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Abstract. We will analyze the symmetric positive solutions to the two-point steady state
reaction-diffusion equation:

1, cu?
) A{M_Ku_l—i—uz}' xe[L,1-1L],
—u = 1
A{u—Kuz}; xe (0,L)u(1—1L,1),
—1'(0) + VAyu(0) = 0,
u' (1) + VAqu(1) =0,

where A, ¢, K, and +y are positive parameters and the parameter L € (0, %) The steady
state reaction-diffusion equation above occurs in ecological systems and population
dynamics. The above model exhibits logistic growth in the one-dimensional habitat
Qo = (0,1), where grazing (type of predation) is occurring on the subregion [L,1 — L].
In this model, u is the population density and c is the maximum grazing rate. A is a
parameter which influences the equation as well as the boundary conditions, and 7y rep-
resents the hostility factor of the surrounding matrix. Previous studies have shown the
occurrence of S-shaped bifurcation curves for positive solutions for certain parameter
ranges when the boundary condition is Dirichlet (y — o0). Here we discuss the oc-
currence of S-shaped bifurcation curves for certain parameter ranges, when v is finite,
and their evolutions as y and L vary.
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1 Introduction

First, we briefly discuss the history of grazing type models. Recently in [5], authors discussed
the following boundary value problem:

) (1.1)
ou +VAu = 0; 0Q),
a1

where g—; is the outward normal derivative of u, A > 0, K > 0,0 < ¢ < 2, and ) is a bounded

domain in RY; N > 1 with smooth boundary 9Q). Here, u is the population density, A is
a positive parameter, and c is the maximum grazing rate. The term u — %uz represents a
logistic growth, which means the per capita growth rate is a linear depreciation. The term
ﬁ‘; represents the rate of grazing by a constant number of grazers (see Figure 1.2). The
authors established the occurrence of S-shaped bifurcation curves when parameters ¢ and K
satisfy certain conditions. Grazing type models apply to many ecological systems arising in
population dynamics such as the dynamics of salmon fish and spruce budworms (see [9] and

[12]).

Figure 1.1: Examples of salmon and spruce budworms

However, it turns out that the grazing presents itself only in an interior patch in many
real-world situations. We refer the reader to [1] for a study in this direction where the authors
studied the following Dirichlet boundary value problem:

= /\Jf(u)? x e [Lrl - L]/
Af(u); x€ (0,L)U(1—-L,1), (1.2)
u(0) =u(1) =0,

cu?
1-+u?

¥ — oo (see (1.5)). Now, A, ¢, and K are positive parameters and the parameter L & (0, %) The
authors showed the occurrence of S-shaped bifurcation curves for certain parameter ranges
and numerically obtained the evolution of the bifurcation curves over a range of L-values and
K-values, for a fixed value of c. In particular, for ¢ = 1.5 they showed that occurrence of
S-shaped bifurcation persists for any value of L, if K is chosen to be large enough.

Biologists have recently observed that in the study of grazing models, to better predict
the behavior of the ecological system, it is vital to take the exterior matrix hostility factor into

where f(u) = u— fu* — and f(u) = u — +u%, which corresponds to the case where
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Figure 1.2: Grazing.

account. In this paper, we extend the study in [1] to the case when the exterior matrix hostility
is incorporated into the model. We obtain our results via a modified quadrature method and
Mathematica computations.

We now briefly discuss the modeling aspect of the problem. We consider the domain
O = {Ix | x € Q}, where O = (0,1) and [ is a parameter representing the size of the habitat.
We assume that the diffusion rate in the patch (g is D. In the matrix R \ 0o, we assume that
the diffusion rate is Dy, and the death rate is Sy.

We will further assume that the population exhibits density dependent dispersal (DDD)
on the boundary 9Q)y. Defining a(u) as the probability of the population remaining in
when it reaches the boundary, the resulting model is (see [2,6,10,11]):

Ut = Duyy + h(u); x € 0y, t >0,
u(0,x) = up(x); x € Oy, (13)
Dlx(u)g:; + SISDO [1—a(u)]lu=0, xe€adQyt>0
with the corresponding steady state equation:
—u' = lh(u) x e
D ’ [\
Da(u)a—u + SoDo 1—a(u)lu=0;, xeay,
o k
or equivalently
" lz
" = fh(u); xeQ,
o (1.4
ou  +/SoDol [1—a(u)] '
% + D [ IX(M) u=20; xe€a,

where k is a positive parameter related to the movement behavior of the species (see [2], [3]).

Here h(u) represents the reaction term. More precisely, h(1) = u — +u? in the case of logistic

population growth, whereas in the case of logistic growth with grazing h(u) = u — fu% — ar

1+u?*

Let A = % and ¢y = 7%). Here < represents the matrix hostility factor. Then (1.4) reduces to
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Figure 1.3: Grazing region, non grazing regions and exterior matrix.

—u" = Ah(u); x€(0,1),
—u'(0) +7ﬁg(u(0))u(0 (1.5)
W' (1) + Vg (u(1)u(1) =

where ¢(s) = 1062"5() ).
In this paper, we will study positive solutions of (1.5) which are symmetric about x =

when a(s) = } and

1
27

W) = Af(u); x € [L,1—1L],
Af(u); x € (0,L)U(1—L,1)

via a quadrature method. Namely, when K = 10 and ¢ = 1.5 we will study positive solu-
tions of:

e {Af(u); xe[L1-L],
Af(u); x € (0,L)U(1—L,1),
—u'(0) + yVAu(0) =
W' (1) +yVAu(l) =

(1.6)

such that u(L~) = u(L") and u/(L™) = u/(L") where 1y is a parameter related to the matrix
hostility.

f(u) f(u)

u
o X
(a) f(u) =u— zu? (b) f(u) =u— tu? — 2

Figure 1.4: Shapes of f and f.

In particular, we study the evolution of these steady states of (1.6) with respect to L when
the hostility parameter <y is fixed and vice-versa.

Now we present the following theorem which describes the structure of such positive
solutions.

Let ||u]loo = p, u(L) = 0, and u(0) = u(1) = = [ f(t)dt and F(s) := [; f(
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Figure 1.5: Graph of a symmetric solution u to (1.6).

Theorem 1.1. A symmetric solution (as in Figure 1.5) of (1.6) exists if and only if A, p, o and q
satisfy:

VA =

1 1 P do
/ﬁ + I <v>_ﬁ<%—L>/” E(p) — F(o)
F@) + TL — Flo) = Fp) - F(o).

In Section 2, we detail the proof of Theorem 1.1. In Section 3, we provide biological implica-
tions and numerical results.

2 Proof of Theorem 1.1

Suppose u > 0 is a solution of (1.6). We first focus on the region (L, 3). Multiply both sides of
(1.6) by #’ and obtain

Next, by integrating, we obtain

)= \2A [F(o) — F(u(x)];  xe[L}],

and further integration leads to

1
) ds:/Z\/Z/\ds; xe[L31).
X

/\/F — F(u

Now using the substitution v = u(s) we obtain
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Setting x = L we have

P
[t s vm[i-d]
Further, solving for A we obtain

2
1 P 1
A= d . 21
{ﬁ@”/" E(p) — F(0v) ] Y

We next focus on the region (0,L). Again by the above quadrature method, letting u(0) = g,
by the boundary conditions we get

u'(x) = \/2/\ {F(q) + ,)/22672 - F(u(x))]; x €[0,L].

Integrating on (0, x) we have

dv = V2Ax; x €[0,L].

/M(X) 1
R+ - F)

Hence substituting x = L and solving for A yields

2
1 v 1
A= — do| . (2.2)
{m ! VF@ -+~ Fo) ]
Now using u/(L™) = #/(L"), (2.1) and (2.2), we obtain:
1 v dv 1 P dv
- ) 2.3)
V2L /‘7 \/P(q) L7 _Fp) V2G-L) /” F(p) — E(v)
2,2

F(9) + - = F(0) = F(p) = F(0). (2.4

In fact, given p, g and o satisfy (2.3) and (2.4), we can back track and use the Implicit Function
Theorem to obtain a solution as described in Figure 1.5 with

do

1 v 1
A=
7l V@ + 5~ Fo)

Hence the proof is complete.
We provide our computational results in the next section.

3 Computational results and biological implications

In [1], authors showed the occurrence of an S-shaped bifurcation curve for (1.2) for certain
parameter ranges when grazing is confined to an interior region of (0,1). Indeed, they nu-
merically showed that for a fixed ¢ = 1.5, occurrence of an S-shaped bifurcation curve for (1.2)
always happens if K is chosen to be large enough. Namely, they showed that for K >> 1 there
exist my, my, and m3 such that (1.2) has (see Figure 3.1):
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* no positive solution for A € (0, ]

* exactly one positive solution for A € (mq,m;)

* exactly two positive solutions for A = m;

* exactly three positive solutions for A € (my, m3)
* exactly two positive solutions for A = m3

* exactly one positive solution for A € (m3,00)

llulle

A

Figure 3.1: Occurrence of S-shaped bifurcation for (1.2).

We will obtain similar results when grazing is restricted to an interior patch, namely for
(1.6). Moreover, we investigate the A region where multiplicity of positive solutions occurs.
In particular, we fix all parameters with the exception of L and 7, where variations are im-
plemented. First, we consider fixed values of L, namely L = 0.05, 0.30, and 0.45, and we
demonstrate the evolution of the bifurcation diagrams for positive solutions when <y varies.
Next, for v = 50 (fixed), we demonstrate the evolution of the bifurcation diagrams for positive
solutions when L varies.

We briefly explain how we obtain numerical bifurcation diagrams. Let v > 0, L > 0,
and M > 0 be fixed, and let x; = n%rl; i =1,...,n+1 for some n > 1. Letting p =
x1, we numerically solve the equations (2.3) and (2.4) simultaneously for ¢ and g using the
FindRoot command in Mathematica. The values of ¢ and g are substituted into (2.2) to find
the corresponding value of A. Repeating this procedure for p = x;,i = 2,...,n 41, we obtain
(A, p) points for the bifurcation diagram.

Our research shows the following four cases:

1) For small values of L, multiplicity of positive solutions persists for certain ranges of A
irrespective of the value of hostility factor.

2) For large values of L, for no ranges of A multiplicity occurs, regardless of the value of
hostility factor.

3) For intermediate values of L, attainment or elimination of multiplicity regions is possible
depending on the value of hostility factor.

4) For a fixed 7y > 0, multiplicity regions persist for small L and multiplicity regions are lost
for large L.
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3.1 Bifurcation diagrams for fixed values of L as < varies

We closely examine our solutions via extracting the value E(vy), where the non-trivial positive
solution bifurcates from the trivial branch of solutions, as well as the interval (A(+y, L), B(vy, L))
corresponding to the A region where multiplicity of positive solutions occurs.

For L = 0.05:

llulle ujle.
h A
6 P a 6
4 4
(
2f N\ 2
0.01 002 003 o A 2036 e 80 oo 1w T A
(a) v =0.01 (b) y=5
ulle lulle
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040 e0 g0 100 iz g™ A 20406080 100 130 ido =~ A
(¢) v =10 (d) v =20
ull- lulle
A
6 6
4 4
2 2
50 100 > A 20 40 60 80 100 A
() v =50 (f) 7 = o0

Figure 3.2: Bifurcation diagrams for (1.6) where K = 10, c = 1.5, and L = 0.05.

v E(v) A(y,L) B(v,L) B(v,L) — A(7, L)
0.01 0.000411825 0.00459959 0.00848834 0.00388875

5 7.66329 34.9839 54.9993 20.0154

10 8.78401 37.6855 58.2939 20.6084

20 9.38331 39.0397 59.946 20.9063

50 9.75404 39.8512 60.937 21.0858

o 10.0055 40.3913 61.597 21.2057

Table 3.1: Varying <y while L = 0.05.
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Figure 3.3: Bifurcation diagrams for (1.6) where K = 10, ¢ = 1.5, and L = 0.30.

v E(v)  AlL) B(v.L) B(ylL)—AlyL)
5 7.63138 185239 19.2104 0.6865
20 9.35392 22.082  23.2109 1.1289
50 9.72529 22.8384 24.0726 1.2342
Table 3.2: Varying o while L = 0.30.
llulle ulle
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Figure 3.4: Bifurcation diagrams for (1.6) where K = 10, ¢ = 1.5, and L = 0.45.

Remark 3.1. Our research concludes that when K = 10 and ¢ = 1.5 there exists L., L* € (0, %)
with L, < L*, such that when L < L, (grazing in a large subregion), the occurrence of
multiple steady states for a range of A persists for any hostility factor 7y, and when L > L*
(grazing in a small subregion), for any hostility factor vy, multiplicity of steady states does not
occur for any A. However, for L € (L., L*), there exists a 7*(L) > 0 such that multiplicity of
steady states for a range of A does occur for any hostility factor v > v*(L).
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3.2 Bifurcation diagrams for a fixed value of o as L varies

For v = 50:
Hull
6
4
2
50 100 )"
(a) L =0.05
i
B|
4
2|
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(¢) L=0.20
llull=
A -
£ A

10

30

(e) L =0.40

llull

20 40 60 80 100 120

(b) L =0.10

= A
0 20 30 40 B0 &0 70

(d) L =0.30

lIull

= N W B

= A

5 10 15

(f) L = 0.499

Figure 3.5: Bifurcation diagrams for (1.6) where K = 10, ¢ = 1.5, and « = 50.

L  E(y) A(vL) B(vL) B(yv,L)—A(rL)
0.01 12.4772 40.0324 59.6438 19.6114
0.10 9.75354 383015 58.4055 20.104
020 9.74708 30.9087 40.1478 9.2391
030 9.72529 22.8384 24.0726 1.2342

Remark 3.2. Note that for v = 50, when K = 10 and ¢ = 1.5 the occurrence of multiple
positive steady states for a range of A is lost when L is large (grazing in a small subregion).
Furthermore, for any fixed v > 0, occurrence of multiple positive steady states for a range of
A are observed for L ~ 0 and occurrence of multiple positive steady states for any A is lost for

L large.
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Table 3.3: Varying L while ¢ = 50.
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