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ABSTRACT To perform faster than the real-time dynamic simulation of large-scale power systems, it is 

necessary to reduce the simulated system size by using equivalents for surrounding areas of the study area, 

and existing dynamic model reduction approach could provide the needed structure of the reduced area. 

However, further parameter optimization is required to achieve the desired accuracy. In this paper, a 

particle swarm optimization (PSO) based approach is used to solve the above problem. Parameters for the 

individual dynamic elements in the reduced system are calibrated repeatedly until the wide-area 

measurements of the reduced model and the original model are very similar to each other with satisfactory 

accuracy. Results indicate that after optimization, the dynamic response of the reduced model matches 

better with that of the original one than using existing methods. Under both the generator-trip event and the 

bus-fault event, the reduced model has a higher frequency match and less power mismatch. 

INDEX TERMS Dynamic model reduction, large-scale power system, dynamic response, particle swarm 

optimization 

I. INTRODUCTION 

The dynamic response is of great significance for the 

analysis of a large-scale power system. However, it is 

computationally demanding to conduct such type of 

analysis using an original model, where each element is 

modeled in fine detail [1]. In fact, only a certain part of the 

power system is taken as the main focus of the study, 

defined as the study area. The rest part of the system is 

called the external area, whose structure and internal 

parameters are not the main concern. To speed up the 

simulation process, the external area should be replaced by 

a simplified one. On the other hand, the reduced model 

should hold similar dynamic characteristics with the 

original one when disturbances occur in the study area.  

In recent years, many schemes and algorithms have 

aimed to reach the above goal. Toward this end, some have 

proposed several state-of-the-art approaches using the 

modal-based method. In [2], the principal component 

analysis is employed to linearize the original model, which 

serves as the first step to reduce the model using modal-

based methods. Later in [3], a novel model reduction 

algorithm based on an extension of balanced truncation is 

proposed, where the active and the reactive power of the 

boundary is represented by a nonlinear equation of the bus 

voltage and the phase angle. In [4], a validation of the 

Krylov subspace is attempted on reducing the linearized 

model of the external area, by simulating a fault in the 

study area. Similar contributions based on the linear 

transfer-function [1, 5], the autoregressive model [6], etc. 

have shown great performance in projecting the relationship 

between the study area and the external area. However, the 

major bottleneck of the above method is the computation 

complexity. Also, the accuracy of the simulation results, 

under a different type of disturbance to the training case, 

needs further enhancement as the reduction error may 

substantially increase [7] if the training case fails to cover 

all types of disturbances. 

Coherency-based methods provide a promising way to 

overcome the above shortfalls, and this type of method is 

the most widely-used recently. To reduce a system using 

this type of method, there are three steps to be implemented: 

the identification of the coherency group, the system 

equivalence, and the dynamic reduction of the system. This 
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work includes the aggregation of the network [8] and 

aggregations of the generators [9, 10]. At present, many 

types of commercial software, such as the DYNERD [11], 

rely on the coherency-based equivalent approach. 

According to [12], the coherency-based method is capable 

of providing a homogeneous reduced model that has similar 

dynamic response characteristics with the original model. 

Although this type of reduction approach could provide the 

needed structure of the reduced area, there is still space for 

enhancement as aggregation algorithms in this paper do not 

include higher-order machine models and control systems. 

As a result, some critical parameters for the generator may 

not be accurate enough. In this situation, these parameters 

are necessarily calibrated to ensure that the reduced system 

can keep similar eigenvalues and eigenvectors with the 

original one. 

Recent developments in large-scale power systems have 

spawned interest in the use of the wide-area monitoring 

system (WAMS) utilizing phasor measurement units 

(PMUs). The applications of WAMS includes 1) power 

system monitoring, such as the post-event monitoring [13] 

and the state estimation [14]; 2) power system protection, 

such as the enhanced back-up relays [15-17], the adaptive 

out-of-step protection [18], etc.; and 3) power system 

control, such as the transient stability prediction [19], 

intelligent control strategies based on support vector 

machines [20], etc. The extensive application of the WAMS 

has been a powerful key to providing a technical approach 

for improving the security level of large-scale power 

systems. Also, the increasing deployment of PMUs is 

developed for better full-system observability with a large 

number of available data sources, thereby being the basis 

for the wide-area measurement-based dynamic model 

reduction methods. 

The contribution of this paper is to develop a dynamic 

model reduction method by repeatedly tuning the 

parameters of the reduced model until the dynamic 

response of the reduced system matches the original wide-

area measurements obtained in large-scale power systems. 

Conventionally, numerical methods, such as the nonlinear 

least squares (NLS), have proved to be powerful tools for 

solving problems like parameter identification [21], 

frequency estimation [22], stability analysis [23], etc. 

However, as the system is highly nonlinear, it is quite 

challenging to find a group of optimized parameters using 

numerical methods. Among several types of intelligent 

algorithms, particle swarm optimization (PSO) is widely 

applied in the power system for its excellent performance 

solving problems like parameter identification [24], 

nonconvex economic dispatch [25], etc. In comparison with 

the genetic algorithm (GA) that has already been 

successfully applied in the power system [26], PSO is more 

efficient because it has a smaller number of internal 

parameters and a shorter time to converge. This makes the 

PSO-based method more suitable for real-time applications. 

The remainder of this paper is organized as follows. 

Section II introduces how to obtain a reduced structure for 

the external area, which is based on the previous contribution 

of [9]. Section III discusses how the PSO works to tune the 

parameters of the external area. Section IV presents the 

application of the proposed method to the Northeast Power 

Coordinating Council (NPCC) on which the merits of the 

proposed method are evaluated. Finally, the contributions are 

concluded in Section V. 

II. PARAMETER TUNING OF THE EXTERNAL AREA 

A. The model of second-order generators 

Literature [9] presents an aggregation algorithm for 

obtaining reduced order power networks, which has already 

been implemented in the EPRI dynamic equivalence 

program DYNRED. In this method, the aggregated 

generators are using the second-order model, as presented 

below: 
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where U , I , and E are the phasors for the terminal 

voltage, terminal current, and the excitation electrical 

motive force (EMF), respectively. aR  and dX   are the 

stator resistance and the d-axis transient reactance. JH  is 

the inertia. D is the damping factor. mT  and eT  are the 

mechanical torque and the electromagnetic torque, 

respectively.   and   are the rotor angular frequency and 

the power transfer angle, respectively. 

According to the above, if the reduced model includes a 

total number of i second-order generators, there should be a 

total of 2i parameters to be tuned. 
B. The theory of PSO 

The core philosophy of the PSO is to find the best 

particle in the solution space. Each particle is assumed to be 

traveling in this space, and its location and velocity are 

renewed in each generation according to the desired fitness 

function. The following variables are defined as below: 

 ( )1 2, , ,i i i idX x x x=   (2) 

where d is the dimension of the solution space. Xi represents 

the location of the particle i. 

Similarly, Vi represents the velocity of particle i given by: 

 ( )1 2, , ,i i i idV v v v=   (3) 

The fitness of the particle i is given by (4). For a problem 

of minimization, equation (4) will have better fitness when 

the objective function holds a low value. 

 ( ) ( )i iF X fitness X=   (4) 

Let Pi be the location of particle i when it has the best 
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fitness, and Pg be the best location of all particles in the 

population, i.e., the global best fitness, which are given by: 

 ( )1 2, , ,i i i idP p p p=   (5) 

 ( )1 2, , ,g g g gdP P P v=   (6) 

Similar to other types of optimization algorithms, in each 

generation, the location of each particle is determined 

according to equation (7), which is given by: 
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 (7) 

where g represents the order of generation. To renew the 

velocity and the location of particles, equation (8) and (9) 

are employed in each generation: 
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 ( ) ( ) ( )1 1ij ij ijx g x g v g+ = + +   (9) 

where c1 and c2 are two acceleration factors, which perform 

as the step sizes to renew the location and velocity of each 

particle. r1 and r2 are two random numbers that uniformly 

distributed between 0 and 1. ω is the dynamic inertia weight. 

j represents the j-th dimension among 1 to d. 

III. METHODOLOGY 

After the application of the method in [9] to the original 

model, the tie lines between the study area and the external 

area can be left unchanged in the reduced model. For this 

reason, given the same disturbance that occurred in the study 

area, the similarity of the measured frequency on each tie line 

in the reduced model to that of the original model can be 

used as an indicator to represent the model accuracy. As 

shown in Fig. 1, assume that there are a total number of T tie 

lines between the two areas. If the total number of 

disturbance scenarios that should be considered is S, we 

assume that the measured frequency on these tie lines are 

.11rf , .12rf , …, .1r Tf , …, .2r Tf , …, .r STf  for the reduced 

model. Under the same disturbance scenarios, the measured 

frequencies for these tie lines for the original models are 

.11of , .12of , …, .1o Tf , …, .2o Tf , …, .o STf , respectively. 
A. Determining the fitness function 

Under the same type of scenarios s, the similarity of the 

frequency of a certain tie line t is calculated by (10): 
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where .r stf  is the mean of .r stf . .s tF  is the fitness, which 

represents the similarity of the frequency measurement on 

the t-th tie line under s-th scenario. If this index is closer to 

1, it indicates that the time domain response of the reduced 

model is in higher accordance with that of the original 

model, in which case both the variation characteristics 

(oscillation mode) and the magnitude error of the reduced 

model are quite close to those of the original model. 
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Fig. 1  Connections between the external and study area 

To take the frequency measurements on all tie lines into 

consideration, the average fitness in scenario s is given by: 

 .

1

T

s s t

t

F F T
=

=  (11) 

Thus, the fitness function of the PSO that to be optimized 

is given by: 

 
1

1
S

s

s
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=

= −  (12) 

As indicated, the optimizing equation (12) is to find the F 

with a minimum value, which is equal to finding a group of 

particles that make the frequencies of tie lines in the reduced 

model matches best with the original model. 
B. Parameter setting 

PSO uses c1 and c2 to control the step sizes of the 

renewing of the location and the velocity of each particle. 

To have better efficiency, the higher step size is preferred. 

However, if the step size is set too high, the tuning process 

will be difficult to reach a convergence result. According to 

[27], these two parameters are set to 2.0.  

The setting of ω is to obtain a balanced capability 

between finding a global minimum and finding a local 

minimum. The higher ω is, the better global convergence 

capability the PSO will have. Vice versa, the PSO will hold 

a higher local convergence capability. Therefore, at the 

beginning of the iteration, a higher ω is preferred; and ω 

should decrease with the growth of the generation. Thus, a 

dynamic ω is set as given by: 

 ( )max min

G g

G



  
− 

= − 
 

 (13) 

where max  and min  are the maximum and the minimum 

of ω, which are conventionally set to 0.9 and 0.2. G is the 

generation size, and g represents the number of the current 

generation. σ is the attenuation index to determine the 

decline rate of ω, which is set to 1 in this study. 

To prevent the particles from running out of the 

searching space, the velocity of each particle should have 
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some limitations, which is given by: 

 ( ).max .minij ij ijv x x G −  (14) 

Thus, the velocity and location of each particle are 

renewed according to equations (8), (9), and (14). 
C. Dynamic model reduction 

For illustrative purposes, the process to reduce the model 

is given below, as shown in Fig. 2. The details are as follows. 

1) Obtaining the structure of the reduced model 

according to [9]. Thus, the external area should include 

several numbers of generators, and each of them is both 

modeled in second-order. The total number of parameters to 

be calibrated is twice the number of generators. 

2) Parameter initialization. Assume that the total 

population size is N, which represents the number of 

particles that participate in each generation. G is the total 

generation of iteration. The setting of S depends on the 

number of oscillation modes of the model to be reduced, 

which should be analyzed specifically. 

3) In the beginning, s, n, and g are set to 1. In each 

generation, PSO generates N groups of parameters. For 

each group of parameters, S groups of simulation cases are 

performed using these parameters in the reduced model. 

Meanwhile, the same simulations are conducted in the 

original model. After simulations are finished, equation (10) 

is used to calculate the similarity between the frequency 

measurements of the tie lines of the reduced model and that 

of the original model. Then, equation (11) is used to 

determine the average fitness in scenario s. Finally, the 

average fitness of all scenarios is summed up, and F is 

determined as the fitness function to be optimized 

according to equation (12). 

4) When 3) has been repeated N times using the above N 

groups of parameters that the PSO has generated, the 

proposed method will pick the group of parameters that 

produce the smallest F among them. Then, it will be 

checked if g=G. If not, n and s will be initialized to 1 again. 

Step 3) will be repeated until the simulation process ends.  

5) The PSO will output the parameters obtained, and the 

reduction of the model will be ended. 

Generate N groups of parameters

Start

Perform S simulations in Scenario-1, Scenario-2,  , and Scenario-S, 
respectively.

Record frequency measurements for a total number of T tie lines as 
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Fig. 2  The flowchart of the proposed method 

IV. CASE STUDY 

A. Reduction of the NPCC model 

Based on the PSS/E software, the NPCC system is used 

as the original model, and it has 6 zones and a total number 

of 140 buses. In this study, Zone-1 is set as the study area 

that should be kept unchanged, while the structure of the 

other 5 zones is reduced using the widely-used inertial and 

slow coherency aggregation algorithm on the DYNRED 

software [9]. Grid conditions, such as the scale of the 

system and the range of changes in the grid structure, are 

given in Tab. 1. The structure of the NPCC system is shown 

in Fig. 3. 

As indicated, the total number of generators in Zone 2-6 

is reduced from 39 to 8. Among these zones, the only 

generator left in Zone-3 is not aggregated. As a result, the 

total number of generators to be tuned is 7. Each parameter 

for these generators is given by Tab. 2. 



 

VOLUME XX, 2017 9 

 
Tab. 1 Changes of the grid condition 

Zones 
Number 

of buses 

Number of 

generators 

Pgen 

[MW] 

Qgen 

[Mvar] 

Pload 

[MW] 

Qload 

[Mvar] 

O
ri

g
in

al
 

1 36 9 4939.0 1097.4 4896.4 1100.1 

2 36 9 6707.0 1196.4 6759.0 1320.5 

3 10 4 2941.0 491.5 2802.0 625.0 

4 31 6 5415.0 2178.6 5312.0 1476.0 

5 10 6 2755.0 601.8 2379.0 443.0 

6 17 6 5585.0 -438.9 5020.0 -730.0 

R
ed

u
ce

d
 

1 36 9 4939.0 1097.4 4896.4 1100.1 

2 9 0 0.0 0.0 976.3 215.6 

3 3 1 311.0 109.1 2247.1 609.9 

4 4 1 1200.0 164.5 2331.6 418.4 

5 6 4 7077.0 1418.2 6137.7 1292.5 

6 7 2 14365.0 2337.4 10975.0 963.1 

 
Tab. 2 Initial parameter for the reduced NPCC model 

Zone 4 5 5 5 5 6 6 

Bus 101 120 121 122 123 133 135 

Inertia 4.07 25.00 47.30 190.00 33.00 75.80 9.23 

Damping 4.07 25.00 47.30 190.00 33.00 75.80 9.23 

To have a higher accuracy of the reduced model under 

both the bus-fault event and the generator-trip event, two 

disturbance scenarios are included to tune the inertias and 

the damping constants of the above generators. They are a 

bus-fault event on bus 7 and a generator-trip event on bus 

26. Therefore, S is set to 2. The total generation is set to 

G=100, and the population size is set to N=250. T is set to 2 

because the frequencies for both of the two tie lines should 

be taken into consideration. In each generation, the particle 

with the best fitness is recorded, and the variation of its 

fitness is shown in Fig. 4. 
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Fig. 3  The original NPCC model 
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Fig. 4  The variation of the fitness function 

As indicated, the best fitness starts at about 0.379, ending 

at about 0.105 after the 32-nd generation. This 

demonstrates that the error between the reduced model and 

the original model, under both the generator-trip event and 

the bus-fault event, is growing lower with the optimization 

of these parameters. At last, the parameters are output as 

below in Tab. 3. 
Tab. 3 Optimized parameters for the reduced NPCC model 

Zone 4 5 5 5 5 6 6 

Bus 101 120 121 122 123 133 135 

Inertia 15.22 71.57 50.70 84.01 26.17 2.89 7.07 

Damping 33.14 95.85 52.24 124.97 8.00 1.24 1.46 

B. Simulation and comparison 

To assess the accuracy of the reduced model in 

presenting the frequency response of the original model 

under generation-trip contingencies, the cases in Tab. 4 are 

conducted.  
Tab. 4 Test contingencies for generator-trip events 

Test 

Contingency 

Bus 

Number 
ID 

Trip Amount 

P [MW] Q [MVar] 

1 23 1 276.65 93.60 

2 26 1 800.00 24.96 

3 36 1 554.00 212.33 

In each contingency, the corresponding generator trips at 

t=1 s, and the simulation ends at t=5 s. In each case, 

comparison results are provided among the response of the 

original model, the response of the reduced model using the 

initial parameters, and that using the optimized parameters. 

The results are shown in Fig. 5, Fig. 6, and Fig. 7, 

respectively. 

For the first contingency, a generator connected at bus-23 

trips at t=1 s, and the loss of active power is 276.65 MW. 

As a result, the frequency dips very soon after the 

occurrence of this event. The frequency variation of the two 

tie lines is quite similar as they are geographically near. As 

a result, they show a similar transient characteristic.  

By using the parameters obtained from PSO, both the 

frequencies of the two tie lines match quite well with the 

curve from the original model. The oscillation mode of the 

reduced model is also in high accordance with the original 

model, showing that the reduced model from the PSO has 

better accuracy than the model obtained from DYNRED 

software. For instance, by using the initial parameters from 

DYNRED, the frequency of tie-line 1 matches well with the 

original one before t=2 s. However, an obvious difference 

can be seen by observing the second crest at about t= 3.65 s 

and the third trough at t=4.36 s, respectively. In contrast, by 

using the parameters outputted from the PSO, there is no 

obvious frequency mismatch. Also, the nadir frequency 



 

VOLUME XX, 2017 9 

error also declines significantly. For contingencies 2 and 3, 

similar conclusions can be reached. 
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Fig. 5  Generator trip at bus 23 
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Fig. 6  Generator trip at bus 26 
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Fig. 7  Generator trip at bus 36 

In comparison with generator-trip contingencies, bus-

fault transients usually include larger magnitudes of system 

dynamics. To investigate if the proposed method applies to 

this type of fault scenarios, bus-faults are incepted when 

t=1 s at bus 22, 23, 36, respectively. The results are shown 

in Fig. 8, Fig. 9, and Fig. 10, respectively. 
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Fig. 8  Bus fault at bus 22 
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Fig. 9  Bus fault at bus 23 
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Fig. 10  Bus fault at bus 36 

As indicated, for faults that occur at bus 22 and 23, the 

model will have higher accuracy under the bus-fault 

condition if the parameters of the PSO are used. By this 

means, the frequencies for both tie line 1 and tie-line 2 

matches quite well with that of the original model. For the 

frequency of tie-line 2 in Fig. 10, both the results come from 

the PSO and that from the DYNRED are not satisfactory. 

Therefore, further merits are needed to quantify the 

performance of the proposed method. 
C. Error analysis 

To quantify the performance of the proposed method, 

several indicators should be defined. To determine whether 

the dynamic response of the reduced model is similar 

enough to the original one, the main focus should be placed 

on the frequency match and the magnitude error, which 

represents the similarity of the oscillation mode and that of 

the power mismatch. Therefore, the following indicators are 

defined: 

Frequency match. Conventionally, the Pearson 

correlation is a measure of the linear correlation between 

two variables. It has a value between 1 and -1, where 1 is a 

total positive linear correlation, 0 is no linear correlation, 

and -1 is a total negative linear correlation. According to 

this, equation (15) and (16) is introduced especially to 

quantify the frequency-match between the reduced model 

and the original model. In this equation, the amplitude error 

has no impact on the calculation result. 
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f f

N

 


 =

  − −
=   

−   
  (15) 

where st  is the frequency-match of the tie line t under 

event s. sampN  is the number of sampling.   and   are 

the mean and the variance of the corresponding 

measurement. 

 
1

T

s st

t

T 
=

=  (16) 

where s  is the total frequency-match of the reduced 

model under the disturbance scenario of s. 

Nadir based frequency response error. Frequency nadirs 

measure the minimum post contingency frequency in a 

presented frequency waveform, which is an essential 

indicator in the power system. This indicator measures the 

active power change divided by the change in frequency to 

the nadir point. The results are shown in Fig. 11. 
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Fig. 11  The error comparison  

According to the above, the power mismatch is greatly 

reduced if the reduced model is from the PSO. When a 

generator-trip event occurs, the power mismatch is no more 

than 40 MW. When a bus-fault event occurs, the power 

mismatch is no more than 20 MW. However, if we use the 

parameters come from DYNRED, the power mismatch can 

be as high as 58.50-105.3 MW in a generator-trip event, and 

10.40-124.80 MW in a bus-fault event, respectively. As a 

result, the proposed method shows satisfactory performance 

in reducing the dynamic model of large-scale power systems. 

Using the same number of generators and the same type of 

structure, the proposed method reaches higher accuracy in 

comparison with the existing method. 
D. Reduction of the Texas model 

In the above section, the parameters of c1 and c2 of the 

PSO are heuristics-based according to the experience of [27]. 

For this reason, the performance of the PSO in reducing other 

power systems with different scales should be further studied. 

In this section, a system with a large size is used to assess the 

performance of the proposed method. This system is built on 

the footprint of the electric reliability council of Texas. It has 

four voltage levels (500/230/161/115 kV) and a total 

generation capacity of 98 GW, a portion of which is 

committed to supply a load of 67 GW and 19 GVar. The 

built of the base case of this model is discussed in [28], and 

the dynamic information can be found in [29]. 

In Fig. 12, the zones of the Texas system are shown in 

different colors, and they are the far west (Zone-1), the north 

(Zone-2), the west (Zone-3), the south (Zone-4), the north 

CE (Zone-5), the south CE (Zone-6), the coast (Zone-7), and 

the east (Zone-8), respectively. Among them, Zone-7 

generates the largest amount of active power and also 

consumes the largest amount of active power, and is set as 

the study area. Four disturbance scenarios, including a bus-

fault at bus-7045, a generator-trip at bus-7045, a bus-fault at 

bus-7166, and a generator-trip at bus-7166 are included to 

tune the inertias and the damping constants of the generators 

in the external area. In this scenario, S is set to 4. The total 

generation is set to G=100, and the population size is set to 

N=500. T is set to 3 because the frequency responses of three 

tie-lines are taken into account, and the buses of these tie 

lines in the study area are bus-7018, bus-7274, and bus-7389, 

respectively. For illustrative purposes, the changes in the 

parameters for the generators before and after optimization 

are shown in Fig. 13. 

1:Far west

2:North

3:West

4:South

5:North CE

6:South CE

7:Coast

(study area)

8:East

 
Fig. 12  The Texas system 
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Fig. 13  The variation of the parameters 

To assess the accuracy of the reduced model under 

different disturbance scenarios, a bus-fault contingency and a 

generator-trip contingency on bus-7166 are conducted. The 

frequency waveform of the three tie lies is recorded, as 

shown in Fig. 14, and Fig. 15. As seen, by using the 

parameters obtained from PSO, both the frequencies of the 

three tie lines match quite well with the curve of the original 

model. The oscillation mode of the reduced model is also in 

high accordance with the original model, showing that the 

reduced model from the PSO has better accuracy than the 

model obtained from DYNRED software. Also, the nadir-

point mismatch is significantly reduced. 
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Fig. 14  Bus-fault contingency at bus-7166 
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Fig. 15  Generator-trip contingency at bus-7166 

To have a total view of the performance of the proposed 

method, in Zone-7, a total of 70 bus-fault contingencies and 

70 generator-trip contingencies are conducted. Then, the 

frequency waveforms of the three tie-lines in the reduced 

model and those of the original model are compared. The 

results are given in Fig. 16-Fig. 19. As seen, the frequency-

match index of each contingency is closer to 1 after the 

optimization, indicating that the proposed method works well 

in terms of improving the similarity of the oscillation model 

of the reduced model. Also, the nadir-point error is 

significantly reduced in most cases.  

0

0.5

1

P
e
ar

so
n

co
rr

el
a
ti

o
n

10 20 30 40 50 60 70
0

Event number

PSO
Dynred

 
(a) Bus-7018 

0

0.5

1

P
e
ar

so
n

co
rr

el
a
ti

o
n

10 20 30 40 50 60 700
Event number

PSO
Dynred

 
(b) Bus-7274 

0

0.5

1

P
e
ar

so
n

co
rr

el
a
ti

o
n

10 20 30 40 50 60 700
Event number

PSO
Dynred

 

(c) Bus-7389 

Fig. 16  Pearson correlation under bus-fault events 
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(c) Bus-7389 

Fig. 17  Pearson correlation under generator-trip events 
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(c) Bus-7389 

Fig. 18  Nadir error under bus-fault events 
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Fig. 19  Nadir-error under generator-trip events 

V. CONCLUSION 

In this paper, the PSO is introduced to optimize the 

dynamic reduction model of large-scale power systems. 

Conclusions are as follows. 

1) The implementation of the proposed method needs a 

reduced structure of the external area, usually obtained by 

the currently-used inertial and slow coherency aggregation 

algorithm. 

2) Using the boundary measurements of the study area, 

parameters of the external area can be tuned and optimized 

under certain disturbance scenarios.  

3) After the implementation of the PSO, dynamic 

responses of the reduced model match better with the original 

one under both generator-trip events and bus-fault events, 

indicating that the reduced model is a more accurate one in 

comparison with the model obtained by the inertial and slow 

coherency aggregation algorithm. 

4) Except for the fault scenarios considered in this paper, 

the performance of the proposed method under asymmetric 

fault conditions are also needed to be assessed. Such works, 

including the investigation for the zero-sequence parameters, 

the modification of the large-scale systems used in this 

research, the changing of the fitness function, etc. are left for 

future studies. 
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