
Toward Model Parallelism for Deep Neural Network
based on Gradient-free ADMM Framework

Junxiang Wang

Emory University

jwan936@emory.edu

Zheng Chai,Yue Cheng
George Mason University

{zchai2,yuecheng}@gmu.edu

Liang Zhao∗
Emory University

lzhao41@emory.edu

*corresponding author

Abstract—Alternating Direction Method of Multipliers
(ADMM) has recently been proposed as a potential alternative
optimizer to the Stochastic Gradient Descent(SGD) for deep
learning problems. This is because ADMM can solve gradient
vanishing and poor conditioning problems. Moreover, it has
shown good scalability in many large-scale deep learning
applications. However, there still lacks a parallel ADMM
computational framework for deep neural networks because of
layer dependency among variables. In this paper, we propose
a novel parallel deep learning ADMM framework (pdADMM)
to achieve layer parallelism: parameters in each layer of
neural networks can be updated independently in parallel. The
convergence of the proposed pdADMM to a critical point is
theoretically proven under mild conditions. The convergence rate
of the pdADMM is proven to be o(1/k) where k is the number
of iterations. Extensive experiments on six benchmark datasets
demonstrated that our proposed pdADMM can lead to more than
10 times speedup for training large-scale deep neural networks,
and outperformed most of the comparison methods. Our code
is available at: https://github.com/xianggebenben/pdADMM.

Index Terms—Model Parallelism, Deep Neural Network, Al-
ternating Direction Method of Multipliers, Convergence

I. INTRODUCTION

Due to wide applications and significant success in various

applications, the training of deep neural network models

has gained ever-increasing attention from the machine learn-

ing community. Gradient-based methods such as Stochastic

Gradient Descent (SGD) and its variants have been consid-

ered as the state-of-the-art since the 1980s, mainly due to

its superior performance. Despite the popularity, in recent

years, the constant improvement of DNNs’ performance is

accompanied by a fast increase in models’ complexity and

size, which indicates a clear trend toward larger and deeper

networks. Such a trend leads to severe challenges for large

models to be fit into a single computing unit (e.g., GPU),

and raises urgent demands for partitioning the model into

different computing devices to parallelize training. However,

the inherent bottleneck from backpropagation which prevents

the gradients of different layers being calculated in parallel.

This is because in backpropagation the gradient calculations of

one layer tightly depend on and have to wait for the calculated

results of all the previous layers, which prevents the gradients

of different layers being calculated in parallel.

To work around the drawback from gradient-based methods,

gradient-free methods have caught fast increasing attention in

recent years, which aims to address the drawbacks such as

strong dependency among layers, gradient vanishing (i.e. the

error signal diminishes as the gradient is backpropagated),

and poor conditioning (i.e. a small input can change the

gradient dramatically). For example, Talyor et al. and Wang

et al. presented an Alternating Direction Method of Mul-

tipliers (ADMM) algorithm to train neural network models

[1], [2]. Moreover, extensive experiments have revealed that

the ADMM outperformed most of SGD-related methods [2].

Amongst the gradient-free methods for deep learning opti-

mization, ADMM-based methods are deemed to have great

potential of parallelism of deep neural network training, due to

its inherent nature, which can break an objective into multiple

subproblems, each of which can be solved in parallel [3].

Despite the potential, a parallel algorithm based on ADMM

for deep neural network training has rarely been explored,

developed, and evaluated until now, due to the layer de-

pendency among subproblems of ADMM. Even though the

ADMM reduces the layer dependency compared with SGD,

one subproblem of ADMM is dependent on its previous

subproblem. Therefore, existing ADMM-based optimizers still

update parameters sequentially.

To handle the difficulties of layer dependency, in this paper

we propose a novel parallel deep learning Alternating Direc-

tion Method of Multipliers (pdADMM) optimization frame-

work to train large-scale neural networks. Our contributions

in this paper include:

• We propose a novel reformulation of the feed-forward

neural network problem, which splits a neural network

into independent layer partitions and allows for ADMM

to achieve model parallelism.

• We present a model-parallelism version of the ADMM

algorithm to train a feed-forward deep neural network.

All parameters in each layer can be updated in parallel to

speed up the training process significantly. All subprob-

lems generated by the pdADMM algorithm are discussed

in detail.

• We investigated the convergence properties of parallel

ADMM in the common nonlinear activation functions

such as the Rectified linear unit (Relu), and we prove

that the pdADMM converges to a state-of-the-art critical

point with a sublinear convergence rate o(1/k).
• We conduct extensive experiments on six benchmark

datasets to show the massive speedup of the proposed

591

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00068

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

pdADMM as well as its competitive performance with

state-of-the-art optimizers.

The organization of this paper is shown as follows: In Section

II, we summarize recent related research work to this paper.

In Section III, we formulate the novel pdADMM algorithm to

train a feed-forward neural network. In Section IV, the conver-

gence guarantee of pdADMM to a critical point is provided.

Extensive experiments on benchmark datasets to demonstrate

the convergence, speedup and comparable performance of

pdADMM are shown in Section V, and Section VI concludes

this work.

II. RELATED WORK

Distributed ADMM ADMM is one of the commonly ap-

plied techniques in distributed optimization. Overall, the pre-

vious works on distributed ADMM can be classified into two

categories: synchronous problems and asynchronous problems.

Synchronous problems usually require workers to optimize

parameters in time before the master update the consensus

variable, while asynchronous problems allow some workers

to delay parameter updates. Most literature focused on the ap-

plication of the distributed ADMM on synchronous problems.

For example, Mota et al. utilized the distributed ADMM for

the congestion control problem [4]; Makhdoumi and Ozdaglar

studied the convergence properties of the distributed ADMM

on the network communication problem. For more work,

please refer to [5], [6], [7], [8], [9]. On the other hand, a

handful of papers investigated how asynchronous problems

can be addressed by distributed ADMM. For instance, Zhang

et al., Wei et al., Chang et al and Hong proved the convergence

of the distributed ADMM on asynchronous problems [10],

[11], [12], [13], [14]. Kumar et al. discussed the application

of the ADMM on multi-agent problems over heterogeneous

networks [15]. However, there still lacks a general framework

for ADMM to train deep neural networks in the distributed

fashion.

Convergence analysis of nonconvex ADMM: Despite the

outstanding performance of the nonconvex ADMM, its con-

vergence theory is not well established due to the complexity

of both coupled objectives and various (inequality and equal-

ity) constraints. Specifically, Magnusson et al. provided new

convergence conditions of ADMM for a class of nonconvex

structured optimization problems [16]; Li and Pong investi-

gated the properties of the nonconvex ADMM on the com-

posite optimization problem [17]; Wang et al. presented mild

convergence conditions of the nonconvex ADMM where the

objective function can be coupled and nonsmooth [18]; Hong

et al. proved that the classic ADMM converges to stationary

points provided that the penalty parameter is sufficiently large

[19]; Wang et al. proved the convergence of multi-convex

ADMM with inequality constraints [20]; Liu et al. proved the

convergence properties of a parallel and linearized ADMM

[21]. Wang and Zhao studied the convergence conditions

of the nonconvex ADMM in the nonlinearly constrained

equality problems [22]; Xie et al. proposed a deep-learning-

based ADMM algorithm to study the constrained optimization

problems [23]. Wang et al. gave the first convergence proof

of ADMM in the nonconvex deep learning problems [2], [24].

For more work, please refer to [25], [26], [27], [28], [29], [30].

Distributed Deep Learning With the increased volume

of data and layers of neural networks, there is a need to

design distributed systems to train a deep neural network for

large-scale applications. Most recent papers have proposed

gradient-based distributed systems to train neural networks:

For example, Wen et al. proposed Terngrad to accelerate

distributed deep learning in data parallelism [31]; Sergeev

et al. presented an open-source library Horovod to reduce

communication overhead [32]. Other systems include SINGA

[33] Mxnet[34], TicTac [35] and Poseidon [36].

Data and Model Parallelism Data parallelism focuses on

distributing data across different processors, which can be

implemented in parallel. Scaling SGD is one of the most

common ways to reach data parallelism [37]. For example,

the distributed architecture, Poseidon, is achieved by scaling

SGD through overlapping communication and computation

over networks. The recently proposed ADMM [1], [2] is

another way of data parallelism: each subproblem generated by

ADMM can be solved in parallel. However, data parallelism

suffers from the bottleneck of a neural network: for SGD,

the gradient should be transmitted through all processors; for

ADMM, the parameters in one layer are subject to these in its

previous layer. As a result, this leads to heavy communication

cost and time delay. Model parallelism, however, can solve this

challenge because model parallelism splits a neural network

to many independent partitions. In this way, each partition

can be optimized in parallel and hence reduce time delay.

For instance, Parpas and Muir proposed a parallel-in-time

method from the perspective of dynamic systems [38]; Huo

et al. introduced a feature replay algorithm to achieve model

parallelism [39]. Zhuang et al. broke layer dependency by

introducing the delayed gradient [40]. However, to the best

of our knowledge, there still lacks an exploration on how to

achieve model parallelism via ADMM.

III. PDADMM ALGORITHM

We propose the pdADMM algorithm in this section. Specif-

ically, Section III-A introduces the existing deep learning

ADMM method, and reformulates the problem and presents

the pdADMM algorithm in detail. Section III-B discusses all

subproblems generated by pdADMM and the strategy to train

a large-scale deep neural network via pdADMM.

A. Background

In this section, we introduce the formulation of the feed-

forward neural network training problem and an existing deep

learning ADMM method. The important notations of this paper

are detailed in Table I.

The feed-forward neural network is formulated as follows

[2]:

592

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The overview of existing dlADMM algorithm: param-

eters are updated in a sequential fashion.

Notations Descriptions
L Number of layers.
Wl The weight matrix for the l-th layer.
bl The intercept vector for the l-th layer.
zl The auxiliary variable of the linear mapping for the l-th layer.

fl(zl) The nonlinear activation function for the l-th layer.
pl The input for the l-th layer.
ql The output for the l-th layer.
x The input matrix of the neural network.
y The predefined label vector.

R(zL, y) The risk function for the l-th layer.
nl The number of neurons for the l-th layer.

TABLE I: Important Notations

Problem 1.

minWl,bl,zl,pl
R(zL; y)

s.t. zl = Wlpl + bl, pl+1 = fl(zl)(l = 1, · · · , L− 1)

where p1 = x ∈ R
n0 is the input of the deep neural network

where n0 is the number of feature dimensions, and y is a

predefined label vector. pl is the input for the l-th layer, also

the output for the (l− 1)-th layer. R(zL; y) is a risk function

for the L-th layer, which is convex, continuous and proper.

zl = Wlpl + bl and pl+1 = fl(zl) are linear and nonlinear

mappings for the l-th layer, respectively.

Problem 1 has been addressed by deep learning Alternating

Direction Method of Multipliers (dlADMM) [2]. As shown in

Figure 1, the dlADMM algorithm updates parameters from the

final layer, and moves backward to the first layer, then updates

parameters forward from the first layer to the final layer, in

order to exchange information efficiently. However, parameters

in one layer are dependent on its neighboring layers, and hence

can not achieve parallelism. For example, the update of pl+1

on the l+ 1-th layer needs to wait before zl on the l-th layer

is updated. In order to address layer dependency, we relax

Problem 1 to Problem 2 as follows:

Problem 2.

minp,W,b,z,q F (p,W, b, z, q) = R(zL; y)

+ (ν/2)(
∑L

l=1
‖zl −Wlpl − bl‖22 +

∑L−1

l=1
‖ql − fl(zl)‖22)

s.t. pl+1 = ql

Fig. 2: The pdADMM optimization framework: an overview

where p = {pl}Ll=1, W = {Wl}Ll=1, b = {bl}Ll=1, z =
{zl}Ll=1, q = {ql}L−1

l=1 , and ν > 0 is a tuning parameter. As

ν → ∞, Problem 2 approaches Problem 1. We reduce layer

dependency by splitting the output of the l-th layer and the

input of the l + 1-th layer into two variables pl+1 and ql,
respectively.

The high-level overview of the pdADMM algorithm is

shown in Figure 2. Specifically, by breaking the whole neural

network into multiple layers, each of which can be optimized

by an independent worker. Therefore, the layerwise training

can be implemented in parallel. Moreover, the gradient van-

ishing problem can be avoided in this way. This is because

the accumulate gradient calculated by the backpropagation

algorithm is split into layerwise components.

Now we follow the ADMM routine to solve Problem 2, the

augmented Lagrangian function is formulated mathematically

as follows:

Lρ(p,W, b, z, q, u)

= F (p,W, b, z, q) +
∑L−1

l=1
(uT

l (pl+1−ql)+(ρ/2)‖pl+1 − ql‖22)

=R(zL; y)+φ(p1,W1, b1, z1)+
∑L

l=2
φ(pl,Wl, bl, zl, ql−1, ul−1)

+(ν/2)
∑L−1

l=1
‖ql−fl(zl)‖22

where φ(p1,W1, b1, z1) = (ν/2)‖z1 − W1p1 − b1‖22,

φ(pl,Wl, bl, zl, ql−1, ul−1) = (ν/2)‖zl − Wlpl − bl‖22 +
uT
l−1(pl − ql−1) + (ρ/2)‖pl − ql−1‖22, ul(l = 1, · · · , L − 1)

are dual variables, ρ > 0 is a parameter, and u = {ul}L−1
l=1 .

The detail of the pdADMM is shown in Algorithm 1. Specif-

ically, Lines 5-9 update primal variables p, W, b, z and

q, respectively, while Line 11 updates the dual variable u.

the discussion on how to solve subproblems generated by

pdADMM is detailed in the next section.

B. Solutions to All Subproblems

In this section, we discuss how to solve all subproblems

generated by pdADMM in detail.

593

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 the pdADMM Algorithm

Require: y, p1 = x, ρ, ν.

Ensure: p,W, b, z, q.

Initialize k = 0.

while pk,Wk, bk, zk, qk not converged do
Update pk+1

l of different l by Equation (1) in parallel.

Update W k+1
l of different l by Equation (2) in parallel.

Update bk+1
l of different l by Equation (3) in parallel.

Update zk+1
l of different l by Equations (4) and (5) in

parallel.

Update qk+1
l of different l by Equation (6) in parallel.

rkl ← pk+1
l+1 − qk+1

l (l = 1, · · · , L) in parallel # Compute

residuals.

Update uk+1
l of different l by Equation (7) in parallel.

k ← k + 1.

end while
Output p,W, b, z, q.

1. Update pk+1

The variable pk+1 is updated as follows:

pk+1
l ← argminpl

Lρ(p,Wk, bk, zk, qk, uk)

= φ(pl,W
k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)

Because Wl and pl are coupled in φ, solving pl should

require the time-consuming operation of matrix inversion of

Wl. To handle this, we apply similar quadratic approximation

techniques as used in dlADMM [2] as follows:

pk+1
l ← argmin

pl

Ul(pl; τ
k+1
l) (1)

where Ul(pl; τ
k+1
l) = φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1) +

(∇pk
l
φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)(pl − pkl) + (τk+1

l /2)‖pl −
pkl ‖22, and τk+1

l > 0 is a parameter. τk+1
l should

satisfy φ(pk+1
l ,W k

l , b
k
l , z

k
l , q

k
l−1, u

k
l−1) ≤ Ul(p

k+1
l ; τk+1

l).

The solution to Equation (1) is: pk+1
l ← pkl −

∇pk
l
φ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)/τ

k+1
l .

2. Update Wk+1

The variable Wk+1 is updated as follows:

W k+1
l ← argminWl

Lρ(pk+1,W, bk, zk, qk, uk)

= argminWl

{
φ(pk+1

1 ,W1, b
k
1 , z

k
1) l = 1

φ(pk+1l ,Wl, b
k
l , z

k
l , q

k
l−1, u

k
l−1) 1 <l≤L

Similar to updating pl, the following subproblem should be

solved instead:

W k+1
l ← argminWl

Vl(Wl; θ
k+1
l) (2)

where

V1(W1; θ
k+1
1) = φ(pk+1

1 ,W k
1 , b

k
1 , z

k
1)

+∇Wk
1
φT (pk+1

1 ,W k
1 , b

k
1 , z

k
1)(W1−W k

1)

+ (θk+1
l /2)‖W1 −W k

1 ‖22
Vl(Wl; θ

k+1
l) = φ(pk+1

l ,W k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)

+∇Wk
l
φT (pk+1

l ,W k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)(Wl −W k

l)

+ (θk+1
l /2)‖Wl −W k

l ‖22
and θk+1

l is a parameter, which should satisfy

φ(pk+1
1 ,W k+1

1 , bk1 , z
k
1) ≤ V (W k+1

1 ; θk+1
1) and

φ(pk+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1) ≤ V (W k+1

l ; θk+1
l)(1 <

l < L). The solution to Equation (2) is shown as follows:

W k+1
l ←W k

l −
{
∇Wk

1
φ(pk+1

1 ,W k
1,b

k
1,z

k
1)/θ

k+1
l l = 1

∇Wk
l
φ(pk+1l ,W k

l ,b
k
l,z

k
l ,q

k
l−1,u

k
l−1)/θ

k+1
l 1< l≤L

3. Update bk+1

The variable bk+1 is updated as follows:

bk+1
l ← argminbl Lρ(pk+1,Wk+1, b, zk, qk, uk)

= argminbl

{
φ(pk+1

1 ,W k+1
1 , b1, z

k
1) l=1

φ(pk+1
l ,W k+1

l , bl, z
k
l , q

k
l−1, u

k
l−1) 1 <l≤ L

.

Similarly, we solve the following subproblems instead:

bk+1
1 ← argminb1 φ(p

k+1
1 ,W k+1

1 , bk1 , z
k
1)

+∇bk1
φT (pk+1

1 ,W k+1
1 , bk1 , z

k
1)(bl − bkl) + (ν/2)‖bl − bkl ‖22

bk+1
l ← argminbl φ(p

k+1
l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1)

+∇bkl
φT (pk+1

l ,W k+1
l , bkl , z

k
l , q

k
l−1, u

k
l−1)(bl − bkl)

+ (ν/2)‖bl − bkl ‖22(1 < l ≤ L) (3)

The solution to Equation (3) is:

bk+1l ← bkl −
{
∇bk1

φ(pk+11 ,W k+1
1 , bk1 , z

k
1)/ν l = 1

∇bkl
φ(pk+1l ,W k+1

l , bkl , z
k
l , q

k
l−1, u

k
l−1)/ν 1<l≤ L

4. Update zk+1

The variable zk+1 is updated as follows:

zk+1l ←argminzl(ν/2)‖zl−W k+1
l pk+1l −bk+1l ‖22

+(ν/2)‖qkl −fl(zl)‖22+(ν/2)‖zl−zkl ‖22(l<L) (4)

zk+1L ←argminzlR(zL; y)+(ν/2)‖zL−W k+1
L pk+1L −bk+1L ‖22

(5)

where a quadratic term (ν/2)‖zl − zkl ‖22 is added in Equation

(4) to control zk+1
l to close to zkl . Equation (5) is convex,

which can be solved by Fast Iterative Soft Thresholding

Algorithm (FISTA) [41].

For Equation (4), nonsmooth activations usually lead to closed-

form solutions [2], [22]. For example, for Relu fl(zl) =
max(zl, 0), the solution to Equation (4) is shown as follows:

zk+1
l =

{
min((W k+1

l pk+1l +bk+1
l +zkl)/2, 0) zk+1l ≤ 0

max((W k+1
l pk+1l +bk+1l +qkl +zkl)/3, 0) zk+1

l ≥ 0

594

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

For smooth activations such as tanh and sigmoid, a lookup-

table is recommended [2].

5. Update qk+1

The variable qk+1 is updated as follows:

qk+1
l ← argminql Lρ(pk+1,Wk+1, bk+1, zk+1, q, uk)

= argminql φ(p
k+1
l+1 ,W

k+1
l+1 , bk+1

l+1 , z
k+1
l+1 , ql, u

k
l). (6)

Equation (6) has a closed-form solution as follows:

qk+1
l ← pk+1

l+1 + uk
l /ρ+ fl(z

k+1
l))/2

6. Update uk+1

The variable uk+1 is updated as follows:

uk+1
l ← uk

l + ρ(pk+1
l+1 − qk+1

l) (7)

Finally, Our proposed pdADMM can be efficient for training

a deep feed-forward neural network. To achieve this, we begin

from training a swallow neural network with the first few

layers of the deep neural network, then more layers are added

for training step by step until finally all layers are involved

in the training process. The pdADMM can achieve good

performance as well as reduce training cost by this strategy.

IV. CONVERGENCE ANALYSIS

In this section, the theoretical convergence of the proposed

pdADMM algorithm. Firstly, the Lipschitz continuity and

coercivity are defined as follows:

Definition 1. (Lipschitz Continuity) A function g(x) is Lips-
chitz continuous if there exists a constant D > 0 such that
∀x1, x2, the following holds

‖g(x1)− g(x2)‖ ≤ D‖x1 − x2‖.
Definition 2. (Coercivity) A function h(x) is coerce over the
feasible set F means that h(x) → ∞ if x ∈ F and ‖x‖ → ∞.

Then the following assumption is required for convergence

analysis.

Assumption 1. fl(zl) is Lipschitz continuous with coefficient
S > 0, and F (p,W, b, z, q) is coercive. Moreover, ∂fl(zl) is
bounded, i.e. there exists M > 0 such that ‖∂fl(zl)‖ ≤ M .

Assumption 1 is mild to satisfy: most common activation

functions such as Relu and leaky Relu satisfy Assumption

1. No assumption is needed on the risk function R(zl; y),
which shows that the convergence condition of our proposed

pdADMM is milder than that of the dlADMM, which requires

R(zl; y) to be Lipschitz differentiable [2]. Due to space

limit, the detailed proofs are provided in the Appendix∗. The

technical proofs follow the similar routine as dlADMM [2].

The difference consists in the fact that the dual variable ul is

controlled by ql and zl (Lemma 5 in the Appendix), which

holds under Assumption 1, while ul can be controlled only

by zl in the convergence proof of dlADMM. The first lemma

∗Proofs: https://github.com/xianggebenben/Junxiang Wang/blob/master/
supplementary material/ICDM2020/pdADMM.pdf.

shows that the objective keeps decreasing when ρ is sufficently

large.

Lemma 1 (Decreasing Objective). If ρ > max(4νS2, (
√
17+

1)ν/2), there exist C1 = ν/2 − 2ν2S2/ρ > 0 and C2 =
ρ/2− 2ν2/ρ− ν/2 > 0 such that it holds for any k ∈ N that

Lρ(pk,Wk, bk, zk, qk, uk)−Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥
∑L

l=2
(τk+1l /2)‖pk+1

l −pkl ‖22+
∑L

l=1
(θk+1l /2)‖W k+1

l −W k
l ‖22

+
∑L

l=1
(ν/2)‖bk+1l −bkl ‖22+

∑L−1
l=1

C1‖zk+1
l −zkl ‖22

+(ν/2)‖zk+1
L − zkL‖22 +

∑L−1

l=1
C2‖qk+1

l − qkl ‖22 (8)

The second Lemma illustrates that the objective is bounded

from below when ρ is large enough, and all variables are

bounded.

Lemma 2 (Bounded Objective). If ρ > ν, then
Lρ(pk,Wk, bk, zk, qk, uk) is lower bounded. Moreover,
pk,Wk, bk, zk, qk,and uk are bounded, i.e. there exist Np, NW,
Nb, Nz, Nq, and Nu > 0, such that ‖pk‖ ≤ Np, ‖Wk‖ ≤ NW,
‖bk‖ ≤ Nb, ‖zk‖ ≤ Nz, ‖qk‖ ≤ Nq, and ‖uk‖ ≤ Nu.

Based on Lemmas 1 and 2, the following theorem ensures

that the objective is convergent.

Theorem 1 (Convergent Objective). If ρ >
max(4νS2, (

√
17 + 1)ν/2), then Lρ(pk,Wk, bk, zk, qk, uk)

is convergent. Moreover, limk→∞ ‖pk+1 − pk‖22 = 0,
limk→∞ ‖Wk+1 − Wk‖22 = 0, limk→∞ ‖bk+1 − bk‖22 = 0,
limk→∞ ‖zk+1 − zk‖22 = 0, limk→∞ ‖qk+1 − qk‖22 = 0,
limk→∞ ‖uk+1 − uk‖22 = 0.

Proof. From Lemmas 1 and 2, we know that

Lρ(pk,Wk, bk, zk, qk, uk) is convergent because a monotone

bounded sequence converges. Moreover, we take the limit on

the both sides of Inequality (8) to obtain

0 = limk→∞ Lρ(pk,Wk, bk, zk, qk, uk)

− limk→∞ Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)

≥ limk→∞(
∑L

l=2
(τk+1

l /2)‖pk+1
l −pkl ‖22

+
∑L

l=1
(θk+1l /2)‖W k+1

l −W k
l ‖22 +

∑L

l=1
(ν/2)‖bk+1l −bkl ‖22

+
∑L−1

l=1
C1‖zk+1

l − zkl ‖22 + (ν/2)‖zk+1
L − zkL‖22

+
∑L−1

l=1
C2‖qk+1

l − qkl ‖22) ≥ 0

Because Lρ(pk,Wk, bk, zk, qk, uk) is convergent, then

limk→∞ ‖pk+1 − pk‖22 = 0, limk→∞ ‖Wk+1 − Wk‖22 = 0,

limk→∞ ‖bk+1 − bk‖22 = 0, limk→∞ ‖zk+1 − zk‖22 = 0, and

limk→∞ ‖qk+1 − qk‖22 = 0. limk→∞ ‖uk+1 − uk‖22 = 0 is

derived from Lemma 5 in the Appendix.

The third lemma guarantees that the subgradient of the

objective is upper bounded, which is stated as follows:

595

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

Lemma 3 (Bounded Subgradient). There exists a constant
C > 0 and gk+1 ∈ ∂Lρ(pk+1,Wk+1, bk+1, zk+1, qk+1, uk+1)
such that

‖gk+1‖ ≤ C(‖pk+1 − pk‖+ ‖Wk+1 − Wk‖+ ‖bk+1 − bk‖
+ ‖zk+1 − zk‖+ ‖qk+1 − qk‖+ ‖uk+1 − uk‖)

Now based on Theorem 1, and Lemma 3, the convergence

of the pdADMM algorithm to a critical point is presented in

the following theorem.

Theorem 2 (Convergence to a Critical Point). If
ρ > max(4νS2, (

√
17 + 1)ν/2), then for the variables

(p,W, b, z, q, u) in Problem 2, starting from any
(p0,W0, b0, z0, q0, u0), (pk,Wk, bk, zk, qk, uk) has at
least a limit point (p∗,W∗, b∗, z∗, q∗, u∗), and any
limit point is a critical point of Problem 2. That is,
0 ∈ ∂Lρ(p∗,W∗, b∗, z∗, q∗, u∗). In other words,

p∗l+1 = q∗l , ∇p∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

∇W∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

∇b∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0,

0 ∈ ∂z∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗),
∇q∗Lρ(p∗,W∗, b∗, z∗, q∗, u∗) = 0.

Proof. From Lemma 2, (pk,Wk, bk, zk, qk, uk) has at least

a limit point (p∗,W∗, b∗, z∗, q∗, u∗) because a bounded se-

quence has at least a limit point. From Lemma 3 and Theorem

1, ‖gk+1‖ → 0 as k → ∞. According to the definition

of general subgradient (Defintion 8.3 in [42]), we have 0 ∈
∂Lρ(p∗,W∗, b∗, z∗, q∗, u∗). In other words, every limit point

(p∗,W∗, b∗, z∗, q∗, u∗) is a critical point.

Theorem 2 shows that our proposed pdADMM algorithm

converges for sufficiently large ρ, which is consistent with

previous literature [2]. Next, the following theorem ensures the

sublinear convergence rate o(1/k) of the proposed pdADMM

algorithm, whose proof is at the end of this paper.

Theorem 3 (Convergence Rate). For a se-
quence (pk,Wk, bk, zk, qk, uk), define ck =
min0≤i≤k(

∑L
l=2(τ

i+1
l /2)‖pi+1

l −pil‖22+
∑L

l=1(θ
i+1
l /2)‖W i+1

l −
W i

l ‖22 +
∑L

l=1(ν/2)‖bi+1l − bil‖22 +
∑L−1

l=1 C1‖zi+1
l − zil‖22 +

(ν/2)‖zi+1
L − ziL‖22 +

∑L−1
l=1 C2‖qi+1

l − qil‖22) where
C1 = ν/2− 2ν2S2/ρ > 0 and C2 = ρ/2− 2ν2/ρ− ν/2 > 0,
then the convergence rate of ck is o(1/k).

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed

pdADMM using six benchmark datasets. Speedup, conver-

gence and accuracy performance are compared with several

state-of-the-art optimizers. All experiments were conducted on

64-bit machine with Intel Xeon(R) silver 4114 Processor and

48GB RAM.

Fig. 3: The relationship between speedup and the number

of layers: the speedup increases linearly with the number of

layers.

A. Datasets

In this experiment, six benchmark datasets were used for

performance evaluation:

1. MNIST [43]. The MNIST dataset has ten classes of

handwritten-digit images, which was firstly introduced by

Lecun et al. in 1998 [43]. It contains 55,000 training samples

and 10,000 test samples with 196 features each, which is

provided by the Keras library [44].

2. Fashion MNIST [45]. The Fashion MNIST dataset has ten

classes of assortment images on the website of Zalando, which

is Europes largest online fashion platform [45]. The Fashion-

MNIST dataset consists of 60,000 training samples and 10,000

test samples with 196 features each.

3. kMNIST(Kuzushiji-MNIST) [46]. The kMNIST dataset has

ten classes, each of which is a character to represent each

of the 10 rows of Hiragana. The kMNIST dataset consists

of 60,000 training samples and 10,000 test samples with 196

features each.

4. SVHN (Street View House Numbers) [47]. The SVHN

dataset is obtained from house numbers in Google Street View

images. It consists of ten classes of digits. In our experiments,

we use three classes ’0’, ’1’ and ’2’. The number of training

data and test data are 24,446 and 9,248, respectively, with 768

features each.

5. CIFAR10 [48]. CIFAR10 is a collection of color images

with 10 different classes. In our experiments, we use two

classes ’0’ and ’6’. The number of training data and test data

are 12,000 and 2,000, respectively, with 768 features each.

6. CIFAR100 [48]. CIFAR100 is similar to CIFAR10 except

that CIFAR100 has 100 classes. In our experiments, we use

two classes ’0’ and ’2’. The number of training data and test

data are 5,000 and 1,000, respectively, with 768 features each.

B. Speedup

In this experiment, we investigate the speedup of the pro-

posed pdADMM algorithm concerning the number of layers

and the number of neurons on the large-scale deep neural

networks. The activation function was set to the Rectified

linear unit (Relu). The loss function was the cross-entropy loss.

The running time per epoch was the average of 10 epochs. ρ

596

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

MNIST dataset
Neurons# Serial pdADMM (sec) pdADMM(sec) Speedup

1500 237.66 26.78 8.87
1600 348.70 31.78 10.97
1700 390.51 35.79 10.91
1800 475.60 41.37 11.50
1900 465.57 45.87 10.15
2000 570.90 50.70 11.26
2000 570.9 50.7 11.26
2100 570 54.91 10.38
2200 678.83 63.59 10.68
2300 710.3 70.36 10.10
2400 766.82 62.5 12.27

Fashion MNIST dataset
Neurons# Serial pdADMM (sec) pdADMM(sec) Speedup

1500 358.68 32.65 10.99
1600 407.71 37.90 10.76
1700 476.79 44.75 10.65
1800 539.51 50.50 10.68
1900 599.42 53.88 11.13
2000 645.87 58.68 11.01
2100 740.39 67.91 10.90
2200 818.58 74.17 11.03

kMNIST dataset
Neurons# Serial pdADMM (sec) pdADMM(sec) Speedup

1500 354.85 32.65 10.87
1600 407.73 37.11 10.99
1700 472.4648 42.58 11.10
1800 539.52 48.78 11.06
1900 596.84 55.56 10.74
2000 660.58 56.10 11.78
2100 737.78 66.95 11.02
2200 806.74 76.16 10.59

CIFAR10 dataset
Neurons# Serial pdADMM (sec) pdADMM(sec) Speedup

1500 326.62 25.00 13.06
1600 374.82 28.96 12.94
1700 433.46 33.99 12.75
1800 485.86 38.66 12.57
1900 544.11 43.10 12.62
2000 572.33 46.90 12.20
2100 602.65 55.25 10.91
2200 732.79 59.27 12.36
2300 784.87 56.26 13.95
2400 854.47 63.1 13.54

CIFAR100 dataset
Neurons# Serial pdADMM (sec) pdADMM(sec) Speedup

1500 334.55 25.39 13.18
1600 382.24 29.3 13.05
1700 445.23 34 13.09
1800 500.00 38.38 13.03
1900 549.77 43.25 12.71
2000 576.10 42.47 13.56
2100 666.06 47.43 14.04
2200 735.63 52.41 14.04
2300 793.03 56.73 13.98
2400 857.41 62.3 13.76

TABLE II: The relation between speedup and number of

neurons on the MNIST, Fashion MNIST datasets, kMNIST,

CIFAR10 and CIFAR100 datasets: the pdADMM runs 10

times faster than its serial version.

and ν were both set to 10−4.

Firstly, we investigated the relationship between speedup

and the number of layers. We set up a feed-forward neural

network with different number of hidden layers, which ranges

from 11 to 19. The number of neurons in each layer was fixed

to 2,400. The SVHN dataset was not tried due to memory

issues. Figure 3 shows that the speedup increases linearly with

the number of layers. Specifically, the speedup reached 11

when 19 hidden layers were trained. This indicates that the

deeper a neural network is, the more speedup our proposed

pdADMM can gain.

Secondly, the relationship between speedup and the number

of neurons was studied. Specifically, we test our proposed

pdADMM algorithm on a feed-forward neural network with

19 hidden layers. The number of neurons in each layer ranges

from 1,500 to 2,400. The speedup was shown in Table II

on the MNIST and Fashion MNIST datasets. Specifically,

the speedup remains stable around 10 no matter how many

neurons were trained. This concludes that the speedup of the

proposed pdADMM is independent of the number of neurons.

C. Convergence

To validate the convergence of the proposed pdADMM, we

set up a feed-forward neural network with 9 hidden layers,

each of which has 500 neurons. The Rectified linear unit

(ReLU) was used for the activation function for both network

structures. The loss function was set as the cross-entropy loss.

The number of epoch was set to 100. ν and ρ was both set

to 0.1. As shown in Figure 4, the objective keeps decreasing

monotonically on all six datasets, and the residual converges

sublinearly to 0, which are consistent with Theorems 2 and 3.

D. Accuracy

1) Experimental Settings: In order to evaluate accuracy, we

used the same architecture as the previous section. ν and ρ
were set to 10−4 in order to maximize the performance of

training data. The number of epoch was set to 100. In this

experiment, the full batch was used for training. As suggested

by the training strategy in Section III-B, we firstly trained a

feed-forward neural network with five hidden layers, and then

all layers were involved in training.

2) Comparison Methods: SGD and its variants are state-

of-the-art methods and hence were served as comparison

methods. For SGD-based methods, the full batch dataset is

used for training models. All parameters were chosen by

maximizing the accuracy of training datasets. The baselines

are described as follows:

1. Gradient Descent (GD) [49]. The GD and its variants are

the most popular deep learning optimizers, whose convergence

has been studied extensively in the literature. The learning rate

of GD was set to 0.01.

2. Adaptive learning rate method (Adadelta) [50]. The

Adadelta is proposed to overcome the sensitivity to hyper-

parameter selection. The learning rate of Adadelta was set to

1.

3. Adaptive gradient algorithm (Adagrad) [51]. Adagrad is

597

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

(a). Objective versus epoch (b). Residual versus epoch

Fig. 4: The convergence of the proposed pdADMM: the objective decreases monotonously, and the residual converges to 0.

(a). MNIST (b). Fashion MNIST (c). kMNIST

(d). SVHN (e). CIFAR10 (f). CIFAR100

Fig. 5: Training Accuracy of all methods: pdADMM outperformed most comparison methods; SGD-type methods suffer from

gradient vanishing problems.

(a). MNIST (b). Fashion MNIST (c). kMNIST

(d). SVHN (e). CIFAR10 (f). CIFAR100

Fig. 6: Test Accuracy of all methods: pdADMM outperformed most comparison methods.

598

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

an improved version of SGD: rather than fixing the learning

rate during training, it adapts the learning rate to the hyper-

parameter. The learning rate of Adagrad was set to 0.1.

4. Adaptive momentum estimation (Adam) [52]. Adam

is the most popular optimization method for deep learning

models. It estimates the first and second momentum to correct

the biased gradient and thus makes convergence fast. The

learning rate of Adam was set to 0.001.

5. Deep learning Alternaing Direction Method of Multipliers

(dlADMM) [2]. The dlADMM is an improvement of the pre-

vious ADMM implementation [1]. It is guaranteed to converge

to a critical point with a rate of o(1/k). ρ and ν were both

set to 10−6.

3) Performance: In this section, the performance of the

proposed pdADMM is analyzed against comparison meth-

ods. Figures 5 and 6 show the training and test accuracy

of the proposed pdADMM against comparison methods on

six datasets, respectively. X-axis and Y-axis represent epoch

and training accuracy, respectively. Overall, the pdADMM

outperformed most of comparison methods: it performed the

best on the SVHN, CIFAR10 and CIFAR100 datasets, while

was only secondary to Adam on the MNIST, Fashion MNIST

and kMNIST datasets. The performance gap is particularly

obvious on the CIFAR100 dataset. Most SGD-type methods

suffered from gradient vanishing in the deep neural network,

and struggled to find an optimum: for example, GD can only

reach 10% training accuracy on the MNIST dataset; Adagrad

and Adadelta performed better then GD, but took many epochs

to escape saddle points. The dlADMM can avoid gradient

vanishing problem, however, it performed worse than the

proposed pdADMM on all datasets. Adam performed the best

on three MNIST-like datasets, but performed worse than the

proposed pdADMM on three other datasets, which are hard to

train with high accuracy than three MNIST-like datasets. This

indicates that the proposed pdADMM may be more suitable

for training hard datasets then Adam.

VI. CONCLUSION

Alternating Direction Method of Multipliers (ADMM) is

considered to be a good alternative to Stochastic gradient

descent (SGD) for training deep neural networks. In this

paper, we propose a novel parallel deep learning Alternating

Direction Method of Multipliers (pdADMM) to achieve layer

parallelism. The proposed pdADMM is guaranteed to converge

to a critical solution under mild conditions. Experiments on

benchmark datasets demonstrate that our proposed pdADMM

can lead to a huge speedup when training a deep feed-forward

neural network, it also outperformed others on six benchmark

datasets.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion (NSF) Grant No. 1755850, No. 1841520, No. 2007716,
No. 2007976, No. 1942594, No. 1907805, a Jeffress Memorial
Trust Award, NVIDIA GPU Grant, and Design Knowledge
Company (subcontract number: 10827.002.120.04).

REFERENCES

[1] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Gold-
stein, “Training neural networks without gradients: A scalable admm
approach,” in International conference on machine learning, 2016, pp.
2722–2731.

[2] J. Wang, F. Yu, X. Chen, and L. Zhao, “Admm for efficient deep
learning with global convergence,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 111–119.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[4] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “Distributed
admm for model predictive control and congestion control,” in 2012
IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE,
2012, pp. 5110–5115.

[5] T.-H. Chang, “A proximal dual consensus admm method for multi-agent
constrained optimization,” IEEE Transactions on Signal Processing,
vol. 64, no. 14, pp. 3719–3734, 2016.

[6] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus admm,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, 2014.

[7] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[8] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein,
“Adaptive consensus admm for distributed optimization,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3841–3850.

[9] S. Zhu, M. Hong, and B. Chen, “Quantized consensus admm for multi-
agent distributed optimization,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4134–4138.

[10] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in International Conference on Machine Learning, 2014,
pp. 1701–1709.

[11] E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC). IEEE, 2012, pp. 5445–5450.

[12] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed admm for large-scale optimizationpart i: Algorithm and
convergence analysis,” IEEE Transactions on Signal Processing, vol. 64,
no. 12, pp. 3118–3130, 2016.

[13] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous
distributed admm for large-scale optimizationpart ii: Linear convergence
analysis and numerical performance,” IEEE Transactions on Signal
Processing, vol. 64, no. 12, pp. 3131–3144, 2016.

[14] M. Hong, “A distributed, asynchronous, and incremental algorithm for
nonconvex optimization: an admm approach,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 3, pp. 935–945, 2017.

[15] S. Kumar, R. Jain, and K. Rajawat, “Asynchronous optimization over
heterogeneous networks via consensus admm,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 3, no. 1, pp.
114–129, 2016.

[16] S. Magnússon, P. C. Weeraddana, M. G. Rabbat, and C. Fischione,
“On the convergence of alternating direction lagrangian methods for
nonconvex structured optimization problems,” IEEE Transactions on
Control of Network Systems, vol. 3, no. 3, pp. 296–309, 2015.

[17] G. Li and T. K. Pong, “Global convergence of splitting methods for
nonconvex composite optimization,” SIAM Journal on Optimization,
vol. 25, no. 4, pp. 2434–2460, 2015.

[18] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
pp. 1–35, 2015.

[19] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[20] J. Wang, L. Zhao, and L. Wu, “Multi-convex inequality-constrained
alternating direction method of multipliers,” arXiv preprint
arXiv:1902.10882, 2019.

599

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

[21] Q. Liu, X. Shen, and Y. Gu, “Linearized admm for nonconvex nons-
mooth optimization with convergence analysis,” IEEE Access, vol. 7,
pp. 76 131–76 144, 2019.

[22] J. Wang and L. Zhao, “Nonconvex generalization of admm for nonlinear
equality constrained problems,” arXiv preprint arXiv:1705.03412, 2017.

[23] X. Xie, J. Wu, G. Liu, Z. Zhong, and Z. Lin, “Differentiable linearized
admm,” in International Conference on Machine Learning, 2019, pp.
6902–6911.

[24] J. Wang and L. Zhao, “Accelerated gradient-free neural network training
by multi-convex alternating optimization,” 2019.

[25] R. Chartrand and B. Wohlberg, “A nonconvex admm algorithm for group
sparsity with sparse groups,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp.
6009–6013.

[26] D. Hajinezhad and M. Hong, “Nonconvex alternating direction method
of multipliers for distributed sparse principal component analysis,” in
2015 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). IEEE, 2015, pp. 255–259.

[27] K. Guo, D. Han, D. Z. Wang, and T. Wu, “Convergence of admm
for multi-block nonconvex separable optimization models,” Frontiers of
Mathematics in China, vol. 12, no. 5, pp. 1139–1162, 2017.

[28] A. Themelis and P. Patrinos, “Douglas–rachford splitting and admm for
nonconvex optimization: Tight convergence results,” SIAM Journal on
Optimization, vol. 30, no. 1, pp. 149–181, 2020.

[29] J. Wang, Z. Chai, Y. Chen, and L. Zhao, “Tunable subnetwork split-
ting for model-parallelism of neural network training,” in ICML 2020
Workshop: Beyond First Order Methods in Machine Learning, 2020.

[30] J. Wang and L. Zhao, “The application of multi-block admm on isotonic
regression problems,” arXiv preprint arXiv:1903.01054, 2019.

[31] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[32] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.

[33] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang et al., “Singa: A distributed deep learning
platform,” in Proceedings of the 23rd ACM international conference on
Multimedia. ACM, 2015, pp. 685–688.

[34] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015.

[35] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Accelerating
distributed deep learning with communication scheduling,” in Proceed-
ings of the 2nd SysML Conference, 2019.

[36] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu,
J. Wei, P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on {GPU} clusters,” in 2017
{USENIX} Annual Technical Conference ({USENIX}{ATC} 17), 2017,
pp. 181–193.

[37] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in neural information processing
systems, 2010, pp. 2595–2603.

[38] P. Parpas and C. Muir, “Predict globally, correct locally: Parallel-in-time
optimal control of neural networks,” 2019.

[39] Z. Huo, B. Gu, and H. Huang, “Training neural networks using features
replay,” in Advances in Neural Information Processing Systems, 2018,
pp. 6659–6668.

[40] H. Zhuang, Y. Wang, Q. Liu, and Z. Lin, “Fully decoupled neural
network learning using delayed gradients,” 2019.

[41] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[42] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer
Science & Business Media, 2009, vol. 317.

[43] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[44] F. Chollet et al., “Keras,” https://keras.io, 2015.
[45] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms,” 2017.
[46] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,

and D. Ha, “Deep learning for classical japanese literature,” in NeurIPS
2018 Workshop on Machine Learning for Creativity and Design, 2018.

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[48] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[49] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[50] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” 2012.
[51] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[53] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block admm
with o (1/k) convergence,” Journal of Scientific Computing, vol. 71,
no. 2, pp. 712–736, 2017.

Proof of Theorem 3

Proof. To prove this theorem, we will first show that ck satisfies two
conditions: (1). ck ≥ ck+1. (2).

∑∞
k=0 ck is bounded. Specifically,

first, we have

ck=min0≤i≤k(
∑L

l=2
(τ i+1

l /2)‖pi+1
l −pil‖22

+
∑L

l=1
(θi+1l /2)‖W i+1

l −W i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1l −bil‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22

+
∑L−1

l=1
C2‖qi+1

l − qil‖22)

≥min0≤i≤k+1(
∑L

l=2
(τ i+1

l /2)‖pi+1
l −pil‖22

+
∑L

l=1
(θi+1l /2)‖W i+1

l −W i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1l −bil‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22

+
∑L−1

l=1
C2‖qi+1

l − qil‖22)
= ck+1

Therefore ck satisfies the first condition. Second,
∑∞

k=0
ck =

∑∞
k=0

min0≤i≤k(
∑L

l=2
(τ i+1

l /2)‖pi+1
l −pil‖22

+
∑L

l=1
(θi+1l /2)‖W i+1

l −W i
l ‖22 +

∑L

l=1
(ν/2)‖bi+1l −bil‖22

+
∑L−1

l=1
C1‖zi+1

l − zil‖22 + (ν/2)‖zi+1
L − ziL‖22

+
∑L−1

l=1
C2‖qi+1

l − qil‖22)

≤
∑∞

k=0
(
∑L

l=2
(τk+1

l /2)‖pk+1
l −pkl ‖22

+
∑L

l=1
(θk+1l /2)‖W k+1

l −W k
l ‖22 +

∑L

l=1
(ν/2)‖bk+1l −bkl ‖22

+
∑L−1

l=1
C1‖zk+1

l − zkl ‖22 + (ν/2)‖zk+1
L − zkL‖22

+
∑L−1

l=1
C2‖qk+1

l − qkl ‖22)
≤ Lρ(p0,W0, b0, z0, q0, u0)− Lρ(p∗,W∗, b∗, z∗, q∗, u∗)

(Lemma 1)

So ck satisfies the second condition. Finally, since we have proved
the first two conditions and the third one ck ≥ 0 is obvious, the
convergence rate of o(1/k) is proven (Lemma 1.2 in [53]).

600

Authorized licensed use limited to: George Mason University. Downloaded on July 24,2021 at 02:30:58 UTC from IEEE Xplore. Restrictions apply.

