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ABSTRACT

Processing in-memory (PIM) has shown great potential to accel-
erate the inference tasks of binarized neural networks (BNNs) by
reducing data movement between processing units and memory.
However, existing PIM architectures require analog/mixed-signal
circuits that do not scale with the CMOS technology. On the con-
trary, we propose BitNAP (Binarized neural network acceleration
with in-memory ThreSholding), which performs optimization at
operation, peripheral, and architecture levels for an efficient BNN
accelerator. BitNAP supports row-parallel bitwise operations in
crossbar memory by exploiting the switching of 1-bit bipolar resis-
tive devices and a unique hybrid tunable thresholding operation.
In order to reduce the area overhead of sensing-based operations,
BitNAP presents a memory sense amplifier sharing scheme and
also, a novel operation pipelining to reduce the latency overhead
of sharing. We evaluate the efficiency of BitNAP on the MNIST
and ImageNet datasets using popular neural networks. BitNAP is
on average 1.24× (10.7×) faster and 185.6× (10.5×) more energy-
efficient as compared to the state-of-the-art PIM accelerator for
simple (complex) networks.
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• Hardware→ Emerging architectures; Non-volatile memory; •
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1 INTRODUCTION

Artificial neural networks, in particular deep learning, have a wide
range of applications in different areas such as detection [1], self-
driving cars, and translation [2]. In some specific tasks, such as
AlphaGo [3] and ImageNet Recognition [4], deep learning algo-
rithms are providing human-level performance. Convolutional neu-
ral networks (CNNs) are the most commonly used deep learning
applications which are both compute and memory intensive [1].
Prior work tried to reduce the CNN computation cost by binarizing
the input and weight of each neuron during the training process [5–
7]. Binarized neural networks (BBNs) represent weights and inputs
with 1-bit values, replacing multiplications with XNOR [5, 8].

Although BNNs reduce the computation cost, they are still mem-
ory intensive, thus processing them on conventional cores is slow
and inefficient [9]. The inefficiency comes from the limited on-chip
cache of conventional cores, which does not have enough capacity
to store all BNN weights. This results in a large amount of data
movement between the memory and processing cores [10, 11]. Pro-
cessing in-memory (PIM) is a promising solution to address the data
movement issue [12]. Low leakage power and high density of emerg-
ing non-volatile memories, e.g., resistive random access memory
(ReRAM), make these technologies a great candidate for PIM. Work
in [10, 11] exploit the analog characteristic of non-volatile memory
to support matrix multiplication in memory. These architectures
transfer the digital input data into an analog domain and compute
matrix multiplication by passing an analog signal through a cross-
bar ReRAM. However, the state-of-the-art PIM architectures have
two main disadvantages: (i) they use digital-to-analog converter
(DAC), and analog-to-digital converter (ADC) blocks to transfer
data between analog and digital domain [10]. These blocks take
the majority of the chip area and do not scale with technology.
(ii) Analog processing results in a large amount of internal data
movement, as data points cannot be processed where they are al-
ready stored. The slow write operation in PIM architecture can
significantly degrade the PIM efficiency in practice.

In this paper, we propose BitNAP, a highly parallelized and effi-
cient in-memory BNN accelerator. BitNAP maps the computation
of different BNN layers into a digital crossbar memory, removing
the necessity of the data conversion to the analog domain. Bit-
NAP exploits the switching characteristics of NVMs to implement
row-parallel operations internally in a crossbar memory. BitNAP
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Figure 1: BitNAP overview architecture.

also proposes a hybrid tunable thresholding operation to imple-
ment accumulation and activation in a parallel and efficient way
by using switching and sensing PIM operations. To fully exploit
the high parallelism provided by the switching based operations,
BitNAP presents new implementations of different neural network
layers. BitNAP also eliminates the overhead of adding thresholding
capability to sense amplifiers by sharing them between different
blocks. To further reduce the latency bottleneck due to sharing,
BitNAP uses a novel scheme to pipeline sense amplifier operations.
We evaluate BitNAP on popular large-scaled classification datasets
such as MNIST and ImageNet. BitNAP is on average 1.24× (10.7×)
faster and 185.6× (10.5×) more energy-efficient as compared to the
state-of-the-art PIM accelerator for simple (complex) networks.

2 RELATEDWORK

Neural networks are computationally expensive due to their large
amount of vector-matrix multiplication. Prior work improves the
efficiency of CNNs by computing with binary inputs and weights [5,
13, 14]. A binary neural network is significantly smaller than an
equivalent network with single-precision weight values. A promi-
nent advantage of a BNN as compared to a CNN is that BNN does
most calculations with bit-level operators. The state-of-the-art work
in [5] implemented BNNs by representing weights/inputs by +/-1,
thereby converting multiplication into XNOR. As a result, the con-
volutions can be estimated by XNOR and bit-counting operations.

Prior work accelerated BNN computation on GPU, FPGA, and
ASICs [8, 15–19]. However, a large amount of data movement be-
tween off-chip memory and processing cores slows down the com-
putation. Processing in-memory architectures are a suitable candi-
date for accelerating BNN applications. PIM architectures provide
significant parallelism while reducing data movement between the
memory and processing cores, resulting in high energy-efficiency.
The work in [15, 16, 20] proposed a distributed in-memory comput-
ing architecture using ReRAM. It accelerated binary vector-matrix
multiplication in the crossbar, which is the base operation in any
BNN. The design proposed in [9] accelerates the whole BNN using
ReRAM crossbar. All these approaches depend heavily on their
peripheral circuits (large sense amplifiers or ADCs/DACs) for com-
putation, which restricts the possible parallelism. Similarly, the
work in XNOR-POP [8] implemented a DRAM-based architecture
for BNNs. Although it exploits the DRAM row buffers to use a large
number of peripherals in parallel, the performance of these pe-
ripherals becomes a bottleneck for large networks. Neurocube [17]
attempted to accelerate neuromorphic computing using HMC based
3D-DRAM, limited by the inefficient HMC interface.

In contrast, in this work, we exploit the idea of digital PIM ar-
chitecture. Here, functions are applied to values stored in memory
without transferring them into analog domain, eliminating the
necessity of using ADC/DAC blocks. We reduce the latency of in-
memory accumulation with new thresholding techniques. We map
entire layers to memory crossbars. We also share sense amplifiers
to reduce the SA area and energy consumption of BitNAP.

3 BitNAP: PIM-BASED BNN

3.1 BitNAP Overview

Figure 1 shows the overview of the BitNAP consisting of several
memory blocks. Each memory block in BitNAP models the func-
tionality of a single BNN layer. The pre-trained weights of BNNs
are pre-stored in each crossbar memory. Each memory block en-
ables computation by performing a row-parallel XNOR operation
between the inputs and weights. XNOR can be implemented in
parallel over all rows of the memory. BitNAP first accumulates
the results of XNOR operation and then passes through an activa-
tion function. BitNAP fuses these two operations by thresholding
the outputs of XNOR operations. BitNAP uses a hybrid threshold-
ing approach, utilizing both in-memory and sense amplifier based
thresholding. Thresholding compares the number of ones in the
XNOR results with a threshold value. Each memory block can also
implement convolution using these operations. Finally, BitNAP
implements pooling using a series of OR-based or AND-based op-
erations. One major issue with the current PIM architectures is
the size of the sense amplifier. BitNAP proposes a sense amplifier
sharing and novel pipelining scheme to obtain high performance
while significantly reducing the area of the accelerator.

3.2 BitNAP Block Computation

BNNs require bitwise operations and thresholding functionality. For
bitwise operations, the XNOR is required in both fully connected
and convolution layers to support the binarymultiplication between
the input and weight matrix. The OR/AND operation is required to
implement MIN/MAX pooling. The thresholding functionality is
used to implement the accumulation and activation functions.

PIM Bitwise Operations: BitNAP utilizes switching based PIM
operations to implement bitwise operations in memory. The work
in [21–23] implements different logic gates like NOR, NAND, OR,
XNOR, etc in the digital memory. Figure 2a explains the execution
proposed in [22] where, by applying a voltage, 𝑉0, at the input
devices and grounding the output device, many bitwise operations
are performed. The output device switches its state whenever the
voltage developed across it is higher than the threshold of the device.
A sequence of these logic gates can implement other operations
such as XNOR (�). As shown in Figure 2a, these PIM operations
can be applied over multiple rows in parallel.

PIM Thresholding: After window-wise XNORing the input
and weight matrices, thresholding is applied to all the windows
independently. BitNAP uses a hybrid approach and combines sense
amplifier based thresholding (sa-THR) with memristor switching
based thresholding (mem-THR).

sa-THR: In this paper, we integrate thresholding functionality
with the sense amplifiers of each memory block. In a typical mem-
ristive crossbar block or array, each memory column has a separate
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Figure 2: (a) Row-parallel bitwise PIM operations and (b)

sense amplifier based thresholding (sa-THR).

sense amplifier. Activating multiple rows at the same time pro-
vides the opportunity to do computation on the data in those rows.
Figure 2b shows the structure of the sa-THR. The total current
injected into a sense amplifier depends on the number of ‘1’s (low
resistance devices) present in the activated rows (𝑟1, 𝑟2, 𝑟3) at the
corresponding column (for example, 𝑟1𝑚, 𝑟2𝑚, 𝑟3𝑚 at bit position
𝑚). This incoming current develops a voltage at node ‘X’, given
by the relation 𝑉 = 𝐼 ∗ 𝑡/𝐶 . More bits with ‘1’ value result in a
higher voltage at node ‘X.’ Finally, a voltage comparator compares
the voltage at node ‘X’ and the reference voltage, 𝑣𝑟𝑒 𝑓 , and gen-
erates a single bit output. BitNAP configures different threshold
values by changing 𝑣𝑟𝑒 𝑓 . This output corresponds to the function
𝑇𝐻𝑅(𝑟1𝑚, 𝑟2𝑚, 𝑟3𝑚) and is generated in parallel for all the columns.

The sa-THR circuit can execute all the required threshold opera-
tions in a BNN, but the number and placement of sense amplifiers
may restrict the parallelism and direction of thresholding. Also,
since all the results are generated at the periphery of the memory, it
leads to unnecessary reads and writes of intermediate data. Hence,
BitNAP implements a hybrid approach which combines sa-THR
with a novel in-memory threshold technique, called mem-THR. It
is based on the memristor switching and decouples data read-out
and thresholding to provide highly parallel thresholding.

mem-THR: As discussed before, FELIX [22] can implement dif-
ferent bitwise PIM operations in-memory by changing the voltage,
𝑉0, in the circuit in Figure 2a. We extend this concept to propose a
new switching based configurable thresholding. A NOR operation
is equivalent to thresholding at one ‘1’ in the inputs, where the
output device switches in the presence of one or more ‘1’s. For the
device threshold parameter 𝑣𝑜 𝑓 𝑓 = 0.5𝑉 [22], a𝑉0 of 1V is required
to implement NOR operation. If we lower the voltage to 0.75V, the
output switches when two or more inputs are ‘1.’ Hence, the circuit
implements in-memory configurable thresholding, where a voltage
of 𝑣𝑜 𝑓 𝑓 × (1 + 1/𝑛) is required to detect the presence of 𝑛 ‘1’s. Our
circuit-level simulations show that the detection works without
error in the presence of 10% variations in applied voltage and device
resistance. We call this way of performing in-memory thresholding
as mem-THR. BitNAP uses a combination of sa-THR and mem-THR
functions to achieve maximum efficiency while thresholding. For
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Figure 3: A fully-connected layer of BNN in BitNAP.

example, in the case of a 2D window, mem-THR is first performed
over rows, reducing each row to a single element and 2D input to
a column vector. Then, sa-THR is performed over the column to
obtain the final output of the layer.

4 BitNAP ARCHITECTURE

In-memory bitwise operations are in general slower than the corre-
sponding CMOS-based implementations because memristor devices
are comparatively slower in switching. However, PIM architecture
can potentially provide significant performance gains over CMOS
accelerators when running applications with extensive parallelism.
Section 3.2 showed how PIM supports different BNN operations
in parallel, irrespective of the number of rows. It takes the same
amount of time for PIM to process a PIM operation in a single
row or all the rows of memory. On the other hand, the processing
time in conventional cores highly depends on the data size. In this
section, we explain how BitNAP parallelizes the functionality of
different BNN layers in a memristive crossbar memory block.

4.1 Fully Connected

Figure 3 shows a row-parallel implementation of a fully connected
layer in a crossbar memory. BitNAP stores the input vector verti-
cally along with the weight matrix stored its adjacent columns (𝑊𝑖 𝑗 ),
where a column of thematrix contains the weights corresponding to
the same neuron. BitNAP first computes the XNOR of the input vec-
tor with all columns of the weight matrix. It writes the column-wise
XNOR results in separate columns of the same memory block. Next,
BitNAP needs to accumulate the stored XNOR results column-wise.
Finally, the result of accumulation passes through an activation
function, which compares the output of the accumulated neuron
with fixed threshold values. BitNAP fuses the accumulation and
activation function by enabling analog configurable thresholding.
As explained in Section 3.2, BitNAP uses sa-THR (thresholding en-
abled sense amplifier scheme) to implement thresholding in fully
connected layers due to the presence of a large number of inputs.
The result of thresholding is a binary vector (one bit per column)
available as the sense amplifier output. It acts as the input vector
for the next BNN layer and is written to the next memory block.

To estimate the execution time of a fully connected layer in
BitNAP, let us assume that each XNOR operation takes 𝑅 = 2
cycles (1 cycle: 1.1ns). Owing to the row-parallel bitwise operations
supported by BitNAP, it can XNOR all the inputs (stored as a column
vector) with a column of weight matrix in𝑅 cycles. Hence, for a fully
connected BNN layer with 𝑀 inputs and 𝑁 neurons, we require
𝑅 × 𝑁 cycles to perform the multiplication and a single cycle to
perform thresholding. The computation of a fully connected layer
in BitNAP is independent of the number of inputs in the layer.
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Figure 4: BitNAP implementing a convolution layer of BNN.

4.2 Convolution

Figure 4 shows the implementation of convolution layer in BitNAP.
BitNAP stores input matrix (𝑧 matrix in the figure) in memory.
The inputs are convoluted with weights by performing element-
wise XNOR between weight window and subsets of input and then
accumulating the XNOR output for each window.

Weight storage and XNOR in a convolution window: Theweight

kernel ([𝑤11 𝑤12; 𝑤21 𝑤22]) is flattened out and stored as a row
vector adjacent to each row of the input matrix. It transforms the
original weight matrix into a matrix containing as many copies of
weights as the rows in the input matrix. Each row of the flattened
weight kernel is left-rotated by ((𝐼𝑟 − 1)%𝑊ℎ) ×𝑊𝑤 , where 𝐼𝑟 is the
input row number and𝑊ℎ and𝑊𝑤 are the height and width of the
weight matrix. XNOR happens in the same way as in FC layer (•1 ).

Sliding over columns: Let the widths of weight kernel (before

flattening) and input matrix be𝑊𝑤 and 𝐼𝑤 respectively. The first
𝑊𝑤 columns (1 to𝑊𝑤 ) of input matrix are XNORed with the first
𝑊𝑤 columns of weight matrix. Then, the second𝑊𝑤 columns (2 to
𝑊𝑤 + 1) of input matrix are XNORed with the first𝑊𝑤 columns of
weight matrix and so on (•1 ), requiring (𝐼𝑤 −𝑊𝑤 + 1) ∗𝑊𝑤 XNOR
cycles in total. At this point, we have the bitwise XNOR outputs
for a convolution window slid across columns (•2 ). Now, BitNAP
applies hybrid thresholding on these outputs window-wise. First,
BitNAP applies row-wise thresholding on outputs of each convo-
lution window (currently 2D) using mem-THR (•3 ), generating
vectors of length𝑊ℎ per window (•4 ). This requires (𝐼𝑤 −𝑊𝑤 + 1)
mem-THR cycles. Then, sa-THR is performed on these vectors. The
sa-THR processes (𝐼𝑤 −𝑊𝑤 + 1) windows in parallel (•5 ). Hence,
it requires 𝐼ℎ/𝑊ℎ sa-THR cycles to perform thresholding on all the
windows (•6 ). In total, sliding over column generates outputs for
(𝐼𝑤 −𝑊𝑤 + 1) ∗ (𝐼ℎ/𝑊ℎ) windows, requiring (𝐼𝑤 −𝑊𝑤 + 1) ∗𝑊𝑤

XNOR, (𝐼𝑤 −𝑊𝑤 + 1) mem-THR, and 𝐼ℎ/𝑊ℎ sa-THR cycles. Rest
of the outputs are generated by sliding over rows.

Sliding over rows: Sliding over rows is equivalent to moving the

windows vertically. The process of sliding over columns (•1 -•6 ) is
carried for each of the𝑊𝑤 columns of weight matrix (•7 -•12 ). This
results in sliding over rows while sliding over columns for each
row. In total, sliding over rows is performed for𝑊ℎ weight rows.
Each of these slides includes sliding over columns.
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4.3 Pooling

BitNAP supports themost popular pooling layers inmemory, namely
MIN/MAX/average. TheMIN/MAXpooling in BNNs is implemented
using OR/AND operation [5]. BitNAP supports these bitwise op-
erations, as explained in Section 3.2. THR performs the average
pooling with a threshold of 50%. Application of OR/AND/THR
on 2D pooling windows happen in the same way as THR (mem-
THR + sa-THR) in convolution. In pooling, OR/AND/mem-THR (for
MIN/MAX/average pooling) are first applied similar to mem-THR
in a convolution layer, reducing windows to vectors. Then, sa-THR
is applied over these vectors.

4.4 Block Layout & SA Sharing

BitNAP has a large within-memory compute to SA access ratio.
For our implementation of ResNet-18 network, the latency due
to SA is just 3.1% of the total latency of the network. Hence, to
reduce the area overhead due to SAs, BitNAP shares SAs between
blocks, as shown in Figure 5. To prevent the interference of currents
from different blocks, we add isolation transistors (ISO1 and ISO2)
between SAs and the corresponding bit-lines of the two blocks. At
a time, either ISO1 or ISO2 is asserted to connect one block to the
SA, leaving the other block isolated. This approach eliminates half
the SAs from BitNAP. Although adding the isolation transistors
increases the area overhead of each sa-THR enabled SA by 6.7%, the
reduced number of SAs results in an effective SA area reduction of
46.7% as compared to the BitNAP with no SA sharing.

4.5 Pipelining SA Operations

The SA sharing technique proposed in Section 4.4 reduces the total
area overhead of adding processing capabilities to the sense ampli-
fiers. However, this comes at the cost of sequential reads/sa-THR
from the blocks sharing the SA. Figure 6a shows that the sharing of
SAs serializes the sa-THR and data-write stages of the two blocks,
say 𝑏𝑙𝑜𝑐𝑘𝑎 and 𝑏𝑙𝑜𝑐𝑘𝑏 . This doubles time taken by the two stages as
compared to BitNAP with no SA sharing. Since data-write doesn’t
require SAs it can happen in parallel for the two blocks. This is illus-
trated in Figure 6b as 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 1. Also, a data write can happen in
parallel with a sa-THR operation, shown as 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 2. A quick anal-
ysis of 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 2 shows that it isn’t suitable as it results in multiple
stalls due to the delayed availability of input data to odd (upper)
blocks. For 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 1, the corresponding implementation for three
block pairs in parallel is shown in Figure 6c. It reduces the number
of steps by 25% as compared to the sequential design, requiring
1.5× the steps taken with no SA sharing. Every data generated in
odd blocks as a result of sa-THR has an idle cycle before being
written to the next block, requiring extra registers to store them.
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Figure 6: (a) Sequence with SA sharing, (b) pipeline schemes,

(c) BitNAP with 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒1, (d) BitNAP with hybrid pipeline.
Table 1: Energy for Operations in BitNAP

SET 23.8𝑓 𝐽 sa-THR 0.5𝑝𝐽 mem-THR-4 41.64𝑓 𝐽
RESET 0.32𝑓 𝐽 mem-THR-2 24.11𝑓 𝐽 mem-THR-5 49.24𝑓 𝐽
XNOR 34.97𝑓 𝐽 mem-THR-3 41.64𝑓 𝐽 mem-THR-6 49.24𝑓 𝐽

*mem-THR-X detects the presence of X or more ‘1’s

We propose a hybrid pipelining scheme by combining 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 1
and 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 2 as shown in Figure 6d. Here, an even block and
the following odd block perform the same operation at the same
time. When (𝑏𝑙𝑜𝑐𝑘2, 𝑏𝑙𝑜𝑐𝑘3) perform sa-THR, (𝑏𝑙𝑜𝑐𝑘4, 𝑏𝑙𝑜𝑐𝑘5) per-
form data-write and vice-versa. Also, the block pairs implement
𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 1 and 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 2 alternatively. The data generated by alter-
nate odd-blocks is written to the next stage in the following cycle,
requiring only 50% of the registers used in case of 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 1.

5 EVALUATION

5.1 Experimental Setup

We use an in-house cycle-accurate C++ simulator which emulates
BitNAP functionality. We used HSPICE for circuit-level simula-
tions and calculate energy consumption and performance of all
the BitNAP operations in 45nm process node. The robustness of
all proposed circuits has been verified by considering 10% process
variations on the size and threshold voltage of transistors using
5000 Monte Carlo simulations. A maximum of 25.6% reduction in
resistance noise margin was observed for RRAM devices. However,
this did not affect BitNAP operations due to a high 𝑅𝑂𝐹𝐹 /𝑅𝑂𝑁 of
10𝑀/10𝑘Ω. Here, we adopt RRAM device with VTEAM model [24].
The device parameters are chosen to fit practical devices [21, 25]
with switching delay of 1.1ns (= cycle time in BitNAP). The exper-
iments were run with BitNAP chip size of 4.79 mm2, containing
60 MB of RRAM memory, which is enough to run the largest of
the four tested networks. Each block in BitNAP has 1024 × 1024
cells. We perform our experiment on popular MNIST and ImageNet
datasets. For MNIST, we use LeNet [26]. For ImageNet, we exploit
AlexNet, ResNet-18, and VGG-16.

5.2 Analysis of BitNAP Optimizations

Table 1 lists the energy of basic operations in BitNAP. Out of all
these operations, XNOR takes 2 cycles (2.2ns) for execution, while
the rest take just one cycle (1.1ns). The energy consumed by mem-
THR increases with the number of inputs due to the finer precision
required in execution voltage 𝑉0. To visualize the application level

Figure 7: Latency and energy consumption for different con-

figurations in Section 5.2 normalized to BitNAP.

Figure 8: (a) Latency and (b) energy breakdown for different

networks in BitNAP normalized to total network latency.

benefits of BitNAP from different optimizations, we compare it
with different baseline PIMs. The first baseline, PIM-1, is BitNAP
without sa-THR. PIM-2 is BitNAP without mem-THR. PIM-3 is
BitNAP without SA sharing and no pipeline. PIM-4 is BitNAP with
SA sharing but no SA pipelining. Figure 7 shows the execution
time and energy consumption of BitNAP in these configurations.
We observe that BitNAP derives major benefits from sa-THR. Over
four networks, BitNAP is, on average 149× faster and 122.6× more
energy efficient than the design without sa-THR. This happens
because, in the absence of sa-THR, column accumulation requires a
sequential addition of all 1024 rows in a block. BitNAPwithoutmem-
THR is 2.5× slower and consumes 1.9× more energy. Here, each
row accumulation within a convolution window uses sequential
addition.When comparedwith PIM-3, BitNAP is less than 1% slower
and 39.2×more energy efficient. This is majorly due to the reduction
in static energy consumption by using only half the number of sense
amplifiers. Finally, comparing with PIM-4, BitNAP is 2.4% faster
and consumes 0.2% more energy. Although pipelining reduces the
delay of the sa-THR stages by 25%, the impact on overall application
is not significant as bitwise computations dominate the latency.

5.3 Behavior of BitNAP for Different Layers

Figure 8 shows the impact of different types of layers of the tested
networks on execution time and energy consumptionwhile running
on BitNAP. The energy is almost entirely consumed by convolution
layers. For all the networks, most computation is performed in
convolution layers, and hence, they impact the energy the most.
On the other hand, for networks with large (more neurons) fully
connected (FC) layers (both AlexNet and VGG-16 have FC layers
with 4096, 4096, and 1000 neurons), the execution time is dominated
by them. FC layers in AlexNet consume 73.3% of the total network
latency. Since VGG-16 is a deeper network, with more convolution
layers, the time consumed by FC layers reduces to 43.8% of the
total time. While in LeNet, only 7.8% of the total time is spent in
executing FC layers because the time required for FC layers in
BitNAP is a direct function of the number of neurons in the layer.
This shows BitNAP’s high parallelism for convolution layers.



ISLPED ’20, August 10–12, 2020, Boston, MA, USA Saransh Gupta, Mohsen Imani, Hengyu Zhao, Fan Wu, Jishen Zhao, and Tajana Šimunić Rosing

0% 2% 4% 8% 12% 16% 10% 24%
SA Error (%)

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 E
n

er
g

y

LeNet
AlexNet
ResNet-18
VGG-16

0% 2% 4% 8% 12% 16% 10% 24%
SA Error (%)

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 S
A

 A
re

a 

Figure 9: Effect of SA error on energy consumed and SA area.

5.4 BitNAP Tolerance to SA Noise

All PIM operations are accurate, but in the case of sa-THR, computa-
tions may be affected by the noise in either the bitline current or the
sense amplifier (SA) circuit itself. SA with high tolerance to noise
requires bigger transistors. This results in higher energy as well as
area requirement. Instead, we use comparatively smaller transistors
to reduce the total energy and area of the chip, resulting in SA with
less tolerance to noise. We observe that sa-THR in BitNAP tolerates
the loss in SA precision. Table 2 shows the change in the accuracy
of BNN applications running on BitNAP with different SA errors.
Here, the baseline SA results in just 1% error. Whereas, the SA used
in BitNAP has a maximum error of 20%. We observe that BitNAP
SA reduces the average ideal accuracy of classification by less than
2%. Figure 9 shows the change in energy of networks and area of
SA with an error. Moreover, BitNAP over four networks is 31.2×
more energy-efficient and takes 57% less area than baseline SA.

5.5 BitNAP vs Prior Designs

We compare BitNAP with state-of-the-art in-memory BNN accel-
erators. We observe that for AlexNet (LeNet) in BitNAP is 10.7×
(1.32×) faster than XNOR-POP [8], which implements BNNs in
DRAMs, because XNOR-POP has serial popcount operations. As
compared to XNOR-POP, BitNAP is 188× more energy efficient for
LeNet because all operations in XNOR-POP are implemented in
sense amplifiers. However, for complex networks, the improvement
is only 8.5× on average over AlexNet and ResNet-18. As compared
to ReBNN [27], BitNAP is 1.16× faster for LeNet. However, ReBNN
uses two memory cells per data bit, which incur significant over-
head while writing data to memory. Due to the limited data from
previous work, we only compare our energy consumption with
IMC [28] and BCNN [9]. BitNAP is 12.4× and 1.28× more energy-
efficient than IMC for LeNet and AlexNet, respectively. IMC uses
SOT-MRAM devices for bitwise AND operations with a bitcount
circuit for accumulation. However, the final output of convolution
in IMC is approximated by CPU using the partial results obtained
from memory, leading to lower accuracy. As compared to BCNN,
BitNAP is 356.6× and 21.7× more energy efficient for LeNet and
AlexNet, respectively. BCNN uses DACs and ADCs, which results
in really high energy consumption. In the end, we also compare
BitNAP with highly optimized in-memory binary vector-matrix
multipliers, XNOR-RRAM [20] and XIMA [15]. BitNAP is 177×
faster and 195× more energy efficient as compared to XIMA. XIMA
uses sense amplifiers for all the operations, making it sequential
with high energy consumption. BitNAP is 11.35× slower but 21×
more energy efficient than parallel XNOR-RRAM for vector-matrix
multiplication. XNOR-RRAM enables parallel computation across
all the memory cells in a block (crossbar) while BitNAP parallelizes
one row of a block at a time. However, XNOR-RRAM uses periph-
erals that act as scaling and latency bottleneck for large networks.

Table 2: Effect of SA error rate on the classification accuracy.

SA Error 1% 2% 4% 8% 12% 16% 20% 24%

LeNet 97.1 97.1 97.1 96.56 96 95.4 94.5 93.3
AlexNet 69.2 69.2 69.2 69 68.7 67.9 67.5 65.7
ResNet-18 71.9 71.9 71.8 71.3 71.0 70.4 69.8 69.0
VGG-16 89.4 89.4 89.4 89.25 89.04 88.3 88.0 87.1

6 CONCLUSION

BitNAP presents a novel efficient BNN architecture to take advan-
tage of the efficient row-parallel PIM operations. BitNAP performs
optimization at operation, peripheral, and architecture level to ac-
celerate BNNs in a crossbar memory. In order to reduce the area
overhead of sensing based operations, BitNAP presents a mem-
ory sense amplifier sharing scheme and also, a novel operation
pipelining to reduce the latency overhead of sharing.
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