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We propose a new Eulerian-Lagrangian (EL) discontinuous Galerkin (DG) method formu-
lated by introducing a modified adjoint problem for the test function and by performing 
the integration of PDE over a space-time region partitioned by time-dependent linear 
functions approximating characteristics. The error incurred in characteristics approximation 
in the modified adjoint problem can then be taken into account by a new flux term, and 
can be integrated by method-of-line Runge-Kutta (RK) methods. The ELDG framework is 
designed as a generalization of the semi-Lagrangian (SL) DG method and classical Eulerian 
RK DG method for linear advection problems. It takes advantages of both formulations. 
In the EL DG framework, characteristics are approximated by a linear function in time, 
thus shapes of upstream cells are quadrilaterals in general two-dimensional problems. No 
quadratic-curved quadrilaterals are needed to design higher than second order schemes as 
in the SL DG scheme. On the other hand, the time step constraint from a classical Eulerian 
RK DG method is greatly mitigated, as it is evident from our theoretical and numerical 
investigations. Connection of the proposed EL DG method with the arbitrary Lagrangian-
Eulerian (ALE) DG is observed. Numerical results on linear transport problems, as well as 
the nonlinear Vlasov and incompressible Euler dynamics using the exponential RK time 
integrators, are presented to demonstrate the effectiveness of the ELDG method.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We propose a new Eulerian-Lagrangian (EL) discontinuous Galerkin (DG) method for a model transport equation in the 
form of

ut + ∇ · (P(u;x, t)u) = 0, (x, t) ∈Rd × [0, T ], (1.1)

which could come from a wide range of application fields including fluid dynamics, climate modeling, and kinetic de-
scription of plasma. There are three main classes of computational methods for solving (1.1): Lagrangian, Eulerian and 
semi-Lagrangian (SL). Each class of methods has their own advantages and limitations. The Lagrangian method is particle 
based, works efficiently for high dimensional problems, but suffers from statistical noises; while the latter two methods 
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are mesh-based method, can be designed to be of high order accurate, but suffers from the curse of dimensionality. The 
main difference between Eulerian and SL methods is the space-time region in consideration: the Eulerian method performs 
numerical discretizations with fixed spatial locations in time; while the semi-Lagrangian method usually do that along con-
vection characteristics. When characteristics are tracked accurately, semi-Lagrangian methods often allow much larger time 
stepping sizes than their Eulerian counterparts.

Among different classes of SL methods in the literature, we would like to mention a few closely related ones that 
are developed in the finite element framework. There is a line of research work along Eulerian Lagrangian Localized Adjoint 
Methods (ELLAM) [8]. ELLAM introduces an adjoint problem for the test function in the continuous finite element framework 
and has a broad range of influence in different application fronts [33,30]. Compared with ELLAM, the SLDG [5] is being 
developed in the discontinuous Galerkin finite element framework. SL schemes could be developed base on forward [3] or 
backward characteristics tracing. Here we choose to develop our schemes base on backward characteristics tracing. The EL 
DG method is also closely related to the DG method on deformable domains [27,34], the ALE DG method [24], and the 
moving mesh DG method [26].

In this paper, we propose a new ELDG method that is mesh-based, and is a generalized framework of the SL DG method 
developed earlier [5]. It is designed to take advantage of information propagation along characteristics as in an SL method, 
and maintain essential properties of the SLDG method on mass conservation, high order spatial and temporal accuracy, 
and allowing for extra large time steps with stability. We first focus on developing the ELDG algorithm for linear transport 
problems. A new ingredient of the method is the introduction of a modified adjoint problem for the test function. The 
velocity field of the modified adjoint problem is a linear function that approximates that of the original transport problem. There are 
two positive consequences of such modification. One is that the test function remains in the same Pk polynomial spaces, 
whereas in the SLDG setting the test function does not necessarily remain in Pk and needs to be approximated. In fact, 
a close connection can be drawn between the ELDG method and the Arbitrary Lagrangian Eulerian (ALE) DG method [24], 
when we view the space-time region in the ELDG method as a dynamic moving mesh. The second advantage brought by the 
modified adjoint problem is that the shape of upstream cells is always quadrilaterals in a 2D setting. For a general variable 
coefficient problem, upstream cells of the SLDG method could be of arbitrary shape and need to be better approximated. 
In [5], we propose to use quadratic curves in approximating sides of upstream cells, so that we have third order spatial 
accuracy. Such a practice is difficult be further generalized to schemes with even higher order accuracy, and for problems 
in higher-dimensions. With the newly ELDG method, no curves are needed to better approximate upstream cells. A direct 
generalization of the algorithm to higher dimensional problems can be similarly done in principle.

Due to the approximate nature of the velocity field in the modified adjoint problem, there is an extra flux term taking 
account of the difference between velocity fields from the modified adjoint problem and the original problem. The newly 
proposed ELDG scheme evolves this extra flux term in a similar spirit to the classical Eulerian RKDG method [12]. The 
ELDG scheme is designed based on the integral form of the equation over characteristics-related space-time regions; yet we 
transform such integral formulation into a time-differential form, for which the method-of-lines strong-stability preserving 
(SSP) Runge-Kutta (RK) can be directly applied. Here, we would like to mention the Eulerian Lagrangian weighted essentially 
non-oscillatory schemes developed in [23,20,21], for which a different way of treating time integration is proposed.

As nonlinear applications of the ELDG algorithm, we consider the nonlinear Vlasov-Poisson system, the guiding center 
Vlasov model as well as the incompressible Euler equations. Here, we couple the ELDG algorithm with the RK exponential 
integrator [9,4] to realize a uniformly high order spatial-temporal discretization of nonlinear transport. In particular, the 
RK exponential integrator decomposes a time step evolution of the nonlinear problem into the composition of a sequence 
of linear problems. Extensive numerical experiments are performed and effectiveness of the ELDG method is showcased in 
various settings with allowance of extra large time stepping sizes.

This paper is organized as follows. In Section 2, we derive the formulation of ELDG for one-dimensional (1D) linear 
transport problems, where the main spirit of the method is introduced. In Section 3, we perform a nontrivial generalization 
of the scheme for 2D linear transport problems. In Section 4, we combine the ELDG scheme with the Runge-Kutta exponen-
tial integrators for nonlinear transport problems. In Section 5, the performance of the proposed method is shown through 
extensive numerical tests. Finally, concluding remarks are made in Section 6.

2. ELDG formulation for 1D linear transport problems

To illustrate the key idea of the ELDG scheme, we start from a 1D linear transport equation in the following form

ut + (a(x, t)u)x = 0, x ∈ [xa, xb]. (2.1)

For simplicity, we assume periodic boundary conditions, and the velocity field a(x, t) is a continuous function of space 
and time. We perform a partition of the computational domain xa = x 1

2
< x 3

2
< · · · < xN+ 1

2
= xb . Let I j = [x j− 1

2
, x j+ 1

2
]

denote an element of length �x j = x j+ 1
2

− x j− 1
2

and define �x = max j �x j . We define the finite dimensional approx-

imation space, V k
h = {vh : vh|I j ∈ Pk(I j)}, where Pk(I j) denotes the set of polynomials of degree at most k. For this 

finite-dimensional space, we introduce a set of basis functions {� j,m(x)}1≤ j≤N,0≤m≤k . We also introduce a set of basis 
functions {ψ j,m(x, t)}1≤ j≤N,0≤m≤k , which will be used in an adjoint problem. The subscripts of � j,m(x) and ψ j,m(x, t) are 
2
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Fig. 2.1. Illustration for the space-time region for the SLDG formulation.

often omitted, when there is no risk of ambiguity. Moreover, we define tn to be the n−th time level, and �t = tn+1 − tn to 
be the time-stepping size.

2.1. Review of SLDG scheme [5]

The SLDG method proposed in [5] is formulated based on an adjoint problem of (2.1) with ∀� ∈ Pk(I j),{
ψt + a(x, t)ψx = 0, t ∈ [tn, tn+1],
ψ(t = tn+1) = �(x),

(2.2)

for which the solution ψ stays constant along characteristic trajectories. It was shown in [19] that

d

dt

∫
Ĩ j(t)

u(x, t)ψ(x, t)dx = 0, (2.3)

where ̃ I j(t) is a dynamic interval bounded by characteristics emanating from cell boundaries of I j at t = tn+1, see Fig. 2.1
for illustration. An SL time discretization of (2.3) leads to∫

I j

un+1�dx =
∫
I�j

u(x, tn)ψ(x, tn)dx, (2.4)

where I�j = [x�

j− 1
2
, x�

j+ 1
2
] with x�

j± 1
2

= x̃ j± 1
2
(tn) being the foots of trajectory at tn emanating from (x j± 1

2
, tn+1). In order to 

update the numerical solution un+1, we vary the test function � as basis of V k
h and evaluate the right-hand side (RHS) 

integral of (2.4) properly. The detailed procedures can be found in [5].

2.2. The new ELDG scheme

The newly proposed ELDG method differs from the SLDG method [5] in the formulation of a modified adjoint problem 
for the test function ψ . To introduce the scheme, we first introduce the modified adjoint problem and the associated space-
time region � j ; then we derive a semi-discrete version of the ELDG scheme based on the space-time region of � j; finally 
a method-of-times Runge-Kutta method is applied for time marching.

(1) A modified adjoint problem. We consider the adjoint problem with ∀� ∈ Pk(I j) on the time interval [tn, tn+1]:{
ψt + α(x, t)ψx = 0, t ∈ [tn, tn+1],
ψ(t = tn+1) = �(x),

(2.5)

with α(x, t) being a piecewise bilinear function of (x, t) designed by three steps below:

1. On I j at tn+1: we let α(x, tn+1) be a linear polynomial on I j interpolating a(x, tn+1) at cell boundaries,

α(x j± 1
2
, tn+1) = a(x j± 1

2
, tn+1)

.= ν j± 1
2
. (2.6)

That is,

α(x, tn+1) = −ν j− 1
2

x− x j+ 1
2

�x
+ ν j+ 1

2

x− x j− 1
2

�x
∈ P1(I j). (2.7)
j j

3
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Fig. 2.2. Illustration for the mapping between dynamic element Ĩ j(t) (left) and the iso-parametric element (right).

2. We define a space-time region � j = Ĩ j(t) × [tn, tn+1] with the dynamic interval, Ĩ j(t) = [x̃ j− 1
2
(t), ̃x j+ 1

2
(t)], t ∈ [tn, tn+1], 

where x̃ j± 1
2
(t) = x j± 1

2
+ (t − tn+1)a(x j± 1

2
, tn+1) emanating from cell boundaries x j± 1

2
with slopes a(x j± 1

2
, tn+1). It will 

become clear after the third step that the space-time region � j is the dynamic characteristic region of the modified 
adjoint problem (2.5). We let I�j

.= Ĩ j(tn) be the upstream cell of I j at tn . See the left panel in Fig. 2.2 for illustration.
3. On Ĩ j(t) for [tn, tn+1): let x̃(t; (ξ, tn+1)) be a straight line emanating from any point ξ ∈ I j at tn+1 and with the slope 

α(ξ, tn+1). That is,

d

dt
x̃(t; (ξ, tn+1)) = α(ξ, tn+1), x̃(tn+1; (ξ, tn+1)) = ξ. (2.8)

Then

x̃(τ ; (ξ, tn+1)) = ξ − α(ξ, tn+1)(tn+1 − τ ), ∀τ ∈ [tn, tn+1). (2.9)

We let

α(x̃(τ ; (ξ, tn+1)), τ ) = α(ξ, tn+1), τ ∈ [tn, tn+1). (2.10)

We would like to point out a few facts about � j and the modified adjoint problem (2.5):

• From the construction of � j and α(x, t) of the modified adjoint problem (2.5), it can be easily checked that, (2.8) is the 
characteristics equation for the modified adjoint problem (2.5).

• x̃(τ ; (ξ, tn+1)) satisfying eq. (2.9) is a linear function of ξ and τ ; the Jacobian is

∂ x̃(τ ; (ξ, tn+1))

∂ξ
= 1 −

ν j+ 1
2

− ν j− 1
2

�x j
(tn+1 − τ ), (2.11)

which will become useful later in implementation. In particular,

∂ x̃(tn; (ξ, tn+1))

∂ξ
= 1− �t

ν j+ 1
2

− ν j− 1
2

�x j
.

• In order for the characteristics not crossing each other, one has to enforce the condition of ∂ x̃(tn;(ξ,tn+1))
∂ξ

≥ 0, which 
implies the time step constraint

�t ≤ min j �x j

max(ν j+ 1
2

− ν j− 1
2
,0)

. (2.12)

• For the modified adjoint problem, the solution ψ stays constant along characteristics (2.5), therefore we have

ψ(x̃(τ ; (ξ, tn+1)), τ ) = �(ξ) ∈ Pk(I j), ∀τ ∈ [tn, tn+1]. (2.13)

If we consider a transformation between x ∈ Ĩ j to a reference interval ξ ∈ I j , see Fig. 2.2, eq. (2.13) indicates that the 
test function ψ(x̃(τ ; (ξ, tn+1)), τ ) in the ξ coordinate remains the same as the classical test function �(ξ), i.e. standard 
basis functions in Pk(I j).

(2) Formulation of the semi-discrete ELDG scheme. In order to formulate the scheme, we integrate (2.1) · ψ + (2.5) · u over 
� j , which gives the following identity,
4
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∫
� j

[(2.1) · ψ + (2.5) · u]dxdt = 0. (2.14)

That is,

0 =
tn+1∫
tn

∫
Ĩ j(t)

(utψ + uψt)dxdt +
tn+1∫
tn

∫
Ĩ j(t)

((a(x, t)u)xψ + α(x, t)ψxu)dxdt

=
tn+1∫
tn

∫
Ĩ j(t)

(uψ)tdxdt +
tn+1∫
tn

∫
Ĩ j(t)

((auψ)x − auψx + αψxu)dxdt

=
tn+1∫
tn

⎡⎢⎢⎣ d

dt

∫
Ĩ j(t)

uψdx− αuψ

∣∣∣∣∣x̃ j+ 1
2
(t)

x̃
j− 1

2
(t) + auψ

∣∣∣∣∣x̃ j+ 1
2
(t)

x̃
j− 1

2
(t) +

∫
Ĩ j(t)

(α − a)uψxdx

⎤⎥⎥⎦dt

=
tn+1∫
tn

⎡⎢⎢⎣ d

dt

∫
Ĩ j(t)

uψdx+ (a − α)uψ

∣∣∣∣∣x̃ j+ 1
2
(t)

x̃
j− 1

2
(t) −

∫
Ĩ j(t)

(a − α)uψxdx

⎤⎥⎥⎦dt. (2.15)

Letting F (u) .= (a − α)u, the time differential form of (2.15) gives

d

dt

∫
Ĩ j(t)

(uψ)dx = − (Fψ)

∣∣∣∣x̃ j+ 1
2
(t) + (Fψ)

∣∣∣∣x̃ j− 1
2
(t) +

∫
Ĩ j(t)

Fψxdx. (2.16)

Notice that the dynamic interval of Ĩ j(t) can always be linearly mapped to a reference cell ξ ∈ I j , see the right plot in 
Fig. 2.2, then eq. (2.16) in the ξ -coordinate becomes

d

dt

∫
I j

(u�(ξ))
∂ x̃(t; (ξ, tn+1))

∂ξ
dξ = − (F�)

∣∣∣∣ξ=x
j+ 1

2
+ (F�)

∣∣∣∣ξ=x
j− 1

2
+
∫
I j

F�ξdξ. (2.17)

The DG discretization [13,12] of (2.17) is to find uh(ξ, t) ∈ Pk(I j) as the approximate solution of u(x̃(t; (ξ, tn+1)), t) on Ĩ j(t), 
so that for ∀� ∈ Pk(I j),

d

dt

∫
I j

uh�
∂ x̃(t; (ξ, tn+1))

∂ξ
dξ = − F̂ j+ 1

2
�(x−

j+ 1
2
) + F̂ j− 1

2
�(x+

j− 1
2
) +

∫
I j

F�ξdξ. (2.18)

Notice here uh could be discontinuous across x�

j− 1
2
. In this paper, we choose F̂ as a monotone flux, e.g. the Lax-Friedrichs 

flux

F̂ (u−,u+) = 1

2
(F (u−) + F (u+)) − α0

2
(u+ − u−), α0 = max

u
|F ′(u)|; (2.19)

and we use Gauss quadrature rules with k + 1 quadrature points to approximate the integral term 
∫
I j
F (uh)�ξdξ on the 

RHS of the equation (2.18).

(3) RK time discretization and fully discrete scheme. We can write the semi-discrete scheme (2.18) into a form of ordinary 
differential equations (ODEs) with an initial condition. We let Ũ(t) be a vector in RN(k+1) which consists of degrees of 
freedom {∫ Ĩ j(t) uh(x, t)ψ j,m(x, t)dx .= Ũ j,m(t)}1≤ j≤N,0≤m≤k , and denote the spatial discretization operator of the RHS of (2.18)

as L 
(
Ũ(t), t

)
. Then the semi-discrete scheme (2.18) can be written as

∂

∂t
Ũ(t) = L

(
Ũ(t), t

)
, Ũ(tn) = Ũn. (2.20)

There are two main steps involved here.
5
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Table 2.1
Parameters of some practical Runge-Kutta 
time discretizations.
Order αil βil dl

2 1 1 0
1
2

1
2 0 1

2 1

3 1 1 0
3
4

1
4 0 1

4 1
1
3 0 2

3 0 0 2
3

1
2

1. Obtain the initial condition of (2.18) by an L2 projection of uh on upstream cells Ĩ j by SLDG method. In particular, Ũn

consists of the numerical solutions Ũn
j,m of the SLDG scheme [5] for approximating∫

Ĩ j(tn)

uh(x, t
n)ψ j,m(x, tn)dx.

2. Update (2.20) from Ũn to Ũn+1. We apply the SSP explicit RK methods [32] as in a method-of-lines approach. In partic-
ular, the time-marching algorithm using an s-stage RK method follows the procedure below:
(a) Get the mesh information of the dynamic element Ĩ(l)j , l = 0, · · · , s on RK stages by eq. (2.9).
(b) For RK stages i = 1, · · · , s, compute

Ũ(i) =
i−1∑
l=0

[
αilŨ

(l) + βil�tnL
(
Ũ(l), tn + dl�tn

)]
, (2.21)

where αil and βil are related to RK methods. They are provided in Table 2.1 for the second order and third order 
SSP RK methods.

Note that Ũn is evaluated by the SLDG scheme in x-coordinate, while Ũ(i) in each time stage is updated with respect to 
the reference ξ coordinate.

Theorem 2.1. (Mass conservation) Given a DG solution uh(x, tn) ∈ V k
h and assuming the boundary condition is periodic, the proposed 

fully discrete ELDG scheme with SSP RK time discretization of (2.20) is locally mass conservative. In particular,

N∑
i=1

∫
I j

uh(x, t
n+1)dx =

N∑
i=1

∫
I j

uh(x, t
n)dx.

Proof. It can be proved by letting ψ = 1, the conservative form of integrating F function with unique flux at cell boundaries, 
as the mass conservation property of SLDG scheme [5]. We skip details for brevity.

A few remarks are in order for the proposed ELDG scheme, in comparison with existing SLDG [5], RKDG [12] and ALE 
DG [24] methods in the literature. These remarks also apply to the 2D ELDG scheme in the next section.

Remark 2.2. (Comparison with the SLDG method [5]) The modified adjoint problem (2.5) is different from the adjoint 
problem (2.2) in the velocity field. In some sense, α(x, t) is an approximation of a(x, t). While the characteristics induced by 
a(x, t) could be curves and the test function φ satisfying eq. (2.2) may no longer be polynomials, the characteristics induced 
by α(x, t) are straight lines and the test function φ remains a Pk polynomial on Ĩ j(t). The difference, between α(x, t) and 
exact slopes a(x, t) for characteristic curves, is taken into account by the F function in (2.18).

Remark 2.3. (A framework encompassing RKDG and SLDG) The new scheme formulation (2.18) offers a general framework 
that encompasses the traditional Eulerian RKDG scheme [15] and the SLDG method proposed in [5]. For the linear equation 
with the special case of α = a, the ELDG method becomes the SLDG method [5] and the scheme is unconditionally stable. 
In the special case of α(x, t) = 0, the ELDG method becomes the classical RKDG method [15]. In the general setting that α
approximates (but not exactly equals) a, the ELDG method enables larger time step constraint for stability than the classical 
DG scheme. One can compare the time step constraint (2.23) to that of a classical Eulerian DG method.

Remark 2.4. (Comparison to the ALE DG method) It is interesting to note that when we put the Eulerian cells I j at tn+1 and 
the upstream cells I�j at t

n in a moving mesh setting, the formulation of ELDG (2.18) is the same as the ALE DG method [24]
and the quasi-Lagrangian moving mesh discontinuous Galerkin method [26]. A fundamental difference between the ELDG 
and ALE DG methods is that the latter one is formulated based on a set of moving mesh, whereas the ELDG method in this 
6
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paper is based on a fixed set of mesh. As a result, the ELDG method avoids the complication of mesh distortion as in an 
ALE DG method. In fact, the ELDG method can be viewed as a combination of SLDG algorithm in evaluating Ũn and an ALE 
DG method in updating solutions from Ũn to Ũn+1.

Remark 2.5. (Empirical time step constraint for stability) Observe that the proposed ELDG formulation has a similar spirit 
to applying the RKDG method [12] to 1D problems with the flux term F = (a − α)u, thus an empirical time step stability 
constraint of the proposed ELDG method is

�t ≤ �x

(2k + 1)max |a(x, t) − α(x, t)| , (2.22)

with k being the polynomial degree of the DG method. Combine this with (2.12) gives

�t ≤ �x

max{(2k + 1)max |a(x, t) − α(x, t)|,a(x j+ 1
2
, tn+1) − a(x j− 1

2
, tn+1)} . (2.23)

For a smooth function a, from the construction of α function as previously described and by Taylor expansions, we have 
α − a =O(�t) +O(�x2). Combining this estimate with (2.23) give the time step constraint for stability of ELDG

�t ∼ �x
1
2 .

This is consistent with our numerical observations presented in Section 5.

Remark 2.6. (Stability analysis in a simplified setting) Stability analysis and error estimates of the proposed ELDG method 
solving a simplified linear equation ut + ux = 0 with α(x, t) for the adjoint problem being a constant α 
= 1 could be 
obtained by the stability of an L2 projection as in an SLDG scheme [28], together with the stability of a fully discrete ALE 
DG method [39]. A rigorous analysis is subject to further investigation.

Remark 2.7. In our algorithm description above, α(x, tn+1) is constructed as a linear function interpolating a(x, t) at cell 
boundaries. Alternatively, for (2.1), one can track characteristics from cell boundaries at tn+1, i.e. from (x j±1/2, tn+1) find 
their characteristics feet (x�

j±1/2, t
n). Then α(x j±1/2, tn+1) can be obtained as the slope of the straight time connecting 

(x j±1/2, tn+1) and (x�
j±1/2, t

n), i.e. α(x j±1/2, tn+1) = x j±1/2−x�
j±1/2

�t . We name the ELDG scheme with such construction of α
function as ‘ELDG-ST2’, and the ELDG scheme with α(x, t) defined by eq. (2.7) and (2.10) as ‘ELDG-ST1’ in later parts of this 
paper.

3. The ELDG algorithm for 2D transport problems

The design of the 2D ELDG algorithm shares a similar spirit as the 1D case. We consider a linear transport equation

ut + (a(x, y, t)u)x + (b(x, y, t)u)y = 0, (x, y) ∈ �. (3.1)

For simplicity, we assume the computational domain � is rectangular, boundary conditions are periodic, and the velocity 
field (a(x, y, t), b(x, y, t)) is a continuous function of space and time. We partition the domain � by a set of non-overlapping 
rectangular elements A j, j = 1, · · · , J , and define the finite dimensional DG approximation space, V k

h = {vh : vh|A j ∈ Pk(A j)}, 
where Pk(A j) denotes the set of polynomials of degree at most k over A j = [xlj, xrj] × [ybj , ytj] with element center (
x j = xlj+xrj

2 , y j = ybj+ytj
2

)
and sizes, �x j = xrj − xlj , �y j = ytj − ybj . Let nk be the dimension of Pk(A j).

(1) A modified adjoint problem for the 2D transport problem. To derive a 2D ELDG formulation, we consider a modified 
adjoint problem at Ã j(t) on the time interval t ∈ [tn, tn+1]:

ψt + α(x, y, t)ψx + β(x, y, t)ψy = 0, ψ(x, y, t = tn+1) = �(x, y) ∈ Pk(A j), (3.2)

where (α, β) are bilinear functions on A j at tn+1 defined as described below. Notation-wise, we let Ã j(t), t ∈ [tn, tn+1]
be the dynamic characteristic element of the modified adjoint problem (3.2) with (x̃(t), ỹ(t)) ∈ Ã j(t) that satisfies (3.4)
emanating from (x, y) of A j at tn+1. We also let A�

j
.= Ã j(tn) be the upstream cell of A j at tn and let � j be the region of 

which (x, y, t) ∈ Ã j(t) × [tn, tn+1].

1. On A j at tn+1. Let α(x, y, tn+1) ∈ Q 1(x, y) interpolate a at four vertices of A j , i.e.,

α(xlj, y
b
j , t

n+1) = a(xlj, y
b
j , t

n+1), α(xlj, y
t
j, t

n+1) = a(xlj, y
t
j, t

n+1), (3.3)

α(xrj, y
b
j , t

n+1) = a(xrj, y
b
j , t

n+1), α(xrj, y
t
j, t

n+1) = a(xrj, y
t
j, t

n+1).
7
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Similarly, β is a bilinear function interpolating b at four vertices (xlj, y
b
j ), (x

l
j, y

t
j), (x

r
j, y

b
j ), (x

r
j, y

t
j).

2. On Ã j(t) at t ∈ [tn, tn+1). Along characteristic lines of the adjoint problem (3.2) emanating from any point (ξ, η) ∈ A j at 
tn+1, with

x̃(t; (ξ,η, tn+1)), ỹ(t; (ξ,η, tn+1))

satisfy the following equations,

d

dt
x̃(t; (ξ,η, tn+1)) = α(ξ,η, tn+1),

d

dt
ỹ(t; (ξ,η, tn+1)) = β(ξ,η, tn+1), (3.4)

from which one have

x̃(τ ; (ξ,η, tn+1)) = ξ − α(ξ,η, tn+1)(tn+1 − τ ) ∈ Q 1(ξ,η), (3.5)

ỹ(τ ; (ξ,η, tn+1)) = η − β(ξ,η, tn+1)(tn+1 − τ ) ∈ Q 1(ξ,η), (3.6)

with the Jacobian

J (ξ,η, τ ) = ∂(x̃, ỹ)

∂(ξ,η)
(τ ) =

(
1− ∂α

∂ξ
(tn+1 − τ ) − ∂α

∂η (tn+1 − τ )

− ∂β
∂ξ

(tn+1 − τ ) 1− ∂β
∂η (tn+1 − τ )

)
. (3.7)

Then we let, for t ∈ [tn, tn+1], and (x̃, ỹ) ∈ Ã j(t),

α(x̃(t; (ξ,η, tn+1)), ỹ(t; (ξ,η, tn+1)), t) = α(ξ,η, tn+1), (3.8)

β(x̃(t; (ξ,η, tn+1)), ỹ(t; (ξ,η, tn+1)), t) = β(ξ,η, tn+1). (3.9)

It can be easily checked that, (3.4) are the characteristics equations for the modified adjoint problem (3.2) with α
and β functions defined by eq. (3.8) and (3.9). For the modified adjoint problem, the solution ψ stays constant along 
characteristics, therefore we have

ψ(x̃(τ ; (ξ,η, tn+1)), ỹ(τ ; (ξ,η, tn+1)), τ ) = �(ξ,η) ∈ Pk(A j), ∀τ ∈ [tn, tn+1]. (3.10)

Next we introduce a few notations and useful equalities [11,27] regarding the coordinate transformation defined by 
(3.5)-(3.6).

dxdy = det( J (ξ,η))dξdη, (3.11)

∇x,yψ(x, y) = J (ξ,η)−T ∇ξ,η�(ξ,η), (3.12)

ndS = det( J (ξ,η)) J (ξ,η)−T n̆dS̆, (3.13)

where dS and dS̆ are the infinitesimal boundaries of the dynamic element and the isoparametric element, respectively and 
their corresponding normal vectors are n and n̆. The inverse of the Jacobian is given by

J (ξ,η)−1 = 1

|det( J (ξ,η))|
(

ỹη −x̃η
− ỹξ x̃ξ

)
. (3.14)

We assume the determinant of the Jacobian det( J (ξ, η)) is positive; if the determinant of Jacobian is negative, it indicates 
the distortion of upstream cells. In such a situation, the time stepping size should be reduced by using the adaptive time 
stepping algorithm [4].

(2) Semi-discrete ELDG scheme formulation. Integrating (3.1) · ψ + (3.2) · u over � j , we have∫
� j

[(3.1) · ψ + (3.2) · u]dxdydt = 0. (3.15)

Then,

0 =
tn+1∫
tn

∫
Ã (t)

(utψ + uψt)dxdydt
j

8
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Fig. 3.3. Illustration for the mapping between dynamic element Ã j(t) (left) and the iso-parametric element (right).

+
tn+1∫
tn

∫
Ã j(t)

((au)xψ + αψxu + (bu)yψ + βψyu)dxdydt

=
tn+1∫
tn

⎡⎢⎢⎣ ∫
Ã j(t)

(uψ)tdxdydt +
∫

Ã j(t)

((au)xψ + αψxu + (bu)yψ + βψyu)dxdydt

⎤⎥⎥⎦

=
tn+1∫
tn

⎡⎢⎢⎣ d

dt

∫
Ã j(t)

uψdxdy −
∫

∂ Ã j(t)

uψ

(
α
β

)
· ndS

⎤⎥⎥⎦dt

+
tn+1∫
tn

⎡⎢⎢⎣ ∫
Ã j(t)

∇ ·
(
au
bu

)
ψdxdy +

∫
Ã j(t)

(
α
β

)
· ∇ψudxdy

⎤⎥⎥⎦dt

=
tn+1∫
tn

⎡⎢⎢⎣ d

dt

∫
Ã j(t)

uψdxdy +
∫

∂ Ã j(t)

ψF · ndS −
∫

Ã j(t)

F · ∇ψdxdy

⎤⎥⎥⎦dt,

(3.16)

with

F(u, x, y, t) =
(

(a(x, y, t) − α(x, y, t))u
(b(x, y, t) − β(x, y, t))u

)
, (3.17)

in which the Leibniz-Reynolds transport theorem and the divergence Theorem are used for the above derivation. The time 
differential version of eq. (3.16) can be written as

d

dt

∫
Ã j(t)

uψdxdy = −
∫

∂ Ã j(t)

ψF · ndS +
∫

Ã j(t)

F · ∇ψdxdy. (3.18)

As the 1D case, we map the coordinate of (x, y) ∈ Ã j(t) to a reference cell of (ξ, η) ∈ A j as shown in Fig. 3.3. Then we 
rewrite eq. (3.18) as

d

dt

∫
A j

u(x̃(t, (ξ,η, tn+1)), ỹ(t, (ξ,η, tn+1)), t)�(ξ,η)det( J (ξ,η, t))dξdη

= −
∫

∂ A j

�(ξ,η)F ·
(
det( J (ξ,η, t)) J (ξ,η, t)−T n̆

)
dS̆

+
∫
A

F · ( J (ξ,η, t)−T∇ξ,η�)det( J (ξ,η, t))dξdη. (3.19)
j

9
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Notice that in equation (3.19), functions are all in the (ξ, η) coordinate, and can be evolved by the method-of-lines approach, 
e.g. using explicit SSP RK methods. �(ξ, η) function stays as the same polynomial in the (ξ, η) coordinate for all t ∈ [tn, tn+1]
by the design of our adjoint problem, see eq. (3.10).

We let the approximate solution of u(x̃(t, (ξ, η, tn+1)), ỹ(t, (ξ, η, tn+1)), t) be written in the (ξ, η) coordinate as follows,

uh(ξ,η, t) =
nk∑
p=1

ŭp(t)�p(ξ,η), (3.20)

where bases �p(ξ, η), p = 1, · · · , nk expands the space of Pk(A j), for implementation. For the ELDG scheme, we look for uh

in the above form satisfying

d

dt

∫
A j

uh�q det( J (ξ,η, t))dξdη +
∫

∂ A j

�qF̂ ·
(
det( J (ξ,η, t)) J (ξ,η, t)−T n̆

)
dS̆

−
∫
A j

F · ( J (ξ,η, t)−T∇ξ,η�q)det( J (ξ,η, t))dξdη = 0. (3.21)

Here F̂ in the second term is a monotone numerical flux, an example of which is the Lax-Friedrichs flux, and the line and 
volume integral in the second and third terms could be performed by proper high order quadrature rules as in a standard 
RK DG scheme. Then the coefficients u = (ŭ1, ̆u2, · · · , ̆unk )

T in (3.20) satisfy a system of ODEs,

d

dt
(M(t)u(t)) = L(u(t), t), (3.22)

where the mass matrix M is of size nk by nk and its entries are

Mpq(t) =
∫
A j

�p(ξ,η)�q(ξ,η)det( J (ξ,η, t))dξdη,

and L(u(t)) is the RHS vector from the evaluation of the other terms in (3.21).

(3) RK time discretization and fully discrete scheme. The semi-discrete scheme (3.22) can be discretized by applying an 
explicit RK time discretization with the initial condition

M(tn)un =
∫
A�

j

un
h(x, y)ψ(x, y, tn)dxdy, (3.23)

being evaluated by a 2D SLDG procedure [5]. Below we provide a flow chart of the fully discrete 2D algorithm described 
above.

Step 1. Construct α(x, y, t) and β(x, y, t) for (x, y, t) ∈ Ã j(t) × [tn, tn+1] by first constructing

α(x, y, tn+1),β(x, y, tn+1) ∈ Q 1(x, y), (x, y) ∈ A j,

interpolating a(x, y, tn+1), b(x, y, tn+1) respectively at four vertices of A j ; then these α and β functions are con-
structed by following (3.8)-(3.9) for t ∈ [tn, tn+1). In particular, one first find (ξ, η) for (x̃, ỹ) from (3.5)-(3.6); 
then the α(x̃, ỹ, t) and β(x̃, ỹ, t) are defined following (3.8)-(3.9). Note that, while (x̃, ỹ) is a bilinear function of 
(ξ, η), the same statement does not hold for the inverse mapping. Fig. 3.3 illustrates 2D transformation between 
(ξ, η) ∈ A j and (x, y) ∈ Ã j(t) for some t ∈ [tn, tn+1].

Step 2. Set up dynamic elements Ã(l)
j , l = 0, · · · , s, for each immediate stage of the RK method, and compute the corre-

sponding Jacobian of the transformation J = ∂(x,y)
∂(ξ,η)

, J (ξ, η, τ )−1 in (3.19); these quantities can be precomputed as 
functions of (ξ, η, t(l)).

Step 3. Perform the SLDG algorithm in [5] to get the initial condition of (3.23). Notice that since the mapping 
(x(ξ, η), y(ξ, η)) in (3.5)-(3.6) is not affine, it is not as straighforward to find the inverse mapping of 
(ξ(x, y), η(x, y)) as the 1D problem. Some approximation, as is done in [5], has to be performed in order to 
obtain ψ(x, y, tn).

Step 4. An SSP RK method is applied to (3.22). In particular, at the lth RK stage, M(l)u(l) is first being updated, then u(l)

is computed by applying (M(l))−1; finally u(l) as the degree of freedom in (ξ, η) coordinate are being used to 
evaluate the RHS of (3.22) for future RK stages.
10
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Remark 3.1. (Quadrilateral shape of upstream cells) The fact that α(x, y, tn+1) and β(x, y, tn+1) functions are in Q 1(A j) in 
the modified adjoint problem ensures the quadrilateral shape of upstream cells. This avoids the need to use quadratic curves 
to approximate upstream cells in achieving high order spatial accuracy in the original SLDG algorithm [5]. An example of 
such is the swirling deformation example as shown in the numerical section.

Remark 3.2. (Assumption on the velocity field) For the scope and applications of our current paper, we work with the 
velocity fields (a(x, y, t), b(x, y, t)) that are smooth enough and divergence free. The proposed ELDG formulation works for 
general non-divergence free velocity field as long as the Jacobian of the transformation is always positive.

4. ELDG method with the exponential integrators for nonlinear Vlasov dynamics

The proposed ELDG method for linear transport problems can be applied to solve nonlinear models such as Vlasov 
models, via combining with the Runge-Kutta exponential integrator method in [10,4]. We will denote such a method as 
ELDG-RKEI. Below we first present the nonlinear Vlasov-Poisson, the guiding center Vlasov models as well as the 2D incom-
pressible Euler equations; and then present a second order and a third order ELDG-RKEI method.
The nonlinear Vlasov-Poisson system reads as follows,

ft + v fx + E(x, t) f v = 0, (4.1)

E(x, t) = −φx, −φxx(x, t) = ρ(x, t), (4.2)

where the electron distribution function f (x, v, t) is the probability distribution function in the phase space (x, v) ∈ �x ×R
describing the probability of finding a particle with velocity v at position x and at time t . The electric field E = −φx , 
where the self-consistent electrostatic potential φ is determined by the Poisson’s equation (4.2). ρ(x, t) = ∫

R f (x, v, t)dv −1
denotes charge density, with the assumption that infinitely massive ions are uniformly distributed in the background.
The guiding center Vlasov model describes a highly magnetized plasma in the transverse plane of a tokamak [31,16], and 
reads as follows:

ρt + ∇ · (E⊥ρ) = 0, (4.3)

−�� = ρ, E⊥ = (−�y,�x), (4.4)

where the unknown variable ρ denotes the charge density of the plasma, and the electric field E depends on ρ via the 
Poisson equation.
The 2D incompressible Euler in the vorticity-stream function reads as follows,

ωt + ∇ · (uω) = 0, (4.5)

�� = ω, u = −(−�y,�x), (4.6)

where u is the velocity field, ω is the vorticity of the fluid, and � is the stream-function determined by Poisson’s equation.
The above three models can be written in the form of (1.1). In [10,9,4], the exponential integrator method is applied to 

solve nonlinear time-dependent problems (1.1), by decomposing the nonlinear dynamics into the composition of a sequence 
of linearized transport problems to achieve high order temporal accuracy. We denote the ELDG procedure of updating the 
solution of linearized equation from t∗ to t∗ + �t with frozen velocity field P(u∗; x, t∗){

ut + ∇ · (P(u∗;x, t∗)u) = 0,

u(t∗) = u∗,
(4.7)

as

ELDG(P(u∗;x, t∗),�t)(u∗). (4.8)

When a second order RKEI scheme is used with the ELDG update of linearized solution, one has

u(1) = un

u(2) = ELDG

(
1

2
P(u(1)),�t

)
u(1)

un+1 = ELDG
(
P(u(2)),�t

)
u(1).

We name such scheme ‘ELDG-CF2’ [4], in which ‘CF2’ refers to the above second order RKEI scheme. When a third order 
RKEI scheme is used with the ELDG update of linearized solution, one has
11
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u(1) = un

u(2) = ELDG

(
1

3
P(u(1)),�t

)
u(1)

u(3) = ELDG

(
2

3
P(u(2)),�t

)
u(1)

un+1 = ELDG

(
− 1

12
P(u(1)) + 3

4
P(u(3)),�t

)
u(2).

We name such scheme ‘ELDG-CF3C03’ [4], in which ‘CF3C03’ refers to the above third order RKEI scheme. We refer to [4]
for more details regarding implementation. In the nonlinear Vlasov models LDG schemes [1,14,7,29] are adopted to solve 
the elliptic field equations (4.2) and (4.4).

5. Numerical results

In this section, we perform numerical experiments for linear transport problems as well as the nonlinear Vlasov models. 
To showcase the proposed method, we perform the following studies: (1) the convergence of spatial discretization by using 
small enough time stepping size; (2) we vary C F L to study the temporal convergence and numerical stability with a well 
resolved spatial mesh; (3) we present snapshots of numerical solutions in a long time; (4) we numerically track the time 
history of invariants, such as mass and energy.

The ELDG method presented below is the ELDG-ST1 method, unless otherwise noted. When needed, we use the k + 1-th 
order RK for tracing characteristic lines. We set the time step for 1D and 2D problems as

�t = C F L�x and �t = C F L
a

�x + b
�y

, (5.1)

respectively; here a and b are maximum transport speeds in x and y directions, respectively. For some test cases, we also 
present the SLDG [5,4] and classical RKDG methods for comparison purpose.

5.1. 1D linear transport problems

Example 5.1. (1D linear transport equation with constant coefficient.) We start with the following 1D transport equation

ut + ux = 0, x ∈ [0,2π ], (5.2)

with the smooth initial data u(x, 0) = sin(x) and exact solution u(x, t) = sin(x − t). For the constant coefficient problem, 
the proposed ELDG method, if using the exact velocity field, is the same as SLDG. Here we perturb the velocity at cell 
boundaries for the modified adjoint problem to be α(x j+ 1

2
) = 1 + sin(x j+ 1

2
)�x.

Table 5.2 reports the spatial accuracies of the ELDG, SLDG and RKDG methods for this example with the same time 
stepping size. The proposed ELDG method is found to be as accurate as the SLDG and RKDG methods. We vary time stepping 
size, with fixed well-resolved spatial meshes, and plot error vs. C F L in Fig. 5.4 for ELDG and SLDG P1 (left) and P2 (right) 
schemes at a long time T = 100. For the ELDG scheme, the time-stepping constraint can be found to be �t ≤ 1

(2k+1)�x�x
from the perturbation of velocity field and (2.22); hence

C F Lupper = 1

(2k + 1)�x
,

for Pk ELDG schemes. They are shown as dashed lines in the figure. It is observed that these bounds are expected in this 
numerical test. The SLDG schemes are observed to be unconditionally stable. The ELDG and SLDG schemes are observed to 
have similar error magnitudes, when the C F L is less than the stability bounds (dash lines).

Example 5.2. (1D transport equation with variable coefficients.) Consider

ut + (sin(x)u)x = 0, x ∈ [0,2π ] (5.3)

with initial condition u(x, 0) = 1 and the periodic boundary condition. The exact solution is given by

u(x, t) = sin(2 tan−1(e−t tan( x
2 )))

sin(x)
. (5.4)

As in the previous example, the spatial convergence of RKDG, SLDG, ELDG-ST1 and ELDG-ST2 is shown in Table 5.3. 
The expected spatial convergence orders are observed. In Fig. 5.5, we plot the L∞ error versus C F L of ELDG-ST1, ELDG-ST2 
12
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Table 5.2
1D linear transport equation with constant coefficient. ut + ux = 0 with initial con-
dition u(x, 0) = sin(x). T = π . We use C F L = 0.3 and C F L = 0.18 for all P1 and P2

schemes, respectively. ELDG here with the vertex perturbation.
Mesh L1 error Order L1 error Order L1 error Order

P1 RKDG P1 SLDG P1 ELDG

40 1.15E-03 – 6.37E-04 – 6.08E-04 –
80 2.85E-04 2.01 1.59E-04 2.00 1.55E-04 1.97
160 7.09E-05 2.01 3.90E-05 2.03 3.84E-05 2.02
320 1.77E-05 2.00 1.77E-05 2.00 9.77E-06 1.98

P2 RKDG P2 SLDG P2 ELDG

40 9.28E-06 – 7.25E-06 – 7.69E-06 –
80 1.16E-06 3.00 9.23E-07 2.97 9.45E-07 3.03
160 1.44E-07 3.00 1.17E-07 2.98 1.18E-07 3.00
320 1.80E-08 3.00 1.40E-08 3.06 1.41E-08 3.07

Fig. 5.4. The L∞ error versus C F L of SLDG methods and ELDG methods for 1D linear transport equation with constant coefficient: ut + ux = 0 with initial 
condition u(x, 0) = sin(x). A long time simulation is performed with T = 100. The vertical long dashes from left to right are expected upper bounds of CF L
for stability for Pk ELDG methods with meshes 80, 160 and 320 respectively. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Table 5.3
1D transport equation with variable coefficients. ut + (sin(x)u)x = 0 with the initial condition 
u(x, 0) = 1. T = 1. We use C F L = 0.3 and C F L = 0.18 for all P1 and P2 schemes, respectively.
Mesh L1 error Order L1 error Order L1 error Order L1 error Order

P1 RKDG P1 SLDG P1 ELDG-ST1 P1 ELDG-ST2

40 1.30E-03 – 1.35E-03 – 1.20E-03 – 1.35E-03 –
80 3.25E-04 2.00 3.56E-04 1.92 3.24E-04 1.89 3.54E-04 1.93
160 8.14E-05 2.00 8.95E-05 1.99 8.35E-05 1.96 8.89E-05 1.99
320 2.04E-05 2.00 2.31E-05 1.95 2.21E-05 1.92 2.30E-05 1.95

P2 RKDG P2 SLDG P2 ELDG-ST1 P2 ELDG-ST2

40 8.11E-05 – 5.16E-05 – 6.45E-05 – 5.20E-05 –
80 1.21E-05 2.74 6.35E-06 3.02 7.36E-06 3.13 6.36E-06 3.03
160 1.79E-06 2.76 7.85E-07 3.02 8.65E-07 3.09 7.87E-07 3.02
320 2.62E-07 2.78 9.61E-08 3.03 1.02E-07 3.08 9.63E-08 3.03

and SLDG schemes with P1 (left) and P2 (right) polynomial spaces. The following observations are made: (1) all methods 
perform similarly around and before C F L = 1, which is well above the stability constraint of the RKDG method 1/(2k + 1); 
(2) after C F L = 1 and before stability constraint of the method, the temporal convergence order is observed to be 2 and 
3 for P1 and P2 respectively, corresponding to the RK method used in time integration and characteristics tracing; (3) the 
upper bounds of C F L for stability of P2 ELDG with mesh N = 80, 160, 320 are around 3.5, 5, 7, which increase with ratio 
around 

√
2. This verifies the time step estimate �t ∼ √

�x in Remark 2.5.
13
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Fig. 5.5. The L∞ error versus C F L of SLDG methods and ELDG methods for 1D transport equation with variable coefficients. ut + (sin(x)u)x = 0 with the 
initial condition u(x, 0) = 1. T = 1. �t = C F L�x. P1 SLDG-E means P1 SLDG scheme tracking characteristic lines exactly.

Table 5.4
Rigid body rotation. ut − (yu)x + (xu)y = 0 with the smooth cosine bell. T = 2π . We use C F L = 0.3
and C F L = 0.18 for all P1 and P2 schemes, respectively.
Mesh L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P1 RKDG P1 SLDG P1 ELDG-ST1 P1 ELDG-ST2

202 5.40E-01 – 5.53E-01 – 5.41E-01 – 5.41E-01 –
402 2.47E-01 1.13 2.59E-01 1.09 2.47E-01 1.13 2.47E-01 1.13
802 6.17E-02 2.00 6.64E-02 1.96 6.17E-02 2.00 6.17E-02 2.00
1602 1.03E-02 2.58 1.11E-02 2.58 1.03E-02 2.58 1.03E-02 2.58

P2 RKDG P2 SLDG-QC P2 ELDG-ST1 P2 ELDG-ST2

202 1.49E-01 – 1.54E-01 – 1.49E-01 – 1.49E-01 –
402 1.39E-02 3.42 1.48E-02 3.39 1.39E-02 3.42 1.39E-02 3.42
802 1.61E-03 3.11 1.65E-03 3.16 1.61E-03 3.11 1.61E-03 3.11
1602 2.18E-04 2.89 2.23E-04 2.89 2.18E-04 2.89 2.18E-04 2.89

5.2. 2D linear transport problems

Example 5.3. (Rigid body rotation.) Consider

ut − (yu)x + (xu)y = 0, (x, y) ∈ [−π,π ]2. (5.5)

The initial condition is set to be the following smooth cosine bell (with C5 smoothness),

u(x, y,0) =
⎧⎨⎩rb0 cos

6
(

rb

2rb0
π

)
, if rb < rb0,

0, otherwise,
(5.6)

where rb0 = 0.3π , and rb =
√

(x− xb0)
2 + (y − yb0)

2 denotes the distance between (x, y) and the center of the cosine bell 
(xb0, y

b
0) = (0.3π, 0). First of all, we present the spatial accuracies of ELDG, SLDG and RKDG for solving this problem up to 

T = 2π in Table 5.4; the expected k + 1-th order of convergence is observed for these schemes with Pk polynomial space. 
Then, we study numerical stabilities of ELDG and SLDG methods. In Fig. 5.6, we present the plots of L∞ error versus C F L of 
ELDG and SLDG schemes with different meshes. A few observations can be made: (1) When C F L is around and below order 
1, both schemes have similar performance in error magnitude and order of convergence. Notice that this time stepping size 
is well above the stability constraint of 1/(2k + 1) for RKDG. (2) When C F L is relatively large but smaller than the stability 
constraint of ELDG, the temporal error starting to kick in 2nd and 3rd order temporal convergence order is shown. (3) 
Maximum C F Ls of P2 ELDG-ST1 using N = 40, 80, 160 are around 9, 13, 18. The increasing rate is around 1.4. Maximum 
CFLs of P2 ELDG-ST2 using N = 40, 80, 160 are around 8, 11.5, 16.5. The increasing rate is around 1.4. The increasing ratio 
of upper bounds of C F L is around 

√
2, which coincides with �t ∼ √

�x as in Remark 2.5. Similar observations can be made 
for the P1 case.
14
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Fig. 5.6. The L∞ error versus C F L of SLDG schemes and ELDG schemes for the rigid body rotation with the smooth cosine bells (5.6). T = 2π .

Table 5.5
Swirling deformation flow with the smooth cosine bells (5.6). T = 1.5. We use C F L = 0.3 and C F L =
0.18 for all P1 and P2 schemes, respectively.
Mesh L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P1 RKDG P1 SLDG P1 ELDG-ST1 P1 ELDG-ST2

202 4.00E-01 – 3.76E-01 – 3.77E-01 – 3.76E-01 –
402 1.55E-01 1.37 1.39E-01 1.43 1.39E-01 1.44 1.39E-01 1.44
802 3.54E-02 2.13 3.15E-02 2.15 3.14E-02 2.15 3.13E-02 2.15
1602 6.29E-03 2.49 5.62E-03 2.49 5.58E-03 2.49 5.57E-03 2.49

P2 RKDG P2 SLDG-QC P2 ELDG-ST1 P2 ELDG-ST2

202 9.80E-02 – 9.12E-02 – 8.97E-02 – 8.92E-02 –
402 1.33E-02 2.88 1.13E-02 3.02 1.04E-02 3.11 1.04E-02 3.10
802 1.79E-03 2.89 1.58E-03 2.84 1.47E-03 2.82 1.47E-03 2.82
1602 2.28E-04 2.97 2.08E-04 2.93 1.98E-04 2.90 1.98E-04 2.89

Fig. 5.7. The L∞ error versus C F L of SLDG methods and ELDG methods for the swirling deformation flow with the smooth cosine bells (5.6) with T = 1.5.

Example 5.4. (Swirling deformation flow.) We consider solving

ut −
(
cos2

( x

2

)
sin(y)g(t)u

)
x
+
(
sin(x) cos2

( y

2

)
g(t)u

)
y
= 0, (x, y) ∈ [−π,π ]2, (5.7)

with the same initial condition (5.6), where g(t) = cos
(
πt
T

)
π and T = 1.5. As Example 5.3, we also study the spatial error 

and the numerical stability of the proposed ELDG schemes in Table 5.5 and Fig. 5.7, respectively. The similar observations 
as Example 5.3 can be made.
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Table 5.6
Strong Landau damping. T = 0.5. Use the time reversibility of the VP system. Order of accuracy in 
space for the SLDG method and the ELDG method. The third order temporal scheme CF3C03 is used 
for all schemes. We set C F L = 0.1 so that the spatial error is the dominant error.
Mesh L1 error Order L1 error Order L1 error Order L1 error Order

P1 SLDG P1 ELDG P2 SLDG-QC P2 ELDG

322 5.88E-04 – 5.90E-04 – 3.69E-05 – 3.25E-05 –
642 1.50E-04 1.97 1.51E-04 1.97 4.39E-06 3.07 3.82E-06 3.09
962 6.67E-05 1.9 6.71E-05 1.99 1.28E-06 3.04 1.11E-06 3.04
1282 3.76E-05 2.00 3.78E-05 2.00 5.37E-07 3.02 4.66E-07 3.03
1602 2.41E-05 2.00 2.42E-05 2.00 2.74E-07 3.02 2.38E-07 3.02

5.3. Vlasov-Poisson system

Example 5.5. (Vlasov-Poisson system: strong Landau damping.) Consider the strong Landau damping for the Vlasov-Poisson 
system (4.1) with the initial condition being a perturbed equilibrium

f (x, v, t = 0) = 1√
2π

(1+ α cos(kx))exp

(
− v2

2

)
, (5.8)

with α = 0.5 and k = 0.5 on a computational domain, [0, 4π ] × [−2π, 2π ]. There are several invariants of this problem 
which should remain constant in time. These include Lp norms, kinetic energy and entropy:

• Lp norm, 1 ≤ p ≤ ∞:

‖ f ‖p =
⎛⎝∫

v

∫
x

| f (x, v, t)|p dxdv
⎞⎠

1
p

, (5.9)

• Energy:

Energy =
∫
v

∫
x

f (x, v, t)v2dxdv +
∫
x

E2(x, t)dx, (5.10)

• Entropy:

Entropy =
∫
v

∫
x

f (x, v, t) log( f (x, v, t))dxdv. (5.11)

This is a classical problem that has been numerically investigated by several authors, e.g. see [35,40,22,6].
We first test the spatial accuracy of ELDG with the third order temporal scheme for this problem and report the results 

in Table 5.6. The time reversibility of the Vlasov-Poisson system [17] is used to test the order of convergence. In Table 5.6, 
we show the L1 errors and the corresponding orders of convergence for Pk ELDG and SLDG, k = 1, 2 with C F L = 0.1. We 
observe the expected orders of convergence of ELDG and SLDG.

We then test the numerical stability of ELDG schemes with different meshes for this problem integrated to T = 5. 
Fig. 5.8 reports L∞ errors versus C F L of solutions of ELDG schemes as well as the SLDG scheme. From this Figure, we 
find the expected orders of convergence of the temporal schemes; we also find that the scheme can allow for as large as 
C F L = 50; we observe that the results of ELDG are very close to those of SLDG.

We next study the performances of ELDG for conserving invariants of this problem. The parameters of the tests are set 
as follows: we use a mesh of 160 × 160 cells and C F L = 10. For mass conservation, we observed that the mass deviation 
of ELDG schemes is around −4 × 10−9 due to the domain cut-off in the velocity space; we omit this result. Fig. 5.9 shows 
time evolutions of the relative deviation of L2 norms of the solution as well as the discrete kinetic energy and entropy. We 
make the observations for this Figure: P2 ELDG performs better than P1 ELDG for conserving L2 norm, as SLDG schemes; 
for conserving energy, ELDG is worse than SLDG; for conserving entropy, ELDG does a better job than SLDG.

Finally, we study ELDG schemes for this problem for a long-time simulation. We present the plots of solutions of ELDG 
schemes at T = 40 in the middle and right panels of Fig. 5.8. We observe that P2 ELDG performs much better than P1

ELDG for capturing the filamentation structures. We find that the solutions of both P1 and P2 ELDG are negative around 
the places where the density is close to vacuum. Therefore, the positivity-preserving limiter should be added to the current 
scheme, for which we plan to explore in the future.
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Fig. 5.8. Left panel: plots of L∞ errors versus the C F L number for solving Strong Landau damping at T = 5. Temporal order of convergence in L∞ norm 
of ELDG schemes as well as the SLDG scheme coupled with exponential integrators by comparing numerical solutions with a reference solution from the 
corresponding scheme with C F L = 0.1.
Middle and right panels: surface plots of the numerical solutions for the strong Landau damping at T = 40. We use a mesh of 160 ×160 cells and C F L = 10. 
Middle: P1 ELDG+CF2. Right: P2 ELDG+CF3C03.

Fig. 5.9. Strong Landau damping. Time evolutions of the relative deviation of L2 (left) norms of the solution as well as the discrete kinetic energy (middle) 
and entropy (right). We use a mesh of 160 × 160 cells and C F L = 10 for all simulations.

Table 5.7
The guiding center Vlasov model on the domain [0, 2π ] ×[0, 2π ] with the initial condition ρ(x, y, 0) =
−2 sin(x) sin(y). Periodic boundary conditions in two directions. Spatial orders of convergence of Pk

SLDG(-QC)+Pr LDG+CF3C03 and Pk ELDG+Pr LDG+CF3C03, k = 1, 2, and r = k + 1. T = 1. C F L = 1.

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

P1 SLDG P1 ELDG

202 1.88E-02 – 1.06E-01 – 1.29E-02 – 8.52E-02 –
402 4.97E-03 1.92 3.12E-02 1.76 3.15E-03 2.03 2.46E-02 1.79
602 2.24E-03 1.97 1.44E-02 1.90 1.36E-03 2.07 1.14E-02 1.90
802 1.27E-03 1.95 8.27E-03 1.93 7.71E-04 1.98 6.52E-03 1.93
1002 8.17E-04 1.99 5.34E-03 1.96 4.94E-04 2.00 4.22E-03 1.95

P2 SLDG-QC P2 ELDG

202 2.77E-03 – 2.06E-02 – 2.02E-03 – 1.13E-02 –
402 3.63E-04 2.93 4.72E-03 2.13 2.43E-04 3.06 2.63E-03 2.11
602 1.09E-04 2.96 2.06E-03 2.04 7.17E-05 3.01 1.15E-03 2.04
802 4.74E-05 2.91 1.14E-03 2.05 2.90E-05 3.15 6.39E-04 2.05
1002 2.44E-05 2.98 7.28E-04 2.02 1.49E-05 2.99 4.07E-04 2.03

5.4. The guiding center Vlasov model

Example 5.6. (The guiding center Vlasov model: spatial accuracy and convergence test.) Consider the guiding center Vlasov 
model on the domain [0, 2π ] × [0, 2π ] with the initial condition, ρ(x, y, 0) = −2 sin(x) sin(y) and the periodic boundary 
condition. The exact solution stays stationary. We test the spatial convergence of the proposed ELDG schemes as well as 
SLDG schemes with the third order temporal scheme, CF3C03, for solving the guiding center Vlasov model up to time T = 1
and report the results in Table 5.7. We make the following observations: (1) we find the expected orders of convergence for 
Pk ELDG+Pk+1 LDG, k = 1, 2, in L2 and L∞ norms; (2) the results of ELDG schemes are almost the same as those of SLDG 
schemes.
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Fig. 5.10. Plots of L1 errors versus the C F L number of the proposed ELDG schemes as well as the SLDG scheme for the Kelvin-Helmholtz instability problem 
at T = 5. Temporal order of convergence of presented schemes by comparing numerical solutions with a reference solution from the corresponding scheme 
with C F L = 0.1. The mesh of 120 × 120 cells is used.

Fig. 5.11. Time evolutions of the relative deviation of energy (left) and enstrophy (right) for the proposed ELDG schemes for the Kelvin-Helmholtz instability 
problem. The mesh of 100 × 100 cells and C F L = 5 are used.

Example 5.7. (The guiding center Vlasov model: Kelvin-Helmholtz instability problem.) We consider the two-dimensional 
guiding center model problem (4.3) with the initial condition

ρ0(x, y) = sin(y) + 0.015cos(kx), (5.12)

and periodic boundary condition on the domain [0, 4π ] × [0, 2π ]. We let k = 0.5, which will create a Kelvin-Helmholtz 
instability [31].

First, we test the temporal convergence of the proposed ELDG schemes with different temporal schemes by computing 
this problem up to T = 5. In particular, we test the proposed second scheme, P1 ELDG+P2 LDG+CF2, and the third order 
scheme, P2 ELDG+P3 LDG+CF3C03. In order to minimize the errors for the spatial scheme, a fixed mesh of 120 ×120 cells is 
used. The reference solution is computed by the same scheme with the same mesh but using a small C F L = 0.1. We show 
the plots of L1 errors versus the C F L number of the proposed ELDG schemes for the Kelvin-Helmholtz instability problem 
at T = 5 in Fig. 5.10. We make a few observations: (1) we observe expected orders of convergence for all temporal schemes; 
and C F L of ELDG can be taken to be as large as 50; (2) by comparing the error magnitude, P2 ELDG+P3 LDG+CF3C03 
performs slightly better than P2 SLDG-QC+P3 LDG+CF3C03.

We then study the quality of the proposed ELDG schemes by tracking relative deviations of some invariants of this 
problem, the energy ‖E‖2

L2
= ∫

�
E · Edxdy and the enstrophy ‖ρ‖2

L2
= ∫

�
ρ2dxdy. We study ELDG schemes using a mesh 

of 100 × 100 cells with C F L = 5 for solving this problem for a long-time simulation and report the results in Fig. 5.11. 
We find that P2 ELDG can perform much better than P1 ELDG for conserving both energy and enstrophy. We find that 
by comparing SLDG and ELDG with the same polynomial space for conserving both energy and enstrophy, the comparable 
results can be observed. Finally, we show surface plots of the numerical solutions for the Kelvin-Helmholtz instability at 
T = 40 in Fig. 5.12. We still observe that the resolution of solutions of ELDG is comparable to that of SLDG.
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Fig. 5.12. Surface plots of the numerical solutions for the Kelvin-Helmholtz instability at T = 40. We use a mesh of 100 × 100 cells and C F L = 5. Left: P2

SLDG-QC+P3 LDG+CF3C03. Right: P2 ELDG+P3 LDG+CF3C03.

Fig. 5.13. Contour plots of the numerical solutions for the shear flow test at T = 8. P2 ELDG +P3 LDG+CF3C03 using C F L = 1 (left), C F L = 5 (right). The 
mesh of 100 × 100.

5.5. The two-dimensional incompressible Euler equations

Example 5.8. (The incompressible Euler equations: the shear flow problem) For the double shear layer problem [2,38], we 
solve the 2D incompressible Euler equations (4.5) in the domain [0, 2π ] × [0, 2π ], with the periodic boundary conditions 
and the initial condition given by

ω(x, y,0) =
⎧⎨⎩δ cos(x) − 1

ρ sech2
(

y−π/2
ρ

)
, if y ≤ π,

δ cos(x) + 1
ρ sech2

(
3π/2−y

ρ

)
, if y > π,

(5.13)

where δ = 0.05 and ρ = π/15.
As time evolves, the solution quickly rolls up with smaller and smaller spatial scales so on any fixed grid, the full 

resolution will be lost eventually. This problem is a classic benchmark for demonstrating the effectiveness of a new scheme 
so it has been tested for many schemes such as the high order nonsplitting SL WENO scheme [36], the DG method in 
[25,38,41] and the spectral element method in [18,37]. We first show surface plots of numerical solutions for this problem 
at T = 8 in Fig. 5.13, where the solution is rolled up in a very small scale. We find that ELDG schemes could allow for 
C F L = 5 for these simulations and the solutions with larger C F L = 5 seem to be less dissipative than those with C F L = 1. 
We then study the quality of the ELDG schemes by tracking relative deviations of the energy ‖u‖2

L2
= ∫

�
u · udxdy and the 

enstrophy ‖ω‖2
L2

= ∫
�

ω2dxdy of this problem and report the results in Fig. 5.14. We observed that higher order P2 ELDG 
performs much better than the lower order P1 ELDG for conserving energy and enstrophy.

6. Conclusion

In this paper, we have developed a new Eulerian-Lagrangian discontinuous Galerkin (DG) method for transport problems. 
The new framework encompasses the semi-Lagrangian DG and Eulerian Runge-Kutta DG in special cases; thus inherits 
advantages from both approaches in stability under large time stepping sizes, and in mass conservation, compactness and 
high order accuracy. These advantages are numerically verified by extensive numerical tests for linear transport equation and 
nonlinear dynamics. Future works include further theoretic development and application of limiters, developing schemes for 
nonlinear hyperbolic problems and to unstructured meshes.
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Fig. 5.14. Time evolution of the relative deviation of energy (left) and enstrophy (right) for the proposed ELDG schemes for the shear flow test. Dashed: 
ELDG+P2 LDG+CF2. Solid: P2 ELDG +P3 LDG+CF3C03. We use a mesh of 100 × 100 and C F L = 5.
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