is given in Table I.
The discrete state ¢(¢) € {0,1,2,...} is the number of active

TABLE I
SHS TRANSITIONS FOR TRACKING THE OVERALL AGE IN THE MARKOV
CHAIN OF FIG. 1.

I qg—q MO xA; A} vy A

1 0—1 A [0 .’L‘Q] [8(1)] [O ’UOQ]
2 1—-0 P(du [1'1 1’1] [6 6] [’011 Ull]
3 1—0 Pe/J/ [1‘2 1‘2] [(1) (1)] [’Ulg 1)12]
4 1 -2 A [1‘2 372] [(1) (1)] [U12 ’U12]
5 2—1 2‘LL [.’1?1 .’172] I [1121 ’Ugg]
6 23 A [1’1 1’2] I [’021 UQQ]
7 3—2 3/_,L [I’l 1’2] I [’Ugl 1)32]
M—M-1 M/J [.’171 .’L‘Q] I [le ’U]WQ]

causes the system to jump to state 1. This update is success-
fully delivered if it completes service before another update
begins transmission. Otherwise, a jump to state 2 begins a
collision period in which transmitted updates suffer collisions
and are unsuccessful. In states & > 2, there are k updates being
transmitted in a k-way collision. A collision period ends when
the system returns to the idle state.

The age state is x(t) = [x1(t) z2(t)] where z2(t) is the age
at the monitor and 1 (¢) is what the age at the monitor would
become if an update in service were to complete transmission
at time ¢. In each state ¢(t) = g, the continuous state evolves
according to x(t) = 1 = [1 1]. Our objective is to calculate
the average age at the monitor A = lim;_, o, E[z2(¢)].

An age reduction in x4 (t) occurs only when a collision-free
update is delivered successfully. This event must be preceded
by a transition [ = 1 in which the system goes from idle
to having a single update in service. In this transition, the
mapping X' = xA; = [0 3] resets x; to z; = 0, the
age of the fresh update that just began transmission. On the
other hand, 2, = x5 is unchanged because it tracks the age
at the monitor. In state 1, the transition [ = 2 corresponds
to the update being transmitted collision-free and also being
successfully received. In this transition, x’ = xAy = [z1 2]
resets xo to xh, = x1, the age of the update that was just
successfully received.

By contrast, transition [ = 3 corresponds to the update
being transmitted collision-free but it fails to be received. In
this transition, x’ = xAj3 = [r2 23] leaves the age x» at the
monitor unchanged. This transition also resets 1 to =} = 2
to indicate that there is no update in transmission whose
delivery can yield an age reduction. Similarly, Ay = Aj
because in transition ! = 4, a second update collides with
an update in a transmission. Since this collision guarantees
that neither update in transmission is successfully received,
this transition also sets x| = xa,

While state 1 has exactly one update being in service, this
update may or may not be collision-free. This information
is encoded in the continuous state x(t). If z1(t) < z2(t),

transmitters. In the idle state O, the start of a transmission766hen there is single update with age x1(t) in the middle of a
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Fig. 2. Average system age A in Theorem 2 as a function of offered load
p; time is normalized so that 4 = 1. Dashed lines show the lower bound

Ar(p)/(nPe).

collision-free transmission at time ¢; otherwise x1 (t) = xa(t).
In particular, the transition ! = 4 into state 2 initiates a
collision period in which z1(¢t) = x2(t). This condition is
preserved throughout the collision period, including when the
system transitions through state 1 and back to the idle state 0.

C. SHS Analysis of the System Age

A consequence of the Poisson update arrival process is that
the number of updates being simultaneously transmitted can
be arbitrarily large. However, in order to apply Theorem 1,
the state space is truncated so that the largest collision has
M updates. We start by finding Ajy, the average age in this
truncated system.

To employ Theorem 1, observe first that (2) implies A7y =
pump and fork=1,...,. M —1,

()\ + k,u)frk = A\Tp_1 + (k + 1),u7‘rk+1. 4)

Solving for 7, k = 1,..., M, in terms of p = A\/p and
enforcing the normalization constraint yields

M ] _1 pk
o = (Zﬂ/ﬂ) ; ﬁ-kzgﬁ'& )
=0 '

From (3), we have for § € {0,1,2, M} that

Avg =179 + P.uviAg + PouviAg, (6a)
A+ p)vy =17 + AVoA 1 + 2uvs, (6b)
(AN +2u)vy =179 + Av1 Ay + 3uvs, (6¢)
Mupvy = 17z + AVar—1, (6d)

and forg=ke {3,...,.M — 1},
A+ kp)vie =17, + AVt + (B + 1) uvi41. (6e)

Solving (6) for vy, ..
truncated system is

., Vs, the average system age in the

M
An =Elas] =) o (7)
k=0

The average system age with an infinite user population is

unslotted

14 — — slotted

Fig. 3. Average system age A in Theorem 2 of the unslotted system vs. the
average system age Agioed Of the corresponding slotted Aloha system as a
function of offered load p.

Appendix. For j = 1,2,..., we adopt the shorthand notation

B 0 pi L, B o'} j' .
6] po ’L' € 9 ’Yj kZ:O (] + k)|p ? ( )

in order to state the following claim.’
Theorem 2: Poisson updates through a collision channel
achieve the average system age

1+p)e’ 3+ 1+ — Bj7j
_ (Qtp)e? B B4p)B o 0)6273+Z B
pPep p 2p 61 L

D. System Age: Numerical Results

With time normalized so that p = 1, Figure 2 depicts the
system age in Theorem 2 as a function of the offered load p
for probability of correct reception P. € {0.5,0.8,1}. For all
P,, the age becomes high when p approaches zero or when
p becomes large and the system has too many collisions. For
P. = 1, the average age happens to be minimized at p =
p* = 0.5195, achieving the minimum age of A* = 5.513. As
P, decreases, the optimal offered load increases slightly. For
example, when P, = 0.5, the optimal load is p* = 0.5625;
this achieves an average age of A* = 10.40. We see from
Figure 2 that the average age is not particularly sensitive to
variations in p near p*.

We further observe that all terms in A are non-negative.
With the definition

1
As(p) = (1 + p)ep, ©)
the average system age satisfies the lower bound
Ai(p)
A> 1
Z P (10)

This simple lower bound, depicted in Figure 2 with dashed
lines, is tight for small p and nontrivial for large p.

It is also instructive to compare the system age of the
unslotted and slotted systems. Consider the corresponding

'Note that 8; = P[K > j] and v; = B;/P[K = j] for a Poisson (p)
random variable K, While it is possible to state Theorem 2 with ; replaced
by 3;/ P[K = j], this ratio of quantities that both go to zero as j — oo can

then A = limp;_,oo Aps. These steps can be found in thd761induce numerical stability issues in the calculation of A.
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Fig. 4. Average individual age for N = 20 sources. Time is normalized so
that p = 20. The figure compares Aq|oo and A1 (p) against a simulation of
N = 20 on/off sources with aggregate update arrival rate 20p. At each p,
o marks the time-average individual ages of each of the 20 sources while X
marks the average age averaged over the 20 sources.

infinite-user slotted system. In each unit time slot, the number
of fresh transmitted updates is a Poisson random variable K
with E[K] = p. A fresh update is successfully transmitted in
each time slot with probability P; = P[K = 1] = pe~”. The
average system age is [14, Equation (23)]
p
Aslotted = % + % = % + %
Figure 3 compares average system age in the slotted and
unslotted systems. We see that the age penalty for unslotted
operation is negligible when the offered load p is small.
However, when the offered load is large, the age penalty
becomes large because of the long collision periods induced
by unslotted operation. This highlights how slotting is is able
to destroy the memory of the collision process.

(1)

III. INDIVIDUAL AGE ANALYSIS

In practice, the number of sources N will be finite and it
is desirable to characterize the age process of an individual
source. Fortunately, the infinite user model of Theorem 2
can be employed to evaluate the individual age for one of
N sources by reinterpreting P., the probability of correct
detection of a collision-free update, as the probability that
the collision-free update reduces the age of a selected user.
Specifically, suppose the aggregate updating rate A\ in the
infinite user model is from NN independent sources, each
offering updates as a Poisson process of rate A/N. In this case,
a transmitted update belongs to a source ¢ with probability
1/N. Hence, Theorem 2 can be employed with an update
that is transmitted collision-free as belonging to source ¢ (and
thus offering an age reduction for source i) with probability
P.=1/N. This yields the individual age

NQA+pe” B (3+p)B2
pp % 2p
n p(1+ p)B27s n Z ﬂjji (12)
7j=3

Ayn =

6 1

7 o A0
A (p)
6.5 Sim: N=100
5]
g0 6k
<
5.5¢
5L
45 L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4
P

Fig. 5. Average individual age for N = 100 sources. Time is normalized so
that 4 = 100. The figure compares Ao and A1 (p) against a simulation
of N = 100 on/off sources with aggregate update arrival rate 100p. At each
p, ® marks the time-average individual ages of each of the 100 sources while
x marks the average age averaged over the 100 sources.

implies that the individual age grows linearly with the number
of users N. This is not surprising since the system bandwidth,
as embodied in the fixed service rate p, is shared among
N sources. However, to provide good age performance as
N becomes large, the system needs bandwidth to grow in
proportion to N. In this case, we assume the system has [NV
sources, each offering updates at rate Ay but the system band-
width grows with N so that the service rate of a transmission
is 4 = Npg. The normalized offered load remains fixed at
p = (NXo)/(Npo) = Xo/uo. This is essentially the same
scaling previously employed in [17]. A transmitted update
belongs to the selected source with probability P, = 1/N.
We also assume time is normalized so that py = 1. Under
these conditions, we observe as N — oo that

Here we can interpret Aq(p) as the individual age on a colli-
sion channel in the limit of the number of sources becoming
large and the transmission time of an update approaching
zero. In this asymptotic limit, the individual average age is
minimized at p = (v/5 —1)/2 = 0.618.2

We will see this individual age model is somewhat pes-
simistic. The Poisson update process of source ¢ can generate
self-colliding updates that are time-overlapping with prior
source ¢ updates. In practice, each source transmits one update
at a time and never has a self-collision. In this sense, Ay
and A (p) are approximations for the individual average age
in a practical system.

To evaluate these approximations, we simulate a system
with N independent on/off sources. Each source is either
transmitting an update of exponential duration with expected
value 1/u, or being silent for an exponential period with
expected length 1/Ag—1/u. By this construction, the two-state
update process of each source offers updates at the longterm
rate of Ay = A/N updates per unit time. As N becomes
large, we expect the aggregate update process to be reasonably

2It can be shown that p = 0.618 also maximizes the probability the system

For fixed service rate p and fixed offered load p, (12)76% transmitting a collision-free update.
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approximated by a rate Ny = A Poisson process. We also
expect each source to obtain average individual age that is
approximated by Ajy.

Under these conditions, Figures 4 and 5 compare Ay and
A1 (p) against the simulated time-average ages experienced by
each of the NV on/off sources, each generating 50, 000 updates.
Time is normalized so that 4 = N and the average update
transmission time is 1/u = 1/N. The aggregate offered load
is p= (N)\o)/N = )\0.

In Figure 4 with N = 20 sources, Ay, which is derived
from the infinite user model of Theorem 2, is pessimistic in
slightly (by 2-3%) overestimating the average age received
by a source. The asymptotic approximation, A;(p), which
discards terms of A;y that become negligible as p = N
becomes large, is observed to be an even better age approx-
imation in the finite user system. In Figure 5 with N = 100
sources, we see that that with more sources, the approximation
A1 (p) becomes an increasingly accurate approximation to the
average individual age.

IV. CONCLUSION

For uncoordinated transmit-only sensors, this work provides
an exact analysis for the system age. The uncoordinated
transmit-only system works well as long as the normalized
offered load is near p* = 0.6. When these networks have a
nontrivial number of sources, Aq(p) is a useful approximation
for the individual age in a system with offered load p.

From Aj(p), we see that the individual age penalty is
substantial (on the order of 10x) if the offered load is, say,
p*/10 or 10p*. Moreover, we saw in the comparison with the
slotted system that age in the unslotted system is particularly
sensitive to overloading the system. Configuring the network
of transmit-only sources for the proper offered load would be
important at time of deployment. On the other hand, adaptive
configuration may also be possible if the sources have access
to some minimal feedback.

In addition, there remain a number of open questions about
how additional coordination mechanisms, such as collision de-
tection and/or avoidance or state-dependent updating policies,
can contribute to reducing Aol.
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APPENDIX
PROOF OF THEOREM 2
The mappings A; induce x1(t) = z2(t) in all states k # 1.

and for 3<k< M —1,

PEOk = 1 T 4 pUg—1 + (b + V0. (14D
The average age in Theorem 1 becomes
M
AM=170+1712+172+ZT}]'. (15)
j=3

In the limit of large M, we obtain the limiting average age

A = limp; oo Aps. Equations (14e) and (14f) admit the
solution
oo Lo 1 DM ooy (16)
k ku
where
M Mo
Buy = Y Fi =70y p'/i! 7)
i=k i=k

is the stationary probability of the system being in a collision
of k or more updates. Now we observe that it follows from
(16) that for 3 <1 < M,

e

=3 “l'

; -2

P2
Pl ]5J\M+ —— V2.

I (18)

Defining Va.ay = Y140, it then follows from (18) and
reordering of the sums over [ and j that
M-3

Vars = ZBJIM Z PUQ Z (mp+3)!'
j=3 l=j m=0

Defining ;3 = Zk:?)] (k%!j)!pk, the index shift k =1 —j
in (19) yields

19)

Bjim
Vi = Z M ——jm + p%\MW (20)
= m 3
Applying (16) with k = 3 to (14d) yields
_ Mo+ B3 p_ Ba|mr
="+ = = 21
Vg o b2 = 20 +2 5 (21)

From (21) and the identity 71 + 82|/
(14b) and (14c) that

= B1um- it follows from

51|M
I+p %

From (22) and the identity P, + P, = 1, it follows from (14a)
that

ﬁ1|M.

, U1z = pYg + (22)

This implies (6) has a solution such that vy, = [0 )] = Ux1 1+p
for all k£ # 1. Only vy = [011 U12] has distinct non-identical vy = WP, (23)
components. In terms of U117, v12 and vy, k # 1, (6) becomes c
. It then follows from (21) and (22) that
Ug = p~ 7o + P.v11 + P.U12, 14
Py = K 17T0 V11 V12 (14a) B p2 B ﬂle + Pﬁ1|M
(1+p)v11 = pu~ 71 + 209, (14b) U2 = 50 + o (24)
e, _ _
(L+p)orz = = 7T1 + plo + 202, (14¢)  Applying (20), (22), and (24) to (15) and observing that
(24 p)vo = ™' 72 + pU12 + 303, (14d)  limpseo Bjim = B; and limp o0 v = 74 the claim
My = ™' Far + pin-1, (14e) 5 follows.
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