Privacy Preserving Misbehavior Detection 1n
IoV using Federated Machine Learning

Aashma Uprety, Danda B. Rawat and Jiang Li
Data Science & Cybersecurity Center, EECS Dept., Howard University, Washington DC, USA

Abstract—Data falsification attack in Vehicular Ad hoc Net-
works (VANET) for the Internet of Vehicles (IoV) is achieved by
corrupting the data exchanged between nodes with false infor-
mation. Data is the most valuable asset these days from which
many analyses and results can be drawn out. But the privacy
concern raised by users has become the greatest hindrance in
performing data analysis. In IoV, misbehavior detection can be
performed by creating a machine learning model from basic
safety message (BSM) dataset of vehicles. We propose a privacy-
preserving misbehavior detecting system for IoV using Federated
Machine Learning. Vehicles in VANET for IoV are given the
initial dull model to locally train using their own local data.
On doing this we get a collective smart model that can classify
Position Falsification attack in VANET using the data generated
by each vehicle. All this is done without actually sharing the
data with any third party to perform analysis. In this paper, we
compare the performance of the attack detection model trained
by using a federated and central approach. This training method
trains the model on a different kind of position falsification attack
by using local BSM data generated on each vehicle.

Index Terms—VANET, Federate Learning, Data Falsification
Attack, Privacy

[. INTRODUCTION

In ToV, VANET is a self-managed network for vehicles
whose main motive is to improve the safety of driver and
passenger. Intercommunication within the network helps to
pass safety and traffic related information among the vehicles.
For instance, VANET transforms accident related information
to the network so that other vehicle drivers get aware of
that situation and can plan the safety accordingly. In general,
VANET provides two types of service i.e incident based ser-
vices and cooperative knowledge sharing services. In incident
based services, nodes in the network communicate informa-
tion when an incident occurs. And in cooperative knowledge
sharing applications, nodes aware the neighboring nodes about
any dangerous situation ahead. VANET can help the driver
make travel plan according to traffic congestion. Additionally,
drivers are cognizant about any road accidents and unfavorable
conditions ahead of time, and hence driving is safer. However,
many security issues are associated with this network. The
information communicated by beacons to each other contains
the position of the vehicle, their speed, and much other
critical information. The position of vehicle generating the
broadcasted messages has a significant role in realizing this
self managed network. Therefore, attackers manifest these
position features to disrupt the VANET network. Creating an
illusion of a false position to gain the desired attacking goal
is called the Position Falsification Attack. The misbehaving

node or the attacker node can create multiple illusion of false
position and can severely take control of the traffic in VANET.

A. VANET Model in IoV

The main unit in VANET is On-Board Unit (OBU) which is
present in each vehicle and static unit called Road Side Unit
(RSU). Each vehicle in VANET, called nodes, are installed
with multiple sensing and computing devices. These units
facilitate the exchange of information between nodes in this
environment. Each vehicle broadcasts information periodically
as Basic Safety Messages (BSM). Messages include warning
related to collision, accidents, lane-change information, navi-
gation information, and other traffic related messages. Vehicles
communicate with each other (V2V) and to other infrastruc-
tures like roadside unit (V2I). V2V communication is the
most notable communication to realize this network. Vehicles
communicate using Dedicated Short Range Communication
(DSRC) standardized by IEEE 802.11p [4].

B. Data Falsification Attack in VANET

Cyber attacks in any domain are classified as a node-centric
attack and a data-centric attack. The node-centric attack is
performed on the source of information itself. On the other
hand, in the data-centric attack, the information is attacked.
In the context of VANET, trust in data is more important
than trust in the vehicle generating that data. Alert data and
beacons broadcasted by each vehicle through BSM carries
critical safety information. Therefore, false BSM data can
jeopardize the whole VANET network. Position falsification
attack is one of the serious data-centric attacks in VANET. The
attacker node broadcasts false position information in BSM to
fool other vehicles about their real locations.

C. Federated Machine Learning

Google proposed a novel training approach to collabora-
tively learn from multiple devices [6]. This approach called
federated learning can jointly train the model on multiple
nodes without actually collecting data. The overall benefit of
this approach is privacy preservation and learning from a large
number of nodes. This training approach is beneficial because
of the following reasons.

1) Privacy Preserving: Data privacy is a serious issue at
this time. Users are hesitant to share their data with any
third party. Many regulations and restrictions appear to collect
data to perform any analysis. As a solution, federated training
supports data training on multiple nodes by locating models
to data sources. No one ever sees the data from nodes.



2) Reduced Communication Overhead: In the FL setting,
only model parameters and gradients should be communicated
with the central server. Also, it can choose clients based on
bandwidth availability. This facilitates efficient communication
[2].

3) Train on large datasets: Because of no requirement to
transfer data from nodes to the server, federated training can
train on large datasets by sending the model to data sources.
Training on large datasets results in higher model accuracy.

II. RELATED WORK

Data falsification attack is one of the highly researched
cyber attacks in VANET. The proper functioning of this
network relies on the integrity of data transmitted. So, different
detection methods for this kind of attack has been well
proposed by researchers. In the paper, the authors proposed
a technique to detect a data falsification attack using hash
chains by adjusting the contention window size which transfers
accurate information to the neighboring vehicles in a timely
manner [7]. Malicious data can badly affect the VANET
environment. Early detection of such data can save the net-
work from future damage and other costs. Here in work [3],
the authors proposed malicious data detection and correction
method. The VANET node scores the collected data based
on possible explanations. The node then validates the data
with the best scoring explanations. Machine learning is a
promising method to detect patterns from data to develop a
detection system. Because VANET can have numerous data
due to a highly scalable network, machine learning techniques
are highly studied in literature to find attacks in VANET.
Authors in work [9] integrate plausibility check with machine
learning to detect misbehaving vehicles in VANET. Here
authors train the model using SVM and KNN algorithm to get
a detection model. For the model to be trained more accurately,
data size plays a high influence. The more the dataset, the
more is the learning capacity of these algorithms. However,
centrally collecting huge datasets is infeasible in the context
of communication cost and privacy issues. The aforementioned
issue is resolved by our approach of federated training on BSM
data generated by nodes locally.

III. PROBLEM STATEMENT

Privacy issue these days is the most raised issue to the
authority that perform machine learning using users dataset. In
the VANET environment, there is always a trade-off between
privacy and security. The fact is users are more privacy con-
cerned than security. VANET is a highly mobile and dynamic
networked environment and it generates a huge number of
data. Machine learning can find meaningful information using
these datasets. In our case, using the BSM dataset, we can
learn a model to detect misbehaving vehicles in the network.
However, privacy issues arise with the centralized learning
approach. The goal of our research is to learn a misbehavior
detection model that can find attacker vehicles by analyzing
BSM data received from them. The main requirement is to do
all this by keeping the users’ data secure without any privacy
breach. Researchers have proposed a misbehavior detection

system using a simulated dataset. Due to the high communi-
cation cost to collect an enormous number of data generated by
real VANET, researchers use simulated data. Also, data sharing
is strictly monitored by law to protect user privacy. Using a
centralized training approach, it is quite difficult to train on
real VANET data. Additionally, bandwidth consumption and
privacy is another problem. As a solution to this problem,
we propose a federated learning-based misbehavior detecting
system.

A. Assumptions

We assume the training process to be synchronous. This
means all the local nodes updates their local model and
simultaneously send it to the central authority [8].

IV. SYSTEM MODEL

A misbehavior detection system using Federated Machine
Learning is obtained by local training of the model using
BSM data generated on vehicles. This training approach is
used to make the model smarter without actually sharing the
data with any central authority. Our model aims to detect any
misbehaving vehicles in VANET by training on local BSM
data generated by each vehicle. In this scenario, both the
attacker vehicle and the legitimate vehicle are broadcasting
BSM to communicate over the network. A large number of
the vehicle generates a large amount of BSM data even in a
shorter duration of time. These huge number of data generated
by mobile nodes gives a greater possibility for the analyst to
perform data analysis.

A. Entities Involved

Our proposed Federated training approach includes a Cen-
tral Authority (CA) and vehicles (V) as nodes for local
training. CA can be any third party that is training a mis-
behavior detecting model. This entity holds the initial dull
model which is later sent to local nodes for training. Initially,
there is no availability of training data. The initial model is
trained by using proxy data or the model parameter is set
which is later trained using local data. CA sends this model
to local vehicles that are involved in local training. In our
detection scenario, each vehicle uses the local BSM data
received from all neighboring vehicles. BSM data received
by each training vehicles are locally used to update the model
parameters. These all updated models are sent to the averaging
entity or CA which performs federated averaging of all local
weights and gives a more smarter model. This whole process
is performed in a single round. Multiple rounds are repeated
until the desired model accuracy is obtained.

B. Federated Learning Approach

In the context of VANET, each vehicle broadcasts BSM
(Basic Service Message). BSM carries critical and private
information like current speed, location, etc. Using this BSM
data, machine learning technology can learn smart decisions
like routing decisions, safety increasing guidance, and many
more. With these advantages, there come issues like privacy



and security threat. Sharing the BSM data generated by
vehicles for training the model is like somehow sharing the
personal information to potential attackers. Attackers can also
exploit the machine learning techniques to draw some patterns
and conclusions about the vehicle owner by playing with the
BSM data. Cyber Attacks like Sybil Attack, Denial of Service
Attack, Jamming Attack in VANET are some of the well-
studied topics. In our work, we look at the data falsification
attack. In a position falsification attack, attackers send false
data to mislead the vehicles running on the roads. Detection
of this attack and the removal of attacking vehicles from the
network is a critical step.

As a solution, we apply federated learning approach that
lets the data reside on the vehicle and can locally train the
ML model in the vehicle without sharing the information to
central training authority. In figure [1], steps involved in the
training process are shown.

Steps involved are:

1) The main initial model is initialized by using some

parameters.

2) This model is then shared to certain group of vehicles
which are randomly selected for locally updating the
weights of the model.

3) Selected vehicles use their local BSM data to train the
model and update the gradients of the model. On doing
this no vehicles should share the real BSM data to server
or central training authority.

4) All the vehicles send their individual local models and
a federated averaging is performed on all local models
which gives a central aggregated smarter model.

5) These steps are repeated for certain rounds until a
desired or acceptable accuracy is reached.

This mechanism is performed without actually looking at
BSM data hence protecting the privacy of the data. Local
model training is done in each participating vehicles without
requiring any outsider look at the data.

C. Federated Averaging

After local training of the detection model using BSM data
in local nodes, all model weights are aggregated to form an
updated model.This averaging is achieved by using Federated
Averaging algorithm [5]. In the presence N clients, pg is
the weight of client £ and nj is the number of training
data present in client k£ The optimization function can be
expressed as below,

Fw) = Y00, prFi(w) where Fi(w) = L 37 fi(w)

Here f;(w) is the loss on prediction made by model with
weight w on data (z;, y;).

Each training node performs a step of gradient descent
weight update on the initial model by using its local data.
The server then calculates the weighted average of the local
updated models. The main parameters of this algorithm are the
number of clients selected for participation in training process,
epoch used by local client to train in its local dataset. And, the
minibatch size used for client updates. Generally, minibatch
size is chosen to be 1.

TABLE I
VEREMI DATASET

Attack

D Type of Attack Description

1 Constant Attack Fixed false location is transmitted by at-
tacker

2 Constant  Offset | A fixed offset added to real position is

Attack transmitted

4 Random Attack A rapdom position 1'n51de the simulation
area is transmitted uniformly by attacker
A random position in a preconfigured rect-

8 Random Offset angle around the vehicle is transmitted by
attacker
Attacker vehicle acts normal for some time,

9 Eventual Stop . -
later transmits a constant current position

V. EXPERIMENTATION

We use a publicly available dataset VeReMi to perform our
experimentation. In this work, we train on this dataset by using
both federated and traditional centralized training approach.
The results of this training experimentation will be discussed
in next section.

A. VeReMi Dataset

We use VeReMi dataset for our experimentation, which is
publicly available dataset to analyze misbehavior detection
mechanism in VANET. It is a simulated dataset which contains
message logs of GPS data of the vehicle and BSM data
received from other vehicles communicated through DSRC.
Ground truth file for every message is present in this dataset. A
total of 225 individual simulations are performed to generate
this dataset in the presence of 5 types of attackers, varying
attacker densities and traffic densities and also few repetitions
on each parameter. Five types of position falsification attack
is simulated.

These are the constant attacker, the constant offset attacker,
the random attacker, the random offset attacker, and the even-
tual stop attacker. A short description of these attacks is given
in the table below. We preprocess the dataset by performing
some data cleaning. The dataset consists of message logs for
each receiving vehicle from senders within the range of 300
meters during its entire journey. ML-friendly VeReMi [9] is
the preprocessed version of the original VeReMi dataset to
perform machine learning evaluation on the data. This dataset
is made available to perform other machine learning analysis.
Feature vector are included in the dataset by performing
plausibility checks. This feature vector includes information
about the behavior of the sender during the entire journey
of it when it was inside the communication range of the
receiver. We use 4 feature vectors as columns in the dataset.
Feature 1 and 2 are the difference of calculated average
velocity and predicted velocity based on reported velocity
by sender in x and y direction respectively. Feature 3 is the
magnitude of features 1 and 2. Last feature is the difference
between calculated total displacement and the predicted total
displacement based on average velocity.
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Fig. 1. Single Round Federated Training in VANET for IoV.

TABLE 1T
FEATURES IN THE DATASET
[ Features [ Type | Detail |
. Difference of calculated average veloc-
Numerical . . .
1 Feature ity and predicted velocity based on re-

ported velocity by sender in x direction
Numerical Difference of calculated average veloc-
2 ity and predicted velocity based on re-

Feature ported velocity by sender in y direction
3 Numerical Magnitude of features 1 and 2. Repre-
Feature sents Constant Offset Attack

Numerical Difference between calculated total dis-
4 placement and the predicted total dis-
Feature .
placement based on average velocity.

B. Federated Training

We have used Tensorflow Framework to perform this ex-
periment. Initially, we centrally get the dataset and distribute
it among the number of nodes. This is for experimentation
purposes only. In a real scenario, no central data collection
and distribution is required. Each vehicular node has its own
local data set. But here we simulate the federated scenario by
distributing the dataset to vehicular nodes. Here each vehicular
node selected for training will be simulated virtually. They
act as virtual workers and simulated as if they are training
separately. All these simulations are performed in a single
machine by the virtual assumption of separate workers.

First, we create a set of vehicles to act as Virtual Worker. For
the experimentation purpose, we initialize 10 vehicles as local
nodes.

A different algorithm like support vector machine (SVM),
KNN, LSTM have been used as a training algorithm in feder-
ated learning. Here, we perform the experimentation using an
Artificial Neural Network (ANN). In the federated simulation,
data distribution should follow the non-iid property. To give
non-iid property to local data on each vehicle, we distribute
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the data of different sizes to the local vehicles. This mimics
the unbalancedness category of non-iid data.

1) Federated Learning Parameter: During our analysis we
have used following learning parameter to train in federated
manner.

R (Rounds number) = 500

t (Number of nodes selected for a round) = 10
B (Batch size used at local nodes) = 16

N (Epoch number at local nodes) = 1

LR (Local learning rate) = 0.01

Each local vehicles selected, train the initial ANN model
using their local BSM data. The number of the local model
update is equal to the chosen epoch size. Federated averaging
of all local weights gives a global updated model. We repeat
this step for 500 rounds. In the coming section, we have
discussed the result of this experimentation.

C. Traditional Centralized Training

We have performed the experimentation on a traditional
centralized training manner to perform some comparative
analysis. We trained an ANN model using the same parameter
as in federated training. Here we split the entire dataset into
test data and training data. Using the training data, we trained
ANN model for 500 epochs. Comparative analysis between
two approaches will be discussed below.

VI. RESULTS AND EVALUATION
A. Evaluation Metrics

We use Precision, Recall and Accuracy to evaluate the
performance of these algorithms. Precision is the proportion
of positive findings that are actually correct. Recall is the
proportion of actual positive that are identified correctly. And
accuracy is the measure of number of correctly predicted data
out of all data points.



Precision = and Recall =

TP TP
TP+FP TP+FN

The TP called True Positive implies that attacker vehicle
are detected as attacker. FP means legitimate vehicle are
detected as attacker and FN means attacker was not detected
as attacker. We use mean Average Precision (mAP) as the
metrics to evaluate the detection accuracy. In this approach,
AP is calculated for each attack classes and all these APs are
averaged. Average Precision is the area under the precision-

recall curve.

mAP = Z?nAP" , n is the number of attack classes.

1) Accuracy, Precision and Recall: Here we analyze the
overall accuracy of attack detection achieved by training using
two approaches. The accuracy plot in [2], clearly shows that
the overall accuracy achieved by federated training is higher
than centralized training
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Fig. 2. FL vs SGD Accuracy

Also we have analyzed the precision and recall value
achieved for each attack using two training approaches in given
table [III]. The result shows that for Attackl, federated trained
model showed good precision than SGD Trained model. How-
ever, recall value is good for SGD trained model. Similarly, for
other attack type, Federated Trained model has better precision
value. Recall value for both models is same for Attack 4
and Attack 8. Yet for other types of attack, recall is slightly
less in federated trained model as compared to SGD trained
model. Precision and recall curve of the detection model for
federated training (FL) vs central training using Stochastic
Gradient Descent (SGD)is shown in Figure 3. Precision for
different attack type is nearly equal in both federated and
central training. However, centralized training outperformed
the federated model in recall value.

2) Communication Cost: In VANET environment, the cen-
tral authority and local nodes communicate wirelessly to
participate in training process. Local vehicles transmit the
updated weights over wireless channel. Performance of this
federated training process depends on the availability of net-
work bandwidth and processing capacity of OBUs in vehicles.
Communication cost is the cost associated with uploading and
downloading the models between vehicular nodes and central

TABLE III
PRECISION AND RECALL FOR DIFFERENT ATTACKS TRAINED USING TWO
METHODS.
Precision | Attackl Attack2 | Attack4| Attack8 Attack16
Federated
Trained 0.9455 0.6758 0.8675 | 0.8674 0.9294
Model
SGD
Trained 0.9454 0.6809 0.8675 | 0.8615 0.9373
Model
Recall
Federated
Trained 0.81 0.63 0.61 0.63 0.73
Model
SGD
Trained 0.94 0.67 0.61 0.63 0.89
Model
ors{
-—- SGD
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Fig. 3. Precision-Recall Curve

authority. We compare the communication cost based on the
amount of data exchanged between local vehicles and central
authority. In central training, all BSM data are transferred to
the CA. In contrast, FL setting requires locally learned weights
to be transferred to the CA.
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Fig. 4. Size of data communicated

Let dg, d; and D be the size of global model, local model
and local data (in bits) for each vehicle respectively. Total



size of bits to be uploaded and downloaded (7" varies in
federated and centralized training approach. Total size in bits
is the size of global model to be downloaded by each client
plus size of each local model for federated setting. On the
other hand, in centralized setting it is the total size of local
data generated by vehicle. This size for federated (Trz) and
centralized (T 1) setting can be expressed as following:

R N
Trp =Y > (dga + dii)) (1)
1 j=1
N
Tor =) (D) @)
=1

where, NV is the total number of local vehicle nodes and R
is the communication round number. As the VANET network
becomes more dense, N will be high. At this time, data
generated by each vehicle nodes increases significantly. It
is obvious that size of BSM data generated by a vehicle
exceeds the weights of the model trained by that data. More
the vehicular density more will be the data transfer cost in
centralized training approach.

We perform the experimentation to see the data size in bits
for training the models in both training setting. For central
training, the total data size is equal to the size of all VeReMi
dataset that we used for training. In real scenario, for central
training, data from each node is collected by central server.
Sum of all these data is the data size for central training. In
our experimentation, the total data exchanged between server
and all nodes during entire communication round (500) is
noted. We observed comparatively fewer data communication
in federated setting as compared to central approach. In given
Figure 4, the data size communicated to achieve same accu-
racy is comparatively larger in central training than federated
approach. Total size communicated using uplink and downlink
to converge was observed to be 611840 Bytes. While the total
size of data to be collected for central training was 4494213
Bytes. This gap further increases with the increase in vehicular
densities. This shows that training the misbehavior detection
model in a federated fashion saves communication cost.

VII. CHALLENGES AND FUTURE WORKS

Our experimentation depends on the publicly available
labeled dataset. This dataset does not show the properties
required for federated learning. We have used the dataset
that lacks the true non-IID property and non balanced data
distribution. Another challenges is the training error that can
occur due to wireless resource limitation [1] when commu-
nicating the weights. The local training nodes selected for a
round may get disconnected at the middle of the round. This
possibility is not considered in this work. We performed the
experimentation by using public dataset which is labeled for
each attack type mentioned before. However, in real scenario
BSM data are not labelled. Labelling the data locally using
some pre-processing unit is out of scope of this paper. This
part can be looked in future works. The whole goal of this

research is to detect attacks without actually looking at BSM
data. However, attackers can see the weights sent over the
network which violates the privacy preserving property of
federated learning. In future, we can use encryption algorithms
like homomorphic encryption, differential privacy to make the
training process more secure and privacy preserving.

VIII. CONCLUSION

Data falsification attack in VANET is performed by misbe-
having vehicles to disrupt the VANET environment. We use
federated machine learning approach to identify the position
falsification attack. In this paper, we used publicly available
dataset VeReMi to train misbehavior detection model. On
training for certain communication rounds, the model con-
verged with acceptable accuracy, precision and recall value.
We also compared these metrics of the model when training
is done centrally. Federated training showed acceptable perfor-
mance to centrally trained model. We conclude that without
sharing BSM data to third party for model training, we can
achieve significant high performing model. Also for federated
training, only model weight are to be transferred which highly
reduces the data communication overhead as compared to
central training. Each vehicle node at last is deployed with
the trained global model and can detect position falsification
attack on getting a new BSM data from attacker vehicles.
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