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Abstract—While some users share large amounts of infor-
mation, others share very little. However, even with limited
amounts of sharing, users may still have high levels of exposure.
Previous research has shown that for certain attributes like
gender, adversaries can determine a target’s hidden attribute
value by taking a majority vote of its community or by finding
others in the site population with similar profiles. However, for
some attributes, these attacks fail because of the diversity of
the attribute value in the community. In this paper, we present
a new privacy attack - a relational background attack (RBA),
where an adversary builds inference models for a hidden attribute
of the target by using the target’s relational background set.
Doing this allows the adversary to build a “biased” model that
captures the significant local features for inferring the hidden
attribute. We empirically demonstrate the effectiveness of this
attack on a special case of the relational background set (a local
community) using a Twitter data set. We then consider the case
when an adversary only has access to different subsets of the
target’s local community, and show that the attack can still be
conducted effectively with certain approximations of the target’s
local community.

Index Terms—data privacy, Twitter, information exposure

I. INTRODUCTION

Given the recent exploitation of social media data, data
privacy on social media is a growing concern. While some
users share significant amounts of personal information, others
share very little. However, even with limited amounts of
sharing, users may still have high levels of exposure because
of available background knowledge. Our goal is to understand
the impact of background knowledge on data privacy.

A background knowledge attack occurs when an adversary
uses previously learned knowledge to infer sensitive infor-
mation of a target user. Privacy researchers have shown that
background knowledge attacks are especially hard to defend
against in the real world [1]. It has also been shown that
knowledge about one’s community [2] or group membership
[3] can be used to reduce a user’s data privacy. Typically
these studies use a majority vote among community members.
However, the user may be a minority in a community with
respect to the hidden attribute. While previous work has shown
that as the number of possible values for the attribute of
interest increases, the accuracy of inferred hidden values of
the attribute of interest decreases [4], we will show that this
decline does not mean those attributes are not vulnerable.

Lisa Singh
Georgetown University
Washington, D.C., USA
lisa.singh @ georgetown.edu

Kevin Tian
Georgetown University
Washington, D.C., USA
kt493 @georgetown.edu

Specifically, this paper defines and demonstrates a relational
background attack (RBA), where background knowledge is
generated not from a random sample, but from a relational
background set of the target user. A toy example of the attack
is shown in Fig.1. On the left side, we see that an adversary
is interested in determining a target user’s occupation. The
target user has posted some information on a particular social
media site, but not his occupation. In order to determine
his occupation, the adversary uses the social media site’s
Application Program Interface (API) to collect the profiles of
users in the target user’s relational background set, e.g., those
users who are part of the target user’s community on the social
media site, builds an inference model based on these profiles,
and infers the hidden information of the target user using this
inference model. In the example attack in Fig.1, the majority
occupation (“Writer””) among the community profiles is not the
occupation of the target user (“Doctor”). Also, not everyone in
the relational background set has an occupation since different
users share different information on social media.

Given this example, this paper looks to answer the follow-
ing questions: (1) can meaningful background knowledge be
generated from the population of the target individual’s com-
munities, (2) can an adversary use this generated background
knowledge to determine hidden values of target individuals
on social media, and (3) how much information is needed
from the relational background set of the target user in
order to obtain reasonable inference accuracies? Answering
these questions will help to better understand this form of
information leakage.

Toward that end, this paper makes the following contribu-
tions: 1) we define the relational background attack on Twitter;
2) because APIs may limit the amount of information an
adversary can obtain, we present different ways to conduct the
attack when an adversary can only obtain partial knowledge,
i.e. data for a subset of neighbors; and 3) we execute the attack
using Twitter data and show its effectiveness on different
hidden attributes using different community sizes, and on users
who share different amounts of information.

II. RELATED LITERATURE

Social media privacy continues to be an active area of
research. There are a number of papers investigating methods
for learning demographic features of users with their social
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Fig. 1: An example of RBA.

media data, including location [4], age [5], gender [6], and
those trying to determine multiple features [2], [7]-[11]. Our
paper largely builds off the insights and algorithms developed
by Moore et al. [12], where the authors show that using a
social media site’s population norms can give insight into a
target user’s hidden attributes. Bergsma and Van Durme [13],
Colleoni et al. [14], Rao et al. [6], and Fang et al. [15] explored
potential inference algorithms that exploited the unstructured
data of a user to predict latent attributes. Chaabane [16], Tang
[17], and Al Zamal [7] looked at using supplemental informa-
tion such as interests and neighbor attributes to train different
prediction algorithms. Culotta [18] used an external website’s
web tracking data to predict the demographic breakdown of
social media users. Researchers have also explored algorithms
that look at attributes across sites to infer users’ information
[10], [19]-[21]. A recent thread of research shows that privacy
breaches are possible even if social media data are anonymized
to share with advertisers or researchers [22]. While the spirit of
our work is similar to these previous works, our attack model
differs and our experimental design.

A number of papers investigate ways to exploit relationship
information among social media users for different attribute in-
ference tasks, where a “relation” may be linkages/connections
(e.g. friendship or follower), or same group membership (e.g.
hashtags on Twitter or groups on Facebook) [2], [3], [23], [24],
[25], [26]. Focusing on the most relevant work, Zheleva and
Getoor [3] showed that using the majority vote of an attribute
based on groups and linkages (friendships) as features is effec-
tive for predicting the values of latent attributes such as gender,
political view or geographical location of a target user. While
using the neighborhood attribute value is effective for more
homogeneous networks, our work extends the ideas to exploit
relational information from more heterogeneous neighbors.
Mislove et al. [2] explored possible inference methods based
on both global and local community detection algorithms to
determine a user’s hidden value. Tu et al. [27] proposed a
method to identify professions by first using traditional classi-
fiers and then refining the results by using connections between
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target users and different communities based on professions.
While both of these works use inference models, they assume
that the entire network is available. In this paper, we conduct
the relational background attack on both the target user’s full
network and different subsets of the network, showing its
effectiveness under different neighborhood conditions. This is
important since APIs do not always give access to all the
relationships associated with an individual.

Finally, we consider the variability in the amount of in-
formation users choose to share on social media. Those
users who rarely or never generate information, instead using
social media as a tool for information-consumption, are called
passive users. Passive users make up an important fraction of
social media. For example, approximately 40% of Facebook
[28] and Twitter [29] users are passive users. Previous research
suggests that the followees, i.e., people that a user is following,
can help infer interests of passive users, leveraging different
types of information such as tweets, usernames, biographies
[30] and titles of Twitter lists [31]. Although this research
is conducted from a user-modeling point of view, it still
shows that there exists a potential vulnerability with regards to
privacy for users, including passive ones, via their followees.
Our findings are consistent with previous research. We will
show, that the RBA is effective for both passive and active
users, and therefore, sharing less does not imply improved
privacy.

III. ATTACK MODEL
A. Users and relationships

One of the primary goals of social media sites is to connect
people. Social media sites accomplish this in different ways.
One way is by trying to increase the amount of interaction
among users. Each interaction between users can be viewed as
a type of relationship. Examples of relationship types between
two users include following, mentioning, and liking. Relation-
ship types among multiple users include group membership
and participation in the same event. In this paper, we focus
our discussion on social connections between users as our
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relationship type since they are explicitly identified on social
media.

We consider the profile I/ of a user u as a tuple, consisting
of an unique identifier /D, some number of key-value pairs
{A;}7L, that belong to the user, and a relational background
set S. Because social media data are schemaless (different
users share different attributes), we represent our data as
a set of key-value pairs A; = (Aj,a;), where A; is an
attribute name, and a; is its corresponding attribute value.
An attribute value can be either a singleton or an unordered
set. Examples of key-value pairs are (gender,{male}) and
(skills, {Python, C + +1}).

A user u is a member of a relational background set S, i.e.,
a set of users on the social media site that are connected to our
target u, based on one or more relationship types. An example
of a relational background set is a community C, where
community is a structural property on a network in which
nodes are densely connected. Communities can be determined
using direct linkage information or using community detection
algorithms. Generally, defining a relational background set
requires the target user w and the relationship R to determine
the relational background set, S(u, R).

Formally, we define the wuser’s data as U
(1D, {Aj};’L:17S). A user might choose to publish a
subset of his/her attributes on social media, while hiding
the rest. We denote the public profile of user u as UF,
while the hidden component of his profile as U/*. Clearly,
U=urvu? andu? nut = 2.

B. Relational background attack

In this section, we formally define a new privacy attack,
the relational background attack. Given an adversary 1" with
knowledge of a user’s public profile, 4/, the goal of the
adversary 1" is to recover the value of an attribute of interest
A, which is part of user u’s hidden profile 2. Formally, the
input of this model is the target user u on a social media site,
its public profile /*, and an attribute of interest A; the output
will be a prediction of value a on attribute A for the target
user .

In this model, we assume 7" is capable of partially acquiring
relational information on the social media site u has joined. By
partially we indicate it might be impossible for the adversary
to acquire all the relational information for u on that social
media site. However, we assume that 7" can always collect part
of it. Using public relationship information about u, 7" can then
obtain a relational background set S of the target. Such a set
could take the form of a local community, direct neighborhood,
and so on. In this paper, we will focus on the local community
C as our relational background set, i.e., S := C. We also
assume that 7' can partially acquiring public profiles whose
value of A can be extracted. In other words, a subset of the
community shares values for A as part of their public profiles.

Based on 7’s knowledge, the adversary could launch a
relational background attack. We divide the attack into four
parts: (1) acquiring the relational background set of the target
user, (2) acquiring public profiles and extracting values of the
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attribute of interest A for these public profiles to build a re-
lational background knowledge dataset, (3) building inference
models based on the relational background dataset, and (4)
using the learned model to infer an unknown attribute value
for A of the target user, i.e., performing the actual attack.

We have already assumed that only a fraction of linkage
information can be acquired, and only a fraction of public
profiles of the members in the relational background set can
be properly labeled. Given this partial data, it is natural for us
to also study how much data is enough to make RBA effective.
In practice, although social media sites allow 7' to gather
relational information and public profiles through APIs, there
usually are restrictions on quantity or rate of data collection.
We incorporate these assumptions to make our attack map to
reality. Therefore, studying approximations that are variants of
the basic attack will help us understand the sensitivity of the
inference with regards to the richness of information shared
by community members.

IV. METHODOLOGY FOR CONDUCTING ATTACKS

The adversary 1" gathers the desired relational information
and public profiles through the a specific social media API.
To determine the target user’s community on a social media
site, 1" applies a local community detection algorithm on this
network, utilizing the linkage information of the sub-network.
After determining the relational background set, 7' collects
public profiles of accounts in the relational background set to
build a background knowledge dataset. An inference model
is built using this dataset and the public profile of w, also
acquired from the API, to predict the attribute value of interest.

The pseudocode for RBA is shown in Algorithm 1. The
input of the process is the target user v and his public profile
U. The attribute of interest also needs to be specified. Once
the local community C of target user u is determined (line 2),
the adversary 7' can build a background knowledge dataset
based on this community. After initialization of the local
communities C, the list of feature vectors F, and the list of
class labels T (line 3-5), 7" will collect the public profiles for
all the members in C (line 7), and attempt to extract the value
of attribute A as the label (line 8). If the label is extracted,
the feature vector and the label will be added to the relational
background knowledge dataset (line 10, 11). Inference models
using machine learning methods will be trained using this
dataset (line 14). Then, given a feature vector based on the
public profile of our target user w (line 15) the model will
produce the prediction value on the desired attributes in the
hidden profile of w (line 16).

A. Local community detection

One kind of the relational background set S is the target’s
community C. Although there is no universally accepted
definition, generally, a community is considered to be a set of
nodes in a network where there are more edges connecting the
nodes inside the community than edges linking the community
and the rest of the network [32]. While numerous community
detection algorithms exist, one well known metric used for
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Algorithm 1 Relational background attack with local community

1: function LOCALCOMMUNITYRBA (u, U”, A)

2: C <~ GETLOCALCOMMUNITY ()

3 F«[ ]

4: T+ [ |

5: model <—new Model()

6: for u; in C do

7 UF < GETPUBLICPROFILE(u;)

8: label <~ EXTRACTATTRIBUTEVALUEU/ , A)
9: if label #NULL then

10: F.append(GETFEATUREVECTOR(U! , A))
11: T .append(label)

12: end if

13: end for

14: model.train(F, T)

15: f «<GETFEATUREVECTOR(UT | A)

16: return model.predict(f)

17: end function

community detection is modularity [33]. Modularity is defined
as the fraction of edges that fall within a given partition minus
the expected fraction of edges if the edges were randomly dis-
tributed. A high score will be assigned to a partition with dense
connections among nodes within the community and sparse
connections with nodes in other communities. Because it is
impossible to know the entire structure of the network, using
these global metrics is difficult for this scenario. Clauset [34],
Luo et al. [35], and Chen et al. [36] proposed different local
modularity measures to evaluate a given local community. At
a high level, they introduce the notion of a boundary node
that connects to nodes outside the community and greedily
maximizes local modularity.

Our local community detection algorithm is a variant of
[36]. We start with the node of the target user u, and grow the
community D greedily, that is, repeatedly adding a node into
the current community that maximizes our local modularity
measure M’ until no node adjacent to the current community
can increase M’ if added to the community, i.e. AM’ < 0,
where

Ein +e(v, D) B E;

AM' = —
Eiy + Eou + e('Uy D) Ein + Eou

for any v € D. E;, represents the number of edges with both
nodes in D, E,,; represents the number of edges with one
node in D and one node in D, e(v, D) is the number of edges
between v and nodes in in D, and e(v, D) is the number of
edges between v nodes in D.

Fig. 2 shows an example. In these subfigures, the current
local community D of target user u consists of green nodes
and w itself. E, is the number of green edges, while F,; is
the number of red edges. Grey nodes are possible candidates
that might be added into the local community on the next
step. In Fig. 2a, E;;, = 11 and E,,; = 5; M’ = 11/16 ~
0.69. In Fig. 2b, the node that would increase M’ the most is
highlighted using green dashes, AM' = 0.125.
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V. APPROXIMATIONS FOR ATTACKS

The adversary T' would like to collect all the public re-
lational information from the network and label all public
profiles in the target user’s community. In this case, we say
T is able to launch a full knowledge RBA. That is, T can
and will grow the full local community of our target user u,
and build the background knowledge dataset based on all the
public profiles in this community.

Unfortunately for 7, in practice it can be difficult to collect
all the desired information. There are many reasons for this.
First, many social media APIs set data collection limitations.
Next, when building the relational background knowledge
dataset, some members in the local community might also
hide their values for the attribute of interest. Finally, utilizing
the data of every member in the community is not efficient
since the data collection and community building processes
are both time and storage consuming. Given the situation, the
attacker is more likely to conduct a partial knowledge RBA.

This leads us to consider the following question: how
much information is necessary for 7" to effectively conduct a
RBA? To answer this question, we will consider the following
approximations of the full local community of our target users:
(1) the 1-hop neighborhood of wu, (2) a random sample of
community members, and (3) a sample based on a fraction
of the community members ranked by their centrality metrics.
We now go through each of these in more detail.

1-hop neighborhood: The 1-hop neighborhood of a target
user u consists of all users directly linked to u. Members
inside the 1-hop neighborhood are all closely connected to the
target, but they might not be closely connected to each other.
A 2016 study shows that Twitter users have an average of 707
followers [37], indicating that the size of 1-hop neighborhoods
might be much larger than the size of local communities,
possibly resulting in more noise.

Random sampling over community members: One way to
reduce the workload of RBA is to use a random sample of
the members in the local community. In order to understand
the effectiveness of this approximation, we collect the local
community, and compare the performance of RBA using
the entire community and different random fractions of the
community.

Sampling over community by centrality: Centrality charac-
terizes the importance of a node in a network [38]. A higher
centrality score indicates more structural importance of a node.
For this approximation, we rank nodes in the community using
different centrality metrics (degree, closeness, betweenness,
and eigenvector) and compare the performance of RBA using
community nodes that have the highest centrality values. Here,
the assumption is that structurally important members in the
community carry more information to build the inference
model for determining u’s hidden attribute value.!

!t is possible that structurally important members in the network we obtain
may be different from the ones in the actual network. We have designed our
experiments to reduce the likelihood of this scenario, but the centrality values
should be viewed as part of the approximation since a possibility still exists.
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VI. EMPIRICAL EVALUATION

In this section, we present our experimental evaluation. We
begin by describing our dataset, followed by the descriptions
of the inference models we use to infer values of differ-
ent attributes. Then we present our experimental results for
conducting a RBA using the local community to infer the
hidden value of u (partial knowledge attack) and analyze
the impact of different approximations of the community.
Finally, we simulate a full knowledge attack to understand
its effectiveness.

A. Datasets

We use a subset of the dataset collected by Singh et al.
[10]. In our sample, there are 257 target users for whom we
have their gender, age, country location, and occupation as
ground truth attributes. To construct the ground truth, the API
of about.me was used, where users self-report their unique
identifiers on multiple social media sites. Based on this ground
truth, we first collect the follower/following information start-
ing from each target user via the Twitter API, and grow a local
community for each target user using the method described in
Section IV. We then collect the public profiles of members of
each community through the Twitter API. In total, we collected
21,671 public profiles, including our target users’ profiles.
The average size of the user communities is 84.32, with a
maximum of 237 and a minimum of 11. The histogram of
the size of communities is shown in Fig. 3. The x-axis is the
size of local community we collected, and the y-axis is the
frequency of the size. As we can see, the most common sizes
of communities are between 10 and 110.

The goal of the RBA is to infer the gender, age, location
and occupation of the target users. Table I shows the average
percentage of the target’s community that shares each hidden
attribute and the average number of distinct values for each
hidden attribute. We see that on average thirty to sixty percent
of the communities share each of these hidden attributes.
While the fraction is high, the variation is a reminder that
people share different information online. The table also shows
that the number of distinct values for each community is small,
simplifying the inference task. This biasing toward values that
are more likely is a major reason this background knowledge
attack is successful.
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TABLE I: Community statistics

Attribute Avg. % of community Avg. domain size
sharing attribute per community
location (country) 62.1% 4
gender 40.9% 2
age 52.9% 4
occupation 32.2% 6

B. Experimental setup

In order to simulate the attack, we need to infer values for
attributes of the target user’s community in order to infer the
target’s value. We accomplish this by using well established
approaches for the community inference (since that is a ground
truth value for the community member) and classic models for
the target user. All experiments were run 10 times, and their
average accuracies are reported. For each hidden attribute, we
show the accuracy of determining the value for the target user.
We pause to mention that an extensive sensitivity analysis was
conducted for every algorithm and every attribute. However,
due to space limitations, we only show the best results here.

C. RBA Accuracy

1) Location: The location of community members are
determined by extracting the location from the self-reported
“location” field and “description” field of their public Twitter
profiles. To ensure that they are real locations, we validate
them using the Google Map API. The locations may be
specified at the city or state level, but we maintain the country
level value as the community member’s location value.
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TABLE II: Inference accuracy of RBA for location.

Model Attributes used Country
Naive Bayes (vector_len= 200) Tweets 0.895
k-NN (k = 10, vector_len= 200) Tweets 0911
k-NN (k = 10) “Description” field 0.746
k-NN on tweets (k = 10) + Naive Bayes on description 0.926

For inferring the target user’s location value, we test Naive
Bayes and k-NN, using different values of k. We use a bag of
words model for each tweet and embeddings of those words.
Table II show the accuracy results for location. There are a
number of interesting findings. First, in general, this is a very
successful attack irrespective of the learning algorithm - with
success ranging from 75% to 92%. The “description” field
of the users is not as good a feature as using the tweet text.
This is surprising since the description field tends to contain
biographical information about users. However, it is much
shorter than the tweet data. The best performance occurs when
we use a linear combination of a k-NN classifier (kK = 10)
built using tweets of users, with sentence vectorization using
word2vec pre-trained on a Twitter dataset, and a multinomial
Naive Bayes classifier build using the description of users. It
is not surprising that combining both pieces of information
leads to a better predictive model.

2) Gender: We extract gender using profile images. The
model we used is based on a deep neural networks model
proposed in [39] and [40]. We put the profile image of users
into this model and predict each community member’s gender.

Again, we predict the target user’s gender using Naive
Bayes and k-NN. We use the following two features: topics
generated from the “name” field using LSI [41], and the tweets
with bag-of-word embeddings, as we did for location. Table
IIT shows the accuracy results for gender.As we can see, when
using the “name” field, a smaller value of k = 3 and a medium
number of topics (50) leads to better performance. On the other
hand, when using topics generated from tweets of the users
an even higher accuracy is achieved using k-NN and a larger
size of word vectors. This may be a result of inconsistent
sharing of the “name” field, the sharing of inaccurate values,
the indistinguishably of some names in terms of gender.

The best attack occurs when we use a linear combination
of results from a k-NN classifier with topics generated using
LSI (k = 3, number of topics = 50) on the “name” field, and
a k-NN classifier (¢ = 10) built using the tweets of users.
There are a number of papers showing very high accuracies
for inferring gender on Twitter. Our focus is not on the best
accuracy possible, but rather conducting a simple version of
the attack and showing that the accuracy is still high, 67% in
this case.

3) Age: Similar to gender, we use profile images to deter-
mine the ages of community members. Again, we use the deep
neural networks model proposed in [39] and [40]. We also
determine age by searching for birthday self proclamations
in users’ tweets. We use a dictionary of phrases to search
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TABLE III: Inference accuracy of RBA for gender.

Model Attributes used Accuracy
k-NN (k = 3, num_topic= 50) “Name” field 0.462
Naive Bayes (vector_len=100) Tweets 0.482
k-NN (k = 10, vector_len=200) Tweets 0.642
0.4 k-NN on name (k = 3) + 0.6 k-NN on tweets (k = 10) 0.669

TABLE IV: Inference accuracy of RBA for binned age

Age bin | # of target users  Accuracy
10-19 12 0.667
20-29 80 0.788
30-39 93 0.731
40-49 35 0.714
50-59 26 0.692
60-69 10 0.300
70-79 1 0.000
overall | 257 0.720

for phrases like “my 20th birthday”, and calculate the user’s
age based on the timestamp of the tweet containing the birth
date. If both methods return a valid age, we use the birthday
announcement as the final value.

For the age inference task, we create 10-year bins containing
ages 10 to 79, the range that all our targets fall into, and
we classify the target user into one of them. We use one-
versus-rest Support Vector Machines (SVMs) with a radial
basis function kernel, and extract the k-top word stems and
k-top hashtags as features where k& = 20. This setting is used
by Al Zamal et al. [7] for age inference. Table IV shows
the inference accuracy for different age bins. We see that the
inference accuracy among younger users is higher. This is not
surprising since younger users are more prevalent on social
media,” and more likely to have connection with their peers.

4) Occupation: The occupation of community members is
extracted by building a dictionary of job related words and
searching for them in the “description” field of users. We then
map these words into one of the 23 major categories specified
in the Standard Occupational Classification (SOC)® system, a
system developed by the US Bureau of Labor Statistics. If
there is a word in the description which can be mapped into
one of the categories, the category is recorded. The category
with the highest count is taken as the occupation label of the
community member. Our target users fall into 17 of the 23
categories.

To infer the hidden occupation of the target user, we use
SVMs with a radical basis function kernel. The classifier
uses word tokens extracted from the tweets of the users and
identify word clusters using word2vec pre-trained on a Twitter
dataset. This approach was proposed by Preotiuc-Pietro [42].
Table V shows the inference accuracy on different occupation
categories. Overall, the attack is successful approximately
53% of the time. The deviations occur when the size of the

Zhttps://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/
3https://www.bls.gov/soc/2010/home.htm
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TABLE V: Inference accuracy of RBA for occupation

Occupation ‘ # target users  Accuracy
Legal 2 1
Healthcare practitioner 3 0.667
Office support 14 0.643
Production 8 0.625
Business 10 0.6
Science 5 0.6
Management 41 0.585
Computer 40 0.575
Arts, sports and media 58 0.517
Education 31 0.516
Personal care 2 0.5
Farming 2 0.5
Sales 19 0.421
Social service 15 0.333
Healthcare support 4 0.25
Construction 1 0
Military 2 0
overall | 257 0.533

TABLE VI: Inference accuracy of RBA on different attributes.

Attribute Accuracy ‘ Majority vote accuracy

location (country level) 0.926 0.833
gender 0.669 0.693

age 0.720 0.724
occupation 0.533 0.415

community is very low, meaning that the feature space is not
large enough for mapping language to occupations.

Given our inference approach, the obvious question that
arises is whether or not a majority vote of the values within
the community is sufficient. Table VI compares the results of
inferring each hidden attribute to using the majority vote of the
community. The results show that the execution of the RBA
is more successful for determining location and occupation,
has a similar accuracy to the majority vote for age, and has
a worse accuracy for gender. This finding seems to indicate
that RBA works better on attributes with a larger domain of
values, where it is more likely that the target does not belong
to the most frequent class.

D. Approximation Results

In this section, we will investigate whether we can obtain
similar accuracy results using smaller fractions of the commu-
nity for the inference of the target user’s hidden value, thereby
increasing the practicality of the attack. Recall, Table I shows
the fraction of the community labeled for different attributes.

1) 1-hop neighborhood: Typically, a 1-hop neighborhood
is the easiest relational background set to collect since on
most sites it requires only a single API call, and a community
detection algorithm is not needed to determine the neighbors.
Table VII compares the accuracy of RBAs between the local
community and the 1-hop neighborhood approximations. The
results show that executing a RBA using only the 1-hop
neighborhood is a reasonable approximation of the RBA using
a more robust community structure across all of the attributes
in the study with accuracy differences of less than 10%. We
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TABLE VII: RBA approximation - 1-hop neighborhood

RBA accuracy

Attribute Local community  1-hop neighborhood
location (country level) 0.926 0.852
gender 0.669 0.658
age 0.720 0.704
occupation 0.533 0.492

attribute the larger drop for some of the inference tasks to a
higher level of noise in the 1-hop neighborhood compared
to the a local community determined using a community
detection algorithm.

2) Sample of community: Another way to approximate
the local community is to use a fixed fraction of it. One
approach is to randomly sample the local community. The
other approach is to sample community members based on
their importance as measured by different centrality metrics.
Fig. 4 shows the accuracy (target user exposure) results. The
x-axis shows the fraction of the community used to build the
model and the y-axis shows the inference accuracies for the
target user. It is no surprise that accuracies increase when
using a larger fraction of the community for these different ap-
proximations. For all four attributes, sampling using centrality
metrics outperforms randomly sampling the community.

We also compared the four different centrality measures
mentioned in Section V on country level location. The results
are very similar, with a maximum difference of 3% when 80%
of the community is used (see Fig. 5). Again, the x-axis shows
the size of the sample, and the y-axis shows the accuracy of
inference. While all the centrality measure perform well for
some of the attributes, we see that closeness centrality out-
performs others.

The results of this group of experiments show that for
occupation, using labeled public profiles in only 40% of
the community can yield a good approximation of the RBA
when compared to using data from all the labeled community
members. For gender and age, 60% of the local community
is needed for a good approximation, and for country location,
80% leads to reasonable results. That is to say, even with a
smaller number of public profiles for building the machine
learning model, the effectiveness of the RBA is still compa-
rable for these four attributes of the target.

One of our claims in the introduction is that we can maintain
a high level of inference even if a user is a passive user as
opposed to an active one. Figure 6 shows a histogram of the
number of tweets posted by each target user. We see that some
target users are not active on Twitter, although most are active.
Figure 7 shows the accuracy based on the number of tweets
posted by the target user. The figure illustrates that those who
are less active have a higher accuracy than those who are more
active. This is a reminder of how data exposure is not just in
the hands of the information shared by the user. It is also in
the hands of the community that the user participates in. We
also find that the accuracies drop when the target users share
between 1,000 to 10,000 tweets. While this may be caused
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by an increase in noise, 6% of the targets share multilingual
posts, and a larger subset of them are in this group. Because
we use word embeddings, we will be less successful on posts
not written in English.

3) Full knowledge RBA: As a reminder, the full knowledge
RBA requires every member in the relational background set to
be labeled with the hidden attribute value. Given the variability
in what people share on social media, it is highly unlikely that
everyone in a community will share the target user’s hidden
attribute. Still, it would be nice to simulate the attack using
full knowledge.

Here, we propose a way of approximating the full knowl-
edge RBA:
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1) Build an inference model a using all labeled public
profiles, and infer labels for those unlabeled public
profiles in the local community using model a.

2) Build an inference model b using all public profiles and
their labels, whether extracted or inferred, and determine
the hidden attribute value of the target user u using
model b.

This bootstrapping approximation enables us to label every
community member with the attribute we are trying to predict
for the target user. Table VIII presents results for this simulated
full knowledge attack. We see that the accuracies for the
full knowledge attack are similar to those of the partial
knowledge attack. This is an indication that inferring the labels
of community members lead to more noise than expected.
The labels extracted from community members need to be
accurate for an effective RBA; therefore, approximating the
full knowledge RBA is unlikely to lead to a higher number of
successful attacks.

VII. DISCUSSION

The series of experiments simulating RBA using the target
user’s local community and its approximations show that the
relational background set of a target user on social media can
be used to effectively build inference models and infer hidden
attribute values of the target user. The fact that RBA works at
all indicates local patterns do exist and the inference models
can capture them. It is important to note that we used basic
machine learning models and community detection methods
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TABLE VIII: Inference accuracy of approximated full knowl-
edge RBA with local communities on different attributes.

RBA accuracy

Attribute Partial RBA  Approx. full RBA
location (country level) 0.926 0.872
gender 0.669 0.661
age 0.720 0.700
occupation 0.533 0.525

to show the viability of this attack. The effectiveness of the
attack may be improved if more sophisticated models are
built, e.g. neural networks. The RBA’s strength comes from
building a “biased” model using a relatively small dataset.
Experimental results show that RBA performs better on coun-
try level location and occupation. For these attribute, there are
more possible values inside each community, meaning that the
community members have less homophily. Because of this
variability, the hidden attribute values of the neighborhood
must be combined with other features in the public profiles of
the target’s neighborhood in order to build a good inference
model. Without this approach to learning, RBA would not be
as successful.

Focusing on the approximation experiments, the results
show that the RBA using only the 1-hop neighborhood as
an approximation of the local community can achieve an
accuracy that is similar to that of a larger fraction of the
local community for some attributes, and is less effective for
others. This is not surprising since 1-hop neighborhoods are
large, and possibly less connected than the local community.
Although not all public profiles of members in the relational
background set have a value for the attribute in question, RBA
remains effective. Experiments that use a smaller fraction of
local communities lead to similar accuracy for determining the
target’s hidden value. That is to say, RBA can be conducted
effectively, even with less information.

Finally, we want to identify some of the limitations of the
RBA. The RBA does not work well on all attributes, for
example, gender and age. The distributions of numbers of
possible values on these attributes are shown in Fig. 8b and
8c. Given the fact that those attributes have a smaller domain,
and there is more homophily for these attributes values inside
communities of our dataset, trying to infer the target value
using a biased model might not be a good choice even though
local patterns do exist. A simple majority vote seems to give
a better accuracy and is less costly to determine. Social media
sites are also increasing the limitations of data extraction from
their APIs. It might make collective attacks using the RBA
unfeasible, since for each target, information from its relational
background set is needed. But attacks on single target users are
still likely to happen; therefore, it is important to understand
the parameters of this attack.

VIII. CONCLUSION

This paper proposed the RBA, a relational background
attack framework that can be used to reveal hidden attribute
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values of target users on social media by building a biased
inference model using only public profiles of members in a
relational background set. We studied one particular type of
RBA, using the local community as the relational background
set. This attack is most effective on attributes whose values
are diverse in the community. We also studied different
approximations of the RBA using different subsets of the
local community. We find that the RBA approximation that
used a 1-hop neighborhood, or fractions of the community
based on centrality values are good approximations, while the
approximated full knowledge RBA introduces noise, limiting
its effectiveness.

There are a number of future directions. One is to explore
other relational background sets, e.g. using the groups on
Facebook, where users are related to others but not through bi-
lateral relations, or considering different types of relationships
on Twitter. We could then understand the impact of different
constructions of the relational background information on the
performance of the attack. Another important future direction
is to find ways to prevent or reduce the effectiveness of a RBA.
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