Mitigating Data Poisoning Attacks On a
Federated Learning Edge Computing Network

Ronald Doku and Danda B. Rawat
Data Science and Cybersecurity Center (DSC2)
Department of Electrical Engineering and Computer Science
Howard University, Washington, DC 20059, USA
rdoku@bison.howard.edu.com, danda.rawat@howard.edu

Abstract—Edge Computing (EC) has seen a continuous rise
in its popularity as it provides a solution to the latency and
communication issues associated with edge devices transferring
data to remote servers. EC achieves this by bringing the cloud
closer to edge devices. Even though EC does an excellent job of
solving the latency and communication issues, it does not solve the
privacy issues associated with users transferring personal data to
the nearby edge server. Federated Learning (FL) is an approach
that was introduced to solve the privacy issues associated with
data transfers to distant servers. FL attempts to resolve this
issue by bringing the code to the data, which goes against the
traditional way of sending the data to remote servers. In FL, the
data stays on the source device, and a Machine Learning (ML)
model used to train the local data is brought to the end device
instead. End devices train the ML model using local data and
then send the model updates back to the server for aggregation.
However, this process of asking random devices to train a model
using its local data has potential risks such as a participant
poisoning the model using malicious data for training to produce
bogus parameters. In this paper, an approach to mitigate data
poisoning attacks in a federated learning setting is investigated.
The application of the approach is highlighted, and the practical
and secure nature of this approach is illustrated as well using
numerical results.

I. INTRODUCTION

The goal of cloud computing is to deliver jobs to a remote
network of powerful servers. These jobs usually involve the
transfer of data for storage, management, or computation. A
significant factor responsible for the intricacies associated with
cloud computing is the heterogeneity of the data sources,
which ranges from massive data centers to a wide variety of
end-nodes. These data sources tend to be far away from the
cloud, which presents a problem as the data obtained from
these end-nodes will need to be uploaded and processed cen-
trally in a remote cloud server. Examples of the data that could
be collected from the end-devices are videos, measurements,
photos, and location information which are aggregated at the
remote server. Consequently, cloud computing faces issues
such as network latency, efficiency, and the cost of transferring
such extensive data to a remote server. These issues have
necessitated the rise of edge computing and its variants as a

This work is partly supported by the U.S. NSF under grants CNS/SaTC
2039583 and NSF-1828811, and by the DoD Center of Excellence in Al and
Machine Learning (CoE-AIML) at Howard University under Contract Number
WO11NF-20-2-0277 with the U.S. Army Research Laboratory.

vital tool in the quest to provide better services to clients. Edge
computing [1]-[4] entails pushing the data for analysis closer
to the source as it is a less expensive undertaking, especially
when moving this across a wide area network to a remote
server.

Furthermore, uploading the data over a long distance can
expose the data to security issues. Edge computing endeavors
to eliminate some of the risks of these attacks as it involves
shortening the distance the data travels. However, this still
does not present a foolproof solution to data security. A more
dependable solution is to get the data to stay on the device
for processing. FL. has been proposed by Google researchers
in an attempt to ensure data privacy in a distributed machine
learning over multiple devices setting. In FL, the data does
not have to leave the data source. The code comes to the data
instead, which makes it a reliable way of optimizing privacy
issues.

However, data poisoning in FL may arise as a result of
participants training their data locally and then sending the
model updates to the edge server for aggregation. In such
a scenario, it is challenging for an edge-server to examine
the data used for model training thoroughly. Consequently,
an adversary can undermine the global model on the edge-
server by introducing aggregates trained on dirty-labeled data.
The work in [5] pointed out that dirty-label data poisoning
attacks tend to produce high misclassifications in deep learning
processes, with up to 90%, when an adversary introduces
relatively few dirty-label samples (around 50) to the training
dataset. As a result, work in [6] pointed out data poisoning
attacks in FL as an issue that needs immediate addressing.

Label-flipping [7] and backdoor attacks [8], [5] are ex-
amples of data poisoning attacks that occur in a centralized
ML setting. Robust losses [9] and anomaly detection [10]
are approaches employed to mitigate these poisoning attacks
in centralized scenarios. However, these approaches are not
feasible in an FL setting as they require exclusive access to
the training data. A constraint in FL is that the server or
ML practitioners must not have any contact with the client’s
data, except through an ML model. The edge server should
only receive model parameters. This way, FL allows multiple
entities to train a model without needing to share sensitive
data directly. Consequently, the centralized approach of having
access to a dataset in order to mitigate poisoning attacks would

defeat the purpose of FL if such measures were employed.
In this approach, a solution is devised that attempts to
mitigate data poisoning attacks in an FL-EC network. We
focus solely on text data for this research. An advantage a
decentralized network has over its centralized counterpart is
that the origins of the data are known, which provides an
opportunity for the data to be vetted before it is used for
training. Thus, our approach requires the vetting of a client’s
data prior to it being trained by the model. However, the goal
of FL is to ensure data privacy by making sure the edge
server does not come into contact with the data directly. The
challenge here is to vet the data without compromising the
security of the client’s data and the values on which FL was
established. To this end, we employ a mediator (aptly termed
the facilitator), that serves as a liaison between the client node
and the edge server. The facilitator is responsible for data
vetting. The novelty of our approach lies in the manner in
which the data is vetted and the introduction of a facilitator. We
provide numerical evidence based on our evaluations and tests
to prove that this approach, indeed, works to ensure higher
security and improves the prediction rate of the model.

A. Background and Related Work

Currently, most applications and services rely on machine
learning technologies to derive actionable insights from data.
However, ML systems are vulnerable to adversarial ML attacks
that subsequently compromise predictions. EC is a thriving
sector that relies on the data sent from edge devices to train
ML models for prediction services. However, data poisoning
attacks are viewed as an emerging security threat that compro-
mise such services [11]. An example of a data poisoning attack
is optimal poisoning attacks, where an adversary injects mali-
cious points in the training set which consequently increases
the test classification error, with the adversary learning the pa-
rameters of the model. This is achieved by the minimization of
a loss function processed on compromised data. This approach
has been used against classic binary ML algorithms such as
Support Vector Machines (SVM) [7], logistic regression [12],
and embedded feature selection [13]. The algorithm proposed
in [14] measures the effect each instance of the training set has
on the performance of the learning algorithms, which works
more adequately with smaller datasets in comparison to larger
ones. Another method employs an outlier detection scheme
that recognizes and eliminates anomaly samples [15]. How-
ever, it is limited in defending against label flipping attacks. In
[16], they address the consequences of data poisoning attacks
on an FL system beset with Sybils. In these attacks, adversaries
produce multiple malicious participants to carry out attacks
by utilizing poisoned data for model training. They employ
a novel defense strategy (FoolsGold) where they distinguish
legitimate participants from malicious ones based on their
updated gradients. In this work, the focus is primarily on
label-flipping attacks, and the proactive rather than a reactive
measure taken to mitigate it. Since the FL server is prohibited
from having access to the training data, we employ a liaison
that handles the data vetting process.

II. PROPOSED APPROACH

Machine Learning in all of its glory can be reduced to a
basic form which is usually a simple equation such as:

Y =sgn (waer) (D)

And whatever prediction is made depends on the result of
Equation 1 which could either be smaller than 0 (negative
outcome) or greater than 0 (positive outcome). The result of
the prediction is dependent on the representation for x.

FL Server (Aggregator)

Facilitator
(i) Facilitator vets the device's data

(i) Facilitator gives the server the green-light when data gets vetted

(iii) Server sends model to the client node

(iv) The model gets trained on vetted data

— (v) The model updates are sent back to the server
i
= W

© ¥ Training

Figure 1. Data Vetting in the FL Process.

Client Device

In this work, this simple but yet powerful idea is taken and
employed in the data vetting process. To vet data (determine
whether a potential dataset is poisoned or not), Equation 1
(SVM’s equation) is employed. We utilize SVM for vetting
data because an FL setting provides an advantage over it’s cen-
tralized counterpart in the sense that, it allows for a proactive
approach to data poisoning mitigation. This is because most of
the work done in centralized ML systems focus on gathering
data from the wild (usually unknown sources). However, the
central server would still have access to the dataset. In FL, it is
an ML model that has access to the dataset, not the edge server.
However, the data sources are known which in turn provides
the possibility of vetting the data before it is trained on an
ML model. It is imperative to ensure the vetting process does
not compromise the client’s sensitive data (the foundation on
which FL is built on). To this end, a facilitator is employed to
serve as the link between the client and the edge server. The
facilitator is a lightweight program that possesses an SVM
model and other essential features it requires to effectively vet
an end-device’s dataset in a fair and privacy secure manner.
Fig. 1 provides a visual representation of the process.

III. SYSTEM MODEL

Our approach uses an SVM model to determine whether the
dataset belonging to an end-device has been dirty-labeled or
not. SVM [17] is a large margin classifier that aims to find
an optimal hyperplane during a binary classification process
that divides two classes in an n-dimensional space. A larger
margin ensures the SVM classifier will have a better chance
of generalizing future datasets. The goal of SVM is to find a
vector w such that the dot product with all positives is above
a +1 and the dot product with all the negatives is under —1.

This turns to be a minimization problem as the goal is to
minimize the weight vector, which is the same as maximizing
the margin. This is represented in the following equations
below.

Y widij > +1 (2)
7
Zwidi,j <-1 3)
7

min||w|| 4)

If we find the w, w has a particular form which is:
w=Y ajdi—Y ajd, Q)
JE+ JE—

Equation 5 consists of two parts. The first part is a linear
combination of documents in the positive class minus a linear
combination of documents in the negative class with some
weights. The goal of the SVM classifier is to find a w that
satisfies the conditions above. For a misclassification to happen
in an SVM classifier, the datapoint must land on the wrong
side of the separating hyperplane. This is called a classification
error. However, if a data point is found inside the margin, it
is termed a margin error. The total error (7) of the model
is calculated as the sum of the classification error plus the
margin error. A soft margin SVM model is employed to allow
some classification and margin errors to occur. The number of
errors allowed is controlled by the C parameter. The objective
function the soft margin SVM tries to minimize is:

1
§||wH2+CZmax(O,l—y,-(wa,-+b)) (6)
i

A small C parameter is used to allow for more errors. T
plays a pivotal role in the determination of whether a dataset is
poisoned or not poisoned. For the vetting process, we calculate
T for both poisoned and non-poisoned datasets. The poisoned
and non-poisoned datasets are averaged to get a value we
call the midpoint. Equation 7 illustrates how the midpoint
is calculated. TP represents the total averaged error for the
poisoned datasets, and TN is the total average error for the non-
poisoned datasets. The midpoint serves as the boundary, and a
future dataset that falls within the 7P range during the vetting
process is classified as a poisoned dataset. The idea here is to
find the average total error of various poisoned datasets during
training, and then use that to classify future datasets. Thus this
approach requires the SVM model to be trained thoroughly on
poisoned and non-poisoned datasets before it is deployed to a
client node via the facilitator.
4y ;

> (N

After the SVM model is successfully trained on the dataset,
instances of the SVM model are assigned to a facilitator. A
facilitator is deployed to every new node that joins the FL
network. The main role of the SVM model the facilitator holds
is to generate the total error produced by a dataset to classify
whether the dataset is poisoned or not.

Midpoint =

A. Feature Engineering

The representation of data is primarily the most important
factor in machine learning. As such to effectively predict
poisoned data, our goal is to train an SVM model on poisoned
and non-poisoned data. To achieve this, we need to engineer an
effective, consistent, and reliable feature set from the dataset
on which the model would be trained and tested. We chose to
use the IMDB dataset for this research because [18] discovered
that this dataset was more susceptible to adversarial attacks
than an image dataset when the bag-of-words features are
utilized. Thus, we decided to engineer multiple feature sets
that are not solely dependent on the bag-of-words approach. To
this end, the main part of the vetting process focuses on how
we engineer these feature sets. The attribute-value pairs that
would make up the feature sets are a proof of common interest
score, the device’s reputation in the network and the topics
of the dataset. We train the SVM using these d-dimensional
attributes. The whole process begins with the SVM model
being trained on a dataset with poisoned and non-poisoned
labels. This dataset is supposed to have the same qualities of
the prototypical data the FL. model will be trained on in the
real world.

1) Facilitator: Every node in the network is assigned a
facilitator. The facilitator serves as the liaison between the
edge server and the end device. The facilitator’s job is to
ensure that the data the global model will be trained on is not
poisoned. The facilitator possesses the SVM model that will
detect the total error from the client’s data. The facilitator also
extracts the needed features from the client’s dataset for the
SVM model. To ensure security and privacy, whatever features
the facilitator generates is stored on the client device. The
client device provides a link to the facilitator that allows it to
access the generated features and then utilize it to determine
if the dataset is vetted or not. If the client opts to discontinue
the process, it just deletes the link to the feature set the
facilitator had access to. After unlinking, the client can choose
to overwrite this data with garbage as well for extra security
[19], [20]. This ensures the facilitator now has no access to
the features derived from the client data after it is removed.
Whatever features the facilitator generates, it is stored on the
client device. The client data provides a link to the facilitator
that allows it to access the generated features and then utilize
it to determine if the dataset is vetted or not. If the client opts
to discontinue the process, it deletes the link to feature set the
facilitator had access to. After unlinking, the client can choose
to overwrite this data with garbage as well for extra security
[19], [20]. This ensures the facilitator now has no access to
the features derived from the client data after it is removed.
The only communication the facilitator has with edge server
is a ‘yes’ or ‘no’ response to whether the data is poisoned or
not.

2) Proof of Common Interest: The Proof of Common
Interest (PoCI) [21] is a concept that addresses the quantity
over quality issue in data science. It attempts to solve this
by devising a an consensus mechanism known as the PoCI to

vet data. In this work, we implement the PoCI in [21], and
use it as an attribute in our feature engineering process. The
PoCI as an attribute ensures that the data of non-malicious
end devices will usually tend to share similar interests, and
we take advantage of that fact.

The PoClI is calculated by using a unique hash function
known as the MinHash of the dataset. The MinHash is a unique
signature of a node’s document that can be used to determine
the similarities between two documents. To compute the PoCI,
we need to find the similarities between the MinHash of a
data owner’s data and the minhashes of the datasets that were
used for training (dirty-labeled and correctly labeled). The
edge server sends random minhashes of selected dirty-labeled
and rightfully labeled data to the facilitator. The data owner
calculates it’s own minhash. After the minhash calculation, we
calculate the minhash by counting the number of components
present in the two signatures. That gives the similarity score
for the comparison of any two documents. We calculate the
minhashes of the dirty labeled and correctly labeled data.

The PoClI process demands the calculation of a unique hash
function known as the MinHash of the data owner’s data. To
compute the MinHash, we utilize data mining methods such as
shingling and Jaccard Similarity. The shingling of documents
involves treating documents as a set of short strings. This way,
the documents that share common sub-strings are perceived
as similar. Shingling solves this by transforming a document
into multiple substrings of length & that is present within the
document. As such, documents are represented as a set of k-
shingles. The length k needs to be picked according to the size
of the document. We pick a shingle size of k = 4. After picking
the shingle size, we introduce MinHashing. Like other hashing
techniques, MinHashing works by converting a document of
any size into a specific size. However, MinHashing can specif-
ically return a fixed-size numeric signature for documents. We
can use this numeric signature to calculate the similarities
between the two documents. This is done through the help
of Jaccard Similarity. We can find the similarity between two
documents A and B by performing the Jaccard Similarity
by discovering the relative size of their intersection. When
documents are presented as a set of shingles, we can use the
Jaccard Index to measure the similarity. The Jaccard Similarity
can be applied to MinHashes as well. The Jaccard Similarity
between the MinHashes of two documents A (MH4) and B
(MHp) and is defined as:

‘MHA QMHB|

J(MH,, MHg) = TMELUME|

®)

MinHashing uses randomized algorithms to estimate the
Jaccard Similarity between documents. The steps below show
the MinHashing process:

Step 1:
1) Break down the ledger into a set of shingles.

2) Calculate the hash value for every shingle.
3) Store the minimum hash value found in step 2.

4) Repeat steps 2 and 3 with different hash algorithms
199 more times to get a total of 200 min hash values
(MinHash signature).

To compute the PoCI, we need to find the similarities
between the MinHash of the data owners’ and the minhashes
the facilitator currently possesses. This is achieved by counting
the number of signature components in which they match.
That gives the similarity score for the comparison of any
two documents. The formula for calculating the MinHash is
expressed as:

z(C) = minz(C) ©)

where C represents a document. After we get the POCI score
of the data, that becomes the first feature we need.

3) Topic Models: The next feature we extract is the topic
model. We use the Latent Dirichlet Algorithm (LDA) to
achieve this. In an LDA model, the observable features the
model sees are the words that appear in the documents. Other
parameters are hidden/latent (inferred). One of those parame-
ters is a topic that is assigned to each word, thus making every
document a mixture of such topics. The goal of the model is
to figure out how such document collection could have been
generated in the first place. LDA produces a file that contains
all the topics consisting of words with the probabilities of them
belonging to that topic. The output from the LDA model is a
k topic document with each topic represented by a group of
words. We run the LDA model on both training data sets, and
then come up with the topics present in each dataset. We then
run the same LDA model on each dataset to come up with
the probability that it belongs to dirty-labeled and correctly
labeled given the topics it generated.

LDA works by assuming a document constitutes multiple
topics i.e., P(z|d). Each topic is a distribution over terms in
a vocabulary i.e., P(t|z). We operate under the assumption
that there is a fixed vocabulary. LDA suggests documents
are probability distributions over latent topics and topics are
probability distributions over words. This means that according
to LDA, every document contains a number of topics. Each
topic has a distribution of words associated with it. The
important aspect here is that LDA works with probability
distributions rather than with strict word frequencies. Thus
while other bag-of-words models may focus on the most
frequently occurring words in a document, LDA takes a more
holistic approach by concentrating on the distribution of words
across topics. LDA can be formally written as :

<

P(ti|d) = Z

(tilzi = j)P(zi = jld) (10)

where P(1;|d) can be expressed as the probability of the
i term for a given document d and z; is the latent topic.
P(t;]z; = j) is also expressed as the probability of # within
topic j. Furthermore, P(z; = j|d) is the likelihood of selecting
a term from topic j in the document. The number of latent
topics Z has to be defined in advance and allows to adapt the
degree of specialization of the latent topics. LDA approximates
the topic—term distribution P(t|z) and the document-topic

distribution P(z|d) from an unlabeled corpus of documents
using Dirichlet priors for the distributions and a fixed number
of topics. Gibbs sampling is one viable method to achieve this:
It iterates multiple times over each term #; in document d;, and
samples a new topic j for the term based on the probability
P(z; = jlt;,d;,z—;) based on Equation 2, until the LDA model
parameters converge.

crz4B C” +a

I ”
P(Z':j|t',d',Z—') o ij ij (11)

’ T LA+ TR X CYY + Za
CT7Z keeps a tally of all topic—term assignments, C®Z counts

the document—topic assignments, z_; represents all topic—term

and document-topic assignments except the current assign-

ment z; for term #, and a and B are the hyperparameters

for the Dirichlet priors, working as smoothing parameters for

the counts. Based on the counts the posterior probabilities in
Equation 1 can be estimated as follows:

Pl =)= 2

o Y CGE+TB

C” +a

. djj
HHQZ]M)ZEiﬁ%IQE
z diz

12)

(13)

The topics generated can then become a simple document
that the facilitator can use as a training set for a Naive Bayes
classifier (NB). For this feature to be extracted in a client
device, we get the topics from the client dataset, and then
generate the probability of the dataset belonging to either the
poisoned or non-poisoned dataset. When we set the parameter
k to 10, the LDA model in the facilitator derives 10 topics from
the dataset. The next step is to determine the probability of
these generated topics belonging to which class (poisoned or
non-poisoned) (NB).The facilitator will possess a lightweight
training (100 topics for each class) which it can use to predict
the probabilities of the dataset belonging to a poisoned or non-
poisoned class. As a general statement, we can state Baye’s
theorem as follows:

P(D[6)
P(D)

The data are represented by D and parameters are represented
by 6.

4) Reputation: Another feature we extract is the reputation
of the node in the system, we take into account the number
of times it passed the vetting process during it’s time in the
network. At the initial step, each node has a reputation score
of 0.5. The reputation score is calculated by choosing a k-bit
length vector. In our case, we chose k to be 16. Hence, we
possess a 16-bit length binary vector where a bit of 1 in the
16-bit sequence denotes a node’s dataset has successfully been
vetted, and O denoting failing the vetting stage.

Attached to each reputation vector is a number m, which
represents the number of most significant bits. The m signifi-
cant bits are found by counting bits to the right. To evaluate the

P(6]D) = P(6) (14)

score of a reputation vector, we count up to the m'" significant
bit and then convert it to an integer. After this is done, we
divide it by 2™. For instance, if we want to get the score for a
reputation vector for a node i from node j, with the reputation

vector of rv;; = 1110011000000000 where m= 7. The score

it represents can be calculated as: % = % = 0.8984.

This gives us a value between [0 to 1). Everyone in the
network is expected to calculate this value. We also keep
track of a non-reputation vector, which is just the complement
of the reputation-vector. The facilitator communicates with
other facilitators in the network for the propagation of this
information. Initially, when a node has just joined the network,
0.5 is the default score for that node. The score gets updated
after each iteration. A node gets kicked out of the network if
after 16 iterations (vetting processes0, it’s reputation score is
lower than a set threshold. The whole process begins again
for legitimate nodes after 16 data vetting processes.

IV. TESTING AND EVALUATION

After the feature extraction stage, the next step is to train
the model using the features generated. For the initial model
training, we assigned random values for reputations based
on what good and bad reputation scores were determined to
be. We carefully curated a prototypical poisoned and non-
poisoned dataset. This was important because we needed a
representation of what a good and bad data was in order to
accurately generate the POCI and topic modeling features. We
perform experiments on the IMDB review sentiment dataset.
In the experiment, we performed uniform random flips on
the data which results in the case where instances of the
training data are uniformly chosen at random and their labels
are flipped. We chose to use the IMDB dataset because [18]
discovered that this dataset was more susceptible to adversarial
attacks than an image dataset when the bag-of-words features
are utilized. Hence, we decided to engineer the features to
measure the effectiveness of our approach. The IMDB review
sentiment dataset has 25,000 training examples and 25,000 test
instances, which has been equally divided between “positive”
and “negative”. To effectively pick the number of instances to
flip the labels on, we computed how many instances in the
data we have to label-flip in order to diminish the model’s
prediction. This number turned out to be 18% of the sample
size. Thus, 150 for a dataset that had 800 instances. The goal
of this experiment during the initial phase was to determine
the midpoint. To accomplish this, we split the dataset into 25
batches. Each batch had 2000 instances of the dataset. For
each batch, the dataset was split into two groups. The first
group had the poisoned dataset and whilst the second group
had the non-poisoned dataset. Each group had 1000 instances
each. We split the dataset into training and testing. The training
dataset had 700 training instances, and a 300 instance test set.
For the poisoned group, we flipped the label for at least 132
(18%) instances. For the test data, we flip the label poison for
at least 52 instances out of the 300. We then run the SVM
classifier on it. The goal was to determine T. We then proceed
to the non-poisoned group where we set aside 700 training

data and 300 test data as well. We run the SVM model and
calculate the error. Thus for the first batch, we have TP for
the poisoned batch and TN for the non-poisoned batch. We
repeated the process for the other 24 batches and recorded their
total error for each group. After the experiments, we ended
up with 25 TPs and TNs. We derive the midpoint from these
two results. We run experiments to measure how accurately
we can determine poisoned or non-poisoned data using this
process. We generated 25 randomized datasets (poisoned and
non-poisoned). For each dataset, the SVM model determines
its total error. If the total error derived is less than the midpoint,
we predict that the dataset is poisoned. The accuracy score was
0.72. Table I shows the precision and recall. We also plot the
misdetection rate based on the percentage of falsified data in
the dataset (Fig. 2).

Table T
PRECISION AND RECALL
Precision Recall ~ Fl-score
0 0.77 0.71 0.74
1 0.67 0.73 0.70
09 4
08 Y
< .
T 06 /
z 04 ot
z -
B 03 »
< 02 <
2
014 o-°

01 02 03 04 05 06 07 08 09
Percentage of Falsified Data

Figure 2. Misdetection variation for % of falsified data.

0.850

0.825

0.800

0.775

Accuracy

0.750

0.725

0.700

0.675

GM with Vetted Data GM without Vetted Data
Figure 3. Comparing Model Performance

Our approach performed poorly when the percentage of
the flipped label is high, and did reasonably well when the
percentage dropped. To test how well our method performed,
we generated various data samples each with varying degrees
of poisoned data. We had a test group where we train the
data on a model after it has passed our vetting process. The
control group trained the data without vetting. Fig. 3 is a
box and whisker representation of the spread of the accuracy
scores across for each model. From these results, it shows the
accuracy we get from predicting with the vetted data is better.

V. CONCLUSION

In this paper, we devised an approach that attempts to
mitigate the data poisoning issue in a federated learning

network. In our approach, we introduce the concept of a
facilitator that gets assigned to an end device. The facilitator’s
job is to ensure the data that an end device owns has not been
compromised. It achieves this by employing an SVM model
for the data vetting process. We run experiments to determine
the effectiveness of our approach. Our experiment showed that
a model’s accuracy is better when the data it trains on has been
positively vetted.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

REFERENCES

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450-465, 2017.

S. Safavat, N. N. Sapavath, and D. B. Rawat, “Recent advances in
mobile edge computing and content caching,” Digital Communications
and Networks, vol. 6, no. 2, pp. 189-194, 2020.

M. Al-Alshaqi and D. B. Rawat, “Cloud, edge, and fog computing
and security for the internet of things,” EAl Endorsed Transactions on
Internet of Things, vol. 6, no. 23, 2020.

R. Doku and D. B. Rawat, “IFLBC: On the Edge Intelligence Using
Federated Learning Blockchain Network,” in 2020 IEEE Intl Conference
on Intelligent Data and Security (IDS), pp. 221-226, 2020.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” arXiv preprint arXiv:1909.11875, 2019.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” arXiv preprint arXiv:1807.00459, 2018.
B. Han, I. W. Tsang, and L. Chen, “On the convergence of a family
of robust losses for stochastic gradient descent,” in Joint European
conference on machine learning and knowledge discovery in databases,
pp. 665-680, Springer, 2016.

B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau,
S. Rao, N. Taft, and J. D. Tygar, “Antidote: understanding and defending
against poisoning of anomaly detectors,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement, pp. 1-14, 2009.

A. D. Joseph, P. Laskov, F. Roli, J. D. Tygar, and B. Nelson, “Machine
learning methods for computer security,” In: Dagstuhl Manifestos,
Dagstuhl Perspectives Workshop, vol. 1237, 2013.

S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015.

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
feature selection secure against training data poisoning?,” in Interna-
tional Conference on Machine Learning, pp. 16891698, 2015.

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to
subvert your spam filter.,” LEET, vol. 8, pp. 1-9, 2008.

A. Paudice, L. Muiioz-Gonzélez, A. Gyorgy, and E. C. Lupu, “Detection
of adversarial training examples in poisoning attacks through anomaly
detection,” arXiv preprint arXiv:1802.03041, 2018.

C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in federated
learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for
data poisoning attacks,” in Advances in neural information processing
systems, pp. 3517-3529, 2017.

S. Bauer and N. B. Priyantha, “Secure data deletion for linux file
systems.,” in Usenix Security Symposium, vol. 174, 2001.

P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proceedings of the Sixth USENIX Security Symposium, San
Jose, CA, vol. 14, pp. 77-89, 1996.

R. Doku, D. B. Rawat, and C. Liu, “Towards federated learning approach
to determine data relevance in big data,” in 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI),
pp. 184-192, 2019.

