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ABSTRACT. We study positive solutions to steady state reaction diffusion equa-
tions of the form:
—Au = Af(u); Q
a(u)g—z + VAL — a(u)]u = 0; 9N

where u is the population density, f(u) = %u(u + a)(1 — u) represents a weak
Allee effect type growth of the population with a € (0,1), a(u) is the proba-
bility of the population staying in the habitat €2 when it reaches the boundary,
and positive parameters A and - represent the domain scaling and effective
exterior matrix hostility, respectively. In particular, we analyze the case when
a(s) = m for all s € [0,1], where A € (0,1) and € > 0. In this case
1 — a(s) represents a U-shaped relationship between density and emigration.
Existence, nonexistence, and multiplicity results for this model are established
via the method of sub-super solutions.
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1. Introduction. In this paper, we study the structure of the steady states of a
reaction diffusion model governed by a weak Allee effect type growth reaction and
a U-shaped relationship between density and emigration, also known as U-shaped
density dependent emigration (UDDE). Namely, we consider:

—Au = Af(u); Q 1)
a(u)§E + VAL = a(uw)u = 0; 99,

where  is a bounded region in RY; N > 1 with smooth boundary 99, u is the

population density normalized such that the carrying capacity is one, %17; is the

outward normal derivative of v on 99, and f(u) = Lu(u + a)(1 — u) represents a

weak Allee effect type growth of the population with a € (0,1) being a parameter
measuring the strength of the weak Allee effect (in the sense that per-capita growth
rate is increasing for u € [0,15%)). See [3] for a detailed derivation of the time-
dependent model corresponding to (1), namely,

up = $Au+ f(u); t >0,z €Q
u(0,2) = up(z); z€Q (2)
a(u) Gt + VAL - a(w)u=0; ¢ >0,z € OQ,

where A > 0 is a domain scaling parameter, v > 0 is a measure of the effective
matrix hostility, and a(u) is the probability of the population staying in the habitat
) when it reaches the boundary (see [4] for a detailed explanation of effective matrix
hostility).

In particular, we study the case when a(s) = m for all s € [0, 1], where
A € (0,1) and € > 0. We note that A denotes the location of the maximum of a(s)
with a(A) = . Thus, when € ~ 0 the probability of organisms remaining in the

1+e
patch upon reaching the boundary is approximately 100%. Then (1) reduces to:

—Au = Af(u); Q
{ G+ V(A = u) + Ju = 0; 00, (3)

where the relationship between emigration rate and population density, given by

1—a(s) = 1-15[1?,4%):)_2‘—% for all s € [0,1], is U-shaped (see Figure 1). Even though
a recent literature review ([10]) found that U-shaped density dependent emigration
was ecologically important, little is known about the population dynamical effects
of such an emigration relationship. Notwithstanding, the authors have studied the

effects of UDDE on populations governed by a logistic growth in [7] and [5].

1 0]

FIGURE 1. Tlustration of 1 — a(s) and f(s).
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In order to state our main results, we first consider the following eigenvalue
problem. For fixed v > 0 and D > 0, let E1(~, D) be the principal eigenvalue of:
—Av = Ev; Q 4
g%;+’y\/EDv:O; 9. (4)
The existence of Fi(v, D) is established in [8]. Further, results in [8] imply that
E1(v,D) < A1, E1(, D) is increasing in «y and D, and ILm Ey(vy,D) = Dlim Eq (v,
y—00 —00

>

D) = X1, where A; is the principal eigenvalue of —A with Dirichlet boundary
conditions. Let E; = Fy(v, A% + €). Motivated by the stability results in [13], we
first prove the following theorem which connects E; to the stability of the trivial
solution (u(xz) =0) of (3

~—
—~

Theorem 1.1. The trivial solution of (3) is asymptotically stable if X < E1, and
it is unstable if A\ > E.

Our next focus is to determine whether the solution structure of (3) has Property
A, defined as:
Property A. There exists MN(A,7,€) < Ei such that (3) has at least one positive
solution uy for X\ > X such that ||uy||ec — 1 as A — oo, has at least two positive

solutions for A € [\, E1), and no positive solutions for A = 0 (see Figure 2).

llllco

FIGURE 2. Bifurcation diagram for the solution set of (3).

A patch-level Allee effect is predicted by a reaction diffusion model when a version
of bi-stable population dynamics occurs such that the trivial steady state and a
positive steady state are both stable. In this case, there will exist a threshold for
which the initial population density must exceed in order for the model to predict
persistence (see [3], [10], [7], and [2]). Lemma 2.3 in [3] allows for determination
of the existence of a patch-level Allee effect based solely upon the existence of a
positive solution of (3) for A < E;. Clearly, when Property A is satisfied the model
(2) will exhibit a patch-level Allee effect for A € [\, E;). We first prove that (3) has
Property A, and thus a patch-level Allee effect, in the following theorem:

Theorem 1.2. Let A €
Property A.

W

—~

0,1), € >0, and v > 0. Then the solution set of (3) has
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Since our growth rate f(u) is taken to be of a weak Allee effect form, it is not
surprising to find model predictions of an Allee effect at the patch-level. However, we
are particularly interested in confirming model predictions of bi-stability scenarios
other than a patch-level Allee effect in the case of UDDE as seen when N = 1 in
[3]. To that end, we establish a multiplicity result for a range of A to the right of
F, that guarantees a model prediction of bi-stability other than a patch-level Allee
effect.

Recalling that A; is the principal eigenvalue of —A with Dirichlet boundary
conditions, we establish:

Theorem 1.3. Let A > \. Then there exists a 7*(5\) and for v > ~* there exists

an €*(X\,y) > 0 such that (3) has at least three positive solutions for A € [Eq, ]
when € < €* (see Figure 3).

[lulle
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FIGURE 3. Bifurcation diagram for the solution set of (3) for v > 1
and € =~ 0.

Remark 1.1.

(1) The hypotheses of Theorem 1.3 give sufficient conditions on model predic-
tion of a non-Allee effect type bi-stability for any A € (0,1) (recall that A is
the density for which the maximum «a(s) is achieved) and satisfied when + is
sufficiently large, i.e. the matrix is sufficiently hostile, and € = 0, i.e. the prob-
ability of remaining in the patch upon reaching the boundary is approximately
100% when the population density is equal to A.

(2) See [3] for a more detailed study of (3) in the N =1 case.

In Section 2, we introduce a sub-supersolution theorem and a three solution
theorem that will be used to prove our existence and multiplicity results. In Section
3, we present the proofs of Theorems 1.1 - 1.3.

2. Preliminaries. In this section, we first define a subsolution and a supersolution
of (3). Next we state a sub-supersolution theorem and a three solution theorem
that are used to prove existence and multiplicity results for positive solutions.
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A function ¥ € C%(Q) N C1(Q) is called a subsolution of (3) if v satisfies

A < Af(W); O
9 4 VA[(A — )+ < 0; 09,

A function Z € C2%(Q) N C(Q) is called a supersolution of (3) if Z satisfies

—-AZ > \f(Z); Q
%g + V(A = Z)% + €] Z > 0; 0.

A strict subsolution of (3) is a subsolution which is not a solution. A strict super-
solution of (3) is a supersolution which is not a solution. Then the following results
hold (see [1], [11], and [15]).

Lemma 2.1. Let ¢ and Z be a subsolution and a supersolution of (3) respectively
such that 1 < Z. Then (3) has a solution u € C*(Q) N CY(Q) such that u € [y, 2].

Lemma 2.2. Let 1 and Zs be a subsolution and a supersolution of (3) respec-
tively such that 1 < Zy. Also, let ¥y and Zy be a strict subsolution and a strict
supersolution of (3) respectively such that 1o, Z1 € |1, Z3] and o £ Zy. Then
(3) has at least three solutions ui, us and ug where u; € [, Z;]; i = 1,2 and
uz € [th1, Zo)\([¥1, Z1] U [¢2, Za]).

3. Proofs of Theorems 1.1 - 1.3. We first recall the following results from [7]
and [9].

Lemma 3.1. Let o1 be the principal eigenvalue of the linearized equation associated
with (3), namely

{ —A¢ — Afu(u)p = oo Q -
8% 1 VA lgu(wu + g(u)] = 0¢; 09,

where u is any solution of (3) and g(u) = (A —u)? + €. Then the followings hold.
a) If o1 > 0, then u is stable. Furthermore, if u is isolated then it is asymptotically
stable.

b) If o1 < 0, then u is unstable.

Lemma 3.2. Let u be a solution of (3) and of be the principal eigenvalue of the
following boundary value problem

{ —A¢ — Mu(u)p = op; Q o
%ﬁ: + VA gu (W) u + g(u)]¢ = 0; 9Q.

Then, sign(o}) = sign(o1) for of,01 # 0.
Now, we present a proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2, it suffices to study the relationship between
of and X in order to prove Theorem 1.1. Let A < E;. Note that, for A\ < Ej, the
trivial solution is isolated since (A, 0) is not a bifurcation point. By Lemma 3.2, we
see that the trivial solution is asymptotically stable if the principal eigenvalue o7
of (6) with u = 0 is positive.

Let £ = vv/Ag(0) and Bj (k) be the principal eigenvalue of —A¢ = B¢; (Q, g—i +
k¢ = 0;00Q. Since Bj(k) is a strictly increasing concave function of s (see [12]) and
% is a strictly increasing convex function of x which passes through the origin,
they intersect at two points, namely at (0,0), and say at (k*, By(k*)) for k* > 0
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(see Figure 4). We can easily see that B;(x*) = E; and k* = 7\/@719(0). Further,
A+oF = B1(7V/Ag(0)), where o} is the principal eigenvalue of (6). Thus, if A < E;
then 7vAg(0) < #* and By (vv/Ag(0)) > A, implying of > 0. By Lemma 3.2 the
trivial solution is asymptotically stable if A < E.

]

A>Ey)
<+ B4(x)
B1(K*) = El ———————————————
1
B1(yVag(0)) i ,
K
———
M<Ey) i r2(g(®)°
1
1 .
yVag(0) K yVag(0) K

FIGURE 4. Graphs of x vs B;(x) and W;O))Q.

Next, let A > E;. By Lemma 3.2, the trivial solution is unstable if the prin-
cipal eigenvalue o of (6) is negative. But when A > E;, vv/Ag(0) > x* and
B1(7VAg(0)) < X implying o < 0 (see Figure 4). Hence, the proof is complete. []

Proof of Theorem 1.2. First let 0 < A\ < E;. Consider the eigenvalue problem (see
[8]):

{ —AO — X0 =o00; Q )

20 + VKO = 0; 90,
where K > 0 is a constant. Let o) be the Brincipal eigenvalue and 6, be the
normalized eigenfunction such that 6y > 0; Q. Choose K = A% + ¢ and 6y =
)\A*Q"T?M)A, where A* > 0 is such that f”(s) > A* for s &~ 0. Note that §) > 0 (since
[

ox > 0) for A < Ey and §y — 0 (since 0y — 0 and minf, 4 0) as A\ — E;.
Q

Now, define 9 := §50,. Clearly ||| o — 0 when A\ — E;. Further, by Taylor’s
Theorem, in €, we obtain (for some ¢ € [0,]):

A% =M W) = (or + - A[p+ Ty2) <o -

*

AA .
9 5A Hléng)\} =0

for A\ < E; and A ~ E;. Also, on 0f), we obtain (assuming A ~ E; so that
[¥]loc < 24):

O L AVAL(A =)+ o < 28 4 4VALA? + du =0,
on on
Thus, 9 is a strict subsolution of (3) for A < E; and A ~ E;. It is easy to verify
that Z = 1 is a supersolution for any A and hence by Lemma 2.1 there exists
A = A(A,v,¢€) < Ey such that (3) has a positive solution for A € [\, Ey).
Next, let A > F. Consider the eigenvalue problem (see [8]):

—A¢ — Ap = pg; Q ()
%f; + V(A2 + €)p = pg; ON.
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Denote py as the principal eigenvalue and ¢, as the corresponding normalized
eigenfunction such that ¢y > 0; Q. Then py < 0 for A > E;. Let @Z := [y for
B € (0,1). Recall that f(0) =0, f/(0) =1 and f”(0) > 0. Hence, for 8 = 0, in Q,
we have:
=AY = Af() = A+ pa)p = Af () <0
since H(s) := (A + px)s — Af(s) satisfies H(0) = 0, H'(0) = px < 0 and H"(0) =
—Af"(0) < 0. Also, on 99, assuming 3 ~ 0 so that ||{)]|.c < 24, we have:
G VA = D+ < G VAL + = i <0,

Hence, for 5 ~ 0, 15 is a subsolution for A > E;. Again using the supersolution Z = 1
and Lemma 2.1, there exists a positive solution for (3) when A\ > E;. Combining
the above two cases, we conclude that (3) has a positive solution for all A > \.

Now, we will show that there exists a positive solution uy of (3) for A > 1 such
that ||ux]lcc — 1 as A — oco. Consider the boundary value problem:

{—Aw:/\f(w); Q )
w = 0; 9N.

In [14], it was established that there exists A* € (0, A1) such that (9) has a positive
solution wy € [0,1] for A > A*, and ||wx]lcc — 1 a8 A — c0. Now by the Hopf’s
maximum principle 85‘;7* < 0 on 99, and hence wy is a strict subsolution for (3).
Again using the supersolution Z = 1 and Lemma 2.1, (3) has a positive solution
ux € [wy, 1] for A > A*, and since [|wy]jcc —> 1 a8 A — 00, we obtain ||uy]|ec — 1
as A — 00.

Next, we will show that there exist at least two positive solutions for A € [\, E).
Consider the eigenvalue problem (8) with uy and ¢ > 0; Q as before. Then py > 0
for A < By (see [8]). Let Zy := B1¢x with 31 > 0. For 5, ~ 0, in €, we have

—AZy = Af(Z1) = A+ pa)Z1 — Af(Z1) > 0

since Hy(s) := (A + pa)s — Af(s) satisfies H1(0) = 0 and H{(0) = uy > 0. Also on
99, choosing f1 ~ 0 so that [yVA[(A — Z;)% — A?]| < px, we have:

GYA YA
8—771 + WA= Z1)% + €71 = 371 + WA + €20 + WA - Z1)% — A7,

={m+VA[(A - 22 - 4% } 21 > 0.

Hence, for B; =~ 0, Z; is a strict supersolution for A < E1. Now for A € [\, E1) we
have the solution ¥y = 0 (hence a subsolution), strict subsolution ¥ = 6,0, (< 1),
strict supersolution Z; = B1¢, (with 81 &~ 0 so that v £ Z; and Z; < 1), and the
supersolution Z = 1. By Lemma 2.2, for A € [\, 1) there exist at least two positive
solutions uy, us with uy € [, Z] and ug € [0, Z]\{[0, Z1] U [¢, Z]}.

Finally, we will show that for A ~ 0, (3) has no positive solutions. Recall 0,8, in
(7) with K = e. Suppose u is a positive solution of (3), by Green’s second identity
we obtain:

L= / [(Au)fx — (Aby)u]dz = / —YVAA — u)?ubrds < 0.
Q 89
However, L = [[=Af(u) + (A + ox)ulfrdz > [[ox — (M — 1)A\Jufrdx where M > 0
) )

is such that f(s) < Ms for s € [0,00). But % — oo as A — 0 (see [6]) and hence
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L > 0 for A = 0, which is a contradiction. Thus (3) has no positive solutions for
A =~ 0. Thus, Theorem 1.2 is proven. O

Proof of Theorem 1.3. Here, we will discuss the existence of three positive solutions

for A € [E1, A
Let I' D Q, I" & Q be such that the boundary value problem (see [14])
—Aw = Af(w); T
w=0; JdT,

has a positive solution w5 = Z; (say) such that Z; € (0, ); 0. This is possible
since (9) has a positive solutlon for A > A\* € (0, \). Also let C = Ig}ln Zy and

choose 7*(\) > 0 such that for v > ~*
Bi(y,4%) > 3 (10)
(= E1(7,A% +¢) > 4 ALY and

921 4, JAAC > 0; 00 (11)

BZI + 94/ A ( +€ )C' > 0; 99) hold. Now for X € [4L, A] we have:

—AZy = M(Z1) > Af(Z1); Q

and
8Z1 aZl >\1 A
VA Zy > — Q.
o +WVAN(Z1 — A)? + €2, on +m/2<4 )C’>08
Thus, Z; is a strict supersolution for (3) when A\ € [%,5\] Next, consider the

boundary value problem:

—Av =X v(l—-v); Q 19

%Z + 29V (A — v)%v = 0; IN. (12)

For each A > 0, (12) has a unique solution vy € [4,1]; Q (see [7]). Further, by Hopf’s

maximum principle vy > A; 9Q. Let ¢y = minvy and €*(\,7) = min_(cy — A)?.
o0 A€[E1,A]

Let 19 = vyx. Then for € < €*, 1)y satisfies (for A € [El,j\]):
—Athy = AP (1 —Pa) < Af(3h2); Q
(since % > 1), and

f’;f?u WAL — A + et = 1V Ale — (s — A)P2Jha < 1V Ale — Ty < 0; 90

(since %—fﬁ + 29V (g — A)*py = 0; 9). Thus v is a strict subsolution for
A e [Er, N i i

Now, let ¥; = (= B¢) where 1) is as in the proof of Theorem 1.2. Note that
when 8 = 0, v, is a subsolution for A\ > E;. Finally, take Zo = 1 which is a

supersolution for A > 0. Now choosing  ~ 0 we can make sure Zy,1s € [11, Za].
Further, note that 1y > A; Q while Z; < 4; 9Q. By Lemma 2.2, (3) has at least

three positive solutions when \ € [E7, 5\] and Theorem 1.3 is proven. O
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