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1. Introduction

In this paper, we design sign-preserving and well-balanced exponential Runge-Kutta discontinuous Galerkin (DG)
schemes for the system of nonlinear shallow water equations (SWEs) with a non-flat bottom topography and a Manning
friction term. The SWEs, derived from the Navier-Stokes equation describing the motion of fluids, are a system of hyperbolic
PDEs governing fluid flow in the oceans, coastal regions, estuaries, rivers and channels. They can be used to predict tides,
storm surge levels and coastline changes from hurricanes, ocean currents, and also arise in atmospheric flows and debris
flows. The two-dimensional shallow water equations take the form
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he +qx+py =0,
! 9v/¢’ +p’
2, 1 9 . e/ +p?
qr + (h“ +58h )X + (huv)y = —ghby — gn > .
1 2 + 2
pe + (huv)x + (hv2 + Egh2> = —ghb, — gnzpqhg,
y

where h denotes the water depth, (u, v)T is the velocity vector, q := hu and p := hv are the discharges and g is the
gravitational acceleration constant. In one-dimensional case, the system is reduced to

hl’+qX=07

qc + (hu2 + 1gh2> = —ghb, — gnzw. (1.2)
2 X h"
The discharge equation contains two source terms on the right-hand side. The first term is the geometric source with b
representing the bottom topography, and the second term models the bottom friction with n being the Manning coefficient
and the parameter 7 chosen as 7/3 in this paper.
The nonlinear SWEs belong to the family of hyperbolic conservation laws with source term, also referred as hyperbolic
balance laws, which have gained growing attention in the last few decades. The one-dimensional hyperbolic balance law is
given by

Ut + F(U)x =SU),

and introduce new computational challenges beyond the existing challenges of hyperbolic conservation laws, due to the
existence of the source term S(U). They often admit non-trivial steady state solutions in which the source term balances
the effect of the flux gradients. Such balance may not be well captured by standard numerical methods and introduce
spurious oscillation, making it challenging to simulate steady state solutions or their small perturbations unless a much
refined mesh is used. The well-balanced methods are introduced to exactly preserve equilibrium solutions at the discrete
level and resolve small perturbations to steady state solutions accurately on a relatively coarse mesh. The still-water steady
state of the SWEs is given by

h(x,t)=C —b(x), qx,t)=0, (1.3)

which represents a still flat water surface. Many interesting physical phenomena are small perturbations of this steady
state. The well-balanced methods were first designed for the SWEs by Bermudez and Vazquez [4] in 1994. Since then, many
well-balanced methods [1,7,8,14,19,20,22,23,25,27,28] have been studied, and we refer to the survey papers [18,32] and the
references therein for more works on this topic.

Another well-known challenge in numerically solving the SWEs appears at the wetting-drying front. Physically, the water
height h should be non-negative, however, standard numerical methods may produce unacceptable negative water height in
dry or nearly dry regions. In [34], high order positivity-preserving DG methods were designed for the SWEs by introducing
a positivity-preserving limiter, which also preserves the higher order accuracy without losing local conservation. The well-
balanced property of the resulting methods was also investigated in [34], and the extension to high order finite volume
weighted essentially non-oscillatory methods was studied in [31]. We refer to [1,3,13,17,19] for more existing numerical
methods which maintain both well-balanced and positivity-preserving properties at the same time.

The SWEs without the friction term were considered in [34], when the positivity-preserving high order well-balanced DG
methods were designed. When the friction term is included, one could simply treat it explicitly in the existing framework.
However, when the region is nearly dry, i.e., h is small, the friction term in the discharge equation becomes a stiff source
term, and a tiny time step size is needed for the standard explicit numerical methods to be stable. One approach is to
utilize the implicit-explicit Runge-Kutta scheme and treat the friction term implicitly, which may lead to solving a nonlinear
system and could be time-consuming. Some tricks could be used to save the computational cost, for example, finite volume
methods with semi-implicit time integration are developed to handle such issue in [5], [6] and [26]. Second order well-
balanced finite element method for the SWEs with friction is studied in [14], where a regularization term is added to the
explicit approximation of the friction term. Other well-balanced scheme for the SWEs with Manning friction can be found
in [9,17,21].

Our main focus in this work is to present efficient high order well-balanced and positivity-preserving DG methods for
the SWEs with non-flat bottom and friction term. We will propose a new temporal discretization for the stiff or partially
stiff system of ordinary differential equations, which can take larger time step size, and at the same time won't affect
the steady-state-preserving property. This is achieved by a combination of Runge-Kutta (RK) method for the non-stiff part
and exponential RK methods for the stiff component. We will provide the rigorous analysis to show that the new method
maintains the same order of accuracy as the underlying RK method. The novel temporal integration is then combined with
the well-balanced and positivity-preserving DG methods in [34] to provide an efficient solver for the SWEs with friction
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(1.2). The new time discretization is also shown to be sign-preserving, which means that the sign of the computed solution
is determined by the non-stiff part of the system only. In other words, if the non-stiff part (i.e., without friction term) is
used to update the numerical velocity and it stays positive (or negative), adding the friction term to the system will not
change this sign. As illustrated in [5], maintaining the sign-preserving property is crucial, otherwise, large numerical error
may appear in the simulation. Both one- and two-dimensional numerical results demonstrate that the proposed method
yields desirable results even on coarse grids.

The rest of the paper is organized as follows. We start with a quick introduction to exponential RK method and then
propose our new sign-preserving and steady-state-preserving time integrations in Section 2. In Section 3, we start by re-
viewing the semi-discrete well-balanced DG methods for the SWEs and the construction of positivity-preserving limiter,
and then explain the application of the exponential RK method to obtain the fully discrete methods for the SWEs, which
are well-balanced, positivity-preserving and sign-preserving simultaneously. Numerical examples are shown in Section 4 to
verify the accuracy of our new scheme and demonstrate the behavior of the proposed exponential RK and DG methods for
SWEs. Conclusion remarks are given in Section 5.

2. New sign-preserving time integration

In this section, a novel sign-preserving time integration is discussed and analyzed for a system of stiff or partially stiff
ordinary differential equations (ODEs).
As a prototype example, we consider the following ODE system

w; =L(W) + s(w), (2.1)

where w = (w1, ..., w))T is the unknown variable, L= (L1, ..., L;) is a linear or nonlinear operator (which could come from
the spatial discretization of the flux term) and s = (sq, ..., ;)T is the source term, which might be stiff. For simplicity, we
call a vector v to be nonnegative (v > 0) if each component in this vector is nonnegative. In the following discussion, we let
0=tg <ty <---<ty =T be a partition of the entire time interval [0, T] with the time step At" =t, —t,_1,n=1,2,---,N.
We use the notation w" to represent the numerical solution at the n-th time step t". In many applications, the solutions
to (2.1) reflect significant physical meaning of the underlying model. In particular, steady state and sign of solutions are of
interest. Our goal is to construct a suitable high order scheme that enjoys the following properties.

1. Steady-state-preserving: If L(w") + s(w") = 0, then w"*! =w";
2. Sign-preserving: Suppose wW" > 0, we have w"*! > 0;
3. Time step size: Even in the presence of stiff term s(w), small time step is not required.

The sign-preserving property refers to the ability of the numerical method to preserve the sign of the numerical solution
when the exact solution is always non-negative (or non-positive). We refer to [5] for the detailed explanation of this prop-
erty. Below, we will first review the exponential RK method introduced in [11], and then discuss our new time integration
by combining it with traditional RK method.

2.1. Exponential sign-preserving discretization

We start by presenting the exponential RK method for the ODE system (2.1). By introducing the exponential factor, we
can derive a new ODE equation

e*w); = e (L(w) + s(W) + uw),

and the general framework of exponential RK scheme is given by [16] (three-stage RK method is presented below as an
example)

w) = POk [ 1ow" + Brok(L(W") + s(W") + pw™)],
w® e MK [aaoW" + Baok(LW") + s(W") + ew™)]
+ P10~k [y w4 By kLW ™) + 5w ) + pw ) ]
witl —e— ik [a3oW" + B3gk(L(W") + s(W") + uw™) ] (2.2)
+ e(Pro=Duk [oz31w“) + Bark@Lw ) +sw) + Mw(”)]
+e(A-Duk [a3zw<2> + Bak@LwW?) +sw?) + Mw@))] ,

where A = B0+ 021810+ B21 and k = At" denotes the time step. All of the coefficients, «;; and g;j, are positive constants to
be determined by the order conditions, and w is a nonnegative constant to be determined by the sign-preserving property.
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It is easy to see that steady-state-preserving property does not hold for this scheme. Therefore, one can modify (2.2) and
construct

w =[o10W" + B1ok(L(W") + s(W") + uw™)] /A1,
W® =[a20W" + Baok(LW") +SW") + 1w ] /A,
+ Pk oy w® + kLW ®) +sw ) + pw )] /4,
Wt = [r3oW" + Baok(L(W") + S(W") + w")] /As
+ P10k oz w4 o kLW ™D) + sw ) + uw ) | /A3

(2.3)

+ etk [ w® + ook L W®) +sw?) + uw)] /43,

where
A1 =010+ Propk, Az =[o0 + Baok] + P19 oy + By k],
Az = [ar30 + B3opk] + P10 (a3 + B3q k] + e K [asy + B k]

For this scheme, we have the following property:
Proposition 2.1. The exponential RK scheme of the form (2.3) is steady-state-preserving.

Proof. When the steady state is reached, i.e., L(w") + s(w") = 0, we have
w =(a1oW" + Brokpuw") /A = w"
W =(aoW" + Baokuw™)/ Ay + e (@ w + Byrkuw ) /Ay = w"
W =(a3oW" + Baokpuw")/As + €101 (3w + B3k uw ) /A
+ e M (3w + Brokpuw?) /A3 =w",
as desired, which finishes the proof. O
The sufficient and necessary conditions to obtain third-order accuracy were studied in [11] following the idea in [24].

We first make the following positivity assumption:
There exists a sufficiently small kg such thatif w >0 and k < kg, one has

w 4+ kL(w) > 0. (2.4)

The following result in [11] demonstrates the sign-preserving property of the proposed exponential RK scheme.

Theorem 2.2. Consider the ODE system (2.1) with the flux L satisfying (2.4). The scheme (2.3) is sign-preserving: if w" > 0, we can
conclude that w1 > 0 under the conditions
[ siowh)  siow®) s w®)

, — ,0 and k < Ckg, (2.5)
R

M = max
7 i<l

where

. [o10 o0 021 30 @31 a3
g=minf =, 2= 2 o2 o= S
Bio Bao P21 B30 P31 P32

Based on the above theorem, we would like the value of ¢ to be as large as possible. As studied in [11], the optimal
coefficients are

aro=1, p1o=0.7071933376925014,
20 = 0.6686892933074404, B0 =0,
21 = 0.3313107066925596, Bo1 = 0.4178047564915065,
30 = 0.3487419430256090, B30 =0,
31 = 0.2039576138780898, B31 =0,
a3 = 0.4473004430963011, B3z = 0.5640754637100439,
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with ¢ = 0.7929797388491311. We observe that with this collection of coefficients (2.6), the numerical scheme (2.3) be-
comes

w =w" + Biok(LW") + s(W™) /A1,
W =azow"/A; + eM0 [y W+ kLW ™) + sw D) + pw) | /45,
W =a30W" /A3 + eP1oik g w /A4
+ eArk [aszw(z) + Ba2k(LW®) +s(w®) + MW(Z))] /As, (27)
after dropping the terms with zero coefficients. These exponential functions could be extremely large for large w, and in

practical implementation we often use the following approximation

1 1 -1
et~ (1 —x+=x*— x>+ —x ) . x=pBioukor Auk.
If u =0, this exponential RK method reduces to the standard third order RK method:
w =w" + Brok(LW") + s(W")),
W =a0W" + a1 W + ok (Lw™) +s(wm)), (2.8)
W —a3ow" + a3 w + a3 w® + BkLw?) + sw?@)).

As B > 0, this RK method is strong stability preserving, according to [15, Lemma 2.1].
For completeness, we recall the second-order version of the scheme given in [12]:

w =B} [W" + k(LW") +sW") + uw")],

(2.9)
w1 =Blw" + B2 [w“) +k@w®) + swh) + MW“’)] :
where
B! 1-pkt3k? Ly 11 — pk + 3 (k) p_1_ 1

Tl lkdT T2 i@k 7T 214 fuk?

One can easily verify that the scheme is steady-state-preserving, sign-preserving and of order O (k?), and we refer to [12,
Theorem 5.1] for the detailed proof.

2.2. Novel sign-preserving discretization for system of equations

The exponential RK method in the previous subsection is appropriate for stiff ODEs. When extending such method to
system of ODEs, we may encounter the case when different equations have different stiffness, or some equations are stiff
and the others are not. If the same coefficient u is used for all the equations, the non-stiff or less-stiff equations will also be
approximated by the same exponential RK method, and this may lead to large computational error. One numerical example
will be provided in Section 4 to illustrate such large errors.

This motivates us to develop a new scheme for this kind of system, such that exponential RK method is applied to
the stiff equation and standard RK method is applied to the non-stiff equation. If the equations with different stiffness are
encountered, we may apply the exponential RK method with different w (which could be 0 when non-stiff equation is

considered). Let us present the method using the simple example of two sets of equations. Suppose w = (:) in (2.1), and

the system of ODEs becomes

u'(t) =Ly (u, v) + s1(u, v), (2.10)
V' (t) =L (u,v) +s2(u, v), '

where u = (uy, ..., u,l)T, v=(vq,..., VIZ)T are the unknown variables. As the concrete forms of L; and s; (i =1, 2) are of no
importance in this subsection, we simplify the notation further, by denoting their sums by F and G. Now we consider the
system of ODEs given by

[u’(t) =F(u, V),

/ (211)
VvV (t) =G(u,v),

where the terms F= (f1, ..., f;) and G= (g1, ..., g,) may contain stiff term of different magnitude.

5



R. Yang, Y. Yang and Y. Xing Journal of Computational Physics 444 (2021) 110543

We start by presenting the second-order scheme. If the first equation is non-stiff, i.e., F does not contain stiff term, we
can apply the Heun's method to the first equation and the exponential RK method (2.9) to the second (stiff) equation in
(2.11), which leads to the method of the form

u =u" + kF(u",v"),
k
vD =y + — Gu",v"),
1+a
L [u“) + kF®D V<1>)] (212)
U+ , ,
2
p_11-a+5 n
- 2
2 1+ 2(1+4)

[(1 +ayv —|—I<G(u“),v(”)] ,

with a = uk with p specified by the condition (2.5) to ensure the sign-preserving property. When both equations contain
stiff term while with different magnitude, we can compute (@ and p; for each equation. Let a; = w1k and ap = uk, and
we have the following numerical scheme

k
1) _n n o n
u’ =u ——Fu",v"),
+l+a1( )

k
(1)=vn G V'
v +1+ (u’,v?),

a
2
ut! :%1 —a :Z 2y, ! 2 [(1 +apv® +kF(u(l),v(1))], (2.13)
1+7 2 (1 - ‘%)
11—ax+ G 1
vl =3 — 2y 4 , [(1 + a)v? +kG(u(1),v(1))],
1+% 2 (1 + ‘%)

for the ODE system (2.11). As the Heun’s method and the exponential RK method (2.9) are both second-order accurate, we
expect that the combination of them has the same order of accuracy. Indeed, we have the following theorem on its accuracy.

Theorem 2.3. The numerical schemes (2.13) for the ODE system (2.11) is second-order accurate. In particular, the scheme (2.12), as a
special case when 1 = 0, is also second-order accurate.

Proof. For ease of presentation, we omit the superscript n unless otherwise listed. It follows that

1 11—a+3 1 k k k
\' =3 o v+ 5 (1+az)(V+mG)+kG(u+]+a F,V+1+a G)
1+ 7 2<1+%2> 2 1 2
=v+ k G+G+ KE Gx + kG + 0k
o 1+a ~ 1+azcy

(1)
2 k2 2 3
—v+k (1 + O(a2)> G+ (1 + O(az)) [(14 0(a1)FGx + (1 + 0(a2)GGy] + 0(3)
k2 2 2 2 1,3
=v+kG+ > (FGx + GGy) + O (azk, a1k?, azk?, k ) )

Here we mimic the notations in the Taylor series in one variable, for example,

FGx := (F- g1x, .., F- g7,

and gix is a vector consisting of partial derivatives of g; with respect to u; through u;,. By symmetry, one can compute

k2
"l =u+kF+ 5 (FFx + GFy) + 0 (a%k, a1k?, azk?, k3) .

6
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Recall that a; = ik (i =1,2), hence 0(a3k) = 0(a1k?) = O(azk?) = O (k). Therefore, we have shown that the local trun-

cation error is of order O(k?) for both u and v. When g1 = 0, the scheme reduces to (2.12), which is also second-order
accurate. [

In the same fashion, we can design the combination of two third order methods, given by
u =u" 4 B1okF(u",v")/A11,
u? = (az0u" + Brok(F(u", V") + piu™) /Az
+ efromik (omu“) + Bark(Fa v) + mu‘”)) /A1,
utl = (azou” + B3ok(F(u", V") + pqu™)) /A
+ ePrork (0631u(1) + B31k(F@® vy + Mlum)) /A3
+ eArk (agzu(z) + Baak(Fu® v®) + mll(z))) /As1,
vD =v" 4 B1okG(u", V") / A1z,
v® = (020" + B20k(G(U", V") + pav™)) /A
+ePortzk (v 4 k(G V) + v ) /Aza,
VT = (30" + B3ok(G(U", V') + 112v™)) /A3
+ P02k (30D 4 3 kG, VD) + v D) ) Az,
4 eAHzk <a32‘,(2> + Bk(GU® V@) + sz<2))) /A3, (214)
where A is defined as before and
Ati =010 + Brofik, Az = [aa0 + Paopik] + ek [ayy + B ik,
Asi = [azo + Paopik] + eP0H ¥ sy + B3y puik] + ei¥ oz + Baapuik],
with i =1, 2. In the case when the first equation is non-stiff, this reduces to the following temporal discretization method
u =ajou" + B1okF(u", V"),
u® =a0u" + BookF(u", v') + a1u + B kFD, vD),
u"™! =a30u” + B3okF(u", v") + aziu) + 3kF@® v + azu® + kFu® v,
v =v" 4 B1okG(u", v") /A1,
vy = (a20V" + Baok(G(U", V") + uv'™)) / Az
+ePok (v + By kG®D, VD) 4 v D)) /45,
V' = (a3oV" + Baok(G(u", V) + V™)) /A3
+eP1ork (g v + B3 k(GD, v D) + v ) /A5
+ eArK (Otgzv(z) + B3k (Gu® v?) + MV(Z))) /As, (215)

which is a combination of the RK method (2.8) and the exponential RK method (2.7) and we denote it by the RK-ERK
method. For these types of equations, we can prove the following result on their accuracy.

Theorem 2.4. With the set of coefficients (e.g. (2.6)) which leads to a third order method (2.3), the new scheme (2.14) is third-order
accurate when applied to the ODE system (2.11). In particular, the RK-ERK scheme (2.15) is also a third-order numerical scheme.

Proof. The strategy in the proof of Theorem 2.3 becomes too cumbersome for this third order method, and will not be
adopted here. Instead we compare the new method (2.14) to (2.7), which is proven to be third-order accurate. For simplicity,
we omit the superscript n, and only consider the case when u, v are scalars. Since the proof is rather long, we separate it
into three steps.
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Step 1: One can apply the third order method (2.7) with w = > to both u and v, which leads to the method
i =u" 4 B1okF (u", v™)/A12,
i® =(azou" + Baok(F (u", v™) + pau™) /A2
+ ePromak <a21 1D 4 pok(F@D, v V) + Mzﬂ(]))) /A2,
1" =(asou™ + Baok(F (U™, v + pou™))/Asz
+ ek <(X31fl(1) + Baik(F@®, vy + Mzﬂ(]))) /A
4 eAnak (aBzﬁ(Z) + Bk (F@?®, 7@) + uzﬁ(z))) /As32,
7D =y 4 BiokG ™, v1)/ A1z,
7@ =(a20v" + Baok(G(W", V™) + av™)) /A
+ ek (0621 v 4 k@, v + “2‘7(1))) /A2,

(2.16)

VT =(a30v" + B30k (G (", v™) + pav™) / Az
+ efronak <0531 v 4 Bak(G @M, v + sz/(]))) /A32
+ ek (0532\7(2) + Baak(G@®, v?) + ,u2\7(2))) /A3,

where @i and v are used to represent the inner stages of (2.7), to differentiate from the targeting method (2.14). With the
notation of a; = ik (i=1, 2), we have O(ay) = O(az) = O (k) and

A1i =1+ Boa;,
Azi = [a20 + Baoail + eP1% [aa1 + Ba1ai]l = 1+ (Bao + 21 P10 + Pa1)ai + 0(ad),
Asi = [a30 + B3oai] +eP% [a3y + B31ai] + e Niasy + B32ai] = 1+ 0(ay).

Note that ¥V = v however v = v due to the coupling of u and v. We take the differences between (2.14) and
(2.16) to obtain

i —u =(1/A12 — 1/A1)BiokF = Biok(a1 — az)iF /A Ay = O k%),
7@ _y@ _eProazg, | (G(ﬂ(l), vy — gD, V(l))> /A2
=ik (GAD, ¥V - G, vM)) + 0k = 043,
Pty et gk (G D, ¥V - G, v)) /A
+ e [ gz + faaa) (P — v®) + Bk (GAD, 7P - Gu®,v®)) | / Az
=ik (GAD, ¥D) = 6V, v D)) + a2 (0P — v®) 4 Brak@® — u®)G1 ®, v®) + 0k

=(B31 + az2fk@D —uD)G @D vD) + Brok(@® —u®)Gr P, v®) + 0k,

by repeatedly using the Taylor expansion. Here G denotes the partial derivative of G with respect to the first variable, and
we denote F(u", v") by F for ease of presentation. It is easy to see that

u® —uyM =0k and v® —vD =0(k),
from which we conclude that
G1uw?,v®) =G, v+ 0k).
If the following estimates
1 —u® =0k, (217)
(B31 +aznpe) @ —u) + B3@? —u®) = 00, (218)

hold (which will be proved in step 2), we have
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PV =G @D v ) [ (B + 2B @ —u D) + B @@ —u®) |+ 0k = 0,

from which we can conclude that the numerical scheme of v is third-order accurate.
Step 2: Next we provide the proof of (2.17) and (2.18). From (2.16), one can obtain

1 = (a0t + B2okF + Br0azu)/ Az + €10 (azlﬁ(l) + BkF@®, v + ,3210213(1)) /A22
=U + BokF Az + P10 (a1 + Br1a2) (@D — 1)/ Agy + eP10%2 By kF (@D, 7)) / Ay
=u + BookF /A + eP19%2 (ata1 + B21a2) B10kF Az A1z + eP10%2 By kF (@D, ¥ V) / Agy.

For i =1, 2, we introduce the notations

M; =1+ B10a;) [1 — (B20 + ¢t21 B10 + B21)ai] (ct21 + B21a;)
Ni =14 B10ai) [1 — (B20 + ct21B10 + B21)ai] .
This leads to

1® —u® =(1/Ax —1/A21)BaokF + (Ma/A12 — M1/A11)BrokF
+ Bark(N2F @, vy = Ny F®, v)) + 0 (k).

Since vD — v =0 and 1P —u® = 0 (k?), we have

Fa, vy — Fu®, vy =0@k?),

and therefore

1@ —u@ =(By0 + 021810 + B21)(a1 — a2) B20kF + (Ma/A12 — M1/A11) B10kF
+ (20810 — B20 — B21) (a2 — an) porkF @™, v ) + 0 (k).
Using oo + 21 = 1, we can rewrite the coefficient of B10kF as

M, M1 2
Ay An =[14 (a20810 — B20 — B21)a21(ct21 + P21a2)/A12 + 0(a3)

— [1+ (220810 — P20 — Ba1)arl(ca1 + B21a1)/A11 + 0 (a})
=[o21 + (B21 + 020021 B10 — 021820 — @21 B21)a2 + O(G%)]U — Broaz + 0((1%)) + O(G%)

— [o21 + (Ba1 + 020021 B10 — @21 P20 — 21 21)a1 + 0(@)1(1 — Proar + 0(a?)) + 0(a?)
=(0t20B21 + 20021 B10 — ®21 20 — @21 B10) (a2 — a1) + 0 (a2, a3)
=(020B21 — 031 B0 — @21 B20) (@2 — a1) + O (k).

Since F(@®, vM) — F = 0(k), it follows that

1@ —u@ =[—B20(B20 + 21810 + B21) + B1o(02021 — A3, B10 — A21B20)
+ Ba1(c20B10 — P20 — B21)1(az — ar)kF + 0 (k)
=(2B1021 — A*)(@z — aKF + O (k)
=0((az —ank) + 0(k*) = 0(H),
which provides the estimate (2.17). In addition,

(B31 +az2fa) @D —u) + 3 @® —u?)
= (B31 + 03221) Bip (@1 — a2)kF (1 + 0(a)) + B32[(2B10P21 — AD) (a2 — ar)kF + 0 (k)]
= (2810821832 — 1B (B3 + as2ba0) + Br2A%]| (@2 — ankF + 0%)
=0(K),

where the last equality follows from the fact that 19821832 = 1/6 and /3120(,331 + a32821) + B32A% =1/3, as the condition
to ensure the third order accuracy shown in [11, Eq. (2.19)]. This finishes the proof of the estimates (2.17) and (2.18).

Step 3: The error estimate of #i"™t! — u"*! can be done symmetrically following the same approach. To save space, the
detailed analysis is ignored. O
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Remark 2.1. In this subsection, we consider the combination of two exponential RK methods with any nonnegative @1 and
o for equations with different stiffness. We can also extend them to a more general case of N exponential RK methods
with a set of u;, i=1,2,---,N.

Remark 2.2. The RK-ERK method (2.15) will be studied in the next section. The constant w in this method is determined
dynamically by applying the conditions (2.5) in Theorem 2.2 on the equation containing stiff term, which is a sufficient
condition to guarantee the sign-preserving property.

3. Positivity-preserving well-balanced DG spatial discretization

In this section, we start with a quick review of the high-order positivity-preserving well-balanced semi-discrete DG
scheme in [34] for the one-dimensional SWEs (1.2) without a friction term. The RK-ERK method will be applied to the
resulting equations, leading to a fully discrete method that is well-balanced, positivity-preserving and sign-preserving si-
multaneously.

3.1. Notations and conventional DG methods

We discretize the one-dimensional computational domain I into cells I = [xji%,xﬂ%] and denote by Ax; the size of
the j-th cell and by Ax =max; Ax; the maximum mesh size. For simplicity, we rewrite (1.2) as
Ut + f(U)x=s(U,b),
where U = (h,q)T, f(U) is the flux and s(U, b) is the source term. In a high order DG method, we seek an approximation
solution, still denoted by U for the ease of notation, which belongs to the finite dimensional space

Vax= Vix = {w : each component of w|;; € Pd(Ij), ji=1,.., ]}, (3.1)

where P4(I j) is the space of polynomials in I of degree at most d and J is the total number of computational cells. We
project the bottom function b onto the same space V ayx, to obtain an approximation which is still denoted by b.
The conventional DG method in each cell I; can be formulated as follows: find U € V ax, such that

: - : + oy
/athdx—/f(U)axvdx+ fH%v(xH%)—fj_%v(xj_%)_/s(u,b)vdx, (3.2)
I I I
where v is a test function in V oy and
: _ - +
fiy=F (U(XH%,r),uuﬁ%,r)), (33)

with F(aq, ay) being a numerical flux. In our numerical examples we will use the Lax-Friedrichs flux

1
F(a1.02) = 5 (f(@) + f(a2) — a(az —ap)), (34)
with o = max(|u| 4+ /gh) and the maximum is taken over the whole computational domain.
3.2. Well-balanced DG methods

In order to preserve the still water stationary solution (1.3) exactly, the modified well-balanced scheme [30] has the form

fathdx—ff(U)axvalx+f].+%\/(;<1_—Jr%)—j‘]._lv(x_+ )

2 =3
I Ij (3.5)
_ r: r - 2 Br +
—/s(u,b)vdx+ By = Fopves, =iy = I pvet ).
I
The left and right fluxes are given by
froo=FlusunT )+ e 20g = )2
j+3 +3 i+ j(hj+%) _j(hj;'_%) ’
(3.6)

. 0
ro_ *,— *,+
fj_% =F (Uj_%, Uj_%) + <§(h;r%)2 _ %(h;,g)z) )

10
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respectively, where the left and right values of U are redefined as
h* +

s, s+ + + _ —
Uj+% == i i , hj+% = max <0,hj+% +bj+ max(b* el j+%)>, (3.7)
J+2 ]+2

following the hydrostatic reconstruction idea that was first introduced in [1]. Note that if the piecewise polynomial approx-

imation of b is continuous, we have U j, =U i, , and the well-balanced method (3.5) coincides with the conventional DG
2
scheme (3.2). We also point out here that fj+7 fj’,+l and fj_ Jr , are high order correction terms at the level of
1 _

=
(¥l

0 (Ax**1) regardless of the smoothness of the solution U.
Another important ingredient in DG methods is the slope limiter which might be needed if the solution contains discon-
tinuities. We use the total variation bounded (TVB) limiter, with a corrected minmod function defined by

_ ai, la1] < MAX?,
m(aq, ...,ay) = ) (3.8)
m(ay, ...,a,), otherwise,

where M is the TVB parameter to be chosen adequately [10] and the minmod function m is given by

smin|aj|, s=sgn(ai)=---=sgn(an),
m(as, ..., ap) =

0, otherwise.

This limiter procedure might destroy the preservation of the steady state h+b = C. Therefore we apply the limiter procedure
on the function (h + b, q)7 instead. The modified solutlon is then defined by h™4 = (h + b)™d — p_ Since the average of h
in cell I}, denoted by hj, satisfies hm"d (h +b)m°d j=(h+b)j —Dbj=hj, this limiting procedure will not destroy the
conservativity of the water height h

3.3. Positivity-preserving limiter

The positivity-preserving limiter in [34] to ensure the non-negativity of the water height h in the numerical simulation
will be discussed in this subsection. Before presenting the main result, we first introduce the N-point Gauss-Lobatto quadra-

ture rule on the interval I = [xj_%,xj+%:|, which is exact for the integral of polynomials of degree up to 2N — 3, with N
chosen such that 2N — 3 > k. We denote these quadrature points on I as

— —x! X2 N=1 N _
S]_{xj_%_xj,x],...,xj ,x]_xH%}.

Let w; be the corresponding quadrature weights on the interval [—1/2,1/2] such that Zf’zl wr = 1. Next, let us consider
the update of cell averages of h in the well-balanced DG methods with a forward Euler time discretization, given by

w4l o At A px— bt
h; _hj+AX [F<hj,%’”-,%’hj,%’”j,% F hj+%’ ]+1’h]+2 )| (3.9)

where

1 _ —
e uT o h T ut W uT , +h"Y a|het —h*T (3.10)
]+2 ]+2 ]+2 ]+7 2 ]+2 ]+2 ]+2 .H'z ]+2 ]+2
Now we are ready to state the main result in [34].

Proposition 3.1. Consider the scheme (3.9) satisfied by the cell averages of the water height. Let h? (x) be the DG polynomial for the
water height in the cell I;. Ifhj’ - h;l and h’}(x?) (r =1,..., N) are all nonnegative, then E’}H is also nonnegative under the CFL
-2 2
condition o £ < wy.
The proposition gives us an image of how the time step is chosen. Following the proposition, the constant kg in the
assumption (2.4) can be taken as wiAx/«. To enforce the conditions of the proposition, we need to modify h'}(x) such that it

_ T
is non-negative at all x € S;. Given h? > 0, we introduce the following limiter on the DG polynomial U?(x) = (h? x), q;? (x)) ,
which is a linear scaling around its cell average:

~ o e
Ul =0U"x)—U)+U;. 6=min(1,——], (3.11)

11
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with
— min R'(G5). 312
mj rff.{?w i(x3) (312)

It is easy to observe E’]? (xg.) >0 for r=1,..., N. Then, we use the modified polynomial ﬁ;’(x) instead of U;? (x) in the scheme

(3.5). It follows by the proposition that H?ﬂ is also non-negative and therefore (3.11) is indeed a positivity-preserving
limiter.
Note that this modification does not change the averages of U?(x), namely U?(x) = U;]-. Also, this limiter does not

destroy the high order accuracy, and we refer to [35] for the detailed proof. Special attention should be paid in practical
implementation when the water height is close to zero. In these nearly dry regions, a small numerical error in g can induce
large values of the velocity u = q/h, and in turn leads to very small time steps. There have been many attempts to address
this challenge, which is beyond the focus of this paper. Since the velocity in these nearly dry regions should be at the same
magnitude as the maximum of the velocity in wet regions, we simply set ¢ =0 if h < 10~% in the numerical tests of this

paper.
3.4. Applications of the new sign-preserving time integration

We rewrite the well-balanced DG scheme (3.5) for SWEs as

/BIUvdx=/f(U)8xvdx—f’. VT D)+ vt 1)—1—/‘S(U,b)vdx. (3.13)

Jtz ity J=3 ]3>
I I I

Choosing the test function v as the basis function of Vax and also representing U as a linear combination of these basis

lead to an ODE system. Following the notations in (2.1), we have

L(U):/f(U)axvdx—}]’.+%v(x]f+%)+}]T_%v(x]f_%)Jrfsb(U,b)vdx,
I Ij

T
in which f(U) = (q, % + %ghz) . sp(U,b) = (0, —ghby)", and

s(U) =/sst(U)vdx,

1

T
with sg(U) = (0, — gnzl‘ﬂ%) representing the stiff term. As the first component of sy is zero, we can apply the standard

RK method (2.8) to discretize the first equation in the SWEs. The second component of ss could be stiff when h is small,
therefore we apply exponential RK method (2.7) to the second equation. In other words, the RK-ERK method (2.15) or
(2.13) is chosen as the temporal discretization. According to Theorem 2.2, the parameter w is dynamically computed by
w = gn®max(|q|/h"/3).

For the proposed RK-ERK DG methods, we have following properties.

Proposition 3.2. The fully discrete scheme obtained by applying RK-ERK method (2.15) to the semi-discrete DG method (3.13) pre-
serves the still water steady state solution (1.3).

The proof of this proposition is straightforward. The well-balanced property of the semi-discrete DG method is analyzed
in [34]. Since the proposed RK-ERK temporal discretization is also steady-state preserving (similar to Proposition 2.1), the
well-balanced property of the fully discrete method can be easily observed.

Proposition 3.3. With the usage of positivity-preserving limiter (3.11), the fully discrete scheme obtained by applying RK-ERK method
(2.15) to the semi-discrete DG method (3.13) with the choices

w=gn*max(lql/h’?), At < kg = w1 Ax/a, (314)

preserves the positivity of the water height h, and is also sign-preserving with respect to the momentum q. Note that the set of coeffi-
cients (2.6) yields the optimal ¢ = 0.7929797388491311.

Since the RK method is applied on the equation of water height h, the positivity-preserving feature to preserve the non-
negativity of h of the semi-discrete DG method, with the aid of positivity-preserving limiter (3.11), is not affected by the
RK-ERK temporal discretization. For the sign-preserving property, we follow the guideline in Theorem 2.2 to choose u and
At as above.

12
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Remark 3.1. In Proposition 3.3, the choices of i and At are sufficient but not necessary to preserve the positivity of water
height and the sign of momentum. In practice, at each time level we can take a standard CFL condition of DG method. If one
observes that the positivity preserving or the sign preserving properties are violated at the next time step, we will halve the
value of At and restart this computation. Numerical observation show that this could lead to a saving in the computational
time.

The well-balanced DG method can be simply extended to two dimensions. We divide the computational domain into
L Tl Tr 5!

cells I; j = [xii%,xw%] X [yji%,yj%]. Let fi+%, fi_%, ngr
(3.6); see also [33,34]. The spatial discretization is given by

be the well-balanced fluxes defined similarly as in

,and g"
2 J=3

Y1 y

j+7 j+7
/athdx=/f(U)8xvdxdy_ fi’+%v(x;rl,y)dy+ / fir_%v(x::l,y)dy
2 2

V.

I,'_j Iw yj_ }_%
X

=

X1 )
i+3 ity

Ii X1 1
. i-3 i-5

+/S(U,b)vdxdy.

]i,j

T T
in which U = (h,q, p)T, f(U) = (q, % + 1gh?, %) and g(U) = <p, ®, ‘;l—z + %gh2> . As in one-dimensional case, we
split s(U, b) into non-stiff and stiff parts:

sp(U.b) = (0, — ghby, —ghby)T and Sst(U)=<0, —gn’

T
Wa*+p? 2PV + p?
W 8N T :

Next we apply standard RK method (2.8) to the discretization of the first equation and exponential RK method (2.7) to the

second and third equations. The parameter p is dynamically computed by w = gn®max(y/q2 + p2/h’/3). The steady state
solution in two-dimensional case takes the form

h+b=C,q=p=0.
Following the same analysis, we conclude that the propositions above also hold in two-dimensional case, and the proposed
fully discrete method satisfies the well-balanced, positivity-preserving and sign-preserving properties simultaneously.

4. Numerical examples

In this section, we will apply our new time integration method with the family of coefficients (2.6) to an ODE system and
the SWEs with friction terms. Several numerical examples will be tested to illustrate the performance of our methods. DG
method with d = 2, coupled with the third order temporal discretization, is tested. If the limiter is need, the TVD minmod
slope limiter will be used. The parameter w is dynamically chosen at each time step following the condition (3.14), unless
in the accuracy test where a constant p is set to study the accuracy of the proposed method. We take the CFL condition
a% =0.18 unless otherwise stated, and the gravitational acceleration g is 9.80665 m/s2.

4.1. Accuracy test on an ODE system

We first test the accuracy of the new ODE solver (2.14). Consider an ODE system

u—cv’ 1
2/v 2’
V/(t) =u — v —cv,

with u(0) = v(0) =1, and its exact solutions are given by

u'(t) =

u(t) = (6¢t + )", v(t) = (6¢ct +1)75.

Choose ¢ =100 and final time T = 0.1. In this case we take = c = 100. The I!-error is defined as

13
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Table 1
Accuracy test of the new 2nd-order method for the test in Section 4.1.
N 40 80 160 320 640
I' error 2.78e-03 7.83e-04 2.11e-04 5.45e-05 1.38e-05
Order / 183 1.89 1.95 1.98
Table 2
Accuracy test of the new 3rd-order method for the test in Section 4.1.
N 40 80 160 320 640
I' error 2.01e-04 3.97e-05 5.20e-06 6.55e-07 8.15e-08
Order / 234 293 2.99 3.01

Table 3

Accuracy test of the new 3rd-order method on the shallow water equations for the test in Section 4.2.
N h q

L? error Order L? error Order

100 5.92e-05 1.68e-04
200 6.27e-06 3.24 3.67e-05 219
400 7.42e-07 3.08 4.85e-06 2.92
800 9.32e-08 2.99 6.33e-07 2.94
1600 1.18e-08 2.99 8.10e-08 2.97

eq1:= |u(T) —uN|+ |v(T) — vN|.

The errors and orders of the temporal discretization method (2.12) with various time step sizes are shown in Table 1, with
second order convergence rate confirmed. We also tested the third order method (2.14) and reported the numerical results
in Table 2, from which the third order accuracy can be observed. This validates the second and third order convergence rate
of the proposed methods.

4.2. Accuracy test on the shallow water equations

In this example, we apply the temporal discretization (2.14) to the shallow water equations, coupled with the DG spatial
discretization, and verify the convergence rate of the resulting algorithm. We consider the “manufactured” exact solution
taking the form of h(x, t) = q(x, t) =2 + sin(0.047 (x — t)), which satisfies the modified shallow water equations

ht +qx =0,

1) = 1919, 512 4+ sin0.04 )]~ /3 (41)
a+ (G 387 ) = 8 + e+ S04 (=) |

40.047 gh - cos(0.047 (x — t))

with an additional source term on the right hand side. The computational domain is [0, 100] and the final time is taken to
be T =0.04.

We apply DG spatial discretization and our new third-order time integration to this model (4.1). We simply fix u to be
10 in the computation. The L? errors and numerical orders of our methods with various time and step sizes are shown
in Table 3, from which we can observe the third order convergence easily. This confirms the high order accuracy of the
proposed algorithm.

4.3. Test for sign-preserving property

In the simulation of the SWEs, the water height h may be very small or even zero near the wetting and drying front,
in which case the friction term in (1.2) becomes stiff, therefore the use of a sign-preserving discretization would be useful.
The sign-preserving property of the scheme (2.7) is also reflected in the evolution of the discharge q. In this section, we
consider an example studied in [5], where the necessity of sign-preserving discretization is explored.

Following the setup in [5], we consider the system (1.2) with by = —0.2, n =0.09 and the initial conditions

0.02, x <50 0, x <50

h(x,0) = . qx.0) = :
001, x>50" ) 0.04, x> 50

14



R. Yang, Y. Yang and Y. Xing Journal of Computational Physics 444 (2021) 110543

0.40
0.020 - 0.35 A
0.30 A
0.015 - o
~ 5 025
8 3 0.20 A
X 0.010 - X
< > 0.15 A
i === N=100 0.10 === N=100
0.005 -=- N=400 -== N=400
0.05 A
— reference — reference
0.000 ~— T T T T T 0.00 +— T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
X X
(c) (d)
T ~. . 0.25
: \\ \ : : \\ \\\
034 | NN\ P Ra g 0.20 -
1 AN 1 1 Sk See
: \\ N : l‘ \\‘\
= | R - 0.15 -
o 0241 = — N=100
5} i 5 — N=400
s ! 0.10 1
]
0.1 4 :
] 4
| - N=100 0.05 |
: -== N=400
4 1
0.0 i § T T T T O‘OO a T T T T T
0 100 200 300 400 0 100 200 300 400
t t

Fig. 1. Numerical solutions obtained using exponential RK methods for both equations with N =100 (coarse) and N =400 (fine) meshes, for the test in
Section 4.3. Top row: the water height and velocity at time T =400; Bottom left: the time history of velocity at x = 50; Bottom right: the time history of
the time step size.

The computational domain is set as [0, 100], which is divided into N uniform cells. The minmod slope limiter (3.8) is
applied to h and q at each time step.

For this example, if the traditional explicit RK methods are used for both equations, a tiny time step size is needed as
the second equation is stiff. In order to use larger time step, the implicit-explicit (IMEX) method could be utilized and has
been studied in [5]. It was observed from [5, Fig. 8] that the velocity could turn into negative and the numerical result
contains very large error when the coarse mesh is used. The sign-preserving property would be useful in order to produce
satisfying results even on coarse mesh.

We first try to apply the sign-preserving exponential RK method (2.7) with the same u to both equations, and the
numerical results are shown in Fig. 1. We also provide the solution computed using the new method (2.14) on fine meshes
(N =400) as a reference solution for comparison. We can observe that the velocity does stay non-negative for all time,
however the results show substantial disagreements between the coarse- and fine-grid solutions. One can notice a large
phase error in h and v. Such a delay in shock propagation results from the large numerical error when we apply (2.7) to
the equation of h. In other words, the parameter wu in the scheme induces a large error in the non-stiff equation. As we
refine the meshes, it can be seen that the shock location converges to the correct position.

We then apply the proposed coupled RK-ERK method (2.15) (i.e., Equations (2.8) and (2.7)) to h and q respectively for
time discretization and plot the numerical solutions computed at final time T =400 in Fig. 2(a) and 2(b). As one can see,
the results obtained on coarse (N =100) and fine (N =400) meshes match well. Fig. 2(c) gives the value of the velocity v
at x =50 as a function of time. We observe that both the velocity and the speed of the shock are captured quite accurately
even with N = 100. Fig. 2(d) depicts the time history of the time step size At; Fig. 2(e) and 2(f) illustrate how the parameter
u changes with respect to the time. The rapid changes of time step sizes and the parameter w at the very beginning of the
simulation are due to the stiff friction term. As the simulation progresses, the system becomes non-stiff.

4.4. Test for well-balanced property
Several examples related to the well-balanced property will be tested in this section.
4.4.1. Steady state over a non-flat bottom containing a wet/dry interface
First, we consider the case of an initial condition being the steady state solution over a non-flat bottom containing a

wet/dry interface. The Manning coefficient n is taken to be 0.09. The bottom topography is given by

15



R. Yang, Y. Yang and Y. Xing

Journal of Computational Physics 444 (2021) 110543

(a) (b)
0.4
0.020 4 S o b
o \||I ““,-’ "
" ; 0.3 1 {
—~ 0015 -~ \ ~ 't/
o 1 o [
o ] o
g 'n/ T 02
% 0.010 - x
£ >
0.1 -
0.005 --- N=100 --- N=100
--= N=400 --= N=400
0.000 . . ; . . 0.0 1+ . . r = -
0 20 40 60 80 100 0 20 40 60 80 100
X X
(c) (d)
: :
031 | E 0.20 A
: ~!
_ i ~< 0.15 -
0241 < — N=100
S 1 = — N=1400
< i < 0.10 | =
014 | |
1 .
i -—= N=100 0.05 ‘
i --- N=400
00 : : : : 0.00 L, : : : :
0 100 200 300 400 0 100 200 300 400
t t
(e) (f)
150 4 9.0
— N=100 — N=100
125 | — N=400 8.8 - — N=400
100 —
= =
3 751 =1
8.4
50
.l 8.2
0 : : : : 8.0 - . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0 100 200 300 400
t t

Fig. 2. Numerical solutions obtained using the proposed RK-ERK temporal discretization with N =100 (coarse) and N =400 (fine) meshes, for the test in
Section 4.3. Top row: the water height and velocity at time T =400; Middle left: the time history of velocity at x = 50; Middle right: the time history of
the time step size; Bottom left: the time history of p until T = 1; Bottom right: the time history of p during the whole simulation.

b(x) = max(0,0.25 — 5(x — 0.5)%), 0<x<1.

The initial data are

(4.2)

h+b=max(0.2,b), q=0,

which contains both wet and dry regions. We divide the computational domain [0, 1] into N =200 uniform cells and impose
the periodic boundary conditions. The water stays still as long as initially

h=0 or h+b=0.2. (4.3)

In practical implementation, we need to make sure the condition (4.3) is precisely satisfied up to round-off error when we
start the computation. We denote by h(x, t) and q(x, t) the numerical solutions. We compute until T = 0.5 and compare the
numerical solutions with h(x, 0) and q(x, 0) = 0. We focus on the errors ||h(x, T) — ho(x)|| and ||q(x, T)||, which are given in
Table 4. The errors are at the level of round-up errors, which verifies the well-balanced property. The computed water level
and discharge are shown in Fig. 3.

4.4.2. Steady state solution in part of the domain
This example explains why we need steady state preserving temporal discretization. The Manning coefficient n is still
taken to be 0.09 as before. We modify (4.2) slightly and make two copies of the humps. The bottom topography is given by
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Table 4
L' and L™ errors of steady state solutions for the test in Section 4.4.1.
N L' error L error
h q h q
100 1.83e-16 5.81e-16 8.33e-16 2.26e-15
200 1.67e-18 715e-17 5.55e-17 7.78e-16

0.25 1

0.20 A

0.15 1

0.10 1

(h + b)(x,0.5)

0.05 4

0.00 1

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 3. Water level h + b and discharge q of the steady state (N =200) for the test in Section 4.4.1.

max(0, 0.25 — 20(x — 0.25)%), 0<x<0.5,

b(x) = )
max(0,0.25 —20(x — 0.75)%), 0.5<x<1,

and the initial data are

h(x, 0) + b(x) Lo Osxs0S (*,00=0
x,0)+b(x) = R x,0)=0.
0.5, 05<x<1 d

We divide the computational domain into 200 uniform cells and compute until T = 0.01. The initial wave starts to
propagate from the middle. At this stopping time, the solution consists of a partial steady state, as the water surface near
the boundaries remains still. We expect our method to be able to maintain the steady state near the boundaries. The
numerical solutions are shown in Fig. 4. We compare the solutions at T = 0.01 and initial data, and see that the differences
are at the level of round-up errors near the left and right boundaries of computational domain (Fig. 5).

4.4.3. Small perturbation test
In this example we are studying a nearly equilibrium problem by imposing a small perturbation to the steady state
problem. The system is solved over a non-flat trigonometric bottom

b0o 0.25cos(10r(x —1.5)) +1, 1.4<x<1.6,
X) =
0, otherwise,

in the computational domain [0, 2]. The initial conditions are given by

1.001, 1.1<x<1.2
h(x,0) +b(x) = . , qx,00=0.
1, otherwise

We divide the domain into 400 cells and compute until T = 0.2. The Manning coefficient n = 1 is considered. Although
there is a friction term, this problem is not stiff since the absolute value of the discharge g stays small. Thus our new time
integration method almost reduces to the traditional RK method (2.8). The numerical solutions are plotted in Fig. 6.
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Fig. 5. Differences between the solutions at T =0.01 and initial data for the test in Section 4.4.2.

4.5. Riemann problem over a flat bottom

In this subsection we consider a Riemann problem containing dry area over a flat bottom without friction terms, i.e.
b(x) =0 and n = 0. This example aims to demonstrate the positivity-preserving ability of the proposed method.
The computational domain is set to be [0, 600], and the initial conditions are given by

10, x<300
h(x,0) = o, q(x,0)=0.
0, otherwise

We can see that the right half region is dry. The analytic solutions of this type of problem are given in [2]. We compute
this problem using our well-balanced positivity-preserving method with simple transmissive boundary conditions. As in
Section 4.4.3, our new time integration method reduces to the traditional RK method (2.8). The domain is divided into
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Fig. 7. Numerical and exact solutions of Riemann problem at T =8 for the test in Section 4.5.

300 uniform cells and the final time is taken to be T = 8. We plot the numerical solutions and provide exact solutions for
comparison in Fig. 7.

4.6. Two-dimensional test for sign-preserving property

We consider the two-dimensional system (1.1) with by =by = —0.1414, n =0.09 and the initial conditions analogous to
those in one-dimensional example from Section 4.3:

0.02, 30 <x,y <70, ( 0 0,
X, y,U)=
vy 0.02828,

30<x,y<70,

h(x,y,0) = p(x,y,0)=0.

0.01, otherwise, otherwise,

We apply both exponential RK time integration and new RK-ERK time integration, and run the simulation until T = 300.
Two sets of grids, with 50 x 50 and 100 x 100 meshes, are tested. Fig. 8 and Fig. 9 demonstrate the water heights generated
from two temporal discretizations on 50 x 50 meshes, and their contour plots. A large disagreement of shock locations can
be observed. In Fig. 10, we show h(x, 50,300) computed on both coarse (N = 50) and fine (N = 100) meshes. We also
include the numerical solution computed by new RK-ERK time integration on 200 x 200 meshes as a reference solution.
From these figures, one can see that the new time integration captures the shock location well even on coarse (N = 50)
meshes while the exponential RK method does not.
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4.7. Two-dimensional small perturbation test

In the last example, we extend the two dimensional small perturbation test in [29], and include friction term in the

simulation. The SWEs (1.1) with n =0.09 is considered, with the bottom topography
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Fig. 11. The contours of the surface level h+b at various times T =0.12,0.24, 0.36, 0.48, 0.6, 0.72 for the two-dimensional perturbation test in Section 4.7.
15 uniformly spaced contour lines.

b(x, y) = 0.8 exp(—5(x — 0.9)> — 50(y — 0.5)?)
in a rectangular domain [0, 2] x [0, 1]. The initial condition is given by
1.01, 0.05<x<0.15,
h(x,y,0)+b(x, y) = . qx,y,0)=p(x,y,0)=0.
1, otherwise,

We use the outlet boundary conditions. TVB constant M is taken as 10 in the test. We run the simulation on 80 x 160
cells, and the surface level h 4+ b at various times are presented in Fig. 11, from which we can observe the propagation
of the wave to the right and its interaction with the non-flat bottom topography. Since the friction term is very little, the
numerical result is almost same as [29, Fig. 19].

5. Conclusion

A family of second and third order temporal discretizations is proposed for systems of partially stiff ordinary differential
equations, based on a combination of traditional RK method and exponential RK method. We provide the rigorous analysis
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to show that it maintains the same order of accuracy. We considered its application in solving the SWEs with friction term,
and have presented the high-order sign-preserving, positivity-preserving and well-balanced DG methods. Numerical results
are given to illustrate the high-order accuracy of the new scheme and its ability to preserve signs and steady states.
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