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a b s t r a c t 

The discrete fracture model (DFM) has been widely used to simulate fluid flow in fractured porous media. Tra- 

ditional DFM is considered to be limited on conforming meshes, hence significant difficulty may arise in gener- 

ating high-quality unstructured meshes due to the complexity of the fracture networks. Recently, Xu and Yang 

reinterpreted DFM and demonstrated that it can actually be extended to non-conforming meshes without any 

essential changes. However, the continuous Galerkin (CG) method was applied and the local mass conservation 

was missing. This paper is a follow-up work, and we apply the interior penalty discontinuous Galerkin (IPDG) 

method and enriched Galerkin (EG) method for the pressure equation. With the numerical fluxes, the local mass 

is conservative. As an application, we combine the reinterpreted DFM (RDFM) with the incompressible miscible 

displacements in porous media. The bound-preserving techniques are applied to the coupled system. We can the- 

oretically guarantee that the concentration is between 0 and 1. Finally, several numerical experiments are given 

to demonstrate the good performance of the RDFM based on the above two methods on non-conforming meshes 

and the effectiveness of the bound-preserving technique. 
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. Introduction 

Numerical simulation of fluid flow in fractured porous media is

f great significance for improving oil recovery in naturally fractured

eservoirs, contaminant transport in fractured rocks and underground

adioactive waste reservoirs. Due to the high conductivity and com-

lexity of the fracture networks, it is critical but still challenging to

ccurately establish the effect of fractures on the flow in fractured

edia. 

In recent decades, as one of the most important models of the

ow simulation in fractured porous media, the discrete fracture

odel (DFM) has been intensively analyzed. In 1982, Noorishad and

ehran (1982) introduced the first DFM for a single-phase flow. Subse-

uently, Baca et al. (1984) studied DFM for the heat and solute trans-

ort in fractured media on conforming meshes. The basic idea was to

reat the flow in one-dimensional fractures and two-dimensional matrix

espectively by using the hybrid-dimensional method, and then cou-
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led them with the fracture system multiplied by the fracture thick-

ess as a dimensional homogeneity factor according to the principle

f superposition. Later, Kim and Deo (1999, 2000) , Karimi-Fard and

iroozabadi (2001) used the Galerkin finite element methods to solve

he multiphase flow combined with DFM. In addition, finite volume

ethods were also explored, e.g. Box-DFM ( Monteagudo and Firooz-

badi, 2004; Reichenberger et al., 2006; Monteagudo and Firoozabadi,

007b; 2007a; Zhang et al., 2016 ) and the cell-centered finite volume

FM (CC-DFM) ( Karimi-Fard et al., 2003; Sandve et al., 2012; Ahmed

t al., 2015; Gläser et al., 2017; Fang et al., 2018 ). Moreover, Hoteit and

iroozabadi (2005, 2006, 2008) , Moortgat and Firoozabadi (2013a,b) ,

idane and Firoozabadi (2014) and Moortgat et al. (2016) obtained the

ocal mass conservation and high accuracy of the flow and transport

quations in fractured media by combining the mixed finite element

MFE) and the discontinuous Galerkin (DG) methods in DFM. For other

ethods of DFM, we can refer to Xu and Yang (2020) and the references

herein. 
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Unfortunately, the above methods can only be applied to conform-

ng meshes, i.e. fractures must be located at the edges of the trian-

ular/retangular elements. It is very difficult to generate high quality

eshes, especially when the fracture network is complex and the dis-

ances or angles among fractures are small. To overcome this shortcom-

ng, the embedded discrete fracture model (EDFM) ( Li and Lee, 2008;

oinfar, 2013; Yan et al., 2016; Ţ ene et al., 2017; Jiang and Younis,

017; HosseiniMehr et al., 2018; Xu et al., 2019 ) was proposed as an

lternative. In the EDFM, all fractures are discretized into segments

y the background matrix mesh, forming the so-called fracture cells

n contrast with the matrix cells, and the cells of both types are as-

igned with separate degrees of freedom (DoF). The key idea of EDFM

s to define the non-neighboring connections (NNCs) between different

ells, i.e. the connections between a fracture cell and the matrix cell

t penetrates, connected fracture cells in neighboring matrix cells and

ntersecting fracture cells in the same matrix cell. Then we can com-

ute the mass transfer in each NNC pair. For instance, the mass trans-

er between the fracture-matrix NNC pair is determined by the aver-

ge normal distance between the fracture cell and the matrix cell. The

ass transfer between other NNC pairs is evaluated accordingly, see

oinfar (2013) for more details. Though eliminates the constraint of

onforming meshes, the EDFM requires a large amount of computation

n the transmissibility factors of NNCs in the pre-processing and the

pecial treatment when several fractures intersect at the same point.

he number of NNCs and DoF increase rapidly as the fracture networks

re getting more and more complicated. In addition, many other meth-

ds were proposed, such as the non-conforming finite element method

 Köppel et al., 2019a; 2019b; Schädle et al., 2019 ) based on Lagrange

ultipliers, the extended finite element discrete fracture model (XFEM-

FM) ( Fumagalli and Scotti, 2014 )- ter et al. (2019) , Martin et al. (2005) ,

alimzadeh and Khalili (2015) , Angot et al. (2009) , Angot (2003) ,

uang et al. (2011) , Alboin et al. (2000) , Flemisch et al. (2016) ,

ansbo and Hansbo (2002) and the CutFEM ( Burman et al., 2019 ). How-

ver, these methods have some disadvantages, such as high computa-

ional cost or not suitable for complex fracture networks. 

Recently, Xu and Yang (2020) reinterpreted the DFM and proposed

he mathematical expression in 2020. The reinterpreted DFM (RDFM)

llustrates that the traditional DFM ( Kim and Deo, 1999; 2000; Karimi-

ard and Firoozabadi, 2001 ) is actually not limited on conforming

eshes. The authors proposed a hybrid-dimensional representation of

he permeability tensor, describing the fracture as a one-dimensional

ine Dirac- 𝛿 functions contained in the permeability tensor. By using the

raditional continuous Galerkin (CG) finite element methods, the RDFM

or single phase flow on non-conforming meshes was derived. Numeri-

al experiments showed the advantages of the RDFM. However, the local

ass conservation is missing. To fix this gap, we construct the numerical

uxes in the scheme, and would like to apply the DG methods. 

DG methods employ finite element spaces containing elementwise

iscontinuous functions and develop special numerical techniques to

ontrol the jumps of numerical approximations as well as the nonlinear-

ty of the convection term. A commonly used DG method for convection-

iffusion equations and elliptic equations is the interior penalty DG

IPDG) method ( Rivière, 2008 ). The IPDG method in this paper is a sym-

etric form, i.e. symmetric interior penalty Galerkin (SIPG) ( Sun and

heeler, 2005b ). In Antonietti et al. (2019) , P. Antonietti et al proposed

 DG approximation of flows in fractured porous media on polytopic

rids. Though the DG methods can preserve local mass conservation,

ompared to the CG methods, there are more DoF. In view of this situa-

ion, Becker et al. (2003) first proposed the enriched Galerkin (EG) finite

lement method for solving the time-independent convection-diffusion

nd Stokes problems. The basic idea is to enrich the continuous Galerkin

nite element space with elementwise constant functions. Later, Sun and

iu (2009) applied high-order EG methods to the coupled system of

ow and transport equations and constructed conservative fluxes. EG

nd DG methods are both locally mass conservative, but the DoF of EG

ethod is slightly larger than that of CG method and much less than
2 
hat of DG method. Recently, the EG method has been developed to

olve general elliptic and parabolic problems with dynamic mesh adap-

ivity ( Lee and Wheeler, 2017; Lee et al., 2018 ) and jump condition

 Rupp and Lee, 2020; Lee et al., 2016a ), and extended to multiphase

uid flow problems ( Lee and Wheeler, 2020; 2018; Kadeethum et al.,

020b ), poroelastic problems ( Choo and Lee, 2018; Kadeethum et al.,

020a; 2021 ), phase-field fracture problems ( Wheeler et al., 2020; Lee

t al., 2016b; 2018 ), shallow water equations ( Hauck et al., 2020 ). In

ee and Wheeler (2020) , Lee and Wheeler used EG method to simulate

wo-phase flow in propagating fractures with relative permeability and

apillary pressure. Subsequently, Kadeethum et al. (2020b) employed

G method for fluid flow in porous media with low dimensional frac-

ures. Moreover, Rupp and Lee (2020) constructed a novel EG finite

lement method by enriching the CG space with not only piecewise con-

tants but also piecewise polynomials with an arbitrary order. 

As an application, we apply the RDFM given in Xu and

ang (2020) to contaminant transportation and study the miscible dis-

lacements in porous media. In Douglas et al. (1983b,a) , Douglas et al.

rst proposed the mixed finite element method for incompressible mis-

ible displacements. The compressible problems were also developed in

ouglas and Roberts (1983) and Chou and Li (1991) . In recent years, the

G methods have been widely used for solving the compressible misci-

le displacements ( Cui, 2008; Yang, 2011; Guo and Zhang, 2015; Guo

t al., 2017 ) and incompressible miscible displacements ( Bartels et al.,

009; Guo et al., 2014; Yu et al., 2017; Kumar, 2012; Sun et al., 2002;

un and Wheeler, 2005a ) in porous media. As another important aspect

f DG methods, the bound-preserving technique has been widely stud-

ed, which can obtain physically relevant approximations. In Zhang and

hu (2010) , Zhang and Shu first constructed the genuinely maximum-

rinciple-satisfying high order DG and finite volume methods. If the

xact solution has only one lower bound 0, then the technique is also

alled positivity-preserving technique. However, few papers focused on

ound-preserving techniques for the miscible displacements. In many

ctual problems, physical parameters are closely related to the concen-

ration 𝑐. If 𝑐 is out of the interval 0 to 1, we might not obtain the param-

ters used in the system, and the numerical approximations may blow up

n some extreme cases ( Guo and Yang, 2017 ). In Guo and Yang (2017) ,

uo and Yang proposed the first bound-preserving DG methods for the

oupled system of the two-component compressible miscible displace-

ents. The basic idea is as follows (1) Use the pressure equation to sub-

ract the concentration equation to obtain the concentration of the sec-

nd component. (2) Apply the positivity-preserving techniques to both

 1 and 𝑐 2 ( 𝑐 𝑖 is the concentration of the 𝑖 th component of the flow),

espectively. (3) Enforce 𝑐 1 + 𝑐 2 = 1 by choosing consistent numerical
uxes (see Definition 2.1 ) in the pressure and concentration equations.

n Guo and Yang (2017) , the authors theoretically proved that the above

lgorithm can yield physically relevant numerical cell averages. Then

 slope limiter can be applied to make the numerical approximations

o be within the desired bounds. Later, in Chuenjarern et al. (2019) ,

huenjarern et al. extended the idea to multi-component miscible dis-

lacements and proposed high-order bound-preserving DG methods on

riangular mesh, and proved that the limiter does not affect the accuracy.

he bound-preserving finite difference methods were also discussed in

uo et al. (2020) . 

In this paper, we first apply the RDFM in Xu and Yang (2020) to

he incompressible miscible displacements in fractured porous media.

here are two main contributions. (1) We derive the EG scheme and

PDG scheme for the flow equation and the IPDG scheme for the trans-

ort equation, and construct conservative fluxes, leading to local mass

onservation. (2) We theoretically construct the bound-preserving tech-

ique by using the EG method and IPDG method for solving the pres-

ure and concentration equations, respectively. We state that this paper

s very different from the previous works. Firstly, different from Xu and

ang (2020) , the numerical methods in this paper are locally conser-

ative by design, while the CG method in Xu and Yang (2020) is not.

oreover, due to the discontinuity nature of the numerical method, the
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Fig. 1. Fractured media and the corresponding coordinate systems. 
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ontribution of the Dirac 𝛿-function in the numerical fluxes has to be

reated effectively. In fact, we substitute the expressions of the normal

omponent of velocity into the scheme of concentration, and calculate

he integral of the 𝛿-function exactly to obtain the numerical fluxes at

he cell interfaces intersecting with fractures. Secondly, different from

uo and Yang (2017) and Chuenjarern et al. (2019) , where DG methods

ere used to solve both the pressure and concentration equations, the

ound-preserving technique studied in this paper combines the EG and

PDG method. In Guo and Yang (2017) and Chuenjarern et al. (2019) ,

e subtract the scheme of the concentration equation form that of the

ressure equation to obtain that of the second concentration by using

onsistent flux pairs. However, in this paper, it is impossible to ob-

ain the numerical scheme for the second concentration by subtract-

ng schemes for the pressure and concentration equations due to the

ismatch of the finite element spaces. Though the discrete spaces of

he two methods are different, we only need to analyze the cell aver-

ges. In fact, with the physically relevant numerical cell averages, the

ounds of the numerical approximations can be preserved by applying

uitable slope limiters. To preserve the bounds of the numerical cell av-

rages, we only need the consistent flux pairs (see the Definition 2.1 )

nd the positivity-preserving technique. Finally, we claim that all the

lgorithms demonstrated in this paper can be extended to compressible

ows with some minor changes following Guo and Yang (2017) and

huenjarern et al. (2019) . In addition to the above, the computational

ost in our pre-processing is much less since we only need to compute

he intersection between fractures and cell interfaces rather than the

verage normal distance between fracture cells and matrix cells, and it

s not necessary to consider flux interchange between intersecting frac-

ures. Moreover, the DoF in our method keeps the same as the number

f fractures increases. For more information about the computational

ost, we can refer to Xu and Yang (2020) . 

The paper is organized as follows. In Section 2 , we introduce the

odel of incompressible miscible displacements in fractured porous me-

ia, and derive the EG scheme and IPDG scheme for the flow equation as

ell as the IPDG scheme for the transport equation. In Section 3 , we dis-

uss the bound-preserving techniques. Numerical experiments are given

n Section 4 . Finally, we end in Section 5 with concluding remarks. 

. Governing equations and numerical schemes 

.1. Governing equations 

In this paper, we consider the incompressible miscible displacements

n fractured porous media. Let Ω = [0 , 1] × [0 , 1] be a bounded rectangu-
ar domain in ℝ 

2 . We consider the fluid mixture with two components,

nd the flow Eq. (2.1) and transport Eq. (2.2) have the following forms: 

−∇ ⋅ ( K ∇ 𝑝 ) ≡ ∇ ⋅ u = 𝑞, ( 𝑥, 𝑦 ) ∈ Ω, 0 < 𝑡 ≤ 𝑇 , (2.1) 

𝜙𝑐 𝑡 + ∇ ⋅ ( u 𝑐) − ∇ ⋅ ( D ( u )∇ 𝑐) = 𝑐 𝑞, ( 𝑥, 𝑦 ) ∈ Ω, 0 < 𝑡 ≤ 𝑇 , (2.2) 

here the unknown variables 𝑝 , 𝐮 and 𝑐 are the pressure of the fluid
ixture, the Darcy velocity of the mixture, and the volumetric concen-

ration of interested species, respectively. 𝜙 is the porosity of the rock. 𝑞

s the external volumetric flow rate, 𝑐 is the concentration of the fluid in

he external flow. 𝑐 must be specified at points where injection ( 𝑞 > 0)
akes place, and is assumed to be equal to 𝑐 at production points ( 𝑞 < 0) .
he diffusion coefficient 𝐃 is symmetric and arises from two aspects:

olecular diffusion, which is rather small for field-scale problems, and

ispersion, which is velocity-dependent. It takes the form 

 ( 𝐮 ) = 𝜙( 𝑥, 𝑦 )( 𝑑 𝑚𝑜𝑙 𝐈 + 𝑑 𝑙𝑜𝑛𝑔 |𝐮 |𝐄 + 𝑑 𝑡𝑟𝑎𝑛 |𝐮 |𝐄 
⊥) , (2.3)

here 𝐄 , a 2 × 2 matrix, represents the orthogonal projection along the
elocity vector and is given by 

 𝐄 ( 𝐮 ) ) 𝑖𝑗 = 

𝑢 𝑖 𝑢 𝑗 |𝐮 |2 , 1 ≤ 𝑖, 𝑗 ≤ 2 , 𝐮 = ( 𝑢 1 , 𝑢 2 ) , 
3 
nd 𝐄 
⊥ = 𝐈 − 𝐄 is the orthogonal complement. The diffusion coefficient

 𝑙𝑜𝑛𝑔 measures the dispersion in the direction of the flow and 𝑑 𝑡𝑟𝑎𝑛 shows

hat transverse to the flow. To ensure the stability of the scheme, in

lmost all of the previous works, 𝐃 is assumed to be strictly positive

efinite. In this paper, we assume 𝐃 to be positive semidefinite. There-

ore, we have 𝐷 11 ≥ 0 , 𝐷 22 ≥ 0 , and 𝐷 12 = 𝐷 21 . Moreover, the pressure

s uniquely determined up to a constant, thus we assume ∫Ω 𝑝𝑑 𝑥𝑑 𝑦 = 0
o ensure the uniqueness. However, this assumption is not essential. In

his paper, we consider a two component displacement only and the

elationship of components can be stated as follows: 

 = 𝑐 1 = 1 − 𝑐 2 , 

here 𝑐 𝑖 is the concentration of the 𝑖 th component of the fluid mixture. 𝐊
s the permeability tensor. Following Xu and Yang (2020) , for fractured

orous media, 𝐊 can be expressed as follows 

 = 𝐊 𝑚 + 𝜖𝑘 𝑓 𝛿( 𝜂 − 𝜂0 ) 𝟏 ( 𝜉1 ≤ 𝜉 ≤ 𝜉2 ) 𝝂𝝂𝑇 , (2.4)

here 𝐊 𝑚 , 𝜖, and 𝑘 𝑓 are the permeability tensor of matrix, the thickness

f the fracture, and the tangential permeability of the fracture, respec-

ively. 𝟏 ( ⋅) is the indicator function defined as 𝟏 ( expr ) equals 1 if expr
s true while equals 0 otherwise. 𝝂 is the tangential unit vector of the

racture. For variable 𝜂 and 𝜉, see Fig. 1 . 𝜉𝑜𝜂 and 𝑥𝑜𝑦 are local coordi-

ate system associated with the fracture 𝑙 and global coordinate system,

espectively. We notice that 𝛿( 𝜂 − 𝜂0 ) 𝟏 ( 𝜉1 ≤ 𝜉 ≤ 𝜉2 ) contains the informa-
ion of position of the fracture. 

For any point 𝑚 ∈ Ω, the transformation between its local coordi-
ates ( 𝜉𝑚 , 𝜂𝑚 ) and global coordinates ( 𝑥 𝑚 , 𝑦 𝑚 ) is given as 
 

𝜉𝑚 
𝜂𝑚 

] 
= 

[ 
cos ( 𝜃) sin ( 𝜃) 
− sin ( 𝜃) cos ( 𝜃) 

] [ 
𝑥 𝑚 
𝑦 𝑚 

] 
, 

here 𝜃 is the angle of the fracture. By the coordinates transformation,

he expression of 𝐊 under global coordinates 𝑥𝑜𝑦 is 

 = 𝐊 𝑚 + 𝜖𝑘 𝑓 𝛿(− sin ( 𝜃) 𝑥 + cos ( 𝜃) 𝑦 − 𝜂0 ) 𝟏 ( 𝜉1 ≤ cos ( 𝜃) 𝑥 + sin ( 𝜃) 𝑦 ≤ 𝜉2 ) 𝝂𝝂𝑇 .

(2.5) 

ollowing Xu and Yang (2020) , we call the expression 𝐊 in (2.5) the

ybrid-dimensional representation of permeability tensor, because the

atrix part 𝐊 𝑚 in (2.5) is of rank 2 and has a 2D support while the

racture part 𝜖𝑘 𝑓 𝛿( ⋅) 𝟏 ( ⋅) 𝝂𝝂𝑇 is of rank 1 and has a 1D support. The ex-
ression above is only for fractured media with single fracture but can

e extended to a fracture network as 

 = 𝐊 𝑚 + 

𝐿 ∑
𝑖 =1 

𝜖𝑖 𝑘 𝑓𝑖 𝛿𝑖 ( ⋅) 𝟏 𝑖 ( ⋅) 𝝂𝑖 𝝂𝑇 𝑖 , (2.6)

here 𝐿 is the number of fractures, 𝛿𝑖 ( ⋅) and 𝟏 𝑖 ( ⋅) are the shorthands of
heir full expressions in (2.4) and (2.5) , 𝜖𝑖 , 𝑘 𝑓𝑖 and 𝝂𝑖 are the thickness,

he tangential permeability, and the tangential unit vector of the 𝑖 th
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racture, respectively. See Xu and Yang (2020) for more information

bout 𝐊 , which is an important reinterpretation and extension of DFM.

In this paper, we consider the mixed boundary condition for the flow

quation: 

 = 𝑝 𝐷 , 𝐱 ∈ Γ𝐷 ⊂ 𝜕Ω; 𝐮 ⋅ 𝐧 ≡ − 𝐊 ∇ 𝑝 ⋅ 𝐧 = 𝑝 𝑁 , 𝐱 ∈ Γ𝑁 ∶= 𝜕Ω∖Γ𝐷 . 

(2.7) 

or the transport equation, we consider the following boundary condi-

ions: 

( 𝐮 𝑐 − 𝐃 ( 𝐮 )∇ 𝑐) ⋅ 𝐧 = 𝑐 𝑖𝑛 𝐮 ⋅ 𝐧 , 𝐱 ∈ Γ𝑖𝑛 , (2.8) 

𝐃 ( 𝐮 )∇ 𝑐 ⋅ 𝐧 = 0 , 𝐱 ∈ 𝜕Ω∖Γ𝑖𝑛 , (2.9) 

here n is the unit outer normal vector of the boundary 𝜕Ω; Γ𝑖𝑛 ∶= { 𝑥 ∈
𝐷 ∶ 𝐮 ⋅ 𝐧 < 0} is the inflow boundary. For convenience, we assume P N =
 , and Γ𝐷 = Γin ∪ Γout in this paper, where Γ𝑜𝑢𝑡 ∶= { 𝑥 ∈ Γ𝐷 ∶ 𝐮 ⋅ 𝐧 > 0} is
he outflow boundary. In fact, if 𝑝 𝑁 < 0 , Γ𝑁 is also a member of the
nflow boundary; if 𝑝 𝑁 > 0 , Γ𝑁 is the outflow boundary. Therefore, this

ssumption is not essential. 

Moreover, the initial concentration is given as 

( 𝑥, 𝑦, 0) = 𝑐 0 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω. (2.10)

.2. Basic notations 

We demonstrate the notations to be used throughout the paper.

e consider rectangular meshes only, the techniques for triangular

eshes can be obtained following the same lines given in Sun and

iu (2009) and Chuenjarern et al. (2019) with some minor changes. Let

 = 𝑥 1 
2 
< ⋯ < 𝑥 

𝑁 𝑥 + 
1 
2 
= 1 and 0 = 𝑦 1 

2 
< ⋯ < 𝑦 

𝑁 𝑦 + 
1 
2 
= 1 be the grid points

n the 𝑥 and 𝑦 directions, respectively. Define 𝐼 𝑖 = ( 𝑥 
𝑖 − 1 2 

, 𝑥 
𝑖 + 1 2 

) and 𝐽 𝑗 =
 𝑦 
𝑗− 1 2 

, 𝑦 
𝑗+ 1 2 

) . Let 𝐾 𝑖𝑗 = 𝐼 𝑖 × 𝐽 𝑗 be a partition of Ω and denote Ωℎ = ∪
𝑖,𝑗 
𝐾 𝑖𝑗 .

or simplicity, we use 𝐾 to denote a typical cell. We use Γ for all the
ell interfaces, and Γ0 = Γ∖ 𝜕Ω is the set of interior edges. For any 𝑒 ∈ Γ,
enote |𝑒 | to be the length of 𝑒 . Moreover, we define 𝐧 𝑒 = 𝐧 𝑥 = (1 , 0) if
 is parallel to the 𝑦 -axis while 𝐧 𝑒 = 𝐧 𝑦 = (0 , 1) if 𝑒 is parallel to the 𝑥 -
xis. Furthermore, we denote 𝜕Ω+ = { 𝑒 ∈ 𝜕Ω ∶ 𝐧 = 𝐧 𝑒 } , where 𝐧 is the
nit outer normal of 𝜕Ω, and 𝜕Ω− = 𝜕Ω∖ 𝜕Ω+ . The mesh size in the 𝑥 and

 directions are given Δ𝑥 𝑖 = 𝑥 
𝑖 + 1 2 

− 𝑥 
𝑖 − 1 2 

and Δ𝑦 𝑗 = 𝑦 
𝑗+ 1 2 

− 𝑦 
𝑗− 1 2 

, respec-

ively. For simplicity, we assume uniform meshes and denote Δ𝑥 = Δ𝑥 𝑖 
nd Δ𝑦 = Δ𝑦 𝑗 . However, this assumption is not essential. The finite ele-
ent space is chosen as 

 
𝑘 
ℎ 
= { 𝑧 ∶ 𝑧 |𝐾 ∈ 𝑄 

𝑘 ( 𝐾) , ∀𝐾 ∈ Ωℎ } , 

here 𝑄 
𝑘 ( 𝐾) denotes the space of tensor product polynomials of degrees

t most 𝑘 in 𝐾. We choose 𝜷 = (1 , 1) 𝑇 to be a fixed vector that is not
arallel to any normal of the element interfaces. As we know, ∀𝑒 ∈ Γ0 
s shared by two elements 𝐾 𝓁 and 𝐾 𝑟 , where 𝜷 ⋅ 𝐧 𝓁 > 0 , and 𝜷 ⋅ 𝐧 𝑟 < 0 ,
ith 𝐧 𝓁 and 𝐧 𝑟 being the outward normals of 𝐾 𝓁 and 𝐾 𝑟 . For any 𝑧 ∈
 
𝑘 
ℎ 
, 𝑧 − and 𝑧 + represent the values taken from 𝐾 𝓁 and 𝐾 𝑟 , respectively.

urthermore, we use [ 𝑧 ] = 𝑧 + − 𝑧 − and { 𝑧 } = 
1 
2 ( 𝑧 

+ + 𝑧 − ) as the jump and
verage of 𝑧 at the cell interfaces, respectively. 

.3. EG and IPDG methods for the flow equation 

In this subsection, we use EG and IPDG methods for the flow equa-

ion, both preserves the local mass conservation. Furthermore, the EG

ethod combines the advantages of both CG and DG methods. This

ethod preserves the local mass conservation of DG method, while the

egree of freedom is close to that of CG method. Moreover, the EG

ethod has a similar weak formulation as for the DG method, yet whose

mplementation is simpler and more efficient. 
4 
Now we first define the space of continuous piecewise polynomials 

 
𝑘,𝐶 
ℎ 

= 𝑊 
𝑘 
ℎ 
∩ 𝐶(Ω) , 

here 𝐶(Ω) represents the set of continuous functions in Ω. Then we
efine 

 

𝑘,𝐶 0 
ℎ 

= 𝑊 
𝑘,𝐶 
ℎ 

∪𝑊 
0 
ℎ 
, 

hich is called EG space by enriching the CG approximation space with

iecewise constant functions. 

For simplicity, if not otherwise stated, we use 𝑝 , 𝐮 , 𝑐 as the numerical
pproximations from now on, then the EG scheme for (2.1) is to find

 ∈ 𝑊 

𝑘,𝐶 0 
ℎ 

such that for any 𝜉 ∈ 𝑊 

𝑘,𝐶 0 
ℎ 

, we have 

 0 ( 𝑝, 𝜉) + 𝑎 𝐷 ( 𝑝, 𝜉) = 𝐹 ( 𝜉) , (2.11)

here 

𝑎 0 ( 𝑝, 𝜉) = ( 𝐊 ∇ 𝑝, ∇ 𝜉) + 

∑
𝑒 ∈Γ0 

∫𝑒 { 𝐊 ∇ 𝑝 ⋅ 𝐧 𝑒 }[ 𝜉] 𝑑𝑠 + 

∑
𝑒 ∈Γ0 

𝜎𝑒 |𝑒 |𝛽 ∫𝑒 [ 𝑝 ][ 𝜉] 𝑑𝑠 

+ 

∑
𝑒 ∈Γ0 

𝛼𝑒 |𝑒 |𝛾 ∫𝑒 𝛿( ⋅) 𝟏 ( ⋅)[ 𝑝 ][ 𝜉] |𝝂 ⋅ 𝐧 𝑒 |𝑑𝑠 + 

∑
𝑒 ∈Γ0 

∫𝑒 { 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒 }[ 𝑝 ] 𝑑𝑠, 

(2.12) 

 𝐷 ( 𝑝, 𝜉) = − 

∑
𝑒 ∈Γ𝐷 

∫𝑒 𝐊 ∇ 𝑝 ⋅ 𝐧 𝑒,𝐷 𝜉𝑑𝑠 + 

∑
𝑒 ∈Γ𝐷 

𝜎𝑒 |𝑒 |𝛽 ∫𝑒 𝑝𝜉𝑑𝑠 

− 

∑
𝑒 ∈Γ𝐷 

∫𝑒 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒,𝐷 𝑝𝑑𝑠, (2.13) 

 ( 𝜉) = ( 𝑞, 𝜉) − 

∑
𝑒 ∈Γ𝑁 

∫𝑒 𝑝 𝑁 𝜉𝑑𝑠 + 

∑
𝑒 ∈Γ𝐷 

𝜎𝑒 |𝑒 |𝛽 ∫𝑒 𝑝 𝐷 𝜉𝑑𝑠 

− 

∑
𝑒 ∈Γ𝐷 

∫𝑒 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒,𝐷 𝑝 𝐷 𝑑𝑠. (2.14) 

ere Γ0 represents the set of interior edges. Γ𝐷 and Γ𝑁 represent the sets
f Dirichlet and Neumann boundaries, respectively. 𝜎𝑒 and 𝛼𝑒 are two

ositive constants on each edges 𝑒 . 𝐧 𝑒,𝐷 is the unit outer normal vector of
 ∈ Γ𝐷 . 𝛽 and 𝛾 are two positive constants, usually greater than or equal
o 1. ( 𝑢, 𝑣 ) = 

∑
𝐾∈Ωℎ ∫𝐾 𝑢𝑣𝑑 𝑥𝑑 𝑦 , ∫𝑒 𝑔𝑑 𝑠 is a line integral with respect to 𝑔

or 2 𝐷 case. 

Using the hybrid-dimensional representation of 𝐊 established in

2.5) , we have 

𝐊 ∇ 𝑝 ⋅ ∇ 𝜉 = 𝐊 𝑚 ∇ 𝑝 ⋅ ∇ 𝜉 + 𝜖𝑘 𝑓 𝛿( ⋅) 𝟏 ( ⋅) 
𝜕 𝑝 

𝜕 𝜈

𝜕 𝜉

𝜕 𝜈
, (2.15) 

𝐊 ∇ 𝑝 ⋅ 𝐧 𝑒 = 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒 + 𝜖𝑘 𝑓 𝛿( ⋅) 𝟏 ( ⋅) 
𝜕 𝑝 

𝜕 𝜈
𝝂 ⋅ 𝐧 𝑒 . (2.16) 

ollowing Lemma 4.1 in Xu and Yang (2020) , 

Ω
𝛿( ⋅) 𝟏 ( ⋅) 𝑔 ( 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 = ∫𝑙 𝑔( 𝑥, 𝑦 ) 𝑑𝑠, (2.17)

here the line segment 𝑙 is the support of 𝛿( ⋅) 𝟏 ( ⋅) as shown in Fig. 1 .
otice that there is no fracture intersects the boundary, so 𝐊 = 𝐊 𝑚 on

Ω. 
For 

∑
𝑒 ∈Γ0 ∫𝑒 𝛿( ⋅) 𝟏 ( ⋅) 𝑔 ( 𝑥, 𝑦 ) 𝑑𝑠 , we have the following lemma, whose

roof will be given in Appendix A . 

emma 2.1. Let 𝛿( ⋅) and 𝟏 ( ⋅) be the shorthands of their full expression in
2.4) and (2.5) . For any continuous function 𝑔 on Ω, we have 

𝑒 

𝛿( ⋅) 𝟏 ( ⋅) 𝑔 ( 𝑥, 𝑦 ) 𝑑𝑠 = 𝑔( 𝑥 ∗ , 𝑦 ∗ ) ⋅ 1 |𝝂 ⋅ 𝐧 ∗ | , (2.18)

here ( 𝑥 ∗ , 𝑦 ∗ ) is the coordinate of intersection point between the fracture 𝑙
nd curve 𝑒 , 𝝂 is the unit tangential vector of fracture 𝑙, and 𝐧 ∗ is the unit
ormal vector of curve 𝑒 at ( 𝑥 ∗ , 𝑦 ∗ ) . 
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With the lemma, we can get 
∑
𝑒 ∈Γ0 

∫𝑒 𝛿( ⋅) 𝟏 ( ⋅) 𝑔 ( 𝑥, 𝑦 ) 𝑑𝑠 =∑
 𝑥 ∗ ,𝑦 ∗ )∈𝑋 𝑓 

𝑔( 𝑥 ∗ , 𝑦 ∗ ) ⋅ 1 |𝝂 ⋅ 𝐧 ∗ | immediately, where 𝑋 𝑓 represents the

et of intersection points between the fracture and all the cell interior

nterfaces, and 𝐧 ∗ is the unit normal vector of edge 𝑒 at ( 𝑥 ∗ , 𝑦 ∗ ) . 
Based on (2.15) –(2.18) , we can obtain the final version of the EG

cheme for (2.1) in fractured porous media: find 𝑝 ∈ 𝑊 

𝑘,𝐶 0 
ℎ 

such that for

ny 𝜉 ∈ 𝑊 

𝑘,𝐶 0 
ℎ 

, 

̃ 0 ( 𝑝, 𝜉) + 𝑎 𝐷 ( 𝑝, 𝜉) + 𝑎 𝑙 ( 𝑝, 𝜉) = 𝐹 ( 𝜉) , (2.19)

here 

𝑎̃ 0 ( 𝑝, 𝜉) = ( 𝐊 𝑚 ∇ 𝑝, ∇ 𝜉) + 

∑
𝑒 ∈Γ0 

∫𝑒 { 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒 }[ 𝜉] 𝑑𝑠 

+ 

∑
𝑒 ∈Γ0 

𝜎𝑒 |𝑒 |𝛽 ∫𝑒 [ 𝑝 ][ 𝜉] 𝑑𝑠 + 

∑
𝑒 ∈Γ0 

∫𝑒 { 𝐊 𝑚 ∇ 𝜉 ⋅ 𝐧 𝑒 }[ 𝑝 ] 𝑑𝑠, (2.20) 

𝑎 𝑙 ( 𝑝, 𝜉) = ∫𝑙 𝜖𝑘 𝑓 
𝜕 𝑝 

𝜕 𝜈

𝜕 𝜉

𝜕 𝜈
𝑑𝑠 + 

∑
( 𝑥 ∗ ,𝑦 ∗ )∈𝑋 𝑓 ( 

𝜖𝑘 𝑓 

{ 

𝜕 𝑝 

𝜕 𝜈

} 

𝝂 ⋅ 𝐧 𝑒 ||𝝂 ⋅ 𝐧 𝑒 || [ 𝜉] + 𝜖𝑘 𝑓 

{ 

𝜕 𝜉

𝜕 𝜈

} 

𝝂 ⋅ 𝐧 𝑒 ||𝝂 ⋅ 𝐧 𝑒 || [ 𝑝 ] + 

𝛼𝑒 |𝑒 |𝛾 [ 𝑝 ][ 𝜉] 
) |||( 𝑥 ∗ ,𝑦 ∗ ) . 

(2.21) 

 𝐷 ( 𝑝, 𝜉) and 𝐹 ( 𝜉) can be found in (2.13) and (2.14) , respectively. 
The existence and uniqueness of the EG solution is similar to those of

G method ( Sun and Wheeler, 2005b ). The DoF of EG method is much

maller than that of DG method, especially for low-order approxima-

ions. For example, for 𝑄 
1 polynomials in a 2-dimensional rectangular

esh with 𝑁 𝑥 𝑁 𝑦 elements, the DG scheme has 4 𝑁 𝑥 𝑁 𝑦 DoF, while EG

cheme only has ( 𝑁 𝑥 + 1)( 𝑁 𝑦 + 1) + 𝑁 𝑥 𝑁 𝑦 − 1 DoF. Detailed information
bout DoF can be found in Sun and Liu (2009) . 

As a contrast, we introduce IPDG scheme. In fact, we just replace

 

𝑘,𝐶 0 
ℎ 

by 𝑊 
𝑘 
ℎ 
in (2.19) . In Section 4 , we numerically simulate the pres-

ure equation with the above two methods. Obviously, EG and IPDG

chemes with (2.11) or (2.19) are both symmetric. To be more precise,

e use symmetric interior penalty Galerkin (SIPG) method ( Sun and

heeler, 2005b ) with different discrete spaces. 

.4. IPDG method for the transport equation 

After obtaining the pressure 𝑝 from (2.19) by EG or IPDG method,

e can calculate the velocity 𝐮 as follows: 

𝐮 = − 𝐊 ∇ 𝑝, 𝑥 ∈ 𝐾 ∈ Ωℎ , (2.22) 

𝐮 ⋅ 𝐧 = −{ 𝐊 ∇ 𝑝 ⋅ 𝐧 } + 

𝜎𝑒 |𝑒 |𝛽 ( 𝑝 ∣𝐾 𝑖 − 𝑝 ∣𝐾 𝑗 ) + 

𝛼𝑒 |𝑒 |𝛾 𝛿( ⋅) 𝟏 ( ⋅)( 𝑝 ∣𝐾 𝑖 − 𝑝 ∣𝐾 𝑗 ) |𝝂 ⋅ 𝐧 |,
𝑥 ∈ 𝑒 = 𝜕 𝐾 𝑖 ∩ 𝜕 𝐾 𝑗 , 𝑎𝑛𝑑 𝐧 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑜 𝐾 𝑖 , (2.23)

𝐮 ⋅ 𝐧 = 𝑝 𝑁 , 𝑥 ∈ Γ𝑁 , (2.24) 

𝐮 ⋅ 𝐧 = − 𝐊 ∇ 𝑝 ⋅ 𝐧 + 

𝜎𝑒 |𝑒 |𝛽 ( 𝑝 − 𝑝 𝐷 ) , 𝑥 ∈ Γ𝐷 . (2.25) 

e note that 𝐮 is defined at interior point in each element, while only
he normal component of velocity 𝐮 ⋅ 𝐧 is defined on element interfaces
nd domain boundaries. The above velocity will be used in the transport

quation. 

Now we state the following theorem for the local mass conservation

f the scheme. 
5 
heorem 2.1. Numerical scheme (2.19) –(2.25) defined above is locally

onservative. 

roof. Numerical solution 𝐮 is locally conservative if 

𝜕𝐾 

𝐮 ⋅ 𝐧 𝜕𝐾 𝑑𝑠 = ∫𝐾 𝑞𝑑𝑠. (2.26)

n scheme (2.11) , we take the test function 𝜉 = 1 ∈ 𝑊 

𝑘,𝐶 0 
ℎ 

or 𝑊 
𝑘 
ℎ 
in each

lement 𝐾, then we will obtain (2.26) . The proof of the theorem is

omplete. □

For the transport equation, we can employ IPDG method to obtain

he numerical solution of concentration by seeking 𝑟 ∈ 𝑊 
𝑘 
ℎ 
such that for

ny 𝜁 ∈ 𝑊 
𝑘 
ℎ 

 𝑟 𝑡 , 𝜁 ) =  𝑐 ( 𝐮 , 𝑐, 𝜁 ) +  𝑑 ( 𝐮 , 𝑐, 𝜁 ) +  𝑠 ( ̌𝑐 , 𝜁 ) +  𝐵 ( 𝐮 , 𝑐, 𝜁 ) , (2.27)

here 

 𝑐 ( 𝐮 , 𝑐, 𝜁 ) = ( 𝐮 𝑐, ∇ 𝜁 ) + 

∑
𝑒 ∈Γ0 

∫𝑒 𝐮 𝑐 ⋅ 𝐧 𝑒 [ 𝜁 ] 𝑑𝑠, (2.28) 

 𝑑 ( 𝐮 , 𝑐, 𝜁 ) = −( 𝐃 ( 𝐮 )∇ 𝑐, ∇ 𝜁 ) 

− 

∑
𝑒 ∈Γ0 

∫𝑒 
( 

{ 𝐃 ( 𝐮 )∇ 𝑐 ⋅ 𝐧 𝑒 }[ 𝜁 ] + { 𝐃 ( 𝑢 )∇ 𝜁 ⋅ 𝐧 𝑒 }[ 𝑐] + 

𝛼̃|𝑒 |𝛽 [ 𝑐][ 𝜁 ] 
) 

𝑑𝑠, (2.29) 

 𝑠 ( ̌𝑐 , 𝜁 ) = ( ̌𝑐 𝑞, 𝜁 ) , (2.30) 

 𝐵 ( 𝐮 , 𝑐, 𝜁 ) = − 

∑
𝑒 ∈Γ𝑖𝑛 

∫𝑒 𝑐 𝑖𝑛 ( 𝐮 ⋅ 𝐧 𝑒,𝑖𝑛 ) 𝜁𝑑𝑠 − 

∑
𝑒 ∈Γ𝑜𝑢𝑡 

∫𝑒 𝑐( 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝜁𝑑𝑠 − 

∑
𝑒 ∈Γ𝑁 

∫𝑒 𝑐𝑝 𝑁 𝜁𝑑𝑠
(2.31

ere ̃𝛼 and 𝛽 is a positive constant to be chosen by the bound-preserving

echnique, 𝐧 𝑒,𝑖𝑛 , 𝐧 𝑒,𝑜𝑢𝑡 are the unit outer normal vectors of 𝑒 ∈ Γ𝑖𝑛 and
 ∈ Γ𝑜𝑢𝑡 , respectively, 

 = 𝑃 𝑘 

{ 

𝑟 

Φ

} 

, 𝑐 = 

{ 

𝑐 , 𝑞 > 0 , 
𝑟 

Φ
, 𝑞 < 0 , (2.32)

nd 

 ̂𝑐 ⋅ 𝐧 𝑒 = ( 𝐮 ⋅ 𝐧 𝑒 ) ̂𝑐 = 

{ 

( 𝐮 ⋅ 𝐧 𝑒 ) 𝑐 − , 𝐮 ⋅ 𝐧 𝑒 > 0 , 
( 𝐮 ⋅ 𝐧 𝑒 ) 𝑐 + , 𝐮 ⋅ 𝐧 𝑒 < 0 . (2.33)

is 𝐿 
2 -projection of 𝜙. 𝑃 𝑘 is the 𝐿 

2 -projection into 𝑊 
𝑘 
ℎ 
if 𝑘 ≥ 2 while

 1 ( 𝑢 ) |𝐾 is the interpolation of 𝑢 at all vertices of cell 𝐾. These treatments
re needed for bound-preserving techniques, which will be discussed in

he next section. Moreover, like (2.11) , IPDG scheme with (2.27) is also

 symmetric form. 

Now, we introduce the following definition that will be used in the

ound-preserving technique ( Guo and Yang, 2017 ). 

efinition 2.1. We say two fluxes ̂𝐮 𝑐 , 𝐮̂ are consistent if ̂𝐮 𝑐 = 𝐮̂ by tak-
ng 𝑐 = 1 in Ω. 

This definition was first introduced in Guo and Yang (2017) and was

sed to constructed the bound-preserving technique. From the defini-

ion, it is easy to obtain the following lemma. 

emma 2.2. The numerical flux pair ( 𝐮 ⋅ 𝐧 𝑒 , 𝐮 𝑐 ⋅ 𝐧 𝑒 ) given in (2.23) and
2.33) are consistent. 

Next, we deal with 𝐮 in the IPDG scheme for concentration 𝑐. Similar
o the treatment of 𝛿 function in scheme of flow equation, we also need

o use (2.17) and (2.18) . More precisely, 

( 𝐮 𝑐, ∇ 𝜁 ) ≐ −(( 𝐊 𝑚 ∇ 𝑝 ) 𝑐, ∇ 𝜁 ) − ∫ 𝜖𝑘 𝑓 𝑐 
𝜕 𝑝 

𝜕 𝜈

𝜕 𝜁

𝜕 𝜈
𝑑𝑠, (2.34) 
𝑙 
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∑
𝑒 ∈Γ0 

∫𝑒 𝐮 𝑐 ⋅ 𝐧 𝑒 [ 𝜁 ] 𝑑𝑠 ≐
∑
𝑒 ∈Γ0 

∫𝑒 𝑐 
( 

−{ 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒 } − 

𝜎𝑒 |𝑒 |𝛽 [ 𝑝 ] 
) 

[ 𝜁 ] 𝑑𝑠 

+ 

∑
( 𝑥 ∗ ,𝑦 ∗ )∈𝑋 𝑓 

𝑐 

( 

− 𝜖𝑘 𝑓 
𝝂 ⋅ 𝐧 𝑒 |𝝂 ⋅ 𝐧 𝑒 |

{ 

𝜕 𝑝 

𝜕 𝜈

} 

− 

𝛼𝑒 |𝑒 |𝛾 [ 𝑝 ] 
) 

[ 𝜁 ] |||( 𝑥 ∗ ,𝑦 ∗ ) .
(2.35)

or solving 𝐮 used in 𝐃 ( 𝐮 ) , we can simply apply the 𝐿 
2 projec-

ion to − 𝐊 ∇ 𝑝 , i.e. for any 𝜼 ∈ 𝐖 
𝐤 
𝐡 ∶= 𝑊 

𝑘 
ℎ 
×𝑊 

𝑘 
ℎ 
, ( 𝐮 , 𝜼) = −( 𝐊 𝑚 ∇ 𝑝, 𝜼) −

𝑙 𝜖𝑘 𝑓 
𝜕𝑝 

𝜕𝜈
( 𝜼 ⋅ 𝝂) 𝑑𝑠 . 

Based on (2.27), (2.34) and (2.35) , we can obtain the final version of

he IPDG scheme for (2.2) in fractured porous media: find 𝑟 ∈ 𝑊 
𝑘 
ℎ 
such

hat for any 𝜁 ∈ 𝑊 
𝑘 
ℎ 

 𝑟 𝑡 , 𝜁 ) = ̃ 𝑐 ( 𝑝, 𝑐, 𝜁 ) + ̃ 𝑑 ( 𝐮 , 𝑐, 𝜁 ) +  𝑙 ( 𝑝, 𝑐, 𝜁 ) +  𝑠 ( ̌𝑐 , 𝜁 ) + ̃ 𝐵 ( 𝑝, 𝑐, 𝜁 ) , (2.36)

here 

̃ 𝑐 ( 𝑝, 𝑐, 𝜁 ) = −(( 𝐊 𝑚 ∇ 𝑝 ) 𝑐, ∇ 𝜁 ) + 

∑
𝑒 ∈Γ0 

∫𝑒 𝑐 
( 

−{ 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒 } − 

𝜎𝑒 |𝑒 |𝛽 [ 𝑝 ] 
) 

[ 𝜁 ] 𝑑𝑠,

(2.37)

̃ 𝑑 ( 𝐮 , 𝑐, 𝜁 ) = −( 𝐃 ( 𝐮 )∇ 𝑐, ∇ 𝜁 ) 

− 

∑
𝑒 ∈Γ0 

∫𝑒 
( 

{ 𝐃 ( 𝐮 )∇ 𝑐 ⋅ 𝐧 𝑒 }[ 𝜁 ] + { 𝐃 ( 𝐮 )∇ 𝜁 ⋅ 𝐧 𝑒 }[ 𝑐] + 

𝛼̃|𝑒 |𝛽 [ 𝑐][ 𝜁 ] 
) 

𝑑𝑠, 

(2.38) 

 𝑙 ( 𝑝, 𝑐, 𝜁 ) = − ∫𝑙 𝜖𝑘 𝑓 𝑐 
𝜕 𝑝 

𝜕 𝜈

𝜕 𝜁

𝜕 𝜈
𝑑𝑠 

+ 

∑
( 𝑥 ∗ ,𝑦 ∗ )∈𝑋 𝑓 

𝑐 

( 

− 𝜖𝑘 𝑓 
𝝂 ⋅ 𝐧 𝑒 |𝝂 ⋅ 𝐧 𝑒 |

{ 

𝜕 𝑝 

𝜕 𝜈

} 

− 

𝛼𝑒 |𝑒 |𝛾 [ 𝑝 ] 
) 

[ 𝜁 ] |||( 𝑥 ∗ ,𝑦 ∗ ) , 
(2.39) 

̃ 𝐵 ( 𝑝, 𝑐, 𝜁 ) = − 

∑
𝑒 ∈Γ𝑁 

∫𝑒 𝑐𝑝 𝑁 𝜁𝑑𝑠 − 

∑
𝑒 ∈Γ𝑖𝑛 

∫𝑒 𝑐 𝑖𝑛 
( 

− 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒,𝑖𝑛 + 

𝜎𝑒 |𝑒 |𝛽 ( 𝑝 − 𝑝 𝐷 ) 
) 

𝜁𝑑𝑠

− 

∑
𝑒 ∈Γ𝑜𝑢𝑡 

∫𝑒 𝑐 
( 

− 𝐊 𝑚 ∇ 𝑝 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 + 

𝜎𝑒 |𝑒 |𝛽 ( 𝑝 − 𝑝 𝐷 ) 
) 

𝜁𝑑𝑠, (2.40)

nd  𝑠 ( ̌𝑐 , 𝜁 ) can be found in (2.30) . 

emark 2.1. In above schemes (2.19) and (2.36) , the shape of fracture

actually can be a curve, and the thickness 𝜖 and tangential permeabil-

ty 𝑘 𝑓 of the fracture can be a scalar function defined along 𝑙. For the

uadrature rule used for line integrals on 𝑙, one can refer to the remark

.3 in Xu and Yang (2020) . Note that if the fracture is straight and 𝜖, 𝑘 𝑓 
re constant, the midpoint rule is enough for 𝑄 

1 elements. In the case

f fracture network, we just add all fracture terms together e.g. we can

eplace − ∫𝑙 𝜖𝑘 𝑓 𝑐 𝜕𝑝 𝜕𝜈

𝜕𝜁

𝜕𝜈
𝑑𝑠 in (2.36) with − 

𝐿 ∑
𝑖 =1 

∫
𝑙𝑖 𝜖𝑖 𝑘 𝑓𝑖 𝑐 

𝜕𝑝 

𝜕𝜈𝑖 

𝜕𝜁

𝜕𝜈𝑖 
𝑑𝑠 . 

. Bound-preserving technique 

.1. Second-order bound-preserving 

In this section, we consider Euler forward time discretization and

pply the bound-preserving technique to construct second-order physi-

ally relevant numerical approximations in ℝ 
2 . We first discuss the tech-

iques for cells away from 𝜕Ω, and the boundary cells can be analyzed
ollowing the same lines. We use 𝑜 𝑖𝑗 for the numerical approximation 𝑜

n 𝐾 𝑖𝑗 and the cell average is 𝑜̄ 𝑖𝑗 . Moreover, we use 𝑜 
𝑛 to represent the

olution 𝑜 at time level 𝑛 . 

Before analyzing the bound-preserving schemes, we would like to

emonstrate the following key points. 
6 
1. Approximate 𝑟 = 𝜙𝑐 directly instead of 𝑐 . Due to the existence of 𝜙

in (2.2) , we cannot extract the cell averages of 𝑐 by simply taking

the test function to be 1. 

2. Take the 𝐿 
2 -projection of 𝜙 into 𝑊 

𝑘 
ℎ 
, denoted as Φ, which is the

approximation of the porosity. 

3. Construct a limiter to maintain the cell average 𝑟̄ 𝑖𝑗 and modify the

numerical approximations of 𝑟 𝑖𝑗 such that 0 ≤ 𝑟 𝑖𝑗 ≤ Φ, which further
yields 𝑐 𝑖𝑗 = 𝑃 𝑘 ( 

𝑟 𝑖𝑗 

Φ ) ∈ [0 , 1] , where 𝑃 𝑘 is the 𝐿 
2 -projection into 𝑊 

𝑘 
ℎ 
if

𝑘 ≥ 2 while 𝑃 1 𝑐 ∣𝐾 is the interpolation of 𝑐 at the four vertices of cell
𝐾. 

In (2.27) , we take 𝜁 = 1 in 𝐾 𝑖𝑗 ( 𝐾 𝑖𝑗 away from 𝜕Ω) to obtain the
quation satisfied by the cell average of 𝑟 , 

̄ 𝑛 +1 𝑖𝑗 = 𝐻 
𝑐 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝑑 
𝑥 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝑑 
𝑦 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝑠 ( 𝑟, ̌𝑐 , 𝑞) , (3.1)

here 

 
𝑐 ( 𝑟, 𝐮 , 𝑐) = 

1 
3 
𝑟̄ 𝑛 𝑖𝑗 + 𝜆

( 

∫𝐼 𝑖 ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 − ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗+ 1 2 
𝑑𝑥 

+ ∫𝐽 𝑗 ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗 − ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 + 1 2 ,𝑗 
𝑑𝑦 

) 

, (3.2) 

𝐻 
𝑑 
𝑥 ( 𝑟, 𝐮 , 𝑐) = 

1 
6 
𝑟̄ 𝑛 𝑖𝑗 − 𝜆∫𝐽 𝑗 { 𝐷 11 𝑐 𝑥 + 𝐷 12 𝑐 𝑦 } 𝑖 − 1 2 ,𝑗 

− { 𝐷 11 𝑐 𝑥 + 𝐷 12 𝑐 𝑦 } 𝑖 + 1 2 ,𝑗 

+ 

𝛼̃|Δ𝑦 |𝛽 [ 𝑐 ] 𝑖 − 1 2 ,𝑗 − 

𝛼̃|Δ𝑦 |𝛽 [ 𝑐 ] 𝑖 + 1 2 ,𝑗 𝑑𝑦, (3.3) 

𝐻 
𝑑 
𝑦 ( 𝑟, 𝐮 , 𝑐) = 

1 
6 
𝑟̄ 𝑛 𝑖𝑗 − 𝜆∫𝐼 𝑖 { 𝐷 21 𝑐 𝑥 + 𝐷 22 𝑐 𝑦 } 𝑖,𝑗− 1 2 

− { 𝐷 21 𝑐 𝑥 + 𝐷 22 𝑐 𝑦 } 𝑖,𝑗+ 1 2 

+ 

𝛼̃|Δ𝑥 |𝛽 [ 𝑐 ] 𝑖,𝑗− 1 2 − 

𝛼̃|Δ𝑥 |𝛽 [ 𝑐 ] 𝑖,𝑗+ 1 2 𝑑𝑥, (3.4) 

𝐻 
𝑠 ( 𝑟, ̌𝑐 , 𝑞) = 

1 
3 
𝑟̄ 𝑛 𝑖𝑗 + Δ𝑡 ̌𝑐 𝑞 , (3.5) 

ith 𝜆 = 
Δ𝑡 

Δ𝑥 Δ𝑦 . We approximate the integrals above by using 2-point

aussian quadratures. The Gaussian quadrature points on 𝐼 𝑖 and 𝐽 𝑗 
re denoted by { 𝑥 1 

𝑖 
, 𝑥 2 
𝑖 
} and { 𝑦 1 

𝑗 
, 𝑦 2 
𝑗 
} , respectively. The corresponding

eights on the interval [− 
1 
2 , 

1 
2 ] are defined as 𝑤 1 and 𝑤 2 . We will prove

hat if Δ𝑡 is sufficiently small, then 𝐻 
𝑐 , 𝐻 

𝑑 
𝑥 , 𝐻 

𝑑 
𝑦 , 𝐻 

𝑠 are all positive,

nd the results are given in the following three lemmas. For simplicity

f presentation, if the denominator in a fraction is zero, then the value

f the fraction is defined as ∞. 

emma 3.1. Suppose 𝑟 𝑛 > 0( 𝑐 𝑛 > 0 ), then 𝐻 
𝑠 ( 𝑟, ̌𝑐 , 𝑞) > 0 under the condi-

ion 

𝑡 ≤ 

Φ𝑚 
3 𝑞 𝑀 

, (3.6)

here 

𝑚 = min 
𝑥,𝑦 

Φ( 𝑥, 𝑦 ) , 𝑞 𝑀 
= max 
𝑖,𝑗,𝛽,𝛾

{− 𝑞( 𝑥 𝛽
𝑖 
, 𝑦 
𝛾
𝑗 
) , 0} . (3.7)

emma 3.2. Suppose 𝑟 𝑛 > 0 ( 𝑐 𝑛 > 0 ), then 𝐻 
𝑐 ( 𝑟, 𝐮 , 𝑐) > 0 under the con-

ition 

Δ𝑡 
Δ𝑥 

+ 

Δ𝑡 
Δ𝑦 

≤ 

1 
6 
𝐵, (3.8)

here 

 = min 
𝑖,𝑗,𝛽

⎧ ⎪ ⎨ ⎪ ⎩ 

Φ− 
𝑖 + 1 2 ,𝑗,𝛽|𝐮 ⋅ 𝐧 𝑒 |𝑖 + 1 2 ,𝑗,𝛽 , 

Φ+ 
𝑖 − 1 2 ,𝑗,𝛽|𝐮 ⋅ 𝐧 𝑒 |𝑖 − 1 2 ,𝑗,𝛽 , 

Φ− 
𝑖,𝑗+ 1 2 ,𝛽|𝐮 ⋅ 𝐧 𝑒 |𝑖,𝑗+ 1 2 ,𝛽 , 

Φ+ 
𝑖,𝑗− 1 2 ,𝛽|𝐮 ⋅ 𝐧 𝑒 |𝑖,𝑗− 1 2 ,𝛽

⎫ ⎪ ⎬ ⎪ ⎭ 

. 

(3.9) 
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affect the accuracy. See Chuenjarern et al. (2019) for more information. 
emma 3.3. Suppose 𝑟 𝑛 > 0( 𝑐 𝑛 > 0 ), then 𝐻 
𝑑 
𝑥 ( 𝑟, 𝐮 , 𝑐) > 0 under the condi-

ions 

𝛼̃ ≥ 

|Δ𝑦 |𝛽
2Δ𝑥 

𝐷 
𝑀 

11 + 

√
3 |Δ𝑦 |𝛽−1 𝐷 

𝑀 

12 , (3.10) 

𝐷 
𝑀 

11 Λ1 + 2 
( 

𝛼̃|Δ𝑦 |𝛽−1 + 𝐷 
𝑀 

12 

) 

𝜆 ≤ 

1 
12 

Φ𝑚 , (3.11) 

here 

 
𝑀 

11 = max 
( 𝑥,𝑦 )∈Ω

𝐷 11 ( 𝐮 )( 𝑥, 𝑦 ) , 𝐷 
𝑀 

12 = max 
( 𝑥,𝑦 )∈Ω

|𝐷 12 ( 𝐮 )( 𝑥, 𝑦 ) |, Λ1 = 

Δ𝑡 
Δ𝑥 2 

. (3.12)

imilarly, we have 𝐻 
𝑑 
𝑦 ( 𝑟, 𝐮 , 𝑐) > 0 if 

𝛼̃ ≥ 

|Δ𝑥 |𝛽
2Δ𝑦 

𝐷 
𝑀 

22 + 

√
3 |Δ𝑥 |𝛽−1 𝐷 

𝑀 

21 , (3.13) 

𝐷 
𝑀 

22 Λ2 + 2 
( 

𝛼̃|Δ𝑥 |𝛽−1 + 𝐷 
𝑀 

21 

) 

𝜆 ≤ 

1 
12 

Φ𝑚 , (3.14) 

here 

 
𝑀 

22 = max 
( 𝑥,𝑦 )∈Ω

𝐷 22 ( 𝐮 )( 𝑥, 𝑦 ) , 𝐷 
𝑀 

21 = max 
( 𝑥,𝑦 )∈Ω

|𝐷 21 ( 𝐮 )( 𝑥, 𝑦 ) |, Λ2 = 

Δ𝑡 
Δ𝑦 2 

. (3.15)

We can find the proofs of Lemma 3.1 and Lemma 3.2 in

ppendix B and Appendix C , respectively. For the diffusion terms

 
𝑑 
𝑥 (( 𝑟, 𝐮 , 𝑐)) and 𝐻 

𝑑 
𝑦 (( 𝑟, 𝐮 , 𝑐)) , we can follow the same analysis in Guo and

ang (2017) with some minor changes. Therefore we skip the proof of

emma 3.3 . Next, base on the above three lemmas, we can state the

ollowing theorem. 

heorem 3.1. Suppose 𝑟 𝑛 > 0 ( 𝑐 𝑛 > 0) , and the parameters 𝛼̃ satisfy

3.10) , (3.11) , (3.13) and (3.14) . Then 𝑟̄ 𝑛 +1 
𝑖𝑗 

> 0 under the conditions
3.6) and (3.8) . 

Now, for these cells away from 𝜕Ω, we have ̄𝑟 𝑛 +1 
𝑖𝑗 

> 0 . To obtain ̄𝑟 𝑛 +1 
𝑖𝑗 

≤
̄ , we only need to prove ̄𝑟 𝑛 +1 2 𝑖𝑗 > 0 . Firstly, substituting (2.22) - (2.25) into
2.11) yields the following equation: 

−( 𝐮 , ∇ 𝜉) − 

∑
𝑒 ∈Γ0 ∫𝑒 𝐮 ⋅ 𝐧 𝑒 [ 𝜉] 𝑑𝑠 + 

∑
𝑒 ∈Γ𝐷 ∫𝑒 𝐮 ⋅ 𝐧 𝑒,𝐷 𝜉𝑑𝑠 

+ 

∑
𝑒 ∈Γ0 ∫𝑒 { 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒 }[ 𝑝 ] 𝑑𝑠 − 

∑
𝑒 ∈Γ𝐷 ∫𝑒 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒,𝐷 𝑝𝑑𝑠 

 ( 𝑞, 𝜉) − 

∑
𝑒 ∈Γ𝑁 ∫𝑒 𝑝 𝑁 𝜉𝑑𝑠 − 

∑
𝑒 ∈Γ𝐷 ∫𝑒 𝐊 ∇ 𝜉 ⋅ 𝐧 𝑒,𝐷 𝑝 𝐷 𝑑𝑠. 

(3.16) 

ext, let 𝜉 = 1 in (3.16) and 𝜁 = 1 in (2.27) , then subtract (2.27) from
3.16) , and use Lemma 2.2 to obtain 

̄ 𝑛 +1 2 𝑖𝑗 = 𝐻 
𝑐 ( 𝑟 2 , 𝐮 , 𝑐 2 ) + 𝐻 

𝑑 
𝑥 ( 𝑟 2 , 𝐮 , 𝑐 2 ) + 𝐻 

𝑑 
𝑦 ( 𝑟 2 , 𝐮 , 𝑐 2 ) + 𝐻 

𝑠 ( 𝑟 2 , ̌𝑐 2 , 𝑞) , (3.17)

here 𝑟 2 = Φ − 𝑟 , 𝑐 2 = 1 − 𝑐 . We can observe that the above equation

s similar to (3.1) . Therefore, following the same analysis above, we

onclude that 𝑟̄ 𝑛 +1 2 𝑖𝑗 > 0 for these cells away from 𝜕Ω, and the result is
iven below. 

heorem 3.2. Suppose 0 ≤ 𝑟 𝑛 
𝑖𝑗 
≤ Φ, and the conditions in Theorem 3.1 are

atisfied, then 0 ≤ 𝑟̄ 𝑛 +1 
𝑖𝑗 

≤ Φ̄. 

Next we study the cells near 𝜕Ω. The boundary cells can be analyzed
ollowing the same lines with some minor changes except that the con-

ection term is treated slightly differently because of the existence of

he boundary. Without loss of generality, we take the last cell, denoted

s 𝐾, as an example to illustrate this point. Let the left and lower bound-

ries of the last cell 𝐾 are the interior interfaces, the upper boundary is

he Neumann boundary for pressure equation, and the right boundary

s the outflow boundary. 

We take 𝜁 = 1 in 𝐾 in (2.27) to obtain the equation satisfied by the

ell average of 𝑟 , 

̄ 𝑛 +1 
𝐾 

= 𝐻 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝐵𝑑 
𝑥 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝐵𝑑 
𝑦 ( 𝑟, 𝐮 , 𝑐) + 𝐻 

𝑠 ( 𝑟, ̌𝑐 , 𝑞) , (3.18)
7 
here 

𝐻 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) = 

1 
3 
𝑟̄ 𝑛 𝑖𝑗 + 𝜆∫𝐼 𝑖 ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 − ( 𝑐 − 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 

𝑑𝑥 

+ 𝜆∫𝐽 𝑗 ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗 − ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗 
𝑑𝑦, (3.19) 

𝐻 
𝐵𝑑 
𝑥 

( 𝑟, 𝐮 , 𝑐) = 

1 
6 
𝑟̄ 𝑛 
𝑖𝑗 
− 𝜆∫𝐽 𝑗 { 𝐷 11 𝑐 𝑥 + 𝐷 12 𝑐 𝑦 } 𝑖 − 1 2 ,𝑗 + 

𝛼̃|Δ𝑦 |𝛽 [ 𝑐] 𝑖 − 1 2 ,𝑗 𝑑𝑦, (3.20) 

𝐻 
𝐵𝑑 
𝑦 

( 𝑟, 𝐮 , 𝑐) = 

1 
6 
𝑟̄ 𝑛 
𝑖𝑗 
− 𝜆∫𝐼 𝑖 { 𝐷 21 𝑐 𝑥 + 𝐷 22 𝑐 𝑦 } 𝑖,𝑗− 1 2 + 

𝛼̃|Δ𝑥 |𝛽 [ 𝑐] 𝑖,𝑗− 1 2 𝑑𝑥, (3.21) 

ith 𝑖 = 𝑁 𝑥 , 𝑗 = 𝑁 𝑦 . 

The positivity of source term was given in Lemma 3.1 and the dif-

usion part can be analyzed following the same lines with some minor

hanges in Guo and Yang (2017) . Hence we only focus on the convection

art, and we have the following conclusion for 𝐻 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) : 

 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) > 0 , (3.22)

f 

Δ𝑡 
Δ𝑥 

+ 

Δ𝑡 
Δ𝑦 

≤ 𝐴, (3.23)

here 𝐴 = min 
𝛽

⎧ ⎪ ⎨ ⎪ ⎩ 

Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝐮 ⋅𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽
, 

Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6 max 𝛽{( 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽
, 0} , 

Φ+ 
𝑖,𝑗− 1 2 ,𝛽

6 max {(− 𝐮 ⋅𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽
, 0} , 

Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6 max {(− 𝐮 ⋅𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
, 0} 

⎫ ⎪ ⎬ ⎪ ⎭ 

. 

We put the proof of (3.22) in Appendix D . Moreover, similar to the

onstruction of (3.17) , we can conclude that the cell average expres-

ion for 𝑟 2 is similar to the cell average for 𝑟 . Therefore, 0 ≤ 𝑟̄ ≤ Φ̄ for

oundary cells. 

emark 3.1. The treatment of 𝑟 2 is different from that in Guo and

ang (2017) and Chuenjarern et al. (2019) . In these two works, we

ubtract the scheme of the concentration equation from that of the pres-

ure equation to obtain that of the second concentration. However, with

he combination of EG and DG, it is impossible to subtract (3.16) and

2.27) due to the mismatch of the finite element spaces. However, what

e want is not the full scheme, but the cell averages. Therefore, we took

he test function to be 1 before we perform the subtraction. 

.2. Slope limiter 

With Theorem 3.2 , we can guarantee the numerical cell averages 𝑟̄

o be physically relevant. However, the numerical approximation 𝑟 may

e negative or larger than Φ. Therefore, we need to apply a limiter to
odify 𝑟 . As discussed in Chuenjarern et al. (2019) , the procedure is

iven in the following steps. 

1. Define 𝑆̂ = { 𝑥 ∈ 𝐾 ∶ 𝑟 ( 𝑥 ) ≤ 0} . Take 

̂ = 𝑟 + 𝜃

( 

𝑟̄ 

Φ̄
Φ − 𝑟 

) 

, 𝜃 = max 
𝑥 ∈𝑆̂ 

{ 

− 𝑟 ( 𝑥 ) ̄Φ
𝑟̄ Φ( 𝑥 ) − 𝑟 ( 𝑥 ) ̄Φ

, 0 
} 

; 

2. set 𝑟 2 = Φ − ̂𝑟 , and repeat the above step for 𝑟 2 ; 

3. Take 𝑟 = Φ − ̂𝑟 2 as the new approximation. 

emark 3.2. After the above three steps, we have 0 ≤ 𝑟 ≤ Φ. It is easy
o check that the limiter does not change the numerical cell average, i.e.

𝐾 𝑟 ( 𝑥 ) 𝑑𝑥 = ∫𝐾 𝑟 ( 𝑥 ) 𝑑𝑥 . Moreover, it is proved that the limiter does not
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Fig. 2. Fracture and mesh settings with different 𝜃 of Example 4.1 . 

Table 1 

Accuracy test for solving 𝑝 using 𝑄 
1 polynomials of Example 4.1. 

𝜃 𝑁 𝑥 ×𝑁 𝑦 ||𝑒𝑟𝑟 ||𝐿 1 (Ω) order ||𝑒𝑟𝑟 ||𝐿 2 (Ω) order ||𝑒𝑟𝑟 ||𝐿 ∞(Ω) order 

20 × 20 1.199882e + 00 – 3.369878e-01 – 3.609472e-01 –

𝜃 = 0 40 × 40 3.135942e-01 1.9359 8.908771e-02 1.9194 1.053578e-01 1.7765 

80 × 80 7.924337e-02 1.9845 2.250215e-02 1.9852 2.807924e-02 1.9077 

160 × 160 1.986708e-02 1.9959 5.636740e-03 1.9971 7.229529e-03 1.9575 

320 × 320 4.977799e-03 1.9968 1.410260e-03 1.9989 1.828045e-03 1.9836 

21 × 21 1.532164e + 00 – 3.464954e-01 – 3.305671e-01 –

𝜃 = 0 41 × 41 5.298448e-01 1.5319 1.133726e-01 1.6118 1.002044e-01 1.7220 

81 × 81 2.003850e-01 1.4028 4.240577e-02 1.4187 2.732928e-02 1.8744 

161 × 161 8.417335e-02 1.2513 1.857249e-02 1.1911 1.007379e-02 1.4398 

321 × 321 4.118056e-02 1.0314 9.305575e-03 0.9970 4.245206e-03 1.2467 

20 × 20 1.388992e + 00 – 4.224689e-01 – 6.260940e-01 –

𝜃 = 5 . 3 40 × 40 4.535562e-01 1.6147 1.197776e-01 1.8185 1.846778e-01 1.7614 

80 × 80 1.860685e-01 1.2854 4.185046e-02 1.5170 4.965249e-02 1.8951 

160 × 160 8.773946e-02 1.0845 1.964721e-02 1.0909 1.627395e-02 1.6093 

320 × 320 4.422695e-02 0.9883 9.875491e-03 0.9924 6.813483e-03 1.2561 

Table 2 

Accuracy test for solving 𝑝 using 𝑄 
2 polynomials of Example 4.1. 

𝜃 𝑁 𝑥 ×𝑁 𝑦 ||𝑒𝑟𝑟 ||𝐿 1 (Ω) order ||𝑒𝑟𝑟 ||𝐿 2 (Ω) order ||𝑒𝑟𝑟 ||𝐿 ∞(Ω) order 

20 × 20 1.018221e-01 – 2.282509e-02 – 3.192690e-02 –

𝜃 = 0 40 × 40 1.326800e-02 2.9400 2.977359e-03 2.9385 4.220201e-03 2.9194 

80 × 80 1.669600e-03 2.9904 3.743863e-04 2.9914 5.325612e-04 2.9863 

160 × 160 2.089172e-04 2.9985 4.682947e-05 2.9990 6.667760e-05 2.9977 

320 × 320 2.611827e-05 2.9998 5.854090e-06 2.9999 8.335856e-06 2.9998 

21 × 21 1.320787e-01 – 3.143824e-02 – 2.425627e-02 –

𝜃 = 0 41 × 41 6.905574e-02 0.9356 1.678817e-02 0.9051 1.370998e-02 0.8231 

81 × 81 3.552099e-02 0.9591 8.606942e-03 0.9639 7.150747e-03 0.9391 

161 × 161 1.792659e-02 0.9866 4.318142e-03 0.9951 3.632414e-03 0.9772 

321 × 321 9.002522e-03 0.9937 2.164465e-03 0.9964 1.839774e-03 0.9814 

20 × 20 1.786417e-01 – 4.178467e-02 – 3.655140e-02 –

𝜃 = 5 . 3 40 × 40 8.446352e-02 1.0807 2.070221e-02 1.0132 2.086347e-02 0.8089 

80 × 80 4.326850e-02 0.9650 1.063492e-02 0.9610 1.151226e-02 0.8578 

160 × 160 2.266673e-02 0.9327 5.523742e-03 0.9451 6.144501e-03 0.9058 

320 × 320 1.153547e-02 0.9745 2.786098e-03 0.9874 3.170029e-03 0.9548 
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.3. High-order time discretization 

In this subsection, we introduce third-order strong stability preserv-

ng (SSP) time discretization to solve the ODE system 𝐨 𝑡 = 𝐋 ( 𝐨 ) , which is
 convex combination of Euler forward time discretization. We consider

he SSP Runge-Kutta method 

𝐨 (1) = 𝐨 𝑛 + Δ𝑡 𝐋 ( 𝐨 𝑛 , 𝑡 𝑛 ) , 
𝐨 (2) = 

3 
4 𝐨 

𝑛 + 
1 
4 

(
𝐨 (1) + Δ𝑡 𝐋 ( 𝐨 (1) , 𝑡 𝑛 +1 ) 

)
, 

𝐨 𝑛 +1 = 
1 
3 𝐨 

𝑛 + 
2 
3 

(
𝐨 (2) + Δ𝑡 𝐋 ( 𝐨 (2) , 𝑡 𝑛 + 

Δ𝑡 
2 ) 

)
, 

(3.24) 

nd the multi-step method 

 
𝑛 +1 = 

16 
27 

( 𝐨 𝑛 + 3Δ𝑡 𝐋 ( 𝐨 𝑛 , 𝑡 𝑛 )) + 

11 
27 

(
𝐨 𝑛 −3 + 

12 
11 

Δ𝑡 𝐋 ( 𝐨 𝑛 −3 , 𝑡 𝑛 −3 ) 
)
. (3.25)

ore details of these time discretizations can be found in Gottlieb et al.

2001, 2009) ; Shu (1988) . 
8 
. Numerical experiments 

In this section, we provide numerical examples to illustrate the con-

ergence and accuracy of RDFM based on the EG and IPDG methods

n non-conforming meshes and effectiveness of the bound-preserving

echnique. We use the third-order SSP Runge-Kutta method (3.24) . For

he sake of simplicity, the flows in these tests are driven by boundary

onditions instead of source term, i.e. 𝑞 = 0 . 
In Example 4.1 , we use 𝑄 

1 polynomials and 𝑄 
2 polynomials to con-

truct the finite element space respectively and test the accuracy of EG

ethod for solving RDFM. In Example 4.2 , 𝑄 
1 polynomials are used. To

est the effectiveness of the bound-preserving technique, we simulate the

xample with/without the bound-preserving limiter for incompressible

iscible displacements in fractured porous media and compare the re-

ults. Example 4.3 is a realistic case in Flemisch et al. (2018) , where 𝑄 
1 
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Fig. 3. Fracture setting and initial concentra- 

tion of Example 4.2 on 40 × 40 mesh. 

Fig. 4. Concentration 𝑐 with limiter of Example 4.2. 

Fig. 5. Concentration 𝑐 without limiter of Example 4.2. 

Fig. 6. Domain of Example 4.3 on 70 × 60 mesh. 
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olynomials are used to simulate contaminant propagation in fractured

orous media. 
9 
xample 4.1. Accuracy test of EG method 

In this example, we test the accuracy of EG method by solving the

ollowing problem: 

∇ ⋅ ( 𝐊 ∇ 𝑝 ) = 0 , 𝑥 ∈ Ω = [− 𝜋, 𝜋] × [− 𝜋, 𝜋] , 

here 𝐊 = 𝐈 + 2 𝛿(− sin ( 𝜃) 𝑥 + cos ( 𝜃) 𝑦 ) 
[ 

cos 2 ( 𝜃) sin ( 𝜃) cos ( 𝜃) 
sin ( 𝜃) cos ( 𝜃) sin 2 ( 𝜃) 

] 
, 𝜃 is

n arbitrary fixed number. 

The exact solution for any fixed 𝜃 is 

 ( 𝑥, 𝑦 ) = sin ( cos ( 𝜃) 𝑥 + sin ( 𝜃) 𝑦 ) 𝑒 |− sin ( 𝜃) 𝑥 + cos ( 𝜃) 𝑦 |, 
nd the corresponding Dirichlet boundary conditions are used. The

roduct of thickness and permeability is 𝜖𝑘 𝑓 = 2 and permeability of
orous matrix is 𝑘 𝑚 = 1 . By choosing different 𝜃’s, meshes and polyno-
ial degrees 𝑘 in the finite element space, we can test accuracy of EG

ethod for DFM comprehensively. 

We take three tests with different settings of 𝜃’s on rectangular

eshes, in which 𝜃 = 5 . 3 is randomly chosen to make the fracture in-



H. Guo, W. Feng, Z. Xu et al. Advances in Water Resources 153 (2021) 103951 

Fig. 7. EG Numerical results of 𝑝 in 

Example 4.3. 

Fig. 8. DG Numerical results of 𝑝 in 

Example 4.3. 
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ersecting with gridcells non-conformingly. See Fig. 2 for illustration

f settings of fracture and mesh. The numerical results are given in

able 1 and Table 2 . From the tables, we can conclude that the EG

ethod for the discrete fracture model is convergent. Moreover, we find

he rates of convergence are optimal on conforming meshes and 𝑂( ℎ ) on
on-conforming meshes. 

xample 4.2. Bound-preserving test 

We use this example to show the significance of the bound-preserving

echnique in the simulation of miscible displacements in porous media.

et Ω = [0 , 2 𝜋] × [0 , 2 𝜋] . The initial concentrations 𝑐 0 is 

 0 = 

{ 

1 , 0 ≤ 𝑥 ≤ 
𝜋

2 , 
3 𝜋
4 ≤ 𝑦 ≤ 

5 𝜋
4 , 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

he left and right endpoints of the fracture are ( 𝜋2 , 𝜋) , ( 
15 𝜋
8 , 𝜋) , respec-

ively. See Fig. 3 for details of settings of fracture and concentration at

 = 0 on 40 × 40 mesh. Other parameters are taken as 

= 1 , 𝐊 𝑚 = 𝐈 , 𝜖𝑘 𝑓 = 10 5 , 𝐃 = 0 . 1 𝐈 , 𝑐 𝑖𝑛 = 0 . 

Moreover, for pressure equation, the left, right boundaries are Dirich-

et boundaries with pressure 𝑝 𝐷𝑙𝑒𝑓𝑡 = 2 , 𝑝 𝐷𝑟𝑖𝑔ℎ𝑡 = 0 , while the bottom,
op boundaries are Neumann boundaries with 𝑝 𝑁 = 0 . The left boundary
s the inflow boundary with 𝑐 𝑖𝑛 = 0 . The right boundary is the outflow
oundary. 

We compute the concentration 𝑐 at time 𝑇 = 0 . 1 , 0 . 5 , 0 . 9 s with 𝑁 𝑥 =
 𝑦 = 40 and Δ𝑡 = 0 . 001 ℎ 2 ( ℎ = 

2 𝜋
40 ) . The numerical results are shown in

ig. 4 . From the figures we can see that the concentration 𝑐 is between

 and 1. To test the effectiveness of the bound-preserving technique, we

imulate the example without the bound-preserving limiter, and the nu-

erical results are shown in Fig. 5 . We can conclude that the boundary

reserving technique is effective. 
10 
xample 4.3. A Realistic Case 

This example is a benchmark problem in Flemisch et al. (2018) mod-

fied from a real set of fractures from an interpreted outcrop in the Sotra

sland. The test case is a complex fracture network containing 63 frac-

ures with different lengths and connectivity. For simplicity, the domain

s uniformly shrunk to Ω = [0 , 1 . 4] × [0 , 1 . 2] with permeability 𝐾 𝑚 = 1 .
he fractures on 70 × 60 mesh are shown in Fig. 6 with 𝜖𝑘 𝑓 = 10 . The de-
ailed geometric data of fractures can be found in htt (0000) and Xu and

ang (2020) , while we just scale down the geometry uniformly. 

We simulate two cases. One case is that the contaminant propagates

rom top to bottom and the other case is that the contaminant propagates

rom left to right. Moreover, EG method and IPDG method introduced

n Section 2 are used to solve pressure 𝑝 respectively. The contour plots

f numerical results for pressure equation are presented in Figs. 7 and

 . 

Case 1 : For pressure equation, the left, right boundaries are Neumann

oundaries with 𝑝 𝑁 = 0 , while the top, bottom boundaries are Dirichlet

oundaries with 𝑝 𝐷𝑡𝑜𝑝 = 1 , 𝑝 𝐷𝑏𝑜𝑡𝑡𝑜𝑚 = 0 , respectively. For concentration
quation, the upper boundary is inflow boundary with 𝑐 𝑖𝑛 = 1 , the lower
oundary is outflow boundary with 𝑐 = 𝑐 + , and the initial concentration

s zero. The other parameters are taken as 

= 1 , 𝐃 = 0 . 005 |𝐮 |𝐈 . 
e compute the concentration 𝑐 at time 𝑇 =

 . 01 , 0 . 02 , 0 . 03 , 0 . 05 , 0 . 08 , 0 . 1 with 𝑁 𝑥 = 70 , 𝑁 𝑦 = 60 and Δ𝑡 =
 . 0005 ℎ 2 ( ℎ = 0 . 02) . The numerical results are shown as Figs. 9 and 10 ,
espectively. 

Case 2 : For pressure equation, the top, bottom boundaries are

eumann boundaries with 𝑝 𝑁 = 0 , while the left, right boundaries
re Dirichlet boundaries with 𝑝 𝐷𝑙𝑒𝑓𝑡 = 1 , 𝑝 𝐷𝑟𝑖𝑔ℎ𝑡 = 0 . For concentration
quation, the left boundary is inflow boundary with 𝑐 = 1 , the right
𝑖𝑛 
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Fig. 9. Concentration 𝑐 propagates from top to bottom at 𝑢 𝐸𝐺 in Example 4.3. 

Fig. 10. Concentration 𝑐 propagates from top to bottom at 𝑢 𝐷𝐺 in Example 4.3. 
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oundary is outflow boundary with 𝑐 = 𝑐 − , and the initial concentration

s zero. The numerical results are shown as Figs. 11 and 12 , respectively.

hrough the numerical simulation of above two cases, we can conclude

hat the numerical approximation of the concentration 𝑐 is between 0

nd 1, and the contaminants propagate along the fractures, which is in
11 
ine with the relevant physical significance. In addition, the simulation

esults of EG method and IPDG method are almost the same, but the

egree of freedom of the EG method is smaller than that of the IPDG

ethod. 
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Fig. 11. Concentration 𝑐 propagates from left to right at 𝑢 𝐸𝐺 in Example 4.3. 

Fig. 12. Concentration 𝑐 propagates from left to right at 𝑢 𝐷𝐺 in Example 4.3. 
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. Concluding remarks 

In this paper, we combined the reinterpreted discrete fracture model

ith incompressible miscible displacements in porous media. We have

erived the EG scheme and IPDG scheme for the flow equation and

he IPDG scheme for the transport equation, and constructed conserva-

ive numerical fluxes, yielding local mass conservation. Moreover, the

ound-preserving technique was applied by combining EG method and

PDG method. Theoretical analysis and numerical experiments showed
12 
ffectiveness of the bound-preserving technique and good performance

f RDFM based on the above two methods on non-conforming meshes. 

In addition to the above, the explicit time method is used in this

aper, which leads to small time step size. We can apply the implicit

ime methods, such as the implicit pressure explicit saturation (IMPES)

ethod, and this is our future work. We will also discuss the multiphase

ow, coupled hydro-mechanical problems and other similar problems

n 3D in the future. 
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nterests or personal relationships that could have appeared to influence the 

w

A

P 𝑦 = 𝑦 ( 𝑡 ) , 𝑡 ∈ [ 𝑡 0 , 𝑡 1 ] , and denote by 𝑡 ∗ ∈ [ 𝑡 0 , 𝑡 1 ] such that 𝑥 ∗ = 𝑥 ( 𝑡 ∗ ) , 𝑦 ∗ = 𝑦 ( 𝑡 ∗ ) . 
B

∶

 , 𝑦 ( 𝑡 )) 
√
𝑥̇ 2 + 𝑦̇ 2 𝑑𝑡 

)( 𝑡 − 𝑡 ∗ )) − 𝜂0 , 

w
𝑦̇ ( 𝑡 ∗ ) 

 
2 ( 𝑡 ∗ ) + ̇𝑦 2 ( 𝑡 ∗ ) 

, 
− ̇𝑥 ( 𝑡 ∗ ) √

𝑥̇ 2 ( 𝑡 ∗ ) + ̇𝑦 2 ( 𝑡 ∗ ) 
) 𝑇 . Moreover, the linear Taylor expansion used in the 

t  at {0} . □

A

P quadrature: 

𝐻

, 𝑦 
𝛾
𝑗 
) 

w

𝐿

C ith 𝑞( 𝑥 𝛽
𝑖 
, 𝑦 
𝛾
𝑗 
) < 0 . Without loss of generality, we assume 𝑞( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
) < 0 , then 

𝑐 to check that 

w

𝐿

,𝑗+ 1 2 
) 

=

T
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ppendix A. Proof of Lemma 2.1 

roof. We parameterize the curve 𝑒 locally around ( 𝑥 ∗ , 𝑦 ∗ ) as 𝑥 = 𝑥 ( 𝑡 ) , 
y changing of variables and Taylor expansion, we have 

∫𝑒 𝛿( ⋅) 𝟏 ( ⋅) 𝑔 ( 𝑥, 𝑦 ) 𝑑𝑠 
 = ∫𝑒 𝛿(− sin ( 𝜃) 𝑥 + cos ( 𝜃) 𝑦 − 𝜂0 ) 𝟏 ( 𝜉1 ≤ cos ( 𝜃) 𝑥 + sin ( 𝜃) 𝑦 ≤ 𝜉2 ) 𝑔( 𝑥, 𝑦 ) 𝑑𝑠 

= ∫
𝑡 1 

𝑡 0 

𝛿(− sin ( 𝜃) 𝑥 ( 𝑡 ) + cos ( 𝜃) 𝑦 ( 𝑡 ) − 𝜂0 ) 𝑔( 𝑥 ( 𝑡 ) , 𝑦 ( 𝑡 )) 
√
𝑥̇ 2 + 𝑦̇ 2 𝑑𝑡 

= ∫
𝑡 1 

𝑡 0 

𝛿(− sin ( 𝜃)( 𝑥 ∗ + 𝑥̇ ( 𝑡 ∗ )( 𝑡 − 𝑡 ∗ )) + cos ( 𝜃)( 𝑦 ∗ + 𝑦̇ ( 𝑡 ∗ )( 𝑡 − 𝑡 ∗ )) − 𝜂0 ) 𝑔( 𝑥 ( 𝑡 )

Change of variables 𝑟 = − sin ( 𝜃)( 𝑥 ∗ + 𝑥̇ ( 𝑡 ∗ )( 𝑡 − 𝑡 ∗ )) + cos ( 𝜃)( 𝑦 ∗ + 𝑦̇ ( 𝑡 ∗ 

= ∫
𝑟 ( 𝑡 1 ) 

𝑟 ( 𝑡 0 ) 
𝛿( 𝑟 ) 𝑔 ( 𝑥 ( 𝑡 ( 𝑟 )) , 𝑦 ( 𝑡 ( 𝑟 ))) 

√
𝑥̇ 2 + 𝑦̇ 2 

𝑑𝑟 

− sin ( 𝜃) ̇𝑥 ( 𝑡 ∗ ) + cos ( 𝜃) ̇𝑦 ( 𝑡 ∗ ) 
Note that 𝑟 = 0 ⇔ 𝑡 = 𝑡 ∗ , by the property of 𝛿 function , 

= 𝑔( 𝑥 ( 𝑡 ∗ ) , 𝑦 ( 𝑡 ∗ )) ⋅
||||||

√
𝑥̇ 2 ( 𝑡 ∗ ) + 𝑦̇ 2 ( 𝑡 ∗ ) 

− sin ( 𝜃) ̇𝑥 ( 𝑡 ∗ ) + cos ( 𝜃) ̇𝑦 ( 𝑡 ∗ ) 

||||||
= 𝑔( 𝑥 ∗ , 𝑦 ∗ ) ⋅ 1 ||||cos ( 𝜃) 𝑦̇ ( 𝑡 ∗ ) √

𝑥̇ 2 ( 𝑡 ∗ ) + ̇𝑦 2 ( 𝑡 ∗ ) 
+ sin ( 𝜃) − ̇𝑥 ( 𝑡 ∗ ) √

𝑥̇ 2 ( 𝑡 ∗ ) + ̇𝑦 2 ( 𝑡 ∗ ) 

||||
= 𝑔( 𝑥 ∗ , 𝑦 ∗ ) ⋅ 1 ||𝝂 ⋅ 𝐧 ∗ || , 
here the last equality follows from 𝝂 = ( cos ( 𝜃) , sin ( 𝜃)) 𝑇 and 𝐧 ∗ = ±( √

𝑥̇

hird equality is accurate even for curved 𝑒 , because 𝛿 is only supported

ppendix B. Proof of Lemma 3.1 

roof. The cell average of the source is approximated by the Gaussian 

 
𝑠 ( 𝑟, ̌𝑐 , 𝑞) = 

1 
3 ̄𝑟 
𝑛 
𝑖𝑗 
+ Δ𝑡 ̌𝑐 𝑞 

= 
1 
3 
∑2 
𝛽=1 

∑2 
𝛾=1 𝑤 𝛽𝑤 𝛾 𝑟 

𝑛 
𝑖𝑗 
( 𝑥 𝛽
𝑖 
, 𝑦 
𝛾
𝑗 
) + Δ𝑡 

∑2 
𝛽=1 

∑2 
𝛾=1 𝑤 𝛽𝑤 𝛾 ( ̌𝑐 𝑞)( 𝑥 

𝛽
𝑖 

∶= 

∑2 
𝛽=1 

∑2 
𝛾=1 𝑤 𝛽𝑤 𝛾𝐿 𝛽,𝛾 , 

here 

 𝛽,𝛾 ∶= 

1 
3 
𝑟 𝑛 𝑖𝑗 ( 𝑥 

𝛽
𝑖 
, 𝑦 
𝛾
𝑗 
) + Δ𝑡 ( ̌𝑐 𝑞)( 𝑥 𝛽

𝑖 
, 𝑦 
𝛾
𝑗 
) . 

learly, 𝐿 𝛽,𝛾 > 0 if 𝑞( 𝑥 
𝛽
𝑖 
, 𝑦 
𝛾
𝑗 
) ≥ 0 . We only need to consider the case w

̌ ( 𝑥 1 
𝑖 
, 𝑦 1 
𝑗 
) = 𝑐( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
) . Notice that 𝑟 𝑛 

𝑖𝑗 
and 𝑐 are both linear, then it is easy 

𝑐( 𝑥 1 
𝑖 
, 𝑦 1 
𝑗 
) = 𝜇2 1 𝑐 𝑖 − 1 2 ,𝑗− 

1 
2 
+ 𝜇1 𝜇2 𝑐 𝑖 − 1 2 ,𝑗+ 

1 
2 
+ 𝜇1 𝜇2 𝑐 𝑖 + 1 2 ,𝑗− 

1 
2 
+ 𝜇2 2 𝑐 𝑖 + 1 2 ,𝑗+ 

1 
2 
, 

𝑟 𝑛 
𝑖𝑗 
( 𝑥 1 
𝑖 
, 𝑦 1 
𝑗 
) = 𝜇2 1 𝑟 𝑖 − 1 2 ,𝑗− 

1 
2 
+ 𝜇1 𝜇2 𝑟 𝑖 − 1 2 ,𝑗+ 

1 
2 
+ 𝜇1 𝜇2 𝑟 𝑖 + 1 2 ,𝑗− 

1 
2 
+ 𝜇2 2 𝑟 𝑖 + 1 2 ,𝑗+ 

1 
2 
, 

ith 𝜇1 = 
3+ 

√
3 

6 and 𝜇2 = 
3− 

√
3 

6 . Therefore, 

 1 , 1 = 
1 
3 ( 𝜇

2 
1 𝑟 𝑖 − 1 2 ,𝑗− 

1 
2 
+ 𝜇1 𝜇2 𝑟 𝑖 − 1 2 ,𝑗+ 

1 
2 
+ 𝜇1 𝜇2 𝑟 𝑖 + 1 2 ,𝑗− 

1 
2 
+ 𝜇2 2 𝑟 𝑖 + 1 2 ,𝑗+ 

1 
2 
) 

+Δ𝑡𝑞( 𝑥 1 
𝑖 
, 𝑦 1 
𝑗 
)( 𝜇2 1 𝑐 𝑖 − 1 2 ,𝑗− 

1 
2 
+ 𝜇1 𝜇2 𝑐 𝑖 − 1 2 ,𝑗+ 

1 
2 
+ 𝜇1 𝜇2 𝑐 𝑖 + 1 2 ,𝑗− 

1 
2 
+ 𝜇2 2 𝑐 𝑖 + 1 2 

 𝜇2 1 𝑐 𝑖 − 1 2 ,𝑗− 
1 
2 
( 1 3 Φ𝑖 − 1 2 ,𝑗− 

1 
2 
+ Δ𝑡𝑞( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
)) 

+ 𝜇1 𝜇2 𝑐 𝑖 − 1 2 ,𝑗+ 
1 
2 
( 1 3 Φ𝑖 − 1 2 ,𝑗+ 

1 
2 
+ Δ𝑡𝑞( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
)) 

+ 𝜇1 𝜇2 𝑐 𝑖 + 1 2 ,𝑗− 
1 
2 
( 1 3 Φ𝑖 + 1 2 ,𝑗− 

1 
2 
+ Δ𝑡𝑞( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
)) 

+ 𝜇2 2 𝑐 𝑖 + 1 2 ,𝑗+ 
1 
2 
( 1 3 Φ𝑖 + 1 2 ,𝑗+ 

1 
2 
+ Δ𝑡𝑞( 𝑥 1 

𝑖 
, 𝑦 1 
𝑗 
)) . 
hen we have 𝐿 1 , 1 > 0 under the condition (3.6) . □

13 
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A

P ollowing form: 

𝑟

D

𝐻 ̂ 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 + 1 2 ,𝑗,𝛽

] 
 ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗+ 1 2 ,𝛽

] 
. 

𝐻 ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 + 1 2 ,𝑗,𝛽

] 
− ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗+ 1 2 ,𝛽

] 
= − ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 + 1 2 ,𝑗,𝛽

) 

− 1 2 ,𝛽

 + 𝜆2 ) 

⎞ ⎟ ⎟ ⎠ 
𝜆2 𝑐 

− 
𝑖,𝑗− 1 2 ,𝛽

(
𝐮 ⋅ 𝐧 𝑒 

)
𝑖,𝑗− 1 2 ,𝛽

. 

T

𝐻 ( 𝑐 + 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 + 1 2 ,𝑗,𝛽

] 
− ( 𝑐 + 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗+ 1 2 ,𝛽

] 
=  

 + 1 2 ,𝑗,𝛽

( Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 

) 

+ 
𝑖,𝑗− 1 2 ,𝛽

 𝜆1 + 𝜆2 ) 
+ ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽

⎞ ⎟ ⎟ ⎠ 
 𝑒 

)
𝑖,𝑗+ 1 2 ,𝛽

. 

T

 this case is a combination of Case 1 and Case 2 . Therefore, 𝐻 
𝑐 ( 𝑟, 𝐮 , 𝑐) > 0 if 

c

A

P

𝐻 + 𝑟 − 
𝑖,𝑗+ 1 2 ,𝛽

) ) 

w

𝐻
 ) 
− ( 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽

) 

+ 
𝑖,𝑗− 1 2 ,𝛽

 𝜆1 + 𝜆2 ) 

⎞ ⎟ ⎟ ⎠ 
2 𝑐 

− 
𝑖,𝑗− 1 2 ,𝛽

(
𝐮 ⋅ 𝐧 𝑒 

)
𝑖,𝑗− 1 2 ,𝛽

. 
ppendix C. Proof of Lemma 3.2 

roof. As the general treatment, we rewrite the cell average 𝑟 𝑛 
𝑖𝑗 
in the f

̄ 𝑛 𝑖𝑗 = 

2 ∑
𝛽=1 

𝑤 𝛽

2 
( 𝑟 + 
𝑖 − 1 2 ,𝑗,𝛽

+ 𝑟 − 
𝑖 + 1 2 ,𝑗,𝛽

) = 

2 ∑
𝛽=1 

𝑤 𝛽

2 
( 𝑟 + 
𝑖,𝑗− 1 2 ,𝛽

+ 𝑟 − 
𝑖,𝑗+ 1 2 ,𝛽

) . 

enote 𝜆1 = 
Δ𝑡 
Δ𝑥 and 𝜆2 = 

Δ𝑡 
Δ𝑦 , then 

 
𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽𝜆1 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖 − 1 2 ,𝑗,𝛽

+ 𝑟 − 
𝑖 + 1 2 ,𝑗,𝛽

) + ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
− ( 𝑐

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖,𝑗− 1 2 ,𝛽

+ 𝑟 − 
𝑖,𝑗+ 1 2 ,𝛽

) + ( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽
−

Case 1 : 𝐮 ⋅ 𝐧 𝑒 is positive at all Gaussian points, then 𝑐 = 𝑐 − . 

 
𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽𝜆1 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖 − 1 2 ,𝑗,𝛽

+ 𝑟 − 
𝑖 + 1 2 ,𝑗,𝛽

) + ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
− 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖,𝑗− 1 2 ,𝛽

+ 𝑟 − 
𝑖,𝑗+ 1 2 ,𝛽

) + ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽

 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

+ 
𝑖 − 1 2 ,𝑗,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 

⎞ ⎟ ⎟ ⎠ + 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

− 
𝑖 + 1 2 ,𝑗,𝛽

( Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

− 
𝑖 − 1 2 ,𝑗,𝛽

(
𝐮 ⋅ 𝐧 𝑒 

)
𝑖 − 1 2 ,𝑗,𝛽

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

+ 
𝑖,𝑗− 1 2 ,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖,𝑗

6( 𝜆1

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

− 
𝑖,𝑗+ 1 2 ,𝛽

( Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6( 𝜆1 + 𝜆2 ) 
− ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗+ 1 2 ,𝛽

) 

+ 

∑2 
𝛽=1 𝑤 𝛽

hen, 𝐻 
𝑐 ( 𝑟, 𝐮 , 𝑐) > 0 if ( 𝜆1 + 𝜆2 ) satisfy condition (3.8) . 

Case 2 : 𝐮 ⋅ 𝐧 𝑒 is negative at all Gaussian points, then 𝑐 = 𝑐 + . 

 
𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽𝜆1 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖 − 1 2 ,𝑗,𝛽

+ 𝑟 − 
𝑖 + 1 2 ,𝑗,𝛽

) + ( 𝑐 + 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
− 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 

[ 
1 

6( 𝜆1 + 𝜆2 ) 
( 𝑟 + 
𝑖,𝑗− 1 2 ,𝛽

+ 𝑟 − 
𝑖,𝑗+ 1 2 ,𝛽

) + ( 𝑐 + 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽

 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

+ 
𝑖 − 1 2 ,𝑗,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 
+ ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽

⎞ ⎟ ⎟ ⎠ + 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

−
𝑖

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

+ 
𝑖 + 1 2 ,𝑗,𝛽

(
− 𝐮 ⋅ 𝐧 𝑒 

)
𝑖 + 1 2 ,𝑗,𝛽

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

+ 
𝑖,𝑗− 1 2 ,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ

6(

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

− 
𝑖,𝑗+ 1 2 ,𝛽

( Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6( 𝜆1 + 𝜆2 ) 

) 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

+ 
𝑖,𝑗+ 1 2 ,𝛽

(
− 𝐮 ⋅ 𝐧

hen, 𝐻 
𝑐 ( 𝑟, 𝐮 , 𝑐) > 0 if ( 𝜆1 + 𝜆2 ) satisfy condition (3.8) . 

Case 3 : 𝐮 ⋅ 𝐧 𝑒 can be positive or negative at Gaussian points. In fact,
ondition (3.8) is true. □

ppendix D. Proof of (3.22) 

roof. We can write (3.19) as 

 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽

( 

𝜆1 
6( 𝜆1 + 𝜆2 ) 

( 

𝑟 + 
𝑖 − 1 2 ,𝑗,𝛽

+ 𝑟 − 
𝑖 + 1 2 ,𝑗,𝛽

) 

+ 

𝜆2 
6( 𝜆1 + 𝜆2 ) 

( 

𝑟 + 
𝑖,𝑗− 1 2 ,𝛽

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆1 

( 

( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
− ( 𝑐 − 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽

) 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 

( 

( ̂𝑐 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽
− ( 𝑐 − 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽

) 

, 

here 𝜆1 = 
Δ𝑡 
Δ𝑥 and 𝜆2 = 

Δ𝑡 
Δ𝑦 . 

Case 1 : 𝐮 ⋅ 𝐧 𝑒 is positive at all Gaussian points, then 𝑐 = 𝑐 − . 

 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

+ 
𝑖 − 1 2 ,𝑗,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 

⎞ ⎟ ⎟ ⎠ + 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

− 
𝑖 + 1 2 ,𝑗,𝛽

( Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

− 
𝑖 − 1 2 ,𝑗,𝛽

(
𝐮 ⋅ 𝐧 𝑒 

)
𝑖 − 1 2 ,𝑗,𝛽

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

+ 
𝑖,𝑗− 1 2 ,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ

6(

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

− 
𝑖,𝑗+ 1 2 ,𝛽

( Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6( 𝜆1 + 𝜆2 ) 
− ( 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽

) 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆
14 
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f 

1 + 𝜆2 ≤ min 𝛽

{ Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝐮 ⋅𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽
, 

Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6 max 𝛽{( 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽
, 0} 

} 

, 

hen 𝐻 
𝐵𝑐 > 0 . 

Case 2 : 𝐮 ⋅ 𝐧 𝑒 is negative at all Gaussian points, then 𝑐 = 𝑐 + . 

 
𝐵𝑐 ( 𝑟, 𝐮 , 𝑐) = 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

+ 
𝑖 − 1 2 ,𝑗,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 
+ ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽

⎞ ⎟ ⎟ ⎠ 
+ 

∑2 
𝛽=1 𝑤 𝛽𝜆1 𝑐 

− 
𝑖 + 1 2 ,𝑗,𝛽

( Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝜆1 + 𝜆2 ) 
− ( 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽

) 

+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

+ 
𝑖,𝑗− 1 2 ,𝛽

⎛ ⎜ ⎜ ⎝ 
Φ+ 
𝑖,𝑗− 1 2 ,𝛽

6( 𝜆1 + 𝜆2 ) 
+ ( 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽

⎞ ⎟ ⎟ ⎠ 
+ 

∑2 
𝛽=1 𝑤 𝛽𝜆2 𝑐 

− 
𝑖,𝑗+ 1 2 ,𝛽

( Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6( 𝜆1 + 𝜆2 ) 
− ( 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽

) 

. 

f 

1 + 𝜆2 ≤ 𝐴, 

hen 𝐻 
𝐵𝑐 > 0 , where 

 = min 
𝛽

⎧ ⎪ ⎨ ⎪ ⎩ 

Φ− 
𝑖 + 1 2 ,𝑗,𝛽

6( 𝐮 ⋅ 𝐧 𝑒,𝑜𝑢𝑡 ) 𝑖 + 1 2 ,𝑗,𝛽
, 

Φ− 
𝑖,𝑗+ 1 2 ,𝛽

6 max 𝛽{( 𝑝 𝑁 ) 𝑖,𝑗+ 1 2 ,𝛽
, 0} 

, 

Φ+ 
𝑖,𝑗− 1 2 ,𝛽

6 max {(− 𝐮 ⋅ 𝐧 𝑒 ) 𝑖,𝑗− 1 2 ,𝛽
, 0} 

, 

Φ+ 
𝑖 − 1 2 ,𝑗,𝛽

6 max {(− 𝐮 ⋅ 𝐧 𝑒 ) 𝑖 − 1 2 ,𝑗,𝛽
, 0} 

⎫ ⎪ ⎬ ⎪ ⎭ 

Case 3 : 𝐮 ⋅ 𝐧 𝑒 is positive or negative at Gaussian points. Analogously,
his case is a combination of Case 1 and Case 2 . Therefore, 𝐻 

𝐵𝑐 > 0 if
1 + 𝜆2 ≤ 𝐴 . 

To sum up, (3.22) is true under the condition (3.23) . □
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