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Abstract—While some users share large amounts of infor-
mation, others share very little. However, even with limited
amounts of sharing, users may still have high levels of exposure.
Previous research has shown that for certain attributes like
gender, adversaries can determine a target’s hidden attribute
value by taking a majority vote of its community or by finding
others in the site population with similar profiles. However, for
some attributes, these attacks fail because of the diversity of
the attribute value in the community. In this paper, we present
a new privacy attack - a relational background attack (RBA),
where an adversary builds inference models for a hidden attribute
of the target by using the target’s relational background set.
Doing this allows the adversary to build a “biased” model that
captures the significant local features for inferring the hidden
attribute. We empirically demonstrate the effectiveness of this
attack on a special case of the relational background set (a local
community) using a Twitter data set. We then consider the case
when an adversary only has access to different subsets of the
target’s local community, and show that the attack can still be
conducted effectively with certain approximations of the target’s
local community.

Index Terms—data privacy, Twitter, information exposure

I. INTRODUCTION

Given the recent exploitation of social media data, data

privacy on social media is a growing concern. While some

users share significant amounts of personal information, others

share very little. However, even with limited amounts of

sharing, users may still have high levels of exposure because

of available background knowledge. Our goal is to understand

the impact of background knowledge on data privacy.

A background knowledge attack occurs when an adversary

uses previously learned knowledge to infer sensitive infor-

mation of a target user. Privacy researchers have shown that

background knowledge attacks are especially hard to defend

against in the real world [1]. It has also been shown that

knowledge about one’s community [2] or group membership

[3] can be used to reduce a user’s data privacy. Typically

these studies use a majority vote among community members.

However, the user may be a minority in a community with

respect to the hidden attribute. While previous work has shown

that as the number of possible values for the attribute of

interest increases, the accuracy of inferred hidden values of

the attribute of interest decreases [4], we will show that this

decline does not mean those attributes are not vulnerable.

Specifically, this paper defines and demonstrates a relational
background attack (RBA), where background knowledge is

generated not from a random sample, but from a relational
background set of the target user. A toy example of the attack

is shown in Fig.1. On the left side, we see that an adversary

is interested in determining a target user’s occupation. The

target user has posted some information on a particular social

media site, but not his occupation. In order to determine

his occupation, the adversary uses the social media site’s

Application Program Interface (API) to collect the profiles of

users in the target user’s relational background set, e.g., those

users who are part of the target user’s community on the social

media site, builds an inference model based on these profiles,

and infers the hidden information of the target user using this

inference model. In the example attack in Fig.1, the majority

occupation (“Writer”) among the community profiles is not the

occupation of the target user (“Doctor”). Also, not everyone in

the relational background set has an occupation since different

users share different information on social media.

Given this example, this paper looks to answer the follow-

ing questions: (1) can meaningful background knowledge be

generated from the population of the target individual’s com-

munities, (2) can an adversary use this generated background

knowledge to determine hidden values of target individuals

on social media, and (3) how much information is needed

from the relational background set of the target user in

order to obtain reasonable inference accuracies? Answering

these questions will help to better understand this form of

information leakage.

Toward that end, this paper makes the following contribu-

tions: 1) we define the relational background attack on Twitter;

2) because APIs may limit the amount of information an

adversary can obtain, we present different ways to conduct the

attack when an adversary can only obtain partial knowledge,

i.e. data for a subset of neighbors; and 3) we execute the attack

using Twitter data and show its effectiveness on different

hidden attributes using different community sizes, and on users

who share different amounts of information.

II. RELATED LITERATURE

Social media privacy continues to be an active area of

research. There are a number of papers investigating methods

for learning demographic features of users with their social
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Fig. 1: An example of RBA.

media data, including location [4], age [5], gender [6], and

those trying to determine multiple features [2], [7]–[11]. Our

paper largely builds off the insights and algorithms developed

by Moore et al. [12], where the authors show that using a

social media site’s population norms can give insight into a

target user’s hidden attributes. Bergsma and Van Durme [13],

Colleoni et al. [14], Rao et al. [6], and Fang et al. [15] explored

potential inference algorithms that exploited the unstructured

data of a user to predict latent attributes. Chaabane [16], Tang

[17], and Al Zamal [7] looked at using supplemental informa-

tion such as interests and neighbor attributes to train different

prediction algorithms. Culotta [18] used an external website’s

web tracking data to predict the demographic breakdown of

social media users. Researchers have also explored algorithms

that look at attributes across sites to infer users’ information

[10], [19]–[21]. A recent thread of research shows that privacy

breaches are possible even if social media data are anonymized

to share with advertisers or researchers [22]. While the spirit of

our work is similar to these previous works, our attack model

differs and our experimental design.

A number of papers investigate ways to exploit relationship

information among social media users for different attribute in-

ference tasks, where a “relation” may be linkages/connections

(e.g. friendship or follower), or same group membership (e.g.

hashtags on Twitter or groups on Facebook) [2], [3], [23], [24],

[25], [26]. Focusing on the most relevant work, Zheleva and

Getoor [3] showed that using the majority vote of an attribute

based on groups and linkages (friendships) as features is effec-

tive for predicting the values of latent attributes such as gender,

political view or geographical location of a target user. While

using the neighborhood attribute value is effective for more

homogeneous networks, our work extends the ideas to exploit

relational information from more heterogeneous neighbors.

Mislove et al. [2] explored possible inference methods based

on both global and local community detection algorithms to

determine a user’s hidden value. Tu et al. [27] proposed a

method to identify professions by first using traditional classi-

fiers and then refining the results by using connections between

target users and different communities based on professions.

While both of these works use inference models, they assume

that the entire network is available. In this paper, we conduct

the relational background attack on both the target user’s full

network and different subsets of the network, showing its

effectiveness under different neighborhood conditions. This is

important since APIs do not always give access to all the

relationships associated with an individual.

Finally, we consider the variability in the amount of in-

formation users choose to share on social media. Those

users who rarely or never generate information, instead using

social media as a tool for information-consumption, are called

passive users. Passive users make up an important fraction of

social media. For example, approximately 40% of Facebook

[28] and Twitter [29] users are passive users. Previous research

suggests that the followees, i.e., people that a user is following,

can help infer interests of passive users, leveraging different

types of information such as tweets, usernames, biographies

[30] and titles of Twitter lists [31]. Although this research

is conducted from a user-modeling point of view, it still

shows that there exists a potential vulnerability with regards to

privacy for users, including passive ones, via their followees.

Our findings are consistent with previous research. We will

show, that the RBA is effective for both passive and active

users, and therefore, sharing less does not imply improved

privacy.

III. ATTACK MODEL

A. Users and relationships

One of the primary goals of social media sites is to connect

people. Social media sites accomplish this in different ways.

One way is by trying to increase the amount of interaction

among users. Each interaction between users can be viewed as

a type of relationship. Examples of relationship types between

two users include following, mentioning, and liking. Relation-

ship types among multiple users include group membership

and participation in the same event. In this paper, we focus

our discussion on social connections between users as our

283

Authorized licensed use limited to: Georgetown University. Downloaded on July 23,2021 at 20:39:03 UTC from IEEE Xplore.  Restrictions apply. 



relationship type since they are explicitly identified on social

media.

We consider the profile U of a user u as a tuple, consisting

of an unique identifier ID , some number of key-value pairs

{Aj}mj=1 that belong to the user, and a relational background

set S. Because social media data are schemaless (different

users share different attributes), we represent our data as

a set of key-value pairs Aj = (Aj , aj), where Aj is an

attribute name, and aj is its corresponding attribute value.

An attribute value can be either a singleton or an unordered

set. Examples of key-value pairs are (gender, {male}) and

(skills, {Python, C++}).
A user u is a member of a relational background set S, i.e.,

a set of users on the social media site that are connected to our

target u, based on one or more relationship types. An example

of a relational background set is a community C, where

community is a structural property on a network in which

nodes are densely connected. Communities can be determined

using direct linkage information or using community detection

algorithms. Generally, defining a relational background set

requires the target user u and the relationship R to determine

the relational background set, S(u,R).
Formally, we define the user’s data as U =(

ID , {Aj}mj=1,S
)
. A user might choose to publish a

subset of his/her attributes on social media, while hiding

the rest. We denote the public profile of user u as UP ,

while the hidden component of his profile as UH . Clearly,

U = UP ∪ UH and UP ∩ UH = ∅.

B. Relational background attack

In this section, we formally define a new privacy attack,

the relational background attack. Given an adversary T with

knowledge of a user’s public profile, UP , the goal of the

adversary T is to recover the value of an attribute of interest

A, which is part of user u’s hidden profile UH . Formally, the

input of this model is the target user u on a social media site,

its public profile UP , and an attribute of interest A; the output

will be a prediction of value a on attribute A for the target

user u.

In this model, we assume T is capable of partially acquiring

relational information on the social media site u has joined. By

partially we indicate it might be impossible for the adversary

to acquire all the relational information for u on that social

media site. However, we assume that T can always collect part

of it. Using public relationship information about u, T can then

obtain a relational background set S of the target. Such a set

could take the form of a local community, direct neighborhood,

and so on. In this paper, we will focus on the local community

C as our relational background set, i.e., S := C. We also

assume that T can partially acquiring public profiles whose

value of A can be extracted. In other words, a subset of the

community shares values for A as part of their public profiles.

Based on T ’s knowledge, the adversary could launch a

relational background attack. We divide the attack into four

parts: (1) acquiring the relational background set of the target

user, (2) acquiring public profiles and extracting values of the

attribute of interest A for these public profiles to build a re-

lational background knowledge dataset, (3) building inference

models based on the relational background dataset, and (4)

using the learned model to infer an unknown attribute value

for A of the target user, i.e., performing the actual attack.

We have already assumed that only a fraction of linkage

information can be acquired, and only a fraction of public

profiles of the members in the relational background set can

be properly labeled. Given this partial data, it is natural for us

to also study how much data is enough to make RBA effective.

In practice, although social media sites allow T to gather

relational information and public profiles through APIs, there

usually are restrictions on quantity or rate of data collection.

We incorporate these assumptions to make our attack map to

reality. Therefore, studying approximations that are variants of

the basic attack will help us understand the sensitivity of the

inference with regards to the richness of information shared

by community members.

IV. METHODOLOGY FOR CONDUCTING ATTACKS

The adversary T gathers the desired relational information

and public profiles through the a specific social media API.

To determine the target user’s community on a social media

site, T applies a local community detection algorithm on this

network, utilizing the linkage information of the sub-network.

After determining the relational background set, T collects

public profiles of accounts in the relational background set to

build a background knowledge dataset. An inference model

is built using this dataset and the public profile of u, also

acquired from the API, to predict the attribute value of interest.

The pseudocode for RBA is shown in Algorithm 1. The

input of the process is the target user u and his public profile

U . The attribute of interest also needs to be specified. Once

the local community C of target user u is determined (line 2),

the adversary T can build a background knowledge dataset

based on this community. After initialization of the local

communities C, the list of feature vectors F, and the list of

class labels T (line 3-5), T will collect the public profiles for

all the members in C (line 7), and attempt to extract the value

of attribute A as the label (line 8). If the label is extracted,

the feature vector and the label will be added to the relational

background knowledge dataset (line 10, 11). Inference models

using machine learning methods will be trained using this

dataset (line 14). Then, given a feature vector based on the

public profile of our target user u (line 15) the model will

produce the prediction value on the desired attributes in the

hidden profile of u (line 16).

A. Local community detection

One kind of the relational background set S is the target’s

community C. Although there is no universally accepted

definition, generally, a community is considered to be a set of

nodes in a network where there are more edges connecting the

nodes inside the community than edges linking the community

and the rest of the network [32]. While numerous community

detection algorithms exist, one well known metric used for
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Algorithm 1 Relational background attack with local community

1: function LOCALCOMMUNITYRBA(u,UP , A)
2: C ← GETLOCALCOMMUNITY(u)
3: F← [ ]
4: T← [ ]
5: model←new Model()
6: for ui in C do
7: UP

i ←GETPUBLICPROFILE(ui)
8: label←EXTRACTATTRIBUTEVALUE(UP

i , A)
9: if label �=NULL then

10: F.append(GETFEATUREVECTOR(UP
i , A))

11: T.append(label)
12: end if
13: end for
14: model.train(F,T)
15: f ←GETFEATUREVECTOR(UP , A)
16: return model.predict(f )
17: end function

community detection is modularity [33]. Modularity is defined

as the fraction of edges that fall within a given partition minus

the expected fraction of edges if the edges were randomly dis-

tributed. A high score will be assigned to a partition with dense

connections among nodes within the community and sparse

connections with nodes in other communities. Because it is

impossible to know the entire structure of the network, using

these global metrics is difficult for this scenario. Clauset [34],

Luo et al. [35], and Chen et al. [36] proposed different local

modularity measures to evaluate a given local community. At

a high level, they introduce the notion of a boundary node

that connects to nodes outside the community and greedily

maximizes local modularity.

Our local community detection algorithm is a variant of

[36]. We start with the node of the target user u, and grow the

community D greedily, that is, repeatedly adding a node into

the current community that maximizes our local modularity

measure M ′ until no node adjacent to the current community

can increase M ′ if added to the community, i.e. ΔM ′ ≤ 0,

where

ΔM ′ =
Ein + e(v,D)

Ein + Eout + e(v,D)
− Ein

Ein + Eout

for any v ∈ D. Ein represents the number of edges with both

nodes in D, Eout represents the number of edges with one

node in D and one node in D, e(v,D) is the number of edges

between v and nodes in in D, and e(v,D) is the number of

edges between v nodes in D.

Fig. 2 shows an example. In these subfigures, the current

local community D of target user u consists of green nodes

and u itself. Ein is the number of green edges, while Eout is

the number of red edges. Grey nodes are possible candidates

that might be added into the local community on the next

step. In Fig. 2a, Ein = 11 and Eout = 5; M ′ = 11/16 ≈
0.69. In Fig. 2b, the node that would increase M ′ the most is

highlighted using green dashes, ΔM ′ = 0.125.

V. APPROXIMATIONS FOR ATTACKS

The adversary T would like to collect all the public re-

lational information from the network and label all public

profiles in the target user’s community. In this case, we say

T is able to launch a full knowledge RBA. That is, T can

and will grow the full local community of our target user u,

and build the background knowledge dataset based on all the

public profiles in this community.

Unfortunately for T , in practice it can be difficult to collect

all the desired information. There are many reasons for this.

First, many social media APIs set data collection limitations.

Next, when building the relational background knowledge

dataset, some members in the local community might also

hide their values for the attribute of interest. Finally, utilizing

the data of every member in the community is not efficient

since the data collection and community building processes

are both time and storage consuming. Given the situation, the

attacker is more likely to conduct a partial knowledge RBA.

This leads us to consider the following question: how

much information is necessary for T to effectively conduct a

RBA? To answer this question, we will consider the following

approximations of the full local community of our target users:

(1) the 1-hop neighborhood of u, (2) a random sample of

community members, and (3) a sample based on a fraction

of the community members ranked by their centrality metrics.

We now go through each of these in more detail.

1-hop neighborhood: The 1-hop neighborhood of a target

user u consists of all users directly linked to u. Members

inside the 1-hop neighborhood are all closely connected to the

target, but they might not be closely connected to each other.

A 2016 study shows that Twitter users have an average of 707

followers [37], indicating that the size of 1-hop neighborhoods

might be much larger than the size of local communities,

possibly resulting in more noise.

Random sampling over community members: One way to

reduce the workload of RBA is to use a random sample of

the members in the local community. In order to understand

the effectiveness of this approximation, we collect the local

community, and compare the performance of RBA using

the entire community and different random fractions of the

community.

Sampling over community by centrality: Centrality charac-

terizes the importance of a node in a network [38]. A higher

centrality score indicates more structural importance of a node.

For this approximation, we rank nodes in the community using

different centrality metrics (degree, closeness, betweenness,

and eigenvector) and compare the performance of RBA using

community nodes that have the highest centrality values. Here,

the assumption is that structurally important members in the

community carry more information to build the inference

model for determining u’s hidden attribute value.1

1It is possible that structurally important members in the network we obtain
may be different from the ones in the actual network. We have designed our
experiments to reduce the likelihood of this scenario, but the centrality values
should be viewed as part of the approximation since a possibility still exists.
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Fig. 2: Local community metric and local community detection.

VI. EMPIRICAL EVALUATION

In this section, we present our experimental evaluation. We

begin by describing our dataset, followed by the descriptions

of the inference models we use to infer values of differ-

ent attributes. Then we present our experimental results for

conducting a RBA using the local community to infer the

hidden value of u (partial knowledge attack) and analyze

the impact of different approximations of the community.

Finally, we simulate a full knowledge attack to understand

its effectiveness.

A. Datasets

We use a subset of the dataset collected by Singh et al.

[10]. In our sample, there are 257 target users for whom we

have their gender, age, country location, and occupation as

ground truth attributes. To construct the ground truth, the API

of about.me was used, where users self-report their unique

identifiers on multiple social media sites. Based on this ground

truth, we first collect the follower/following information start-

ing from each target user via the Twitter API, and grow a local

community for each target user using the method described in

Section IV. We then collect the public profiles of members of

each community through the Twitter API. In total, we collected

21,671 public profiles, including our target users’ profiles.

The average size of the user communities is 84.32, with a

maximum of 237 and a minimum of 11. The histogram of

the size of communities is shown in Fig. 3. The x-axis is the

size of local community we collected, and the y-axis is the

frequency of the size. As we can see, the most common sizes

of communities are between 10 and 110.

The goal of the RBA is to infer the gender, age, location

and occupation of the target users. Table I shows the average

percentage of the target’s community that shares each hidden
attribute and the average number of distinct values for each

hidden attribute. We see that on average thirty to sixty percent

of the communities share each of these hidden attributes.

While the fraction is high, the variation is a reminder that

people share different information online. The table also shows

that the number of distinct values for each community is small,

simplifying the inference task. This biasing toward values that

are more likely is a major reason this background knowledge

attack is successful.

Fig. 3: The size of user communities.

TABLE I: Community statistics

Attribute Avg. % of community Avg. domain size
sharing attribute per community

location (country) 62.1% 4
gender 40.9% 2

age 52.9% 4
occupation 32.2% 6

B. Experimental setup

In order to simulate the attack, we need to infer values for

attributes of the target user’s community in order to infer the

target’s value. We accomplish this by using well established

approaches for the community inference (since that is a ground

truth value for the community member) and classic models for

the target user. All experiments were run 10 times, and their

average accuracies are reported. For each hidden attribute, we

show the accuracy of determining the value for the target user.

We pause to mention that an extensive sensitivity analysis was

conducted for every algorithm and every attribute. However,

due to space limitations, we only show the best results here.

C. RBA Accuracy

1) Location: The location of community members are

determined by extracting the location from the self-reported

“location” field and “description” field of their public Twitter

profiles. To ensure that they are real locations, we validate

them using the Google Map API. The locations may be

specified at the city or state level, but we maintain the country

level value as the community member’s location value.
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TABLE II: Inference accuracy of RBA for location.

Model Attributes used Country

Naı̈ve Bayes (vector len= 200) Tweets 0.895
k-NN (k = 10, vector len= 200) Tweets 0.911

k-NN (k = 10) “Description” field 0.746

k-NN on tweets (k = 10) + Naı̈ve Bayes on description 0.926

For inferring the target user’s location value, we test Naı̈ve

Bayes and k-NN, using different values of k. We use a bag of

words model for each tweet and embeddings of those words.

Table II show the accuracy results for location. There are a

number of interesting findings. First, in general, this is a very

successful attack irrespective of the learning algorithm - with

success ranging from 75% to 92%. The “description” field

of the users is not as good a feature as using the tweet text.

This is surprising since the description field tends to contain

biographical information about users. However, it is much

shorter than the tweet data. The best performance occurs when

we use a linear combination of a k-NN classifier (k = 10)

built using tweets of users, with sentence vectorization using

word2vec pre-trained on a Twitter dataset, and a multinomial

Naı̈ve Bayes classifier build using the description of users. It

is not surprising that combining both pieces of information

leads to a better predictive model.

2) Gender: We extract gender using profile images. The

model we used is based on a deep neural networks model

proposed in [39] and [40]. We put the profile image of users

into this model and predict each community member’s gender.

Again, we predict the target user’s gender using Naı̈ve

Bayes and k-NN. We use the following two features: topics

generated from the “name” field using LSI [41], and the tweets

with bag-of-word embeddings, as we did for location. Table

III shows the accuracy results for gender.As we can see, when

using the “name” field, a smaller value of k = 3 and a medium

number of topics (50) leads to better performance. On the other

hand, when using topics generated from tweets of the users

an even higher accuracy is achieved using k-NN and a larger

size of word vectors. This may be a result of inconsistent

sharing of the “name” field, the sharing of inaccurate values,

the indistinguishably of some names in terms of gender.

The best attack occurs when we use a linear combination

of results from a k-NN classifier with topics generated using

LSI (k = 3, number of topics = 50) on the “name” field, and

a k-NN classifier (k = 10) built using the tweets of users.

There are a number of papers showing very high accuracies

for inferring gender on Twitter. Our focus is not on the best

accuracy possible, but rather conducting a simple version of

the attack and showing that the accuracy is still high, 67% in

this case.

3) Age: Similar to gender, we use profile images to deter-

mine the ages of community members. Again, we use the deep

neural networks model proposed in [39] and [40]. We also

determine age by searching for birthday self proclamations

in users’ tweets. We use a dictionary of phrases to search

TABLE III: Inference accuracy of RBA for gender.

Model Attributes used Accuracy

k-NN (k = 3, num topic= 50) “Name” field 0.462

Naı̈ve Bayes (vector len=100) Tweets 0.482
k-NN (k = 10, vector len=200) Tweets 0.642

0.4 k-NN on name (k = 3) + 0.6 k-NN on tweets (k = 10) 0.669

TABLE IV: Inference accuracy of RBA for binned age

Age bin # of target users Accuracy

10-19 12 0.667
20-29 80 0.788
30-39 93 0.731
40-49 35 0.714
50-59 26 0.692
60-69 10 0.300
70-79 1 0.000

overall 257 0.720

for phrases like “my 20th birthday”, and calculate the user’s

age based on the timestamp of the tweet containing the birth

date. If both methods return a valid age, we use the birthday

announcement as the final value.

For the age inference task, we create 10-year bins containing

ages 10 to 79, the range that all our targets fall into, and

we classify the target user into one of them. We use one-

versus-rest Support Vector Machines (SVMs) with a radial

basis function kernel, and extract the k-top word stems and

k-top hashtags as features where k = 20. This setting is used

by Al Zamal et al. [7] for age inference. Table IV shows

the inference accuracy for different age bins. We see that the

inference accuracy among younger users is higher. This is not

surprising since younger users are more prevalent on social

media,2 and more likely to have connection with their peers.

4) Occupation: The occupation of community members is

extracted by building a dictionary of job related words and

searching for them in the “description” field of users. We then

map these words into one of the 23 major categories specified

in the Standard Occupational Classification (SOC)3 system, a

system developed by the US Bureau of Labor Statistics. If

there is a word in the description which can be mapped into

one of the categories, the category is recorded. The category

with the highest count is taken as the occupation label of the

community member. Our target users fall into 17 of the 23

categories.

To infer the hidden occupation of the target user, we use

SVMs with a radical basis function kernel. The classifier

uses word tokens extracted from the tweets of the users and

identify word clusters using word2vec pre-trained on a Twitter

dataset. This approach was proposed by Preoţiuc-Pietro [42].

Table V shows the inference accuracy on different occupation

categories. Overall, the attack is successful approximately

53% of the time. The deviations occur when the size of the

2https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/
3https://www.bls.gov/soc/2010/home.htm
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TABLE V: Inference accuracy of RBA for occupation

Occupation # target users Accuracy

Legal 2 1
Healthcare practitioner 3 0.667

Office support 14 0.643
Production 8 0.625
Business 10 0.6
Science 5 0.6

Management 41 0.585
Computer 40 0.575

Arts, sports and media 58 0.517
Education 31 0.516

Personal care 2 0.5
Farming 2 0.5

Sales 19 0.421
Social service 15 0.333

Healthcare support 4 0.25
Construction 1 0

Military 2 0

overall 257 0.533

TABLE VI: Inference accuracy of RBA on different attributes.

Attribute Accuracy Majority vote accuracy

location (country level) 0.926 0.833
gender 0.669 0.693

age 0.720 0.724
occupation 0.533 0.415

community is very low, meaning that the feature space is not

large enough for mapping language to occupations.

Given our inference approach, the obvious question that

arises is whether or not a majority vote of the values within

the community is sufficient. Table VI compares the results of

inferring each hidden attribute to using the majority vote of the

community. The results show that the execution of the RBA

is more successful for determining location and occupation,

has a similar accuracy to the majority vote for age, and has

a worse accuracy for gender. This finding seems to indicate

that RBA works better on attributes with a larger domain of

values, where it is more likely that the target does not belong

to the most frequent class.

D. Approximation Results

In this section, we will investigate whether we can obtain

similar accuracy results using smaller fractions of the commu-

nity for the inference of the target user’s hidden value, thereby

increasing the practicality of the attack. Recall, Table I shows

the fraction of the community labeled for different attributes.

1) 1-hop neighborhood: Typically, a 1-hop neighborhood

is the easiest relational background set to collect since on

most sites it requires only a single API call, and a community

detection algorithm is not needed to determine the neighbors.

Table VII compares the accuracy of RBAs between the local

community and the 1-hop neighborhood approximations. The

results show that executing a RBA using only the 1-hop

neighborhood is a reasonable approximation of the RBA using

a more robust community structure across all of the attributes

in the study with accuracy differences of less than 10%. We

TABLE VII: RBA approximation - 1-hop neighborhood

RBA accuracy
Attribute Local community 1-hop neighborhood

location (country level) 0.926 0.852
gender 0.669 0.658

age 0.720 0.704
occupation 0.533 0.492

attribute the larger drop for some of the inference tasks to a

higher level of noise in the 1-hop neighborhood compared

to the a local community determined using a community

detection algorithm.

2) Sample of community: Another way to approximate

the local community is to use a fixed fraction of it. One

approach is to randomly sample the local community. The

other approach is to sample community members based on

their importance as measured by different centrality metrics.

Fig. 4 shows the accuracy (target user exposure) results. The

x-axis shows the fraction of the community used to build the

model and the y-axis shows the inference accuracies for the

target user. It is no surprise that accuracies increase when

using a larger fraction of the community for these different ap-

proximations. For all four attributes, sampling using centrality

metrics outperforms randomly sampling the community.

We also compared the four different centrality measures

mentioned in Section V on country level location. The results

are very similar, with a maximum difference of 3% when 80%

of the community is used (see Fig. 5). Again, the x-axis shows

the size of the sample, and the y-axis shows the accuracy of

inference. While all the centrality measure perform well for

some of the attributes, we see that closeness centrality out-

performs others.

The results of this group of experiments show that for

occupation, using labeled public profiles in only 40% of

the community can yield a good approximation of the RBA

when compared to using data from all the labeled community

members. For gender and age, 60% of the local community

is needed for a good approximation, and for country location,

80% leads to reasonable results. That is to say, even with a

smaller number of public profiles for building the machine

learning model, the effectiveness of the RBA is still compa-

rable for these four attributes of the target.

One of our claims in the introduction is that we can maintain

a high level of inference even if a user is a passive user as

opposed to an active one. Figure 6 shows a histogram of the

number of tweets posted by each target user. We see that some

target users are not active on Twitter, although most are active.

Figure 7 shows the accuracy based on the number of tweets

posted by the target user. The figure illustrates that those who

are less active have a higher accuracy than those who are more

active. This is a reminder of how data exposure is not just in

the hands of the information shared by the user. It is also in

the hands of the community that the user participates in. We

also find that the accuracies drop when the target users share

between 1,000 to 10,000 tweets. While this may be caused
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(a) Location (country) (b) Gender

(c) Age (d) Occupation

Fig. 4: RBA approximations: samples of local community.

The red lines are for a RBA with a sample determined by

betweenness centrality, the black lines are for a RBA using a

random sample, and the blue lines show the results of using

a majority vote for a sample based on centrality measures.

Fig. 5: RBA approximations on location: centrality metrics

by an increase in noise, 6% of the targets share multilingual

posts, and a larger subset of them are in this group. Because

we use word embeddings, we will be less successful on posts

not written in English.

3) Full knowledge RBA: As a reminder, the full knowledge

RBA requires every member in the relational background set to

be labeled with the hidden attribute value. Given the variability

in what people share on social media, it is highly unlikely that

everyone in a community will share the target user’s hidden

attribute. Still, it would be nice to simulate the attack using

full knowledge.

Here, we propose a way of approximating the full knowl-

edge RBA:

Fig. 6: Tweet frequency for each target user

Fig. 7: Accuracy of location inference for passive and active

users. The dashed lines indicate the overall accuracies (see

Table II).

1) Build an inference model a using all labeled public

profiles, and infer labels for those unlabeled public

profiles in the local community using model a.

2) Build an inference model b using all public profiles and

their labels, whether extracted or inferred, and determine

the hidden attribute value of the target user u using

model b.

This bootstrapping approximation enables us to label every

community member with the attribute we are trying to predict

for the target user. Table VIII presents results for this simulated

full knowledge attack. We see that the accuracies for the

full knowledge attack are similar to those of the partial

knowledge attack. This is an indication that inferring the labels

of community members lead to more noise than expected.

The labels extracted from community members need to be

accurate for an effective RBA; therefore, approximating the

full knowledge RBA is unlikely to lead to a higher number of

successful attacks.

VII. DISCUSSION

The series of experiments simulating RBA using the target

user’s local community and its approximations show that the

relational background set of a target user on social media can

be used to effectively build inference models and infer hidden

attribute values of the target user. The fact that RBA works at

all indicates local patterns do exist and the inference models

can capture them. It is important to note that we used basic

machine learning models and community detection methods
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TABLE VIII: Inference accuracy of approximated full knowl-

edge RBA with local communities on different attributes.

RBA accuracy
Attribute Partial RBA Approx. full RBA

location (country level) 0.926 0.872
gender 0.669 0.661

age 0.720 0.700
occupation 0.533 0.525

to show the viability of this attack. The effectiveness of the

attack may be improved if more sophisticated models are

built, e.g. neural networks. The RBA’s strength comes from

building a “biased” model using a relatively small dataset.

Experimental results show that RBA performs better on coun-

try level location and occupation. For these attribute, there are

more possible values inside each community, meaning that the

community members have less homophily. Because of this

variability, the hidden attribute values of the neighborhood

must be combined with other features in the public profiles of

the target’s neighborhood in order to build a good inference

model. Without this approach to learning, RBA would not be

as successful.

Focusing on the approximation experiments, the results

show that the RBA using only the 1-hop neighborhood as

an approximation of the local community can achieve an

accuracy that is similar to that of a larger fraction of the

local community for some attributes, and is less effective for

others. This is not surprising since 1-hop neighborhoods are

large, and possibly less connected than the local community.

Although not all public profiles of members in the relational

background set have a value for the attribute in question, RBA

remains effective. Experiments that use a smaller fraction of

local communities lead to similar accuracy for determining the

target’s hidden value. That is to say, RBA can be conducted

effectively, even with less information.

Finally, we want to identify some of the limitations of the

RBA. The RBA does not work well on all attributes, for

example, gender and age. The distributions of numbers of

possible values on these attributes are shown in Fig. 8b and

8c. Given the fact that those attributes have a smaller domain,

and there is more homophily for these attributes values inside

communities of our dataset, trying to infer the target value

using a biased model might not be a good choice even though

local patterns do exist. A simple majority vote seems to give

a better accuracy and is less costly to determine. Social media

sites are also increasing the limitations of data extraction from

their APIs. It might make collective attacks using the RBA

unfeasible, since for each target, information from its relational

background set is needed. But attacks on single target users are

still likely to happen; therefore, it is important to understand

the parameters of this attack.

VIII. CONCLUSION

This paper proposed the RBA, a relational background

attack framework that can be used to reveal hidden attribute

(a) Location (country) (b) Gender

(c) Age (d) Occupation

Fig. 8: Distributions of numbers of possible values in a com-

munity for different attributes. The x-axis shows the number

of possible values, and the y-axis shows frequencies.

values of target users on social media by building a biased

inference model using only public profiles of members in a

relational background set. We studied one particular type of

RBA, using the local community as the relational background

set. This attack is most effective on attributes whose values

are diverse in the community. We also studied different

approximations of the RBA using different subsets of the

local community. We find that the RBA approximation that

used a 1-hop neighborhood, or fractions of the community

based on centrality values are good approximations, while the

approximated full knowledge RBA introduces noise, limiting

its effectiveness.

There are a number of future directions. One is to explore

other relational background sets, e.g. using the groups on

Facebook, where users are related to others but not through bi-

lateral relations, or considering different types of relationships

on Twitter. We could then understand the impact of different

constructions of the relational background information on the

performance of the attack. Another important future direction

is to find ways to prevent or reduce the effectiveness of a RBA.
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